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Abstract 

Automatic facial age progression (AFAP) has been an active area of research in recent years. 

This is due to its numerous applications which include searching for missing. This study 

presents a new method of AFAP. Here, we use an Active Appearance Model (AAM) to extract 

facial features from available images. An ageing function is then modelled using Sparse Partial 

Least Squares Regression (sPLS). Thereafter, the ageing function is used to render new faces at 

different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a 

database of 500 face images with known ages. Furthermore, the algorithm is used to progress 

Ben Needham’s facial image that was taken when he was 21 months old to the ages of 6, 14 and 

22 years. The algorithm presented in this paper could potentially be used to enhance the search 

for missing people worldwide.   

 

Keywords: forensic science, age estimation, age synthesis, active appearance model, sparse 

partial least squares regression, age progression, Ben Needham 
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The Case of Ben Needham is claimed to be one of the longest missing person’s case in British 

history. Born in Sheffield, on 29th of October 1989, Ben Needham disappeared while on holiday 

with his parents in the Greek island of Kos on 24th July 1991, when he was only 21 months old 

(1). 

Ben went missing in the village of Iraklise, where his maternal grandparents had migrated. On 

the day of his disappearance, Ben’s mother was in her workplace in a local hotel (Palm Beach 

Hotel), while he was left in the care of his grandparents. He was seen playing with his toy cars in 

the mud and splashing water around a farmhouse the family were renovating, when around 

2.30 PM, it was realised he had disappeared (1). 

The family first searched the area, assuming Ben had wandered off, or that his teenage uncle, 

Stephen, had taken him out. When no traces of him could be found, the police were notified. 

However, the police blamed Ben’s grandparents, and extensively questioned them as prime 

suspects. As a result, the search for Ben was very local [5], but eventually, the police widened 

their search to investigate the disappearance. 

In 2003, shortly before the twelfth anniversary of Ben's disappearance, the Metropolitan Police 

Facial Imaging Team created an updated photograph of Ben using age progression techniques to 

alter his toddler picture. This was done in order to predict how he would look when he was 

thirteen years old. 

In 2011, there was an excitement for the search when South Yorkshire Police agreed to work 

with the Greek authorities to reopen the case. To date, despite numerous false sightings over the 

years, no trace of the British toddler has ever been found.  However, Ben’s mother Kerry, 

continues to hope that someday he would be found. 

Recently automatic facial ageing (AFA) has gained popularity due to its numerous applications; 

the most obvious has been for the search of missing people. Advancements in this area have 

been discussed in comprehensive reviews such as Fu et al. (2). Although recent progress has 

been made in this case, no conclusive evidence has been found. Furthermore, motivated by the 

fact that each year the police record approximately 300, 000 missing person cases in the UK 
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alone (3), we endeavour to improve the current techniques of searching for missing people in 

order to achieve more successful outcomes. We present a novel age synthesis framework which 

revisits the approach we discussed in (4).  

Our contribution, in this paper, includes the presentation of a computer based method using 

Sparse Partial Least Squares Regression for age estimation. Then, face synthesis is undertaken 

via a linear algebraic approach which inverts the age estimator. Finally, using rigorous 

evaluation procedures, we compare the synthesised images to those produced by the 

Metropolitan Police Facial Imaging Team. This comparison is primarily done as a form of 

evaluation of the quality of our results. We would like to highlight that this work is not geared in 

any way to criticise the existing police work. Rather, we are presenting our results as a form of 

improvement on the synthesised images released by the Police.   

 

Related Work  

Age Progression 

Age synthesis, also called age progression, involves the automatic reconstruction of a human 

face with natural ageing effects (2). This area of automatic facial analysis has been very active 

over the last 15 years (5). This is due to its practical applications which include searching for 

missing people and the identification of fugitives.  

The earliest method used for age progression is the forensic artist’s approach. Here the subject’s 

image, in combination with images of his/her relatives, as well as additional information such as 

life style, are used to render the picture as an artistic hand sketch. Alternatively, a computer 

based graphic drawing approach guided by the knowledge of the forensic artist can be applied 

(6). The former is still predominantly used by police departments around the world. While the 

method has been successful in the past, it requires remarkable talent and years of experience. 

Normally the forensic artist undergoes thorough training and requires a good knowledge of 

interviewing procedures, behavioural science, cognitive psychology and craniofacial 

anthropometry (6). 
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As stated earlier, facial ageing has gained interest among computer vision researchers. Hence, 

several methods have been proposed in the literature.  According to Fu et al. (2), automatic 

facial ageing can be categorised based on the face modelling techniques. These include 

geometric, image based and statistical learning approaches. Geometric techniques model the 

face via geometric primitives. Examples include, anthropometric models (7), parametric active 

contours (8), dynamic muscle modelling (9) and structured facial mesh (10). In general, 

geometric models render non-photo realistic images. Thus, they are better suited for computer 

animation, caricaturing and cartooning. 

Image based models render photo realistic faces via manipulation of the facial texture details 

such skin wrinkles. Ageing has been simulated by independent wrinkle generation (11) or by 

transferring wrinkles across faces (12). Age estimation using 3D wrinkle formation has also 

been proposed (13). Studies have shown that texture changes are more obvious after adulthood 

(2). Hence, image-based synthesis cannot be generalised across all age groups. 

Statistical Learning methods consider both shape and texture either separately or in a combined 

form. Facial variations, such as shape and texture, are learnt from a large database of faces. 

Thus, each face is regarded as a high dimensional point in the age space. The most popular 

models used are the Active Appearance Models (AAM) (14) and 3D Morphable Models (15). In 

the work of Lanitis et al. (16), for example, the AAM was used for facial feature extraction. An 

ageing function          that relates ages to the vector of facial features   is defined and used 

to estimate ages. They proposed that age progression could be realised by inverting the age 

estimator,           .  However, due to the degenerate nature of the ageing function, its 

inverse was not computed as proposed. Rather, vectors representing each age group in the 

training database were saved in a lookup table. To synthesize a face at a new age, they 

computed the difference    between the features in the lookup table. i.e. for current age and 

new age. Finally, the difference score    was subtracted from the subject’s original facial feature 

 . This technique heavily relies on the training data. In fact, there is no way of rendering the face 

at an age that is not contained in the database.  
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In (4), a solution for the inverse problem was proposed. It was also shown that the solution 

generated photo realistic images, even when the target age did not exist in the training 

database. However, the ageing function used in (4) was a simple Ordinary Least Squares (OLS) 

regressor.  Unfortunately, OLS has a number of pitfalls which include, outliers, correlation 

between variables, noisy/irrelevant variables and the curse of dimensionality (17). In general, 

the performance of OLS degrades as the number of features or variables increase.  Hence, we 

propose an advancement of the work of (4), by improving the ageing function. 

Several regression techniques have been proposed for age estimation. These include, Partial 

Least Squares (PLS) regression, Relevance Vector Machine (RVM) and Support Vector 

Regression (SVM), to mention a few. For a thorough evaluation of age estimation regression 

algorithms we refer our reader to (18). 

PLS regression is one method that has been widely used for regression as well as dimensionality 

reduction, especially when the number of variables is large when compared to the observations.  

Initially, developed in chemometrics, it has been received with considerable interest in other 

fields which include neuroscience, bioinformatics, social science and recently in computer 

vision. Although PLS has superior predictability when compared to OLS, recent research (19) 

has shown that the presence of a large number of variables introduces noise into the PLS latent 

scores. Hence, Sparse Partial Least Squares (sPLS) regression has been proposed as an 

improvement to the conventional PLS. Motivated by its predictive power, dimensionality 

reduction and ability to filter irrelevant variables, we propose to use sPLS at the core of our 

invertible ageing framework. To the best of our knowledge, while sPLS has been used in other 

fields, it has never been utilised for age estimation. 

 Sparse Partial Least Square (sPLS) Regression 

Partial Least Squares (PLS) regression was introduced by Wold (20) and has been an 

alternative to Ordinary Least Squares (OLS) regression. PLS improves OLS in two major ways. 

They are increased prediction accuracy and enhanced data representation. This statistical 

method creates latent features via a linear combination of the predictor ( ) and response ( ) 
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variables. Besides regression, it has been applied to classification, dimensionality reduction (21) 

and data modelling.  

Let        i.e.        be a matrix of predictor variables whose rows are   dimensional 

observations and   be a matrix of response variables. PLS decomposes the two matrices into,  

        ,       

        ,         (1) 

where   is a matrix composed of   linear latent (scores) vectors,   and   are loadings and    

and   are matrices of residuals. The scores   can be computed directly from the feature set   

via, 

     ,           (2) 

where the matrix of weights      ,   ,      is computed by solving an optimization problem. 

The estimate of the  th direction vector is formulated as, 

  ̂           
         such that     1 and          ,    (3) 

for   1   1. 

Thus, PLS captures the directions of highest variance in   as well as the direction that relates   

and  . While many methods for computing PLS have been proposed in the literature, many 

researchers have embarked on using the classical NIPLAS technique. In this work, however, we 

shall use the SIMPLS algorithm proposed by De Jong  (22), thereby taking the advantage of the 

speed of the method. Having computed the scores matrix using equation (2), OLS regression of 

  on   yields the loadings   as described in equation (1). Consequently, the PLS regression 

coefficient is defined as,  

         .          (4) 

Hence the univariate response variable   is formulated as,  

          .           (5) 

As stated earlier, despite the shrinkage ability and efficiency of PLS regression in problems with 

large number of variables, the fact that it is a linear combination of all variables makes it to 

include information of both relevant and irrelevant (noisy) data. Recently, Chun and Keles (19) 



8 

 

 

 

proposed sparse PLS (sPLS) regression, which integrates sparsity into the conventional PLS 

dimension reduction procedure. This ensures the selection of only relevant variables. sPLS has 

proven to be more efficient than PLS when the problem is ill posed. i.e. the number of variables 

is very large when compared to a small sample size (19).  

In order to realise the sPLS regression, the objective function in equation(3) is reformulated by 

imposing LASSO    regularisation (19,23) on a surrogate direction vector  , where, 

 min ,          1                     | |     | |    

 such that,     1,         (6) 

where         . The    penalty (  ) is used to ensure sparsity, while the    tuning 

parameter (  ) is used to avoid singularity in  . For a univariate predictor  , the solution above 

does not depend on   and   . Hence, only    needs to be tuned. Moreover, it does not have to be 

explicitly computed for each directional score. Instead, a soft threshold estimate has been 

formulated in the literature (19). i.e.,  

  ̃  (| ̂|    max        | ̂ |) (| ̂|            | ̂ |)
      ̂ .    (7) 

A different   is required for each directional vector (  1  ); this is not computationally 

feasible. Hence, a single sparsity parameter is chosen within the range        1. Eventually, 

we only have two parameters to tune the number of components   and the sparsity parameter 

 .  

As stated earlier, sPLS was formulated by Chun and Keles (19), hence, for further details of this 

method the reader is referred to (19) and (23). 

 

Methodology  

Active Appearance Model (AAM) 

AAM is a statistical model used for matching the shape and appearance of an object to a target 

image (14). It is a parameterised model that captures shape and texture variability from a 

training dataset. Note, “texture” in this context refers to grayscale or colour pixel intensities. The 
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model provides an avenue for representing the shape and texture of images in terms of few 

model parameters. Thus, it has proven to be an efficient face abstraction technique. 

In order to build the model, a training set of annotated images is formed.  Thus, for each face, a 

number of landmarks is used to mark its key features such as the eyebrows, eyes, nose and 

mouth. Due to inter-face rotation, translation and scale variations, the Generalised Procrustes 

Analysis (GAP) (24) is used to align all the landmarks. The set of landmarks representing the 

face shape is given by, 

      ,   ,    ,   ,   ,     
 ,       (8) 

In order to capture the shape variability, principal component analysis (PCA) is used. This 

means a statistical shape model approximates each face shape   using the linear equation, 

      ̅      ,         (9) 

where  ̅ is the mean shape,    the orthogonal modes of variation and    a set of shape 

parameters. 

To describe the texture  , “shape free patches” are formed by warping each image to a mean 

shape. In order to form a colour-based AAM, the three colour channels (red, green and blue) are 

captured separately and represented as   ,   , and   . Research has shown that the three 

channels are highly correlated, so we used Ohta’s i1i2i3 colour transformation (25) to de-

correlate them as follows.  

               3,        (10) 

            2,         (11) 

     2            4.        (12) 

To further reduce illumination variations, the above colour textures are normalized using 

Cootes et al.’s (26) approach of applying a scaling   and an offset   to the texture vectors. To 

build the statistical texture model, Eigen analysis (27) is applied to equations (10), (11) and 

(12). The image texture can be approximated by a combination of linear equations such that, 

     ̅         ,     ̅         and     ̅        ,     (13) 
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where   ,   , and    are the orthogonal modes of variations and   ,   , and   . Then, equations 

(9) and (13) are concatenated in a single vector to form the appearance model. Finally, PCA is 

used to further to de-correlate the shape and texture parameters. The AAM can be 

approximated using,  

      ,   (

  

  

  

  

) ,         (14) 

where   are eigenvectors,   is an appearance parameter that controls both shape and texture 

and can be used as an abstraction of each face in the training dataset. Due to the linear nature of 

the appearance model, the shape and textures can be expressed in terms of  , where,  

      ̅         ,       ̅       ,        (15) 

where   1, 2, 3 and   is a diagonal matrix used to compensate the difference in the units of 

the shapes and the intensities computed using the approach in (4). 

Facial Ageing 

Research has shown that face shape and texture are a function of age. Hence, it is ideal to build 

an age estimator by considering a matrix of AAM facial features      ,   ,      as predictors 

and the column of ages   as response variables. To this end, an automatic facial age estimator is 

defined using the sparse PLS regression. 

Solving the objective function defined in equation (6), the sPLS weights matrix       

   ,   ,       is obtained. Subsequently, this can be substituted into equation (4) in order to get 

the corresponding sPLS regression coefficients      . This means the relationship between the 

AAM features and the univariate ages can be expressed as, 

            ,          (16) 

where   is the sPLS estimation error. 

Having modelled the age estimator, age synthesis can be realised by inverting the equation (16). 

For each face, the feacture vector   is decomposed into two orthogonal components, ageing      

and identitiy     components. The rational behind this is fully explained in (4). Hence   is 

expressed as, 
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            .         (17) 

The ageing component       at age    is computed using the Moore Penrose Pseudo Inverse, 

             
   .         (18)  

To synthesize a new face, the age component       at the new age    is computed in a similar 

manner as in equation (18). Following that the identity component     is added as shown 

below,   

                . 

The shape and texture components of the AAM feature      are then computed using equation 

(15). Finally, an age progressed image is constructed by warping the texture      on to the new 

shape     . 

 

Experiments and Results 

Data 

To test our method, we have used a combined database of 596 high quality color photographs in 

our experiments. These were acquired from four sources. The first set of 149 images comes 

from Politecnico di Torino’s “HQFaces” siblings facial images database (28). These images have 

been captured under controlled lighting conditions, with the subjects’ ages varied between 3 

and 50 years. Next, all the 80 images contained in the Dartmouth Children's Faces Database (29) 

were obtained. Here, frontal images that were photographed under one lighting condition and 

displaying neutral facial expression were used. The age range for Dartmouth’s collection is from 

6 to 16 years with a 1:1 gender ratio.  

Furthermore, 96 images were taken from FGNET-AD aging database. This is made of 1002 face-

pictures of 82 people, with each subject having multiple images. Their ages are distributed in 

the range between 0 and 69. This dataset has varying picture qualities, from grayscale to colour 

images, having diverse illumination, sharpness and resolution. The subjects in this dataset 

display varying facial expressions and head pose. The fact that subjects have multiple images 

taken at different times makes FGNET-AD suitable for initial evaluation of the algorithm.  
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The remaining 271 images were carefully selected from the Internet, these subjects are mainly 

well known people, with ages ranging from 1 to 70 years. In total the database has a male to 

female ratio of 4:3.  

With a view to reducing computational cost, all 596 images were cropped to 340 x 340 pixels. 

Next, we annotated each image with 79 landmarks using the approach of (30), as shown in Fig. 

1. Note, the landmarks were aligned using GAP. This was done to eliminate rotational, 

translational and scaling variations. 

 

Fig. 1: Face shape captured using landmarks (a) Position of 79 landmarks (b) Unaligned face shapes (c) 
Shapes aligned using GPA. 

 
Experimental Set-up 

All experiments were performed on a PC with a 64-bits Windows 10 Operating System, Intel 

Core i7-6700T CPU, 8 MB Cache, 2.8 GHZ Clock Speed and 16 GB RAM. Active appearance model 

(AAM) feature extraction and image reconstruction algorithms were implemented in MATLAB 

R2014b (Version 8.4). Furthermore, CRAN 'spls' Package Version 2.2-1 (31) was used for the 

implementation of sparse partial least squares regression. 

Age Estimation Experiment 

The colour based AAM described in Section 3 was trained with the images in our database. As a 

result, each face was represented by a vector   having   1 elements, where   is the number of 

samples (  596). It is worth noting that the AAM usually reduces the number of components 

by 1, because PCA - which is at the core of the model - produces (  1) eigenvalues that are 
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larger than 0. In a nutshell, using the AAM, each 340 x 340 pixels image is now represented by a 

vector of numbers, whose dimension is    1    1. 

An automatic age estimator was then built using sPLS regression model explained in (16). Here, 

sPLS tuneable parameters K and   are selected via 10 fold cross-validation. To be precise the 

values used for this experiment are, K=27 and   =0.7. For the purpose of comparison and 

evaluation, two other age estimators were modelled using PLS and OLS regressions.  

In order to evaluate the accuracy of estimation, we employed Leave One Person Out (LOPO) 

cross validation method [4].  For each fold, the image of 1 person is used as the test set and an 

estimator is trained using the remaining subjects. Thus, by the end of   folds each subject will 

have been used for testing. Finally all   separate estimations are averaged. The performance 

measures used are Mean Absolute Error (MAE) and Cumulative Score (CS), expressed as,  

      ∑ |      |   
   ,     

                            1   ,      (19) 

where   is the ground truth age and      is the estimated age,   the number of images (i.e. 596) 

and               denotes the number of images on which the system makes absolute error not 

higher than   years. In our experiment, we chose a value of   1  inline with state of the art 

literature. The results of the above evaluations are tabulated and illustrated in Table 1 and Fig. 2 

respectively. It has been observed that both sPLS and PLS outperform the OLS method. 

Furthermore, our sPLS regression estimator improves on the result of PLS regression by 

achieving a mean absolute error of 5.53 as opposed to 5.68. It is also obvious that using sPLS, 

over 86% of the dataset achieved an estimation error of less than 10 years. 

Table 1: Results of age estimation experiments. 

Algorithm MAE CS < 10 
OLS 7.72 73.33% 
PLS 5.68 84.54% 
sPLS 5.53 86.92% 
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Fig. 2: CS at error levels from 0 -10 years. 

 

Age Progression Results 

To fully evaluate the performance of our synthesis algorithm, we conducted extensive 

experiments on images of people with multiple pictures taken at different times of their lives. 

For this purpose we chose the images we extracted from the FGNET-AD, since this gave us the 

opportunity to compare our synthesized results to real images at the same age. Results of this 

initial experiment are shown in Fig. 2. Images on the left most column are the test images, 

columns 2 and 4 are the subjects’ real images at the projected age, while images on columns 3 

and 5 are the corresponding images synthesized by our method. 

Next, we used the same ageing framework to progress the image of Ben Needham to the ages of 

6,  14, and 22 years as shown in Fig. 3. By compositing, external features such as hair and ears 

were then added to the generated images as shown in Fig. 4. Subsequently, the images we 

synthesised are compared to the existing Police generated images as shown in Fig. 5.  
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Fig. 3: Evaluation of synthesis algorithm on known subjects. 
 

 
Fig. 4: Synthesised images of Ben Needham. 
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Fig. 5: External facial features incorporated on synthesised images via compositing. 
 

Fig. 6: Existing Police generated images of Ben Needham. 

 

Analysis  

An effective means of assessing facial age progression should have two main features. They are 

evaluating the ability to synthesize images that fit the intended age and checking the ability to 

retain the identity of the subject in age altered images. There are two ways we can perform the 

evaluations. They are machine based and human based methods (2). In our experiment, both 

methods were utilised.  

Given two images  1 and  2, having AAM-facial features     and    , the machine based test 

conducted using Euclidean Distance (ED) of the AAM-facial features is expressed as,  

     √∑         
 
,        (20) 
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The ED gives us a value between   and 1 which describes how similar two images are; the closer 

the value is to 1 the more the similarity. Consequently, it is then possible to compute a similarity 

score (Sc) as defined by Segaran (32) that converts the ED into a percentage metric  such that a 

score of 100% denotes best match. Thus, we define Sc as, 

     
 

    
  1   .        (21) 

For the first experiment, we computed    between the test image and our synthesized images to 

show the degree to which our algorithm reserves the subject’s identity. Results of this test are 

presented in Table 2.  Values close to 1   denote very close match between the real image and 

the synthesized image. Obviously, most of the images generated using the proposed procedure 

have high    thus indicating the age-progressed images resemble the real pictures, thus the 

person’s identity is retained. 

Table 2: Machine-based evaluation of initial experiments. 

Test 
Image 

 
   for  

Synthesized  
Image 1 

 

 
   for  

Synthesized  
Image 2 

 

  
79.65% 

 
79.49% 

 

 
96.25% 

 
96.22% 

 

 
77.07% 

 
96.00% 

  
98.21% 

 
98.19% 

 

In order to evaluate our method on Ben’s images we compared our results to those produced by 

the Metropolitan Police. A machine based test as described in the first experiment was 

performed. Here    was computed between Ben's real image and each of the age-progressed 

images (ours and those of the Police). The results were then ranked based on shortness of 
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Euclidean Distance, as shown in see Table 3. It is worth noting that the shorter the ED, the closer 

the similarity score    is to 100%.  

Table 3: Evaluation of Ben Needham’s images. 
 

Synthesized 
Image 

 
Ranks  
Based  
on ED 

 

Mean  
Rank  

Human Test 

 

1 2.19 

 

3 2.84 

 

2 3.11 

 
4 3.23 

 
5 4.15 

 
6 4.77 

 

 

Next, a human based test was conducted. In it, 29 observers were shown Ben's real image as 

well as the synthesized images. Then, each person was asked to rank the images based on their 

similarity to the original photograph, i.e. a position of 1 is assigned to the image that resembles 

the subject the most, 2 to the next and so on. Finally, the 29 rankings were averaged in order to 

decide which picture was perceived to look more like Ben. As can be seen in Table 2, the results 

show that images generated using our method look more like the missing toddler. 

Discussion and Conclusion 

We have presented a new approach to facial age synthesis, using sPLS. In addition to the good 

qualities of the conventional PLS which include dimensionality reduction and increased 

prediction accuracy, sPLS imposes sparsity on the variables. This ensures only relevant 

variables are encoded into the regressor. Using sPLS, an age estimation model with good 

predictive power is first modelled. Then, a method of inverting the age estimator is developed. 
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This was then used to generate aged faces. Results show that plausible images can be rendered 

at different ages automatically using the inverted model.  

We have used our method in a real life scenario, i.e. the case of Ben Needham. We generated 

aged images of the subject using our method and compared them to those produced by the 

Police. Our method provides different predictions of the face. Although the police have closed 

the case, we are advocating our improved method to aid police work in future cases and 

perhaps even for Ben Needham as we hope these new images are closer to his present day 

appearance.  

Due to variations in hair style and the fact that some of the images in our database have 

occluded ears, we did not consider hair and ears in our synthesis framework. However, as 

stated earlier, external facial features were incorporated to the synthesized images via 

compositing. This was done for cosmetic or enhanced visualisation purposes. We want to point 

out that this is highly subjective and might alter the visual look of the real results. In order to 

fully incorporate these external features, it will be necessary to thoroughly study and develop 

further automated methods that can incorporate such external facial features.  

Clearly, our work leaves room for future improvements. With a view to improving image 

rendering, an efficient method of incorporating external features should be investigated. Thus, 

using existing ear biometric methods, our age synthesis framework could be improved by 

incorporating the human ear. Other external features can be incorporated in a similar fashion. 

Furthermore, at this moment in time, our facial landmarks are annotated manually. This is 

indeed a laborious task. Therefore, it will prove useful to develop fully automatic methods for 

facial landmark annotations.   
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