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Abstract It is shown that the probability generating function of a lifetime
random variable T on a finite lattice with polynomial failure rate satisfies a
certain differential equation. The interrelationship with Markov chain theory
is highlighted. The differential equation gives rise to a system of differential
equations which, when inverted, can be used in the limit to express the poly-
nomial coefficients in terms of the factorial moments of T . This then can be
used to estimate the polynomial coefficients. Some special cases are worked
through symbolically using Computer Algebra. A simulation study is used to
validate the approach and to explore its potential in the reliability context.
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1 Introduction

Parametric classes of distributions taken to model lifetime data are frequently
chosen because they can be used to approximate closely the probability den-
sity, the cumulative distribution function or the failure rate function of the
underlying distribution. Whereas traditionally the failure density is the main
focus of attention, Berg has stressed in [2] the importance of choosing classes of
lifetime distributions for reliability modelling with failure rate functions which
are intuitively appealing and capable of taking a wide range of functional
shapes. The question addressed in this paper is motivated by this viewpoint.
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Polynomial failure rates are of interest for continuous lifetime models (e.g.
[13]) since any ‘smooth’ function on a closed finite interval can be approxi-
mated uniformly by a polynomial. We are concerned here with discrete mod-
els, however, where even though this approximation argument is of a lesser
importance, but the discrete failure rate function can be applied to approxi-
mately describe a continuous-time failure process. The object of interest here
is the class of lifetime distributions with a finite lattice support and polynomial
failure rate function.

After defining the framework in the next section, we present in Section 3.1
a differential equation for the probability generating function (pgf) of a life-
time distribution of the said kind. The differential equation is in terms of the
polynomial coefficients and the number of lattice points of the failure rate
function. (The differential equation is proved in the Appendix, Section 8.) In
Section 3.2, the Markov framework is used to derive an explicit expression for
the same pgf. In Section 4, a technique is described for expressing the polyno-
mial coefficients in terms of factorial moments of the distribution. It is based
on inverting (in the limit) a system of differential equations obtained from the
original equation and an algebraic constraint. To obtain specific results, we
turn to a computer algebra system. Some of the equations thus derived are
then used in Section 5 in a simulation study.

The papers available on discrete lifetime random variables are legion; a
small selection concerned with, for example, discrete versions of the Weibull
distribution (in the reliability context) is [11], [12], [17] and [24]. [23] is of
relevance if the interest is in discrete failure rate functions, in particular for
comparing the corresponding distributions also in the multivariate case.

The area of discrete parameter distributions in the context of reliability
and lifetime analysis is of current research interest as shown e.g. by [25].

[4] and [5] are remotely related to the subject matter of this paper in that
they deal with discrete distributions where (generalizations of) the Stirling
numbers appear; these numbers in their original (not generalized) form play a
role in our results too.

Finally, the recent article [21] (and the references cited therein) show a
continued interest in the related field of (continuous) linear failure rate models.

2 Modelling time to failure

The ‘time’ to failure T is assumed to take values in T = {0, 1, 2, . . . , n}, that
is, failure can happen at any of the time instances in T . In some applications
T will be the actually elapsed time to failure; then T measures on a discretized
time line the number of time units until failure. In some other applications T

measures the number of cycles until failure. The failure rate is the conditional
probability of failure in the kth time instant given survival until time k− 1; it
is defined by

rk = P (T = k|T > k − 1), k ∈ T . (1)
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Notice that (1) for k = 0 is the probability of instantaneous failure r0 (as the
conditioning event in (1) is now the full event). It is assumed that

rn = 1, (2)

i.e. failure is certain to occur at the latest after n usage periods. Finally, it
will be assumed that

0 < rk < 1, k = 0, . . . , n − 1. (3)

2.1 Polynomial failure rate

The failure rate function r in (1) will be assumed to be a polynomial of degree
m, i.e.

rk = a0 + a1k + a2k
2 + . . . + amkm, k ∈ T . (4)

The assumption of r being a polynomial is reasonable as it is well-known that
any continuous function on the interval [0, n] (of which T is a subset) can be
arbitrarily closely approximated by a polynomial. From a practical point of
view it is important to notice that in particular a (discretized) bathtub shaped
failure rate curve can be obtained by choosing the parameters m and ai in (4)
appropriately.

The prime objective is to interrelate the parameters a0, . . . , an by a differ-
ential equation for the pgf of the distribution of T . The differential equation
will be presented in Section 3.1. Subsequently, the differential equation will be
used to estimate the parameters a0, . . . , an based on ℓ independent realizations
t1, . . . , tℓ of T . Together with the boundary condition (2), now in the form,

m
∑

i=0

ain
i = 1, (5)

this gives initially two equations for the m + 1 parameters a0, . . . , am. The
missing m− 1 conditions for the m + 1 parameters will be obtained by differ-
entiating the differential equation (m − 1) times.

2.2 Continuous time analogue

Noteworthy is the continuous time analogue of the class of lifetime distribu-
tions considered here. If r in (4) is a continuos time failure rate function, i.e.
if

r(t) =

m
∑

j=0

ajt
j , , t ≥ 0,

then the reliability function of the corresponding lifetime distribution on [0,+∞)
is

R(t) = exp(−H(t)), (6)
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with the cumulative hazard

H(t) =

∫ t

0

r(s)ds =
m

∑

j=0

aj

j + 1
tj+1. (7)

Equations (6) and (7) show that R is then the reliability function of a lifetime
variable distributed like the minimum of m independent Weibull random vari-
ables where the jth of them has scale parameter αj and shape parameter βj

with

αj = j+1

√

j + 1

aj

, βj = j + 1.

Because of the continuous nature of the model and because the support is the
entire non-negative axis, there is now no constraint interrelating the parame-
ters a, i.e. there is no continuous time analogue of (5).

A differential equation has been derived recently in [7] for the Laplace
transform of continuously distributed T with a polynomial failure rate. The
result in there is an analogue of that in Section 3.1. The continuous case and
its proof are, however, much simpler than their counterpart presented here in
Section 3.1.

3 Probability generating function

The pgf G of T is defined by (e.g. [9], [20])

G(z) = E
(

zT
)

=
n

∑

i=0

ziP (T = i), |z| ≤ 1.

The pgf is the transform usually considered for probability distributions on
the set of non-negative integers.

3.1 Differential equation

The following differential equation holds for G.

Theorem 1 G satisfies the differential equation

G(z) =

m
∑

k=0

ukzk dk

dzk

(

1 − zn+1

1 − z

)

−

m
∑

k=0

vkzk+1 dk

dzk

(

G(z) − zn

1 − z

)

, (8)
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where the coefficients u and v in (8) are respectively given by

uj =







a0 for j = 0,
m
∑

s=j

asσ
(j)
s for j = 1, . . . ,m,

(9)

vj =

m+1
∑

s=j+1

as−1σ
(j+1)
s , for j = 0, . . . ,m, (10)

with σ
(j)
s standing for Stirling numbers of the second kind ([1], [3] and [20, p.

137]); they are determined by the relation

xs =
s

∑

j=1

σ(j)
s x(x − 1) . . . (x − j + 1). (11)

Furthermore, the following holds for the coefficients u and v.

Proposition 1 If u and v are respectively defined by (9) and (10) then they
satisfy for all non-negative integers k and real z the equations

(

m
∑

i=0

aik
i

)

zk =

m
∑

i=0

uiz
i di

dzi
(zk), (12)

and

(

m
∑

i=0

aik
i

)

zk =

m
∑

i=0

viz
i+1 di

dzi
(zk−1). (13)

u and v are unique solutions of (12) and (13) respectively.

The proofs can be found in the Appendix (Section 8).

Remark 1 Proposition 1 in conjunction with a computer algebra system offers
an easy alternative to (9) and (10) for evaluating the coefficients u and v. The
Maxima implementation referred to in Section 5 is indeed based on coefficient-
matching in Proposition 1 for finding u and v.

3.2 Markov chain model

The distribution of N = T + 1 is the number of transient states visited until
absorption in state n+1 of the Markov chain shown in Fig. 1 if it is started in
state 0. (N is called the ‘length of sojourn in the set of transient states’.) The
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0 1 2 n − 1 n
1 − r0 1 − r1 1 − rn−11 − rn−21 − r2

n + 1

r0

r1

r2

rn−1

rn = 1

1

. . .

Fig. 1 Absorbing Markov chain

transition probability matrix of the chain in Fig. 1 is, in a partitioned form,

P =

[

Q r
0 1

]

,

with the (n + 1) × (n + 1) square matrix

Q =



















0 (1 − r0) 0 0 · · · 0
0 0 (1 − r1) 0 · · · 0
0 0 0 (1 − r1) · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · (1 − rn−1)
0 0 0 0 · · · 0



















, (14)

and the column vector

r =















r0

r1

...
rn−1

1















,

which is of length (n + 1). It is well known (e.g. [6]) that N has probability
mass function

P (N = k) =

{

0 for k = 0,

α
tQk−1(I − Q)1 for k ≥ 1,

where α is the initial probability (column) vector on the set of transient states
(of length (n + 1)), and 1 is the column vector of all ones; as the chain is
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started in state 0, it is α
t = (1, 0, . . . , 0). Therefore, the pgf of N is

E
(

zN
)

=

∞
∑

k=1

zk
α

tQk−1(I − Q)1

= zα
t (I − zQ)

−1
(I − Q)1,

from which it follows by

T = N − 1, (15)

that

G(z) = α
t (I − zQ)

−1
(I − Q)1. (16)

Equation (16) records the pgf of T explicitly. The main goal of the paper is the
recognition that G satisfies the differential equation (8), which in turn gives
access to the coefficients a0, . . . , am, as will be shown in Section 4 below.

The explicit expression in (16) for the pgf could be taken (theoretically!)
to confirm that the differential equation (8) holds. However, this verification
would probably be very tedious and it has not been attempted.

4 Polynomial coefficients and factorial moments

In this section it will be demonstrated that the differential equation (8) can be
used to obtain the polynomial coefficients a0, . . . , am in terms of the factorial
moments of T . Such a representation is of practical interest as the factorial
moments are readily estimated from samples of T .

In Sections 4.1-4.3, the cases m = 1, 2, 3 will be considered in turn by using
the computer algebra system Maxima ([10], [22], [19]).

It is well known that the ith derivative of the pgf of T at z = 1 equals the
ith factorial moment of T ,

gi =
def

di

dzi
(G(z))

∣

∣

∣

∣

z=1

= E (T (T − 1) . . . (T − i + 1)) . (17)

4.1 r is a first order polynomial

It is

rk = a0 + a1k, k ∈ T ,

and (8) becomes

G(z) = a0
1 − zn+1

1 − z
+ a1z

d

dz

(

1 − zn+1

1 − z

)

−(a0 + a1)z
G(z) − zn

1 − z
− a1z

2 d

dz

(

G(z) − zn

1 − z

)

. (18)
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Solving for a0 and a1 the system comprising (18) and the equation a0+a1n = 1,
we get with Maxima,

a0 ≡

(

z3 − z2
) (

d
d z

G (z)
)

+
(

−n z2 + (2n − 1) z − n
)

G (z) + z

(z3 − z2)
(

d
d z

G (z)
)

+ ((n − 1) z − n z2) G (z) + (n + 1) z − n
, (19)

a1 ≡ −
(z − 1) G (z) − z + 1

(z3 − z2)
(

d
d z

G (z)
)

+ ((n − 1) z − n z2) G (z) + (n + 1) z − n
. (20)

Applying l’Hospital’s rule to (19) and (20) twice each with z → 1, we get with
Maxima

ai =
γi,0 + γi,1n

κ0 + κ1n
, i = 0, 1, (21)

where

γ0,0 = g2 + 2g1, γ0,1 = −2,

γ1,0 = −2g1, γ1,1 = 0,

and

κ0 = g2 + 2g1, κ1 = −2g1 − 2.

4.2 r is a quadratic polynomial

It is now

rk = a0 + a1k + a2k
2, k ∈ T ,

and (8) reads

G(z) = a0
1 − zn+1

1 − z

+ (a1 + a2)z
d

dz

(

1 − zn+1

1 − z

)

+ a2z
2 d2

dz2

(

1 − zn+1

1 − z

)

− (a0 + a1 + a2)z
G(z) − zn

1 − z

− (a1 + 3a2)z
2 d

dz

(

G(z) − zn

1 − z

)

− a2z
3 d2

dz2

(

G(z) − zn

1 − z

)

. (22)

The task is to solve for a0, a1 and a2 the system comprising the three equations:
(22), the first derivative of (22), and, the equation a0 + a1n + a2n

2 = 1. This
we accomplish with Maxima as before, though the resulting formulae are now
somewhat more complicated. We get

ai =
γi,0 + γi,1n + γi,2n

2

κ0 + κ1n + κ2n2
, i = 0, 1, 2, (23)
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where

γ0,0 = −90 g2 g4 − 180 g1 g4 + 80 g2
3 − 960 g1 g3 + 360 g2

2 − 720 g1 g2,

γ0,1 = 180 g4 − 240 g1 g3 + 1440 g3 − 1080 g1 g2 + 2520 g2 − 720 g2
1 + 720 g1,

γ0,2 = −240 g3 + 360 g1 g2 − 1080 g2 + 720 g2
1 − 720 g1,

γ1,0 = 180 g1 g4 − 120 g2 g3 + 1440 g1 g3 − 540 g2
2 + 2160 g1 g2 + 720 g2

1 ,

γ1,1 = 0,

γ1,2 = 360 g2 − 720 g2
1 ,

γ2,0 = −240 g1 g3 + 180 g2
2 − 720 g1 g2 − 720 g2

1 ,

γ2,1 = 720 g2
1 − 360 g2,

γ2,2 = 0,

and

κ0 = −90 g2 g4 − 180 g1 g4 + 80 g2
3 − 960 g1 g3 + 360 g2

2 − 720 g1 g2,

κ1 = 180 g1 g4 + 180 g4 − 120 g2 g3 + 1200 g1 g3 + 1440 g3 − 540 g2
2

+ 1080 g1 g2 + 2520 g2 + 720 g1,

κ2 = −240 g1 g3 − 240 g3 + 180 g2
2 − 360 g1 g2 − 1080 g2 − 720 g1,

l’Hospital’s rule was applied six times each when calculating (23).

4.3 r is a cubic polynomial

To obtain the parameters a0, a1, a2, a3, l’Hospital’s rule has been applied 12
times. The resulting formulae are too long to be shown here in full. Suffice it
to say that the structure of the expressions obtained for the ai is analogous to
(21) and (23), i.e. it is

ai =
γi,0 + γi,1n + γi,2n

2 + γi,3n
3

κ0 + κ1n + κ2n2 + κ3n3
, i = 0, 1, 2, 3. (24)

As an example, we show the coefficient of the third power of n in the denom-
inator of (24),

κ3 = 31933440 g1 g3 g5 + 31933440 g3 g5 − 23950080 g2
2 g5 + 47900160 g1 g2 g5

+ 143700480 g2 g5 + 95800320 g1 g5 − 29937600 g1 g2
4 − 29937600 g2

4

+ 39916800 g2 g3 g4 − 79833600 g3 g4 − 119750400 g2
2 g4

+ 239500800 g1 g2 g4 + 958003200 g2 g4 + 958003200 g1 g4 − 17740800 g3
3

+ 79833600 g2 g2
3 − 106444800 g1 g2

3 − 585446400 g2
3 − 79833600 g2

2 g3

+ 159667200 g1 g2 g3 + 479001600 g2 g3 + 2235340800 g1 g3 − 479001600 g2
2

+ 958003200 g1 g2.



10 Attila Csenki

5 Simulation study

Assume that t1, . . . , tℓ are ℓ independent samples of T . Our objective here is to
estimate the parameters a0, . . . , am based on this sample. We want to discuss
results for a simulation study with m = 2.

5.1 The experiment

Let us assume that the random lifetime T of some technical equipment is
measured in the number of whole years until it fails. Assume also that the
item’s maximum lifetime is n = 20 years, and that the failure rate function is
quadratic with

rk =
2

17
−

k

34
+

k2

272
=

(k − 4)2 + 16

272
, k = 0, . . . , 20. (25)

From (25) it is immediately seen that (2) and (3) hold with n = 20 and r

takes its minimum at k = 4. The motivation for definig r by (25) is that
it resembles a ‘bathtub’ shaped failure rate curve frequently considered in
Reliability Theory.

By (17), the ith sample factorial moment

φ̂i =
1

ℓ

ℓ
∑

j=1

tj(tj − 1) . . . (tj − i + 1)

is an estimator of gi.
The results of the simulation study are shown in Table 1; the estimates of

a0, a1, a2 in Table 1 are based on Section 4.2. (We note in passing that the
simulation study was implemented in the functional programming language
Haskell.) It is seen from Table 1 that the estimated coefficients of the fail-

Table 1 Estimating a0, a1, a2 and their actual values

Estimates of
Sample size ℓ

a0 a1 a2

10 0.1025480 −0.03447523 0.003967391
50 0.1350796 −0.03251291 0.003787946

100 0.1329796 −0.03060992 0.003698047
500 0.1229448 −0.02844011 0.003614644

1, 000 0.1208637 −0.02777423 0.003586552
5, 000 0.1142492 −0.02707575 0.003568164

10, 000 0.1150938 −0.02773551 0.003599041

‘Exact’ values 0.1176471 −0.02941176 0.003676471

ure rate function tend to their exact counterpart very rapidly. (This is hardly
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surprising as the sample factorial moment is an asymptotically consistent esti-
mator of the corresponding population factorial moment and it is known from
in Sect. 4.2 that the coefficients ai are continuous functions of the factorial
moments.) At this stage there is no assessment of the speed of the convergence
available.

5.2 Evaluation and comments

The experiment simulates the situation where the failure rate function is
known to be well described by a quadratic polynomial. The estimates of the
coefficients are seen to approximate very well their respective exact values even
for small sample sizes. (Notice that the coefficients of the failure rate based on
simulation for ℓ ≥ 500 are very close to their respective exact counterpart.)

It should be pointed out that the symbolic formulae for the parameters a in
Section 4 will have to be worked out once only. Therefore, a database of them
can be prepared by running Maxima once only in advance of any subsequent
numerical work. The separation of symbolic and numerical computations will
thus make the procedure described here more acceptable for practical purposes.

6 Conclusions and further work

A class of discrete lifetime distributions on a finite lattice with polynomial
failure rate was considered. A differential equation for the pgf was shown to
hold which then allowed the polynomial coefficients to be expressed in terms of
the pgf and its derivatives. Using computer algebra, symbolic expressions were
derived in some special cases for the polynomial coefficients in terms of the
factorial moments of the distribution. A simulation study with an assumed
second order failure rate function resembling a bathtub curve was used to
explore the question to what extent the technique can be used to estimate the
polynomial coefficients.

The estimation technique described here resembles the maximum likelihood
method in that the estimates are solutions of (systems of) equations. The
technique is, however, also reminiscent of the method of moments in that
the (unknown) coefficients in the equations are estimated by sample factorial
moments.

The system of equations is laborious to solve symbolically even for low de-
gree polynomials. Further work is needed for devising simplified (approximate)
methods and also for exploring properties of the proposed estimators.

The main purpose of this paper was to establish the differential equation
(1) for the pgf G and then to illustrate its use by obtaining estimators for
the coefficients a. A possible avenue for follow-up work is, for instance, by
exploring properties of the estimators themselves. By the Delta Method (e.g.
[14]), it should be possible to show that they are asymptotically normal. (For
recent uses of the Delta Method, see, for example, [8], [16] and [26].) This result
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then could be used for obtaining asymptotic tests and confidence regions for
the coefficients a. (A pertinent practical problem for an assumed quadratic
failure rate function is, for example, testing H0 : a2 = 0 versus H1 : a2 6= 0.)

The recent paper [15] describes a general, semi-Markov framework where
the present ideas may well be applicable.

Future work may also involve exploring the connection of the subject mat-
ter of the present paper with [4] and [5].

7 Addendum and Acknowledgment

In this paper attention is focused on the differential equation for the pgf of the
time to failure distribution; and, the equation and its consequences are claimed
to be novel. The observations on the Markov framework in Section 3.2 are
incidental and are not essential for the main line of argument. Nevertheless, as
has been kindly pointed out by the referee to the author, the Markov approach
(involving phase-type distributions) allows the factorial moments of T in (15)
to be written in terms of the matrix Q in (14) (see [18, Chapter 2]). The two
methods may be compared in subsequent work.

8 Appendix: Proofs

We start by proving Proposition 1 as it will be needed in the proof of Theorem 1.

Proof of Proposition 1. Let the coefficients u0, . . . , um be defined by (9).
Then, because of (11), we have

m
∑

i=0

uiz
i di

dzi
(zk) = u0z

k +

m
∑

i=1

uiz
i di

dzi
(zk)

= a0z
k +

m
∑

i=1

(

m
∑

s=i

asσ
(i)
s

)

zik(k − 1) . . . (k − i + 1)zk−i

= a0z
k +

m
∑

s=1

as

(

s
∑

i=1

σ(i)
s k(k − 1) . . . (k − i + 1)

)

zk

=

m
∑

s=0

ask
szk,
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i.e. the u satisfy (12). Likewise, if the coefficients v0, . . . , vm are defined by
(10), then they satisfy (13) since

k

m
∑

i=0

viz
i+1 di

dzi
(zk−1) =

m
∑

i=0

vik(k − 1)(k − 2) . . . (k − i)zk

=
m+1
∑

j=1

vj−1k(k − 1) . . . (k − j + 1)zk

=

m+1
∑

j=1





m+1
∑

s=j

as−1σ
(j)
s



 k(k − 1) . . . (k − j + 1)zk

=
m+1
∑

s=1

as−1

s
∑

j=1

σ(j)
s k(k − 1) . . . (k − j + 1)zk

=

m+1
∑

s=1

as−1k
szk = k(a0 + a1k + . . . + amkm)zk.

The uniqueness of the values u solving (12) is assured, because of the linearity
of (12) (in a and u), if it can be shown that a0 = . . . = am = 0 implies that
all the u are zero. The inference is by induction on k = 0, 1, . . ..

It is seen from (12) by k = 0 that u0 = 0. (As usual, the 0th power of any
number is unity.)

Let us assume that 0 = u0 = . . . = uk for k ≤ m− 1. Then, uk+1 = 0 since

0 ≡

m
∑

i=0

uiz
i di

dzi
(zk+1) =

m
∑

i=k+1

uiz
i di

dzi
(zk+1) = (k + 1)! uk+1z

k+1.

A similar reasoning also shows that the coefficients v are unique solutions
of (13).

Proof of Theorem 1. By the definition of the conditional probability in (1),
the probability mass function of T for k ∈ T is given by

P (T = k) = rk(1 − P (T ≤ k − 1)) =

(

m
∑

i=0

aik
i

)

(1 − P (T ≤ k − 1)). (26)

Now, we get (8) by the following sequence of equations:
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G(z) =
n

X

k=0

zkP (T = k) (27)

=
n

X

k=0

 

m
X

i=0

aik
i

!

zk −

n
X

k=0

 

m
X

i=0

aik
i

!

zkP (T ≤ k − 1) (28)

=
n

X

k=0

 

m
X

i=0

aik
i

!

zk −

n
X

k=1

 

m
X

i=0

aik
i

!

zkP (T ≤ k − 1) (29)

=
n

X

k=0

m
X

i=0

uiz
i

di

dzi
(zk) −

n
X

k=1

m
X

i=0

viz
i+1 di

dzi
(zk−1)P (T ≤ k − 1) (30)

=
m

X

i=0

uiz
i

di

dzi

 

n
X

k=0

zk

!

−

m
X

i=0

viz
i+1 di

dzi

 

n
X

k=1

zk−1P (T ≤ k − 1)

!

(31)

=
m

X

i=0

uiz
i

di

dzi

„

1 − zn+1

1 − z

«

−

m
X

i=0

viz
i+1 di

dzi

„

G(z) − zn

1 − z

«

. (32)

The justifications of the steps leading from (27) through to (32) are indicated
in Table 2.

Table 2 Justifying (27) – (32)

From Eqn Nr. To Eqn Nr. Justification

(27) (28) (26)
(28) (29) P (T ≤ −1) = 0
(29) (30) (12) and (13) in Proposition 1
(30) (31) Interchange summation and differentiation
(31) (32) Geometric summation and Lemma 1

The last step in the above reasoning is by the following Lemma 1.

Lemma 1 The pgf G of any discrete random variable T on the integers {0, . . . , n}
satisfies for |z| < 1 the equation

n−1
∑

ℓ=0

zℓP (T ≤ ℓ) =
G(z) − zn

1 − z
. (33)

Proof. We have

∞
∑

ℓ=0

zℓP (T ≤ ℓ) =

∞
∑

ℓ=0

zℓ

ℓ
∑

i=0

P (T = i) =
∑

0≤i≤ℓ<∞

zℓP (T = i)

=
∞
∑

i=0

P (T = i)
∞
∑

ℓ=i

zℓ =
∞
∑

i=0

P (T = i)
zi

1 − z
. (34)
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Equation (33) follows from (34) in conjunction with P (T ≤ ℓ) = 1, ℓ ≥ n, thus

n−1
X

ℓ=0

zℓP (T ≤ ℓ) =
∞

X

ℓ=0

zℓP (T ≤ ℓ) −
∞

X

ℓ=n

zℓP (T ≤ ℓ)

=
G(z)

1 − z
−

∞
X

ℓ=n

zℓP (T ≤ ℓ) =
G(z)

1 − z
−

zn

1 − z
=

G(z) − zn

1 − z
.
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