
 

The University of Bradford Institutional 
Repository 

http://bradscholars.brad.ac.uk 

This work is made available online in accordance with publisher policies. Please refer to the 

repository record for this item and our Policy Document available from the repository home 

page for further information. 

To see the final version of this work please visit the publisher’s website. Access to the 

published online version may require a subscription. 

Link to publisher’s version: http://dx.doi.org/10.3390/en10030314 

Citation: Suwatthikul A, Limprachaya S, Kittisupakorn P et al (2017) Simulation of steam 

gasification in a fluidized bed reactor with energy self-sufficient condition. Energies. 10(3). 

Copyright statement: © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is 

an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153515035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1680/jmacr.16.00190
http://dx.doi.org/10.1680/jmacr.16.00190
http://creativecommons.org/licenses/by/4.0/


energies

Article

Simulation of Steam Gasification in a Fluidized Bed
Reactor with Energy Self-Sufficient Condition

Ajaree Suwatthikul 1, Siripong Limprachaya 1, Paisan Kittisupakorn 1,* and
Iqbal Mohammed Mujtaba 2

1 Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10330, Thailand; ajaree_suwatthikul@hotmail.com (A.S.); paisanpse@hotmail.com (S.L.)

2 School of Engineering, University of Bradford, Bradford BD7 1DP, UK; I.M.Mujtaba@bradford.ac.uk
* Correspondence: Paisan.k@chula.ac.th; Tel.: +66-2-218-6878

Academic Editor: Paolo Mercorelli
Received: 29 November 2016; Accepted: 2 March 2017; Published: 6 March 2017

Abstract: The biomass gasification process is widely accepted as a popular technology to produce
fuel for the application in gas turbines and Organic Rankine Cycle (ORC). Chemical reactions of this
process can be separated into three reaction zones: pyrolysis, combustion, and reduction. In this study,
sensitivity analysis with respect to three input parameters (gasification temperature, equivalence
ratio, and steam-to-biomass ratio) has been carried out to achieve energy self-sufficient conditions in a
steam gasification process under the criteria that the carbon conversion efficiency must be more than
70%, and carbon dioxide gas is lower than 20%. Simulation models of the steam gasification process
have been carried out by ASPEN Plus and validated with both experimental data and simulation
results from Nikoo & Mahinpey (2008). Gasification temperature of 911 ◦C, equivalence ratio of
0.18, and a steam-to-biomass ratio of 1.78, are considered as an optimal operation point to achieve
energy self-sufficient condition. This operating point gives the maximum of carbon conversion
efficiency at 91.03%, and carbon dioxide gas at 15.18 volumetric percentages. In this study, life cycle
assessment (LCA) is included to compare the environmental performance of conventional and energy
self-sufficient gasification for steam biomass gasification.

Keywords: energy self-sufficient; fluidized bed gasifier; ASPEN Plus; life cycle assessment (LCA)

1. Introduction

With increasing energy demands of the world and environmental awareness, biomass gasification
is an alternative technology to solve those problems. Moreover, this technology can significantly reduce
the volume of biomass waste generated in developing societies [1]. Gasification is a thermo-chemical
conversion which converts solid fuel such as biomass into useful synthesis gas (mixture of CO, H2,
and CH4) through partial oxidation. It can be further processed to produce heat and electricity [2].
Several biomass-based power technologies are analyzed. Megwai and Richards [3] studied five power
generation processes (gas turbines, steam turbines, micro gas turbines, Stirling engines, and internal
combustion engines) in terms of electric performance, environmental indicators, and economic
evaluations. The results showed that the internal combustion engine and the Stirling engine proved to
be the most economically feasible for small-scale power production. However, the internal combustion
engine power system emitted more NO compared with other systems. It was also indicated that
additional costs might be incurred for installing gas cleaning systems for treating the synthetic gas.

A typical thermochemical process generally follows the chemical operation zones: drying,
pyrolysis, combustion, and reduction. The biomass feedstock is firstly heated (dried) to remove
some moisture, and then it undergoes a pyrolysis step to be decomposed at high temperature.
The products of the pyrolysis step (i.e., solid, liquid, and gas) react among themselves as well as
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with the gasifying medium to form the final gasification product. The chemical reactions that occur
during the pyrolysis step and gasification step can be basically presented in Table 1. According
to Sinha et al. [4], the pyrolysis region could be divided into three zones: an endothermic primary
decomposition zone at T < 250 ◦C; an exothermic partial zone at 250 ◦C < T < 340 ◦C; and an
endothermic surface char zone at 340 ◦C < T < 520 ◦C. They concluded that the overall heat of reaction
at higher heat fluxes was exothermic.

Table 1. Basic reactions in gasification of carbonaceous materials [5,6].

Reaction Reaction Name ∆H25 ◦ C (kJ/mol)

Pyrolysis
Biomass→ Char + Tar + Volatiles Pyrolysis reaction
Combustion
C + 0.5O2 → CO Partial combustion reaction −111
C + O2 → CO2 Total combustion reaction −394
CO + 0.5O2 → CO2 Carbon monoxide combustion reaction −283
Reduction
C + CO2 → 2CO Boudouard reaction +172
C + H2O→ H2 + CO Steam-carbon reaction +131
C + 2H2 → CH4 Hydrogasification −74.8
CO + H2O→ H2 + CO2 Water-gas-shift reaction −41.2
CO + 3H2 → CH4 + H2O Methanation reaction −206

Several models have been proposed in order to explain the gasification process, with an interest
towards the design, simulation, optimization, and process analysis of gasifiers. The models can be
divided into kinetic rate models and thermodynamic equilibrium models. The thermodynamic models,
with independent with gasifier designs, are a useful tool for preliminary comparison and for process
studies on the influence of the most important fuel and process parameters. However, thermodynamic
models cannot give real results because they do not take into account time and specific material
and equipment data. Kinetic rate models always contain parameters that limit their applicability
to different plants, but they give real results [7]. A novel kinetic reaction model was presented by
Peters et al. [8]. The model was implemented in ASPEN Plus. It was able to calculate yields and
composition of the pyrolysis products of unknown lignocellulosic feedstock based on its biochemical
composition with a minimum of input.

The use of carbon dioxide (CO2) as an oxidizing agent in biomass gasification has become a new
frontier for the research on biomass conversion as well as CO2 utilization. The addition of CO2 in the
gasification process shows many advantages such as greater synthesis gas yield [9]. Im-Orb et al. [10]
studied two gasification processes with different gasifying agents (i.e., steam–air and steam-CO2) and
developed a thermodynamic gasification model using ASPEN Plus. Suitable conditions offering the
highest amount of the synthesis gas with the desired H2/CO ratio at thermal self-sufficient operation
of the gasifier were determined. It was concluded that the steam-CO2 system gave a higher synthesis
gas productivity and lower H2/CO ratio. However, for the aspect of total energy consumption,
the steam–air system consumed less energy and thermal self-sufficient conditions could be achieved.
Pfeifer et al. [11] modified the conventional dual fluidized bed gasification process with the absorption
enhanced reforming (AER) process. The use of CO2-adsorbing bed materials within dual fluidized bed
gasifiers made a gas product with hydrogen content up to 75 vol. % available.

The types of a gasifier available for commercials include fixed bed, fluidized bed, and entrained
flow. For large-scale applications, the most preferred and reliable system is the circulating fluidized bed.
In contrast, the fixed bed system is more appropriate for a small-scale system [12]. Examples of steam
gasification process studies are atmospheric fluidized bed combustor [13], biomass gasification in a
fluidized bed reactor [14,15], steam blown dual fluidized bed gasification [16], and bubbling fluidized
bed gasification [17]. Shehzad et al. [18] studied the thermodynamic performance of a municipal solid
waste (MSW) gasification system with a circulating fluidized bed gasifier under various operating
conditions. A computer simulation model was used in order to evaluate the exergetic efficiency of the



Energies 2017, 10, 314 3 of 15

MSW to syngas conversion process for each individual unit. A water gas shift pilot plant employing a
commercial Fe/Cr-based catalyst was operated with tar-rich product gas from the industrial scale and
commercial biomass steam gasification plant in Oberwart, Austria. The volumetric CO content in the
product gas was decreased to below 2%. Furthermore, a CO conversion of 92% was obtained [19]. Most
studies have been focused on the effects of operating conditions in the gasification process without
concern for the energy self-sufficiency in the steam gasification process. The advantages of an energy
self-sufficient system can also be the minimum quantity of energy required, the maximum yields
operating efficiency, and the minimum production time [20]. Therefore, the energy self-sufficiency of
the steam gasification process is the focus in this research.

Recently, gasification models have been developed based on process simulator ASPEN Plus
models combining thermodynamic and kinetic rate models in the gasification process. Nikoo &
Mahinpey [14] developed a model based on ASPEN Plus with external FORTRAN subroutines
for reaction hydrodynamics and kinetics to simulate the biomass gasification in a fluidized bed
reactor. Different sets of operating conditions were used to demonstrate and validate the model.
Mansaray et al. [21] proposed an ASPEN Plus model combing Gibbs equilibrium models to simulate
rice husk gasification based on material balance, energy balance, and chemical equilibrium relations.
Lui et al. [22] developed a biomass gasification model by considering thermodynamic equilibrium
and ignoring the kinetic factors. The effects of gasification temperature, gasification pressure,
and equivalence ratio (ER) on the gas component composition, gas yield, and gasification efficiency
were studied using ASPEN Plus based on the Gibbs free energy minimization method. For the results,
the optimal ER for gasification was approximately 0.3, and the gasification efficiency was 85.92%.
Begum et al. [23] studied the gasification of three different biomass feed stocks (food waste (FW),
municipal solid waste) via the ASPEN Plus software. The effects of operating parameters, such as
temperature and equivalence ratio (ER) were investigated.

The objective of this study is to optimize the required energy in a steam gasification process
by considering three operating parameters (gasification temperature, equivalence ratio, and
steam-to-biomass ratio) in order to achieve an energy self-sufficient condition. The simulation model
of the steam gasification process has been carried out by ASPEN Plus and validated with both
experimental data and simulation results of Nikoo & Mahinpey [14]. Life cycle assessment (LCA) has
been used as a tool to evaluate the environmental impacts associated with all stages of a process or
a product. In this study, it is applied to provide environmental analysis of conventional and energy
self-sufficient gasification of pine sawdust processes.

2. ASPEN Plus Model

2.1. Assumptions

Assumptions made in modeling the gasification process are as follows:

• The simulation process is run under a steady state condition.
• The operation zone inside the gasifier is an isothermal condition.
• The residence time for reactants is sufficiently high to reach the equilibrium of Gibbs free energy

during pyrolysis reaction.
• The volatile products of biomass are mainly comprised of H2, CO, CO2, CH4, and H2O.
• Char only contains carbon black and ash.
• The simulation is carried out with power-law kinetics.

2.2. Model Description

Operation steps of the gasification process in a fluidized bed reactor are separately considered in
ASPEN Plus simulation: pyrolysis zone, combustion and reduction zone, and gas-solid separation.
A series of various reactor blocks are properly selected and sequenced as shown in Figures 1 and 2.
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Figure 2. Simulation procedure of the steam gasification process.

The ASPEN Plus (Version 7.3, AspenTech, Burlington, MA, USA) yield reactor, RYIELD (model
ID: DECOMP), is used to simulate the decomposition of the biomass feed stream. In this step, biomass
is converted into its constituting components including carbon, hydrogen, oxygen, sulfur, nitrogen,
and ash by specifying the yield distribution according to the biomass proximate and ultimate analysis.

The ASPEN Plus Gibbs reactor, RGIBBS (model ID: VOLATILE), is used for volatile reaction, in
conformity with the assumption that volatile reactions follow the equilibrium of Gibbs free energy.
Biomass consists of mainly C, H, O, N, S, ash, and moisture. Carbon partly constitutes the gas phase,
which takes part in devolatilization, and the remaining carbon comprises part of the solid phase (char)
and subsequently results in char gasification.

A separation module (model ID: CHAR-SEP) is used to separate the volatile materials and
solids. It can separate the solid phase of carbon with the assumption that char is considered as only
components of carbon black and ash.
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The operating conditions including temperature, pressure, and possible production components
are identified in the reactor VOLATILE. This reactor calculates the composition of product with the
assumption that the residence time for reactants is sufficiently high to reach the equilibrium of Gibbs
free energy during pyrolysis reaction.

The ASPEN PLUS CSTR reactor, RCSTR (model ID: COM-RE), is selected to perform char
gasification by using kinetic reactions. The gases released are purified by gas-solid separation.

The operating condition is chosen based on the published data of the simulation of biomass
gasification in a fluidized bed reactor using ASPEN PLUS by Nikoo & Mahinpey [14], as shown in
Table 2.

Table 2. Parameter inputs in simulation study.

Biomass Feedstock

Proximate analysis
- Moisture wt. % 8
- Volatile matter wt. % dry basis 82.29
- Fixed carbon wt. % dry basis 17.16
- Ash wt. % dry basis 0.55

Ultimate analysis
- C wt. % dry basis 50.54
- H wt. % dry basis 7.08
- O wt. % dry basis 41.11
- N wt. % dry basis 0.15
- S wt. % dry basis 0.55
- Ash wt. % dry basis 0.57

Flow rate kg/h 0.445–0.512

Air Feedstock

Temperature ◦C 65
Flow rate Nm3/h 0.5–0.7

Steam Feedstock

Temperature ◦C 145
Flow rate kg/h 0–1.8

Operating Condition

Temperature ◦C 700–900
Pressure atm 1

The operating temperature, pressure, reactor volume, and reaction information are identified
in the reactor COM-RE. The production compositions are calculated with the assumption that the
simulation is carried out with the power-law kinetics. The gas-film-diffusion-controlled regime of
combustion reaction is selected for the input kinetic parameters. The stoichiometric reaction of the
combustion zone and reduction zone are given in Equations (1) and (5).

Combustion reaction:
C + αO2 → 2(1 − α)CO + (2α − 1)CO2 (1)

In the steam gasification system, the following two reactions could be assumed to take place.
Steam gasification reaction:

C + H2O→ CO + H2 (2)

CO + H2O→ CO2 + H2 (3)

Equation (3) can be replaced by the following equation:

C + 2H2O→ CO2 + 2H2 (4)
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Equations (2) and (4) can be combined into the following equation

C + βH2O→ (β − 1)CO2 + (2 − β)CO + βH2 (5)

α is a mechanism factor which is experimentally varied between 0.5 and 1 for partial combustion
reaction [24]. β can be determined to be in the range of 1.1–1.5 when the operating temperature is
in the range of 750–900 ◦C [25]. For this study, the values of α and β are selected to obtain the best
agreement with experimental data at 0.7 and 1.3, respectively. The reaction rate equations are defined
as follows:

dX1

dt
= k1 exp(

−E1

RT
)Pn

O2
(1− X1)

2
3 (6)

dX2

dt
= k2 exp(

−E2

RT
)Pn

H2O(1− X2)
2
3 (7)

The carbon conversion can be separately calculated with char combustion reaction as Equation
(6) and char steam gasification reaction as Equation (7). For atmospheric gasification, the steam
partial pressure is in the range of 0.25–0.8 atm, the parameter n can be equal to 1 according
to the study by Kasaoka et al. [26]. The activation energies and reaction-rate constants of
combustion reaction are dependent on the reaction control step, where k1 = 75,785 s−1·atm−1 and
E1/R = 13,523 K for the chemical-reaction-controlled regime; k1 = 0.44 s−1·atm−1 and E1/R = 3342.4 K
for the pore-diffusion-controlled regime; and k1 = 0.046 s−1·atm−1 and E1/R = 1166 K for the
gas-film-diffusion-controlled regime; k2 = 6474.7 s−1·atm−1 and E2/R = 19,544 K for the steam
gasification reaction [24].

2.3. Model Validation

The simulation models are validated with the experimental data and the work of Nikoo &
Mahinpey [14] by calculating the root mean square error of synthesis gas compositions such as
hydrogen, carbon dioxide, carbon monoxide, and methane. The root mean square error can be
calculated according to below Equations (8) and (9).

Mean Square Error (MSE) =
1
N

N

∑
i=1

(
yie − yip

yie

)2
(8)

Root Mean Square Error (RMSE) =
√

MSE (9)

where yie and yip are experimental and simulation compositions of synthesis gas composition (H2, CO,
CO2, and CH4) respectively.

3. Results and Discussion

The simulation tests have been carried out in two parts. The first part is to validate the ASPEN
Plus model with the experiment and the second part is to determine an energy self-sufficient condition
with several sets of operating parameters.

3.1. Validation of the ASPEN Plus Model

To perform the validation of the ASPEN Plus model with the work of Nikoo & Mahinpey [14],
in this work, three variables: gasification temperature, equivalence ratio, and steam-to-biomass were
considered and varied from 700–900 ◦C, 0.19 to 0.27, and 0 to 4.04 respectively.

3.1.1. Validation of the ASPEN Plus model with Respect to Gasification Temperature

The validation of the effect on the gasification temperature varied from 700 ◦C to 900 ◦C on
synthesis gas composition is shown in Figure 3. The RMSE of each component also given in the
Figure 3 is less than 0.2076 which is better than that of Nikoo & Mahinpey [14]. It can be seen that
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when the gasification temperature is increased, the composition of hydrogen increases while methane,
carbon monoxide, and carbon dioxide decrease.
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In addition, the ASPEN Plus model can provide the gas composition with respect to type of
reaction and reactor with good accuracy. H2 is produced by the steam gasification reaction in the
reactor COM-RE (RCSTR). CO is produced by both volatile reaction in the reactor VOLATILE (RGIBBS)
and char combustion reaction in the reactor COM-RE (RCSTR), whereas CO2 is only produced by
char combustion reaction in the reactor COM-RE (RCSTR). Finally, CH4 is only produced by volatile
reaction in the reactor VOLATILE (RGIBBS) with Gibbs free energy equilibrium.

Figure 4 shows the carbon conversion efficiency with respect to gasification temperature based
on the ASPEN Plus model. It can be seen that the carbon conversion efficiency increases when the
gasification temperature increases because the reaction rate constant of char combustion reactions in
the Arrhenius equation are directly proportional to temperature.
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3.1.2. Validation of ASPEN Plus Model with Respect to Equivalence Ratio (ER)

The validation of the ASPEN Plus model by varying the equivalence ratio on gas composition is
shown in Figure 5. The RMSE of each component also given in the Figure 5 is less than 0.0567 which is
better than that of Nikoo & Mahinpey [14]. The increase in the equivalence ratio excites the reaction
rate of the char combustion reaction in the RCSTR reactor. According to the stoichiometry of reaction
in Equation (1), CO2 is produced more than CO with the same amount of oxygen gas, therefore the
increase in the rate of CO2 is higher than the increase in the rate of CO. On the other hand, CH4 is
not affected because the reaction rate of volatiles in the RGIBBS reactor and char gasification in the
RCSTR reactor are not affected by the equivalence ratio. H2 concentration decreases with the increase
in equivalence ratio due to the decrease in the reaction rate of char gasification.

As shown in Figure 6, the carbon conversion efficiency is also increased because the reaction rate
of char combustion reaction is proportionally sensitive to the equivalence ratio. However, the carbon
conversion efficiency can decrease when too much air is supplied. The biomass would be rapidly
moved up to the gasifier before it would be completely reacted.
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3.1.3. Validation of ASPEN Plus Model with Respect to Steam-to-Biomass Ratio (SB)

The validation of ASPEN Plus model by varying steam-to-biomass ratio in the range from 0 to
4.04 on synthesis gas composition is shown in Figure 7. The RMSE of each component also given
in the Figure 7 is less than 0.1496 which is better than that of Nikoo & Mahinpey [14]. Refer to the
stoichiometry of reaction in Equation (5), H2 concentration increases with increasing of reaction rate
while the concentrations of CO and CO2 are not significantly affected because the reaction rate of char
combustion is higher than the reaction rate of char gasification. For CH4, there is no effect because
the reaction rate of volatiles in the RGIBBS reactor and char gasification in the RCSTR reactor are not
affected by steam-to-biomass ratio.
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As shown in Figure 8, the carbon conversion efficiency increases when steam-to-biomass ratio
increases due to the increase in reaction rate of char gasification reaction. However, the carbon
conversion efficiency can be decreased in the case that steam is over-supplied, resulting in more
moisture contained in the biomass which leads to obstruction of the combustion reaction of char.
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3.1.4. Conclusion of ASPEN Plus Model Validation

The simulation model has been validated and compared with both experimental data and
simulation results from Nikoo & Mahinpey [14]. The root mean square errors of all gas product
compositions obtained from simulation are given in Table 3.

Table 3. The root mean square error of simulation results obtained from Nikoo & Mahinpey [14] and
this work.

Set of Operating Condition Result Source
Root Mean Square Error (RMSE)

H2 CO2 CO CH4

Gas composition
versus temperature

Nikoo & Mahinpey 0.3606 0.3009 0.1044 0.2152
This work 0.1541 0.1225 0.0498 0.2076

% Reduction 57.26 58.48 52.30 3.53

Gas composition versus ER Nikoo & Mahinpey 0.1981 0.2308 0.0939 0.1997
This work 0.0357 0.0496 0.0357 0.0567

% Reduction 81.99 78.51 61.98 71.61

Gas composition versus SB ratio Nikoo & Mahinpey 0.2045 0.2382 0.1143 0.2712
This work 0.0552 0.1030 0.0552 0.1496

% Reduction 73.01 56.76 51.71 44.84

It is observed that the ASPEN Plus mode of this work is in good agreement with the experimental
data and values of root mean square errors are less than the simulation results of Nikoo & Mahinpey
in all cases [14].

3.2. Energy Self-Sufficient Condition

Simulation of the gasification to find out energy self-sufficient conditions is carried out
according to variation of three input parameters: gasification temperature, equivalence ratio, and
steam-to-biomass ratio. Sensitivity analysis was carried out to determine energy self-sufficient
conditions. The equilibrium point of the energy self-sufficient process is the summation of the thermal
energies from all reactions—heat source and heat sink—taking place inside the gasifier are zero as
shown in Equation (10). The summation of the energy balance of all thermal reactors as shown in
Figure 9.

Qgasifier (net) = Qdecomp + Qvolatile + Qcom-re = 0 (10)

The variation of operating conditions has been carried out in order to find desired sets of the
operating parameters; biomass was fed into the process at 0.445 kg/h, air supply flow rate was
varied from 0 Nm3/h to 0.7 Nm3/h, or the equivalence ratio was varied from 0 to 0.31 and steam
supply flow rate was varied from 0 to 2 kg/h, or the steam-to-biomass ratio was varied from 0 to
4.45. In each case, the equivalence ratio and steam-to-biomass ratio were fixed and the gasification
temperature was varied to find the energy self-sufficient condition via the use of the ASPEN Plus
simulator software. The trial and error of operating conditions has been selected as the technic in order
to find the various sets of suitable operating parameter. According to Boerrigter and Rauch [27], the
product distribution depended on the conditions in the gasification such as the gasification medium,
gasifier design, residence time, etc. Greater amounts of carbon dioxide could decrease the heating
value of synthesis gas [27]. Therefore, suitable criteria of gas composition to promote the heating value
were the volumetric percentages of carbon dioxide and the carbon conversion efficiency which should
be lower than 20% and more than 70% respectively.
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After completion of the simulation test, the energy self-sufficient conditions with respect to the
gasification temperature, equivalence ratio, and steam-to-biomass ratio were plotted in 3D graph to
exhibit the surface area as shown in Figure 10 and the simulation results of the energy self-sufficient
conditions in the steam gasification process are listed in the Appendix A.

An equivalence ratio was varied from 0 to 0.31, and steam-to-biomass ratio was varied from 0
to 4.45. The gasification temperature was selected in a range of 600–1000 ◦C. The shaded regions
show the areas where the carbon conversion efficiency is higher than 70% and carbon dioxide oxide
gas is lower than 20 volumetric percentages. The optimum point of the simulation was found at
gasification temperature of 911 ◦C, equivalence ratio of 0.18, and steam-to-biomass ratio of 1.78.
This operating point gives the maximum of carbon conversion efficiency of 91.03%, and carbon dioxide
oxide gas is still in the acceptable range at 15.18 volumetric percentages. However, if no steam is
supplied, the energy self-sufficient condition cannot be achieved because there is not any endothermic
energy produced by char gasification reaction to balance the exothermic energy which occurs in
pyrolysis and combustion zones. In this study, the energy self-sufficient regions can be found when the
steam-to-biomass ratio is between 0.89 and 3.56. If the steam-to-biomass ratio is above 3.56, meaning
that large amount of steam is fed to the RCSTR reactor, the carbon conversion ratio would be less than
70% in any operating scenarios.
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3.3. Environmental Assessment

Life cycle assessment (LCA) is a useful tool to demonstrate different impact categories involved,
quantitatively and qualitatively, throughout the life cycle of the end product [28]. It can also be used to
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assess the environmental impacts of biomass gasification process by evaluating all CO2 related inputs
and outputs of the system [9]. Environmental analysis has been carried out using SimaPro software
to evaluate in terms of environmental impacts. SimaPro (Version 7.3) with the CML 2 baseline 2000
methodology (the method which proposed by a group of scientists under the lead of CML (Center
of Environmental Science of Leiden University)) was used to calculate the potential environmental
impacts. Impact categories were selected which relate to gasification output. Ten impact potentials are
evaluated: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP),
ozone layer depletion (ODP), human toxicity (HTP), fresh-water aquatic ecotoxicity (FAETP), marine
aquatic ecotoxicity (MAETP), terrestrial ecotoxicity (TETP), and photochemical oxidation (POFP).
However, two more impacted categories are the marine aquatic ecotoxicity and global warming.

Marine aquatic ecotoxicity refers to impacts of toxic substances on marine ecosystems.
Characterization factors are expressed as 1,4-dichlorobenzene equivalents/kg emission. For global
warming, the reference substance is CO2. All greenhouse gases are expressed in the units of kg CO2

equivalents/kg emission.
Environmental analysis is performed to compare two scenarios: conventional gasification

(scenario 1) and energy self-sufficient gasification (scenario 2).
Figures 11 and 12 show the environmental impacts: global warming potential and marine aquatic

ecotoxicity respectively of the two scenarios. It is apparent that the energy self-sufficient gasification
produces lower environmental impacts (GWP and MAETP) than conventional gasification does.
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4. Conclusions

In this study, the thermodynamic equilibrium analysis of a steam gasification process from
biomass has been carried out by representing of the gasification reactor with three sequencing reactors
(RYIELD reactor, RGIBBS reactor, and RCSTR reactor) in the ASPEN Plus simulator software. In this
work, the biomass used was pine sawdust and the biomass gasification technology was fluidized
bed technology (conventional gasification). The effect of three operating parameters (gasification
temperature, equivalence ratio, and steam-to-biomass ratio) were analyzed and compared with the
experimental data and the work of Nikoo & Mahinpey [14]. Then, energy self-sufficient conditions
were achieved when gasification temperature, equivalence ratio, and steam-to-biomass ratio were
properly selected.

Simulation results show that the unit operation blocks, including separation processes and
many types of reactors in process simulation model by ASPEN Plus give good agreement with
the experimental data and more accurate than the work of Nikoo & Mahinpey [14]. Furthermore,
the increase in temperature and steam-to-biomass ratio can improve the steam gasification process.
Hydrogen and carbon conversion efficiencies increase but carbon dioxide, carbon monoxide, and
methane efficiencies decrease. In addition, the increase in equivalence ratio gives more carbon dioxide,
carbon monoxide, and carbon conversion efficiency. However, the complete combustion needed to be
avoided in order to limit the volumetric percentage of carbon dioxide in the synthesis gas.

The simulation study was run to find the relationship among gasification temperature, equivalence
ratio, and steam-to-biomass ratio to obtain the energy self-sufficient condition. The equivalence ratio
was varied from 0 to 0.31 and the steam-to-biomass ratio was varied from 0 to 4.45. The gasification
temperature was selected from a range of 600–1000 ◦C. Finally, the optimum condition was found
at a gasification temperature of 911 ◦C, equivalence ratio of 0.18, and steam-to-biomass ratio of 1.78.
This operating point gave the maximum of carbon conversion efficiency at 91.03%, and carbon dioxide
oxide gas was still in criteria at 15.18 volumetric percentages.
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Appendix A

Table A1. The simulation results of the energy self-sufficient conditions in the steam
gasification process.

ER SB Temperature (◦C)
Gas Composition (vol. %) Carbon

Conversion (%)H2 CO CO2 CH4

0 0.89 916 56.34 28.89 10.24 4.53 62.80
0.04 0.89 936 53.82 30.51 11.76 3.91 76.81
0.09 0.89 949 51.36 31.91 13.23 3.50 90.34

0 1.78 856 55.68 28.50 8.86 6.96 41.55
0.04 1.78 880 52.68 30.61 11.32 5.39 57.49
0.09 1.78 884 48.92 32.66 13.63 4.79 69.57
0.13 1.78 898 48.72 32.99 13.91 4.38 76.33
0.18 1.78 911 46.99 34.05 15.18 3.78 91.30

0 2.67 793 56.12 26.60 5.80 11.48 25.12
0.04 2.67 814 51.58 29.76 9.74 8.93 35.27
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Table A1. Cont.

ER SB Temperature (◦C)
Gas Composition (vol. %) Carbon

Conversion (%)H2 CO CO2 CH4

0.09 2.67 832 48.58 31.92 12.22 7.29 45.89
0.13 2.67 847 43.92 34.88 15.38 5.81 62.80
0.18 2.67 861 44.87 34.58 15.24 5.31 67.63
0.22 2.67 873 43.73 35.40 16.19 4.69 78.26
0.26 2.67 832 42.74 36.10 16.98 4.18 89.37

0 3.56 716 54.96 25.24 2.14 17.67 16.43
0.04 3.56 744 48.15 30.10 8.21 13.54 24.64
0.09 3.56 767 43.77 33.35 11.94 10.94 33.33
0.13 3.56 788 44.63 33.15 12.17 10.04 35.75
0.18 3.56 806 40.20 36.13 16.14 7.54 51.69
0.22 3.56 822 37.91 37.91 17.63 6.56 61.84
0.26 3.56 837 37.75 38.29 18.30 5.66 71.50
0.31 3.56 850 37.59 38.54 18.90 4.98 81.64

0 4.45 640 54.85 24.16 0.42 20.57 14.49
0.04 4.45 670 45.04 30.56 7.51 16.89 21.26
0.09 4.45 696 41.84 33.30 11.41 13.45 28.02
0.13 4.45 721 36.27 37.01 15.07 11.66 35.27
0.18 4.45 743 34.98 38.10 17.09 9.84 43.00
0.22 4.45 763 33.79 39.16 18.60 8.45 51.21
0.26 4.45 780 32.83 40.09 19.70 7.39 59.42
0.31 4.45 797 31.90 41.01 20.56 6.52 68.12
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