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Abstract: In order to study the mechanical behaviors of engineered cementitious composites (ECC) 

reinforced with various types of polyvinyl alcohol (PVA) fibers and different fiber volume fractions 

after the freeze-thaw cycles, the rapid freeze-thaw method was used to test the mass loss ratios, 

longitudinal relative dynamic elastic modulus, compressive strength and flexural strength. The results 

showed that specimens incurred more serious damage with the increasing of freeze-thaw cycles; 

however their performance would be improved by fiber type and dosage. Mass loss rate of JPA 

(specimen with 2% volume content of JP fiber) was lower than JPB (specimen with 1% volume 

content of JP fiber). Furthermore, the mass loss rate of JPB was lower than that of CPB (specimen 

with 1% volume content of CP fiber). The longitudinal relative dynamic elastic modulus of JPA was 

higher than that of JPB while the longitudinal relative dynamic elastic modulus of JPB was higher 

than that of CPB. In addition, the compressive strength and flexural strength decreased with the 

increasing of freeze-thaw cycles. Mechanical behaviors of specimens with fiber exhibited better 

strength than specimens without fiber. Based on the SL 211-2006 code for the design of hydraulic 

structures against ice and freezing action, JPA and JPB specimens are adequate for use in severe cold 

regions, while specimen CPA and CPB can be used in cold regions, specimen JPC only can be used in 

warm regions. 

Keywords: ECC; PVA fibers; Freeze-thaw cycles; Mass loss rate; Relative dynamic elastic modulus; 

Compressive strength; Flexural strength 

Introductions 

Normal concrete inherently has the characteristics of low tensile strength, poor toughness, high 

self-weight and poor crack resistance. In order to overcome some of the above shortcomings, Li 
[1-3]

 

incorporated PVA fiber into the cement mortar to produce ECC. By adding up to 2.0% volume content 

of PVA fiber, selecting suitable cementitious materials and additives, ECC can be produced with 

ultimate tensile strain higher than 3.0%, high toughness, impact resistance and strain hardening 

performance. 

ECC is a new generation of high performance fiber reinforced cementitious composite featuring 

high ductility and medium fiber content. The tensile strain capacity in the range of 3.0% to 5.0% has 

been demonstrated in ECC materials by using polyethylene fibers or PVA fibers with fiber volume 

fraction less than 2.0%. Large strain is achieved by sequential development of multiple cracks, instead 

of continuous increasing of the crack opening. The associated high fracture toughness and controlled 

crack width (typically below 100 μm) make ECC an ideal material to improve both the serviceability 

and the durability of infrastructures. Typical characteristics of ECC tested by our research group are 

shown in Figure 1
[4]

. Recently, the application fields of ECC have increased, for example it has been 

successfully applied to dam repairing, bridge deck overlays, coupling beams in high rise buildings and 



other structural elements and systems. 

In order to encourage the use of ECC material in cold regions, such as northern Europe, Canada, 

northern United States, Russia and north China, the mechanical behaviors and frost resistance of ECC 

have been investigated by many scholars. Recent studies showed that ECC exhibited  tensile strain 

hardening and multiple cracking performances regardless of the proportion
 [5]

, type of fibers
[6, 7]

 (PVA 

fibers made by different manufacturers, non-round polypropylene fiber and low modulus polyvinyl 

alcohol fiber)), strain rate loading
 [8]

 and water to binder ratio varying from 0.55 to 0.25
[9]

. ECC had 

also adequate compressive performance with different mix proportions
 [10]

 or water to binder ratio
 [9]

. 

Previous experimental studies showed that ECC continued to demonstrate strain hardening and 

multiple cracking after freeze-thaw cycles
 [11, 12]

. The dynamic elastic modulus had no obvious decrease 

after 300 freeze-thaw cycles
 [5, 12]

. The ultimate strain of ECC was still higher than 3.0%
 
and the frost 

resistance of ECC met the requirement of most structures
 [13]

. ECC’s ultimate strain was still higher 

with different content of fly ash and PVA fibers after freeze-thaw cycles
 [12, 14-16]

. Frost resistant grades 

of ECC with different types of fibers and gray-sand ratios were higher than F300
 [12, 17-18] 

(Specimens 

are considered to failure
 [19]

 when the longitudinal relative dynamic elastic modulus has decreased to 

60.0% of its initial value or its mass loss rate has exceeded 5.0%) and it can be used in cold regions. 

Self-healing ability and durability of ECC decreased significantly after freeze-thaw cycles in chloride 

environment compared to fresh water environment
 [20, 21]

. 

Most previous investigations were conducted on the mechanical behavior of ECC with Kuraray 

PVA fibers. Since the mechanical behavior of ECC may be significantly influenced by the type of 

fibers and mixtures 
[6, 7]

, research on the mechanical behavior of ECC with different types of fibers and 

mixtures after freeze-thaw cycles are necessary to promote the use of ECC in cold regions. In this study, 

PVA fibers produced by two different sources were investigated to compare the experimental results on 

mass loss ratios, longitudinal relative dynamic elastic modulus, compressive strength and flexural 

strength after being subjected to freeze-thaw cycles.  

1 EXPERIMENTS PRLGRAM 

1.1 Test Materials 

Portland cement produced by LvYang Cement Corporation was utilized. Grade I fly ash, superfine 

silica fume, 100-200 mesh special fine quartz sand and Sika poly acid water reducer were also used. 

RECS15*12 type PVA fiber and type II PVA fiber were utilized. The properties of fibers are shown in 

Table1, in which JP means RECS15*12 type PVA fiber and CP means type II PVA fiber. Test materials 

are shown in Figure 2. 

Table 1 The properties of fibers 

 
Fig.1 Typical characteristics of ECC 



 

Fig.2 Test materials 

1.2 Experimental Design 

Fiber post-addition method was adopted in the mixing procedure
 [22]

. First, cement, fly ash, silica 

fume, sand and other dry ingredient were added to the mixture and they were mixed for one minute at 

the speed of 60 rpm to distribute the mixture uniformly. HJS-60 twin shafts concrete mixer was used 

(as shown in Figure 3(a)). Then, water was added and the mixture was mixed for another one minute at 

the same speed. Water reducer was then added until the mortar has shown sufficient fluidity, and the 

mixture was mixed two more minutes at the speed of 120 rpm until the cement mortar could self level 

when stopping the mixing, as shown in Figure 3(b). Fiber was then added, and the mix was stirred for 

another 3~6 minutes at the speed of 120 rpm. ECC was poured into molds that were vibrated (as shown 

in Figure 3(c)) for 2 minutes for sufficient compaction. After smoothing the surface, the molds were 

covered with transparent plastic film to prevent evaporation. Formworks were demolded after 24-hours 

natural indoor temperature curing, and then specimens were placed in the standard curing room having 

a controlled temperature of 20±2
 o
C and relative humidity of over 95% for 28 days. 

 

Fig.3 Testing Machines 

Uniform fiber distribution was achieved by adjusting the ratio of fly ash, the amount of water reducer 

Fiber type 
Length 

/mm 

Diameter 

/μm 

Elastic modulus 

/ GPa 

Elongation 

/ % 

Tensile strength 

/ (N·mm-2) 

Density 

 / (g/cm3) 

JP 12 40 41 6.5 1560 1.3 

CP 12 20 37 6 1300 1.3 



and functional constituents
 [22]

. Mixture ratios of ECC are shown in Table 2. Mass ratio of cement, fly 

ash, silica fume, sand and water were 1.0:3.0:1.0: 0.36:0.3 respectively. JPA and JPB represent 

specimens with 2.0% and 1.0% volume content of JP fiber, respectively, CPA and CPB represent 

specimens with 2.0% and 1.0% volume content of CP fiber, respectively, whereas JPC indicates 

specimen without fiber as shown in Table 2. 

Table 2 ECC mixture ratio 

Serial number Water reducer/% PVA volume Fraction/% Fiber distribution Fiber type 

JPA 0.48 2.0 uniform distribution JP 

JPB 0.44 1.0 uniform distribution JP 

JPC 0.21 0.0 - - 

CPA 0.57 2.0 slight uneven distribution CP 

CPB 0.52 1.0 uniform distribution CP 

1.3 Freeze-thaw cycle test 

According to test code for hydraulic concrete SL 352-2006 
[19]

, rapid water freeze-thaw cycles 

method was adopted. The minimum and maximum temperatures of the specimen centers should be 

controlled at -17±2 
o
C and 6±2 

o
C respectively. Each full freeze-thaw cycle should be completed in 

about 3 hours. Rapid freeze-thaw automatic test equipment CDR2, as shown in Figure 3 (d), produced 

by YanXin Technology Corporation was used. 40 mm × 40 mm × 160 mm prism specimens were used 

to test the mass loss rate, longitudinal relative dynamic elastic modulus and flexural strength. 70.7 mm 

× 70.7 mm × 70.7 mm cube specimens were used to assess the compressive strength. Mass loss rate, 

longitudinal relative dynamic elastic modulus, compressive strength and flexural strength were 

measured after every 25 freeze-thaw cycles. 

According to the standard for test method of basic properties of construction mortar JGJ/T 

70-2009 
[23]

, unfrozen specimens were also made and stored in the standard curing room in a similar 

conditions to these subjected to freeze-thaw cycles for comparison. Compressive test and flexural test 

were made (before tests were conducted, the comparison specimen were submerged in water). Test of 

freeze-thaw specimens and comparison specimens were conducted at the same time. 

2 TEST RESULTS AND ANALYSIS 

2.1 Failure Modes 

Specimens were smooth with no crack or holes on their surface before freeze-thaw cycles. 

Specimen CPA exposed small amount of fibers on its surface after 200 freeze-thaw cycles and showed 

slight loss of mortar. Specimen JPB incurred cracks on its surface after 200 freeze-thaw cycles and 

mortar dropped slightly. Though much fiber was exposed on the surface of specimen JPA after 200 

freeze-thaw cycles, there was a slight mortar loss. After 200 freeze-thaw cycles, specimen JPC incurred 

serious damage, with spalling on its surface. CPB also incurred motor spalling, but slightly less than 

JPC because of the connection function of fibers. Specimens after 200 freeze-thaw cycles are shown in 

Figure 4. 



 

Fig.4 Specimens after 200 freeze-thaw cycles 

2.2 Mass Loss Rate 

Electronic balance YP6000N with measurement accuracy of 1 g was used to test mass loss rate. 

Relationships between mass loss rate and freeze-thaw cycles are shown in Figure 5, where Rm is mass 

loss rate of specimen and it equals the mass of specimen after freeze-thaw cycles to the mass of 

unfrozen specimen.  

As illustrated in the figure, specimen JPC incurred serious mass loss and its value exceeded 5% 

after 100 freeze-thaw cycles and approached 25% after 200 freeze-thaw cycles. Specimen CPA did not 

incur mass loss after freeze-thaw cycles. It is believed that water penetrated into the holes formed by 

the uneven fiber distribution and caused the mass increase of CPA specimen 
[22]

. For specimens JPA and 

JPB, their mass decreased gradually with the increasing of freeze-thaw cycles, and their mass loss rate 

were smaller than 5% after 200 freeze-thaw cycles. For specimens with the same types of fiber, mass 

loss rate of specimen with higher fiber volume content (JPA) was lower than specimen with lower fiber 

volume content (JPB). In addition, for specimens with the same fiber volume content, mass loss rate of 

specimen with JP fiber (JPB) was lower than specimen with CP fiber (CPB).  

When the PVA fiber volume content is too high, plenty of bubbles would be brought into the 

cement-based composites
 [22]

, leading to the formation of a number of holes. While the holes formed by 

the uneven fiber distribution and the bubbles were filled with water, mass loss rate of specimens with 

slight uneven fiber distribution (CPA) is lower than the other specimens. 

2.3 Longitudinally Relative Dynamic Elastic Modulus 

Longitudinal relative dynamic elastic modulus can be calculated by following formula (1)
 [19]

:   

 
 

Fig.5 Mass loss ratios Fig.6 Longitudinal fundamental frequency testing device 



 REd=fn
2
/f0

2
×100 （1） 

where REd is the longitudinal relative dynamic elastic modulus (%) of specimen after n freeze-thaw 

cycles, fn is longitudinal fundamental frequency (Hz) after n freeze-thaw cycles and f0 is longitudinal 

fundamental frequency (Hz) of unfrozen specimen. Longitudinal relative dynamic elastic modulus test 

equipment DT20 with measurement accuracy of 1 Hz was used and is shown in Figure 6. Relationships 

between longitudinal relative dynamic elastic modulus and freeze-thaw cycles are presented in Figure 

7.  

  
Fig.7 Longitudinal relative dynamic elastic modulus Fig.8 Compressive test 

As depicted from Figure 7, the longitudinal relative dynamic elastic modulus of specimen JPC 

was lower than 60% of initial value after 100 freeze-thaw cycles, and decreased to 46% of initial value 

after 200 freeze-thaw cycles. The decrease rate of longitudinal relative dynamic elastic modulus of 

specimen CPA was lower than that of specimen JPC with the same freeze-thaw cycles. Longitudinal 

relative dynamic elastic modulus of specimen JPA decreased to 80% of initial value after 150 

freeze-thaw cycles and to 50% of initial value after 200 freeze-thaw cycles. The longitudinal relative 

dynamic elastic modulus of specimen JPA and JPB decreased to 70% of its initial value after 200 

freeze-thaw cycles. For specimens with the same fiber type, longitudinal relative dynamic elastic 

modulus of specimens with higher volume content (JPA) was higher than that of specimen with lower 

volume content (JPB). In addition, for specimens with the same fiber volume content, longitudinal 

relative dynamic elastic modulus of specimen with JP fiber (JPB) was higher than that of specimen 

with CP fiber (JPB).  

Longitudinal relative dynamic elastic modulus of specimen with slight uneven fiber distribution 

(CPA) was lower than that of other specimens. The holes formed by the uneven fiber distribution and 

bubbles had a deteriorating effect on specimens. 

Specimen is considered to reach failure when the longitudinal relative dynamic elastic modulus 

decreased to 60% of initial value or its mass loss rate exceeded 5%. The corresponding freeze-thaw 

cycles at this condition is defined as the specimens’ frost resistant grade
 [19]

. Mass loss rate of 

specimens JPA and JPB were smaller than 5% after 200 freeze-thaw cycles and its longitudinal relative 

dynamic elastic modulus was larger than 60% of initial value. Mass loss rate of specimen JPC was 

larger than 5% after 100 freeze-thaw cycles and its longitudinal relative dynamic elastic modulus was 

lower than 60% of initial value. For CPA specimen, its longitudinal relative dynamic elastic modulus 

was lower than 60% of initial value after 175 freeze-thaw cycles. For CPB specimen, its longitudinal 

relative dynamic elastic modulus was lower than 60% of initial value after 200 freeze-thaw cycles. The 

frost resistant grades of each specimen are shown in Table 3. 

Table 3 Specimens frost resistant grade 

Specimen Frost resistant grade 



JPA FJPA＞F200 

JPB FJPB＞F200 

JPC F75＜FJPC＜F100 

CPA F150＜FCPA＜F175 

CPB F175＜FCPB＜F200 

According to the code for design of hydraulic structures against ice and freezing action SL 

211-2006
 [13]

, JPA and JPB can be used in severe cold regions where average temperature of coldest 

month is below -10
 o

C. Furthermore, CPA and CPB can be used in cold regions where average 

temperature of coldest month is between -10
 o
C and -3

 o
C, and JPC only can be used in mild regions 

where average temperature of coldest month is higher than -3
 o
C. 

2.4 Compression Performance 

Computer controlled automatic pressure testing machine YAW3000C (as shown in Figure 8) was 

used to measure the compressive strength at the load rate of 1.5 kN/s and accuracy of 0.1 MPa. 

Compressive strength of specimens after freeze-thaw cycles are shown in Table 4, and relative 

compressive strengths are shown in Figure 9, where fc,f is compressive strength of specimen after 

certain freeze-thaw cycles, fc,u is compressive strength of unfrozen specimen with the same curing time 

as freeze-thaw specimen, Rc,1 is relative compressive strengths to original strength before freeze-thaw 

cycles, Rc,1=fc,f,n/fc,f,0, Rc,2 is relative compressive strengths to comparison specimen strength, 

Rc,2=fc,f,n/fc,u,n. 

Table 4 Compressive strength/ (N·mm-2) 

Specimen 
Number of freeze-thaw cycles 

0 25 50 75 100 125 150 175 200 

JPA 
fc,f 65.4 65.6 63.5 56.7 55.5 54.8 54.3 52.4 50.7 

fc,u 65.4 67.0 73.0 75.0 76.5 76.6 79.3 80.7 86.0 

JPB 
fc,f 60.2 60.7 57.7 53.8 52.6 51.1 49.9 46.1 40.5 

fc,u 60.2 65.0 72.5 73.2 73.6 73.8 74.7 75.5 85.4 

JPC 
fc,f 51.5 55.0 43.5 36.6 33.8 29.5 28.1 26.7 12.4 

fc,u 51.5 58.2 60.8 62.6 63.2 68.7 73.1 73.5 73.7 

CPA 
fc,f 37.7 41.1 39.1 37.4 36.4 34.5 33.6 32.7 31.0 

fc,u 37.7 44.0 43.5 47.0 48.2 48.6 50.9 51.0 54.0 

CPB 
fc,f 40.0 41.2 36.8 34.8 34.0 32.8 31.6 29.2 26.0 

fc,u 40.0 43.8 47.2 49.7 52.3 54.7 56.4 56.2 61.9 

 
Fig.9 Compressive strength contrast 

As can be seen from Table 4 and Figure 9, compressive strengths of unfrozen specimens increased 

with increasing fiber content. Compressive strength of specimen CPA was lower than specimen JPC at 

early stage which could be attributed to its uneven fiber distribution. However its compressive strength 

became gradually higher than specimen JPC with the increasing of freeze-thaw cycles. The 

compressive strength of comparison specimen increased with the increasing of curing age. 

Compressive strengths decreased with increasing of freeze-thaw cycles. Strength decrease rate of 



specimen JPC (cement mortar without fiber) was faster than the other groups (specimen incorporated 

fiber), and its compressive strength after 200 freeze-thaw cycles decreased to 20% of initial strength. 

According to the theory of compressive strength of composites
 [22]

, the compressive strength of 

composite is increased with the increasing of fiber modulus. Therefore, with the same fiber volume 

content, compressive strength of specimens reinforced with JP fiber is expected to be higher than that 

of specimen reinforced with CP fiber. 

2.5 Flexural Test 

Electronic universal test machine DNS100 (as shown in Figure 10) was used to conduct 3-point 

flexural test at the load speed of 1.5 mm/s and accuracy of 0.1 MPa. Flexural strengths of specimens 

after freeze-thaw cycles are shown in Table 5, and relative flexural strengths are presented in Figure 11, 

where ff,f is flexural strength of specimen after certain freeze-thaw cycles, ff,u is flexural strength of 

unfrozen specimen with the same curing time with freeze-thaw specimen, Rf,1 is relative flexural 

strength to original strength before freezing, Rf,1=ff,f/ff,f,0, Rf,2 is relative flexural strength to strength of 

comparison specimen, Rf,2=ff,f/ff,u. 

 
Fig.10 Flexural test 

Table 5 Flexural strength/ (N·mm-2) 

Specimen 
number of freeze-thaw cycles 

0 25 50 75 100 125 150 175 200 

JPA 
ff,f 18.5 17.8 17.3 17.1 16.8 16.7 16.0 15.1 12.6 

ff,u 18.5 18.8 19.6 19.8 20.0 20.2 21.0 21.3 21.5 

JPB 
ff,f 12.3 12.0 11.9 11.7 11.1 9.1 9.0 8.8 8.7 

ff,u 12.3 12.4 12.5 12.6 12.8 13.0 13.4 13.8 13.9 

JPC 
ff,f 5.9 5.3 4.9 4.4 3.9 3.8 3.5 2.9 2.5 

ff,u 5.9 5.9 6.0 6.2 6.5 6.7 6.8 6.8 7.2 

CPA 
ff,f 9.6 9.2 9.0 8.8 8.5 8.1 7.8 7.7 7.6 

ff,u 9.6 9.6 9.7 9.7 9.8 9.8 9.9 10.0 10.1 

CPB 
ff,f 8.5 8.0 7.5 7.0 6.6 6.0 5.5 5.1 4.9 

ff,u 8.5 8.5 8.8 8.9 9.0 9.0 9.1 9.1 9.2 



 
Fig.11 Flexural strength contrast 

As can be seen from Table 5 and Figure 11, flexural strengths of unfrozen specimen increased 

with the increasing of fiber content. Due to the uneven fiber distribution, flexural strength of specimen 

CPA was lower than specimen JPB. Flexural strength of specimen increased with the increasing of 

curing age but a lower rate than that of compressive strength. Flexural strength decreased with the 

increasing of freeze-thaw cycles. Strength decrease rate of specimen JPC (cement mortar without fiber) 

was faster than that of other groups (specimens incorporated fiber). 

For specimens with the same types of fiber, flexural strength of specimen with higher fiber 

volume content are normally than that of specimen with lower fiber volume content. The addition of 

PVA fibers is beneficial to delaying the occurrence of cracks, controlling the development of cracks and 

reducing the width of cracks in the flexural specimen
 [22]

. Its effectiveness depends on whether the 

fibers are broken or pulled out from the matrix. This is influence by the bond between the fiber and the 

substrate and the tensile strength of the fiber. Generally, the higher the fiber volume contents, the 

stronger its ability of resisting cracking. 

Since PVA fibers has the characteristic of hydrophilic nature and its surface was not treated (CP 

fiber)
 [6]

, CP fibers were easier to fracture because its interface with the matrix produces excessive 

chemical bond and friction bond. Specimen with JP fiber exhibited good strain-hardening and multiple 

crack propagation likely because JP fiber’ surface was treated.  

3 CONCLUSIONS 

Experimental results of mass loss rate, relative longitudinal dynamic elastic modulus, compressive 

strength and flexural strength of specimens with different types of fiber and different volume fraction 

of fiber were presented. Conclusions are obtained as follows: 

1) Specimens incurred more damage with the increasing of freeze-thaw cycles. Specimen without 

fiber suffered the largest loss of surface and edges. Specimens with fiber can retain their shape. 

Specimens’ performance can be improved by the incorporation of certain fiber. 

2) For specimens with the same types of fiber, mass loss rate of specimen JPA with higher volume 

content was lower than specimen JPB with lower volume content. On the other hand, for specimen 

with the same fiber volume content, mass loss rate of specimen with JP fiber (JPB) was lower than 

specimen with CP fiber (CPB). 

3) For specimen with the same types of fiber, longitudinal relative dynamic elastic modulus of 

specimen with higher volume content (JPA) was higher than that of specimen with lower volume 

content (JPB). For specimen with the same fiber volume content, longitudinal relative dynamic elastic 

modulus of specimen with JP fiber (JPB) was higher than that of specimen with CP fiber (CPB). 

4) Compressive strength and flexural strength of specimens with fiber decreased gradually with 

increasing freeze-thaw cycles. Strength of specimen without fiber decreased faster and nearly 



diminished after 200 freeze-thaw cycles. Specimens with 1% fiber volume fraction exhibited higher 

strength reduction than those with 2% fiber volume fraction. With the same volume fraction of fiber, 

strength decrease of specimen with JP fiber was lower than specimen with CP fiber. 

5) According to the frost resistant grade for hydraulic structures, specimens with JP fiber were 

higher than F200 and can be used in severe cold regions. Frost resistant grades of specimen with CP 

fiber were higher than F150 and can be used in cold regions. Specimen without fiber only can be used 

in warming regions. 
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