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Abstract 

Reverse Osmosis (RO) has found extensive applications in industry as an efficient separation 

process in comparison with thermal process. In this study, a one-dimensional distributed 

model based on a wastewater treatment spiral-wound RO system is developed to simulate the 

transport phenomena of solute and water through the membrane and describe the variation of 

operating parameters along the x-axis of membrane. The distributed model is tested against 

experimental data available in the literature derived from a chlorophenol rejection system 

implemented on a pilot-scale cross-flow RO filtration system with an individual spiral-wound 

membrane at different operating conditions. The proposed model is then used to carry out an 

optimisation study using a Genetic Algorithm (GA). The GA is developed to solve a 

formulated optimisation problem involving two objective functions of RO wastewater system 

performance. The model code is written in MATLAB, and the optimisation problem is solved 

using an optimisation platform written in C++. The objective function is to maximize the 

solute rejection at different cases of feed concentration and minimize the operating pressure 

to improve economic aspects. The operating feed flow rate, pressure and temperature are 

considered as decision variables. The optimisation problem is subjected to a number of upper 

and lower limits of decision variables, as recommended by the module’s manufacturer, and 

the constraint of the pressure loss along the membrane length to be within the allowable 
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value. The algorithm developed has yielded a low optimisation execution time and resulted in 

improved unit performance based on a set of optimal operating conditions. 

 

Keywords: Spiral-wound reverse osmosis; Wastewater treatment; One-dimensional 

modelling;                    

                  Optimisation; Genetic algorithm. 

1. Introduction  

The use of Reverse Osmosis (RO) is becoming more and more popular in seawater and 

wastewater treatment because of the low cost of water production and solute rejection 

compared to other thermal processes [1]. A number of studies have been conducted to 

maximize the performance of the system. Such studies have investigated the transport 

phenomena of water and solute through the membrane by improving current mathematical 

models and identifying the optimum set of operating variables. The optimisation of seawater 

RO desalination system has been carried out using different methods including, global 

optimisation algorithm [1], Sequential Quadratic Programming (SQP) [2], Mixed-Integer 

Non-Linear Programming (MINLP) [3], Genetic Algorithm (GA) [4] and multi-objective 

optimisation and genetic algorithm (MOO+GA) [5]. In many applications, the use of GA has 

yielded better results in optimisation in comparison to other conventional methods [6]. For 

instance, GAs have been used extensively in different areas of chemical engineering process 

design and operation, such as, distillation system [7], semi-batch reactor [8], multi-phase 

catalytic reactor (hydrogenation reaction system) [9], microchannel reactor (emerged as a 

novel technology for the synthesis of liquid hydrocarbons applications) [10] and steam 

reforming of hydrocarbons for the generation of hydrogen and synthesis gas [11]. Also, Fang 

et al. [12] have combined an integrated Neural Network (NN) dynamic model and GA 
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approach to optimise the performance of a full-scale municipal wastewater treatment plant 

with substantial influent fluctuations.    

The use of GA to optimise the seawater RO desalination processes has already been 

implemented in a number of studies. Guria et al. [5] used the multi-objective optimisation and 

Non-dominated Sorting Genetic Algorithm (NSGA) technique for desalination of seawater 

using a spiral-wound and tubular RO modules. The optimisation problem consisted two or 

three objective functions of maximizing the water flux in addition to minimizing the 

permeate concentration and cost of filtration of a real existing plant. Murthy and Vengal [4] 

used a single objective genetic algorithm technique (SGA) to optimize the rejection of NaCl 

in a laboratory scale RO desalination system of a disc-shaped flat cellulose acetate 

membrane. The experiments were carried out by varying the inlet feed flow rate and the 

overall water flux at constant feed concentration. In this study, the mechanism of water and 

solute transport are measured using the Spiegler and Kedem model. Djebedjian et al. [13] 

implemented GA with a solution-diffusion model to optimize the performance of a real RO 

desalination plant predicted the best operating pressure difference across the membrane, 

which enhances the water flux with low permeate concentration. Moreover, the modelling 

and prediction of the membrane fouling rate in a micro-filtration (MF) pilot-scale drinking 

water production system was achieved using the genetic programming by Lee et al. [14]. Park 

et al. [15] used GA for analysing the performance of pilot-scale RO system. Finally, 

Bourouni et al. [16] used GA to optimise the optimal configuration of a hybrid system of a 

small RO unit coupled with renewable energy source (photovoltaic and wind). 

In contrast, to the best of our knowledge, the optimisation of RO based wastewater treatment 

using GA has been rarely used to find the optimal values of operation that can be achieved 

within the manufacturer specification. Okhovat and Mousavi [18] used GA to model the 

rejection of arsenic, chromium and cadmium ions as a function of transmembrane pressure 
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and initial concentration of pollutants in a nanofiltration (NF) pilot-scale system. Soleimani et 

al. [19] investigated the treatment of oily wastewaters with commercially polyacrylonitrile 

(PAN) ultra-filtration (UF) membranes by using artificial neural networks (ANNs) to predict 

the permeation flux and fouling resistance.  GA was then used to optimize the operating 

conditions of trans-membrane pressure, cross-flow velocity, feed temperature and pH. The 

objective was to maximize the permeation flux while minimizing the fouling behaviour.   

To the best of author’s knowledge, there has not been any study that uses GA optimisation 

technique for distributed model for optimising the removal of organic compound such as 

chlorophenol using a spiral-wound RO process. Therefore, this paper aims to present a one-

dimensional model for the rejection of chlorophenol from aqueous solution of different 

concentrations using a pilot-scale of an individual TFC Polyamide spiral-wound RO filtration 

system. The distributed model is able to give an accurate picture of the transport across the 

membrane. An optimisation study of chlorophenol rejection is subsequently implemented 

using GA. The optimisation process is carried out by manipulating the inlet decision variables 

of the feed pressure, flowrate and temperature for five different feed concentrations of 

chlorophenol. The optimized rejections with a constraint of low pressure loss were 

investigated to provide further evidence of the results.  

 

2. Modelling and simulation of spiral-wound RO  

The main objective of this section is to develop a one-dimensional distributed model that can 

be used to predict accurately the variation of operating parameters along the x-axis of 

membrane. It is important to understand the interaction between the transport theories 

through the membrane in order to develop a numerical model that incorporates the spatial 

variation in fluid properties.  
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2.1 Assumptions 

The following assumptions are made to develop the proposed process model: 

1. The solution-diffusion model is used for mass transport through the module. 

2. The membrane characteristics and the channel geometries are assumed constant. 

3. Validity of Darcy’s law where the friction parameter is used to characterize the 

pressure drop in the feed channel. 

4. Constant atmospheric pressure at the permeate channel. 

5. A constant solute concentration is assumed in the permeate channel and the average 

value will be calculated from the inlet and outlet permeate solute concentrations. 

6. The underlying process is assumed to be isothermal. 

 

2.2 Governing equations 

The water Jw(x) and solute Js(x) fluxes (m/s, kmol/m² s) can be calculated using the solution-

diffusion model of Lonsdale et al. [20] (Assumption 1): 

𝐽𝑤(𝑥)= 𝐴𝑤 (∆𝑃𝑏(𝑥) − ∆𝜋𝑠(𝑥))                                                                                                  (1)                                                              

𝐽𝑠(𝑥)= 𝐵𝑠 (𝐶𝑤(𝑥) − 𝐶𝑝(𝑎𝑣))                                                                                                                  

(2)    

Where Aw, Bs , ∆Pb(x)
 and ∆πs(x) are solvent transport coefficient (m/atm s), solute 

permeability coefficients of the membrane (m/s), pressure difference and osmotic pressure 

difference at any point along the x-axis (atm) respectively. Also, Cw(x) and Cp(av) (kmol/m³) 

are the molar solute concentration on the membrane surface and the average permeate 

concentration respectively.  
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The pressure difference between the feed and permeate channels at any point, ΔPb(x) (atm), is 

related to the pressure in both the feed and permeate channels. 

∆𝑃𝑏(𝑥)= 𝑃𝑏(𝑥) − 𝑃𝑝 
                                                                                                                 (3) 

Where Pb(x) and Pp (atm) are the feed at any point along the feed channel and constant 

permeate pressure (Assumption 4) respectively. 

The following two equations work well for solute flux and the difference of osmotic pressure: 

𝐽𝑠(𝑥) =  𝐽𝑤(𝑥) 𝐶𝑝(𝑎𝑣)                                                                                                                 (4)       

∆𝜋𝑠(𝑥) = 𝑅 𝑇𝑏(𝐶𝑤(𝑥) −  𝐶𝑝(𝑎𝑣))                                                                                                             

(5)   

∆𝜋𝑠(𝑥) = 𝑅 𝑇𝑏 (
𝐽𝑠(𝑥)

𝐵𝑠
)                                                                                                       (6) 

Where R and Tb (
atm m³

K kmol
 and K) are the gas constant and constant brine temperature 

(Assumption 6) respectively. The combination of Eqs. (4), (6) and (1) gives. 

𝐽𝑤(𝑥) = 𝐴𝑤 (∆𝑃𝑏(𝑥) − 𝑅 𝑇𝑏
𝐽𝑤(𝑥) 𝐶𝑝(𝑎𝑣)

𝐵𝑠
)                                                                                            

(7) Re-arranging of Eq. (7) yields.                                                             

𝐽𝑤(𝑥) =
𝐴𝑤𝐵𝑠∆𝑃𝑏(𝑥)

𝐵𝑠+𝑅 𝑇𝑏𝐴𝑤𝐶𝑝(𝑎𝑣)
      (8) 

Eq. (8) can be simplified to:  

𝐽𝑤(𝑥) = 𝜃 ∆𝑃𝑏(𝑥)          (9) 

Where 𝜃 =
𝐴𝑤 𝐵𝑠

𝐵𝑠+𝑅 𝑇𝑏 𝐴𝑤 𝐶𝑝(𝑎𝑣)
                                                                                                      

(10) 
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Specifically, the total mass balance and solute balance in both channels can be written as: 

𝐹𝑏(0) = 𝐹𝑏(𝑥) + 𝐹𝑝(𝑥)                                                                                                               

(11) 

𝐹𝑏(0)𝐶𝑏(0) = 𝐹𝑏(𝑥) 𝐶𝑏(𝑥) + 𝐹𝑝(𝑥)𝐶𝑝(𝑎𝑣)                                                                                                             

(12) 

Fb(0), Fb(x), Fp(x) (m³/s), Cb(0) and Cb(x) (kmol/m³) are feed flow rate at the entrance and at any 

point in the feed channel, permeate flow rate, feed concentration at the entrance and at any 

point along the x-axis respectively. Also, Darcy’s law can be used to describe the drop of 

pressure in both channels in the feed channel (Assumption 3). 

𝑑𝑃𝑏(𝑥)

𝑑𝑥
= −𝑏 𝐹𝑏(𝑥)                                                                                                                     

(13)    

Where b (atm s/m
4
) is the feed channel friction parameter.  

While, the derivation of Eq. (11) with the x-axis, gives: 

𝑑𝐹𝑏(𝑥)

𝑑𝑥
= −

𝑑𝐹𝑝(𝑥)

𝑑𝑥
= −𝑊 𝐽𝑤(𝑥)                                                                                                    

(14)   

Where, W (m) is the width of membrane. Dividing Eqs. (13) and (14) gives: 

𝑑𝑃𝑏(𝑥)

𝑑𝐹𝑏(𝑥)
=

𝑏 𝐹𝑏(𝑥)

𝑊 𝐽𝑤(𝑥)
                                                                                                                         

(15) 

Finally, the re-arrangement and integration of Eq. (15) yields the specific equations of the 

model used for simulation as follows:  
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The feed flow rate Fb(x) (m³/s) at any point along the x-axis is calculated as: 

𝐹𝑏(𝑥) =

{𝐹𝑏(0) − (𝑊 𝜃  𝑥 ∆Pb(0)) + (𝑊 𝜃  𝑏 (
𝑥2

2
) 𝐹𝑏(0)) +                (𝑊 𝜃  𝑏 (

𝑊 𝜃 

𝑏
)

0.5

(
𝑥2

2
)  (∆𝑃𝑏(𝑥) −

∆𝑃𝑏(0)))}                                                                       (16)   

Where 𝑥  is the coordinate of the x-axis under consideration. The feed pressure Pb(x) (atm) 

and pressure difference ΔPb(x) (atm) at any point along the x-axis are calculated by Eqs. (17) 

and (18): 

𝑃𝑏(𝑥)= {𝑃𝑏(0) −  (𝑏 𝑥 𝐹𝑏(0))+ (b W 𝜃   (
𝑥2

2
) (∆Pb(x))) - [b

2
 W 𝜃  (

𝑥3

6
) 𝐹𝑏(0)] −

              [𝑏2 𝑊 𝜃  (
𝑊 𝜃 

𝑏
)

0.5

(
𝑥3

6
) (∆𝑃𝑏(𝑥) − ∆𝑃𝑏(0) 

)]}                                                             

(17) 

∆𝑃𝑏(𝑥) = 
 ∆𝑃𝑏(0) − (𝑏 𝑥 𝐹𝑏(0)) − [(

𝑊 𝜃 

𝑏
)

0.5

𝑏 𝑥 (∆𝑃𝑏(𝑥) − ∆𝑃𝑏(0))]                                            

(18) 

The pressure loss (atm) along the membrane length is calculated using Eq. (19). 

𝑃𝑙𝑜𝑠𝑠 =  𝑃𝑏(0) − 𝑃𝑏(𝐿)                                                                                                                            

(19) 

The water flux Jw(x) (m/sec) depicts in the counter of Eq. (20). 

𝐽𝑤(𝑥) = 𝜃  {[∆𝑃𝑏(0) − (𝑏 𝑥 𝐹𝑏(0))] − [(
𝑊 𝜃 

𝑏
)

0.5

𝑏 𝑥 (∆𝑃𝑏(𝑥) − ∆𝑃𝑏(0))]}                                 

(20) 
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Eq. (20) illustrates that increasing applied pressure ∆𝑃𝑏(0) would increase the water flux 

through the membrane. Also, it is usual expectation that increasing inlet feed concentration 

would increase the diffusivity, density and viscosity parameters (Appendix A), which reduces 

the flux of water. However, this would also increase the concentration polarization impact 

that causes an increase in wall membrane concentration and increases of osmotic pressure. 

More often than not, increasing inlet feed temperature will decrease the viscosity and density 

parameters and increases the diffusivity parameter that increases the mass transfer coefficient 

and lifts up the water flux.  

Eq. (21) is used to calculate the feed concentration Cb(x) (kmol/m³) along the x-axis.  

𝐶𝑏(𝑥) =
𝐹𝑏(𝑥−1)(𝐶𝑏(𝑥−1)−𝐶𝑝(𝑎𝑣))

𝐹𝑏(𝑥)
+ 𝐶𝑝(𝑎𝑣)                                                                                      

(21) 

While the permeate solute concentration Cp(av) (kmol/m³) is calculated using Eq. (22) by 

taking the average of the inlet and outlet permetate concentrations Cp(0) and outlet Cp(L) 

(kmol/m³) as can be shown in Eqs. (23) and (24) (Assumption 5) [21].    

𝐶𝑝(𝑎𝑣) =
𝐶𝑝(0)+𝐶𝑝(𝐿)

2
                                                                                                                     

(22)                           

𝐶𝑝(0) =
𝐵𝑠  𝐶𝑏(0) 𝑒

𝐽𝑤(0)
𝑘(0)

𝐽𝑤(0)+𝐵𝑠  𝑒

𝐽𝑤(0)
𝑘(0)

                                                                                                            (23) 

𝐶𝑝(𝐿) =
𝐵𝑠  𝐶𝑏(𝐿) 𝑒

𝐽𝑤(𝐿)
𝑘(𝐿)

𝐽𝑤(𝐿)+𝐵𝑠  𝑒

𝐽𝑤(𝐿)
𝑘(𝐿)

                                                                                                            (24)                       

Then, the permeate flow rate Fp(x) (m³/s) is calculated by: 

𝐹𝑝(𝑥,𝑦) = 𝐹𝑝(0) + (𝑊 𝑥 𝜃 ∆𝑃𝑏(0)) − [𝑊 𝜃 𝑏 (
𝑥2

2
) 𝐹𝑏(0)] −  
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                  [𝑊 𝜃 𝑏 (
𝑥2

2
) (

𝑊 𝜃 

𝑏
)

0.5

 (∆𝑃𝑏(𝑥) − ∆𝑃𝑏(0))]                                                                                 

(25)                

The mass transfer coefficient k(x) (m/s) is a function of pressure, concentration, flow rate and 

temperature, which means that it will vary with the membrane length. k(x) along the feed 

channel side has been found experimentally and calculated from Eq. (26) [22] as follows:  

𝑘(𝑥) 𝑑𝑒𝑏 = 147.4  𝐷𝑏(𝑥)   𝑅𝑒𝑏(𝑥)
0.13   𝑅𝑒𝑝(𝑥)

0.739   𝐶𝑚(𝑥)
  0.135                                                                  

(26) 

𝐶𝑚 is a dimensionless solute concentration and can be calculated by. 

𝐶𝑚(𝑥) =
𝐶𝑏(𝑥)

𝜌𝑤
                                                                                                                             

(27) 

Where, 𝜌𝑤  is the molal density of water (55.56 kmol/m³). 

The feed velocity Ub(x) (m/s) is calculated using Eq. (28). 

𝑈𝑏(𝑥) =
𝐹𝑏(𝑥)

𝑡𝑓 𝑊
                                                                                                                             

(28)     

The concentration at the wall membrane Cw(x) (kmol/m³) is calculated using Eq. (29). 

𝐶𝑤(𝑥)−𝐶𝑝(𝑎𝑣)

𝐶𝑏(𝑥)−𝐶𝑝(𝑎𝑣)
= exp (

𝐽𝑤(𝑥)

𝑘(𝑥)
)                                                                                                           

(29) 

Finally, Eqs (30) and (31) are used to calculate the solute rejection (dimensionless) [22] and 

total water recovery (dimensionless). 

𝑅𝑒𝑗 =
𝐶𝑏(𝐿)−𝐶𝑝(𝑎𝑣)

𝐶𝑏(𝐿)
𝑥100                                                                                                            

(30) 
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𝑅𝑒𝑐 =
𝐹𝑝(𝐿)

𝐹𝑏(0)
𝑥100                                                                                                                      

(31) 

The model equations presented have been solved within MATLAB, where the filtration 

channel is divided into a number of segments of equal intervals (Δx). For a given inlet feed 

flow rate, pressure, solute concentration and temperature, the proposed model can be used to 

predict the longitudinal variation of all parameters in the feed and permeate channels in the x-

axis by using the estimated values of membrane transport parameters. 

 

2.3 The physical properties equations 

This study covers the experimental work of dilute chlorophenol aqueous solutions on spiral-

wound module, so the physical properties equations of the solution has been conceived as 

identical to water equations proposed by Koroneos [23]. The set of physical properties 

equations is presented in Appendix A. 

 

 

 

  

 

3. Validation of the developed RO model 

3.1 Experimental apparatus and procedure 

A pilot-scale experiment has been set and consists of a cross-flow RO filtration system of one 

commercial thin film composite RO membrane packed into a spiral-wound module of 
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aqueous feed solutions of chlorophenol of specific concentration. The module was from the 

Ion Exchange Ltd. Company of India and used by Sundaramoorthy et al. [22]. The 

characteristics of the spiral-wound module and the transport parameters of this model 

(𝐴𝑤 , 𝐵𝑠 and 𝑏) were given in Table 1. The feed was pumped in three different flow rates of 

2.166E-4, 2.33E-4 and 2.583E-4 m
3
/s. Also, for each feed flow rate, the solute concentrations 

vary from 0.778E-3
 
to 6.226E-3

 
kmol/m

3
 with a set of pressures varying from 5.83 to 13.58 

atm for each feed concentration. 

 

                                           Table 1. Membrane characteristics and geometry (Ion Exchange, India) 

Property  Value 

Membrane material TFC Polyamide 

Module configuration Spiral wound 

Number of turns 30 

Feed spacer thickness (tf) 0.8 mm 

Permeate channel thickness (tp) 0.5 mm 

Module length (L) 0.934 m 

Module width (W) 8.4 m 

Module diameter 3.25 inches 

b * 8529.45 (
atm s

m4 ) 

Aw ∗ 9.5188E-7 (
m

atm s
) 

Bs (chlorophenol) * 8.468E-8 (
m

s
) 

                                          * Calculated by Sundaramoorthy et al. [22] 

 

3.2 Model validation 

Figs. 1 and 2 depict the comparison of outlet chlorophenol concentration, average permeate 

concentration, chlorophenol rejection, outlet feed flow, outlet permeate flowrate and outlet 

feed pressure between the experimental results and the model predictions for three sets of 

inlet feed flow rate. Generally, the predicted values of the model are in a good agreement 

with experimental ones over the ranges of pressure and concentration. However, the 

assumption of constant values of the friction factor, water and solute permeability 

coefficients for all the experiments had a negative impact on estimating the solute 

concentrations in both channels.  This, in turn leads to reduce the consistency of experimental 
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and mathematical chlorophenol rejection results (R
2 

= 0.85). This has provided the prompt to 

implement a GA platform on the model code for further optimisation as reported in the next 

section. 
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Fig. 1. Experimental and model prediction of (a) outlet feed concentration, (b) average permeate concentration, 

(c) chlorophenol rejection (inlet conditions mentioned in Section 3) 
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Fig. 2. Experimental and model prediction of (a) outlet feed flow rate, (b) outlet permeate flow rate and  

(c) outlet feed pressure (inlet conditions mentioned in Section 3) 
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4. Optimisation of Reverse Osmosis  

4.1 Problem description and formulation 

The optimisation of the chlorophenol rejection given the lower pressure drop constraint 

across the membrane with a lower than recommended value is chosen as the objective 

function for this part of the research.  The optimisation technique is based on a GA for the 

pilot-scale RO wastewater system as used by Sundaramoorthy et al. [22]. The experimental 

data show that the higher achieved rejection of chlorophenol is 83% at inlet concentration 

(6.226E-3 kmol/m³) with a pressure loss of 1.93 atm. This exceeds the maximum 

recommended manufacturer value of the selected module. The objective of this optimisation 

is to find the optimum solute rejection of chlorophenol for each inlet feed concentration (five 

cases) within the restricted operating conditions of inlet feed flow rate, pressure and 

temperature. Also, the constraints of 1.38 atm as a maximum overall pressure loss across the 

membrane length (as declared by the Ion Exchange Ltd. Company, India) has been 

considered to represent the relative power consumption of each run. The optimisation 

iteration is individually carried out for five feed concentration of chlorophenol used in the 

experiments, which varies from 0.778E-3
 
to    6.226E-3

 
kmol/m

3
.
 
The model transport 

parameters (𝐴𝑤, 𝐵𝑠 and 𝑏) have been considered constant along the optimisation procedure. 

The optimisation problem is represented mathematically as follows: 

Problem 1: 

      Max                                      Rej 
𝐹𝑏(0), 𝑃𝑏(0), 𝑇𝑏 

Subject to: 

                                            𝑃𝑙𝑜𝑠𝑠 ≤  𝑃𝑙𝑜𝑠𝑠
𝑑   

                                  𝐹𝑏(0)
𝐿 ≤  𝐹𝑏(0)  ≤  𝐹𝑏(0)

𝑈   

                               𝑃𝑏(0)
𝐿 ≤  𝑃𝑏(0)  ≤  𝑃𝑏(0)

𝑈   

                                      𝑇𝑏
𝐿 ≤  𝑇𝑏  ≤  𝑇𝑏

𝑈   
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                        The model equation and the physical properties are given in Section 2 

The choice of the objective function is to achieve high chlorophenol rejection within the 

constraints of the decision variables. The limits of the decision variables of the inlet feed flow 

rate, pressure and temperature and the recommended value of the pressure loss are reported in 

Section 5.  

In line with economic aspects of low energy consumption, Problem 2 is formulated as 

follows: 

Problem 2: 

     Max                     Rej 
𝐹𝑏(0), 𝑃𝑏(0), 𝑇𝑏 

 

      Min                                𝑃𝑏(0) 

𝐹𝑏(0), 𝑃𝑏(0), 𝑇𝑏                  

Subject to: 

                                             𝑃𝑙𝑜𝑠𝑠 ≤  𝑃𝑙𝑜𝑠𝑠
𝑑   

                                     𝐹𝑏(0)
𝐿 ≤  𝐹𝑏(0)  ≤  𝐹𝑏(0)

𝑈   

                                  𝑃𝑏(0)
𝐿 ≤  𝑃𝑏(0)  ≤  𝑃𝑏(0)

𝑈   

                                       𝑇𝑏
𝐿 ≤  𝑇𝑏  ≤  𝑇𝑏

𝑈   

                        The model equation and the physical properties are given in Section 2 

The choice of the first objective function is to secure the optimal chlorophenol rejection, 

while the contribution of the second objective function is to maintain the process of filtration 

within an accepted consumption of energy (lower operating pressure). 

There are two objectives in this problem and the following penalty function is used to balance 

both objectives and transfer the problem into a single objective optimisation problem as 

follows: 
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𝐿 = 𝑊1 𝑥 𝑅𝑒𝑗 − 𝑊2 𝑥 𝑃𝑏(0)                                                                                                             

(32) 

Weight factors W1 and W2 are used to balance the contributions of each objective. Then, the 

original problem will be changed as: 

     Max                   L 
𝐹𝑏(0), 𝑃𝑏(0), 𝑇𝑏 

  

Subject to: 

                                       𝑃𝑙𝑜𝑠𝑠 ≤  𝑃𝑙𝑜𝑠𝑠
𝑑   

                                𝐹𝑏(0)
𝐿 ≤  𝐹𝑏(0)  ≤  𝐹𝑏(0)

𝑈  

                              𝑃𝑏(0)
𝐿 ≤  𝑃𝑏(0)  ≤  𝑃𝑏(0)

𝑈   

                                                             𝑇𝑏
𝐿 ≤  𝑇𝑏  ≤  𝑇𝑏

𝑈 

 

4.2 Genetic Algorithm  

Genetic algorithm (GA) was originally proposed by Holland [6] and is a stochastic and 

population-based optimisation technique constructed on the perceptions of natural evolution 

and the biological principles of natural selection. GAs have been successfully applied in 

various engineering optimisation problems [24] and [25]. 

The procedure of a GA is shown in Fig. 3. Initially, a population, which consists of a number 

of individuals, is randomly generated within the lower and upper limits of decision variables.  
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Fig. 3. GA structure. 

 

There are two typical ways of representing individuals in GA context. Traditionally, an 

individual was represented as a chromosome, i.e. as a bit string. This method took idea of 

stems from the work of DNA and fits well suitable for integer decision variables. However, 

more and more researchers prefer a nature representation, i.e. one they are based on float 

numbers.  In this paper, an individual is therefore presented as a vector of real numbers of 

decision variables.  

1. 1. The concept of selection is used to select individuals from the current generations 

and copy them to formulate a new generation based on their fitness. Usually, an 

individual with a higher fitness will have a large probability to survive in the next 

generation. In this paper, a roulette-wheel method is used to select individuals from the 



20 

 

current population. Supposing that 𝐹𝑖  is the fitness of individuals i, its probability of 

being selected can be calculated as: 

𝑃𝑖 =
𝐹𝑖

∑ 𝐹𝑗
𝑁𝑝
𝑗=1

                                                                                                                     

(33) 

Where 𝑁𝑝 is the population size.  An example of the roulette-wheel selection is shown 

in Fig. 4.  A proportion of a wheel is assigned to each individual based on their fitness 

or selected probability. A random number between [0,360] is generated to determine 

how many angle the wheel will rotate and the individual pointed by the arrow will be 

selected and copied to the next generation until 𝑁𝑝 individuals have been selected. Fig. 

4 also shows that an individual with higher fitness will occur more area and then has 

higher possibility to be selected.    

 

 

 

 

 

 

 

Fig. 4. Roulette-Wheel Selection 

 

2.  The concept of crossover is to use to select parents from the new formulated population 

to generate off springs with a probability of 𝑃𝑐. The crossover method depends on the 

representation of individuals. For example, if individuals are represented as 

chromosomes (i.e. a string of bites), the crossover method could be one-point or two-

points crossover. In this paper, since individuals are represented as a vector of real 

r 
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numbers, the crossovers are performed as intermediate recombination, so that the 

offspring 𝑂 of a randomly chosen parent 𝑆 and 𝑇 is expressed as follows: 

𝑥0 = 𝑥𝑇 + 𝑈(𝑥𝑆 − 𝑥𝑇)                                                                                                         

(34) 

Where 𝑈 is a uniformly distributed random number over [0, 1]. 

3. The concept of mutation is used to allow a randomly chosen individual to move to a 

new position with a probability of 𝑃𝑚. The parent selection method is similar to the 

one of selecting parents for crossover. Supposing a parent has been selected, a random 

number, 𝑗, between 1 and 𝑚 (the dimension of decision variables), the corresponding 

variable will be mutated by using the following uniform mutation will be applied.  

𝑋𝑗
⁄

= 𝑥𝑗 + 𝑅(𝑥𝑗
𝑢 − 𝑥𝑗

𝑙)                                                                                                           

(35) 

Where R is a uniformly distributed random number over [-1, 1] and 𝑥𝑗
𝑢, 𝑥𝑗

𝑙 are the 

upper and lower limits respectively of variable 𝑗.  

Interestingly, one of the most important characteristics of GAs is to generate a number of 

different solutions for the specified problem at the end of each iteration as opposed to a single 

solution. This is carried out without requiring good initial guesses for the decision variables 

[5]. This approach will give a wide area to choose the desired optimised chlorophenol 

rejection for each input data of operation. GAs are considered to be global optimisation 

methods, while gradient-based methods can only find a local solution.  For the above reasons, 

the GA technique has been applied to maximize the rejection of wastewater treatment RO 

system and this is described in more detail in the next section.  

 



22 

 

5. Numerical Results 

5.1 Inlet feed concentration problem 

The optimisation study focuses on using genetic algorithms to locate the best operating 

parameters for the optimum rejection of chlorophenol using a single spiral-wound RO 

membrane element. The optimisation technique will be implemented in the actual 

experiments as carried out by Sundaramoorthy et al. [22] using five cases of different inlet 

feed concentration 0.778E-3, 1.556E-3, 2.335E-3, 3.891E-3 and 6.226E-3 kmol/m³ with the 

following operating specification of maximum and minimum inlet feed flow rate, pressure 

and temperature of 1E-4 – 1E-3 m³/s, 4 – 24.77 atm and 15 – 40 °C respectively. Also, this 

optimisation will be committed with a constraint of an allowable pressure drop (𝑃𝑙𝑜𝑠𝑠
𝑑 ) across 

the membrane length of 1.38 atm. The specified bounds of operating parameters are as 

recommended by the manufacturer of the membrane. 

5.2 Parameter settings 

The RO model was coded in Matlab and solved using the modelling and optimisation 

system
1
. The system can readily be implemented using Matlab and Excel to build complex 

optimisation models. The GA parameters used to explore optimal solutions are given in Table 

2.   

                            

Table 2. GA Parameters 

Parameter no. 

Maximum generation, Ngen       500 

Population size, Npop       50 

Crossover probability, Pc     0.6 

Mutation probability, Pm         0.1 

                                                 
1
  http://www.scholarpark.co.uk/mos (A modelling and optimisation platform developed by researchers).  

 

http://www.scholarpark.co.uk/mos
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5.3 Effects of GA parameters 

There are several GA parameters including weight factors, number of generations and 

crossover and mutation probabilities. This section assesses the performance of GA used to 

solve different cases of RO optimisation by analysing the effects of parameters used.  

The inlet feed concentration of 6.226E-3 kmol/m³ in Problem 2 is chosen to analyse the GA 

performances and to identify the best parameter settings for solving the developed RO 

optimisation problems.  

5.3.1 Effects of weight factor 

There are two weight factors 𝑊1 and 𝑊2 as shown in Eq. (45), where 𝑊1 is always set to 1 to 

simplify the analysis, as the maximum value of Rejection is 1 and the maximum value of Pb0 

is about 25. When, 𝑊2 =
1

25
= 0.04, both objectives are of the same importance. The results 

of Table 3 show that a value of 0.04 for 𝑊2 offers high chlorophenol rejection with economic 

operating pressure and allowable temperature. While, any further reduction in 𝑊2 slightly 

increases the rejection parameter and requires higher operating pressure. Moreover, an 

increase of 𝑊2 of a value larger than 0.04 has no significant impact, and the output results of 

optimum rejection and decision variables remain the same. This is because the operating 

pressure has reached the lower limit. The increase of 𝑊2 cannot increase the contribution of 

the pressure to the objective function. 

Table 3. The influence of the weight factor on GA results 

W2 Rej Fb0 Pb0 Tb 

0.001 0.95 2.3698E-4 21.43 40 

0.005 0.92 2.0418E-4 11.18 40 

0.01 0.90 1.9235E-4 7.57 40 

0.04 0.90 1.9224E-4 7.53 40 

0.08 0.90 1.9224E-4 7.53 40 

0.1 0.90 1.9224E-4 7.53 40 

0.2 0.90 1.9224E-4 7.53 40 

                                                   Where Ploss = 1.38 atm 
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5.3.2 Effects of generations 

Table 4 shows the influence of using different numbers of generations with a population size 

of 50 at the optimum weight 𝑊2 of 0.04. As expected, the larger the generation, the easier the 

GA will identify the solution. This is because there are more chances to explore the space and 

more fitness evaluations are therefore needed. It is observed that any generation between 80 

and 200 can offer an optimum solution for the problem within the recommended decision 

variables.  

This observation can be applied to the effect of population size. The larger the population 

size, the easier will find a solution and more fitness evaluations are required. Generally, if a 

small population size is used, a larger generation is required; while when a large population 

size is applied, a small generation is needed. In this example, the combination of those two 

parameters is that the population size is 50 and the minimum generation is 80. 

Table 4. The influence of the generation number on GA results 

Generation Rej Ploss Fb0 Pb0 Tb 

10 0.87 0.82 1.2387E-4 7.53 38.1 

20 0.89 0.70 1.0700E-4 7.53 40 

50 0.90 1.36 1.8933E-4 7.53 40 

80 0.90 1.38 1.9224E-4 7.53 40 

100 0.90 1.38 1.9224E-4 7.53 40 

200 0.90 1.38 1.9224E-4 7.53 40 

 

5.3.3 Effects of crossover probability and mutation probability 

Table 5 shows the influence of the crossover probability varied between 0.1 and 0.5 at a 

mutation probability (𝑃𝑚) of 0.1 for 𝑊2 of 0.04, 100 generation and a population size of 50 on 

the output results of GA. It is observed that an increase in the crossover probability has no 

influence. Furthermore, the impact of mutation probability variation is insignificant as can be 

shown in Table 6, where it is varied between 0.01 and 0.5 with constant values of crossover 
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probability of 0.4. Nevertheless, it is affordable to use 𝑃𝑚 between 0.01 and 0.02 in order to 

achieve a lower pressure drop than the other tested values.    

 

 

 

 

 

 

Table 5. The influence of the crossover probability on GA results 

Pc Rej Fb0 Pb0 Tb 

0.1 0.90 1.9224E-4 7.53 40 

0.2 0.90 1.9224E-4 7.53 40 

0.3 0.90 1.9224E-4 7.56 40 

0.4 0.90 1.9224E-4 7.53 40 

0.5 0.90 1.9224E-4 7.53 40 

                                                       Where Ploss = 1.38 atm 

 

Table 6. The influence of the mutation probability on GA results 

Pm Rej Ploss Fb0 Pb0 Tb 

0.01 0.90 1.37 1.9139E-4 7.53 40 

0.02 0.90 1.36 1.8990E-4 7.53 40 

0.05 0.90 1.38 1.9221E-4 7.56 40 

0.4 0.90 1.38 1.9224E-4 7.53 40 

0.5 0.90 1.38 1.9224E-4 7.53 40 

 

The above results of investigating the impact of GA computational parameters show the 

applicability of obtaining a number of different results, which offers a number of solutions 

for a specific optimisation problem, especially for the case of altering the weight factor 𝑊2. 
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5.3.4 Summaries of effects of parameters 

Conclusion, in order to find the global solution of a RO problem, if the population size is set 

as 50, the minimum generation should be 80. Of course, the larger generation is good for a 

GA to explore global solutions. Crossover and mutation probability has little influence on the 

performances for this problem. This means any crossover and mutation probability can be 

used in those problems. 

Weight factors have a big influence on the optimal result. In the above case, if 𝑊1is set as 1, 

that 𝑊2 = 0.04 means that both objectives are the same important and have the same 

contribution of the system objective. If chlorophenol rejection is important, 𝑊2 should be a 

small number, or it should be a larger number. 

 

5.4 Discussion of results  

The optimisation problems of one and two objective functions were solved using the 

proposed GA described in Section 4 and linked with the proposed model of Section 2.  

The optimisation results of Problem 1 for each inlet feed concentration and the optimized 

decision variables obtained are given in Table 7. The GA optimisation results show that a 

maximum chlorophenol rejection for all five cases can be achieved within operating 

parameters of inlet feed flow rate, pressure and temperature of 1.046 – 1E-4 m³/s, 24.7717 – 

16.09 atm and 15 – 40 °C respectively. It can be observed that the removal efficiency of 

chlorophenol can be increased within the maximum allowable pressure. However, lower 

values of the operating feed flow rate are required to ensure lower pressure loss along the 

membrane length, which enhances the flux of water through the membrane and reduces the 

permeate concentration. Also, the lower feed flow rate can secure the full rejection of 

chlorophenol from its aqueous solution by maintaining the solution for a longer resident time 

inside the unit. In contrast to case 1 with higher concentration, the optimisation results of 
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medium and low concentrations (cases 2 to 5) are within a low feed temperature. One of the 

key outcomes of this is the optimizer can use such decision variables in cold areas.  

At medium and low feed concentration, it appears that there are competitive impacts of 

pressure, flow rate and temperature, which determine the chlorophenol rejection. The 

elevating of temperature has two different impacts regarding the rejection parameter of the 

RO wastewater treatment. The first one is to enhance water flux by decreasing the viscosity 

parameter and thermal expansion of the membrane [26], and at the same time increasing the 

organic solute diffusion and absorption through the membrane. This can readily plug the 

pores of membrane [27] and deteriorates the rejection. However, the combined impact of feed 

pressure and flow rate has been used in this research to elevate the rejection at lower 

temperature. Also, for these cases, the Matlab code has been used to test the rejection 

parameter at higher temperature, and the results show a clear increase in solute flux and a 

decrease in chlorophenol rejection. From the results of Table 7, the problem appears 

multimodal problem i.e. with the possibility of more than one solution. This is why for some 

cases, the temperature is near the upper limits and sometimes, the proposed GA finds a 

solution, in which the temperature is near the lower limit. 

 

Table 7. Optimal values for Problem 1 

 

Case  

Feed 

conc. 

Cb(0) x10
3
, 

kmol/m³ 

Rej 

(Max.) 

Sundaramoorthy 

et al. [22] 

Experimental 

Ploss, 

Sundaramoorthy 

et al. [22] 

 

GA 

Rej 

 

GA 

Ploss 

Decision variables 

Fb(0) Pb(0) Tb 

1 6.226 0.83 1.93 0.98 0.42 1.0464E-4 24.77 40 

2 3.891 0.77 1.89 0.99 0.39 1E-4 21.64 15 

3 2.335 0.75 1.84 0.99 0.39 1E-4 18.87 15 

4 1.556 0.72 1.79 0.99 0.39 1E-4 17.48 15 

5 0.778 0.66 1.74 0.99 0.39 1E-4 16.09 15 
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For a better understanding of the temperature influence at high feed concentration, case 1 is 

used to analyse the impact of varying the temperatures. Table 8 shows that the chlorophenol 

rejection has slightly dropped with the decrease of the up limit of temperatures. 

Table 8. The up limit of temperature on results for case 1 of Problem 1 

 

Up limit of 

Temperature 

GA 

Rej 

GA 

Ploss 

Decision variables 

Fb(0) Pb(0) Tb 

40 0.98 0.42 1.0464E-4 24.77 40 

39 0.97 0.43 1.0597E-4 24.77 39 

38 0.96 0.45 1.0749E-4 24.77 38 

37 0.94 0.46 1.0925E-4 24.77 37 

36 0.95 0.41 1E-4 24.77 15 

35 0.95 0.41 1E-4 24.77 15 

34 0.95 0.41 1E-4 24.77 15 

 

The optimisation results of the Problem 2 for each inlet feed concentration and the optimized 

decision variables obtained are given in Table 9. The GA optimisation results show that a 

maximum chlorophenol rejection for all five cases can be achieved within the operating 

parameters of inlet feed flow rate, pressure and temperature of 1.922 – 1.945E-4 m³/s, 7.32 – 

7.53 atm and 40 °C respectively. This is comparable to the optimisation results of Problem 1. 

Here, GA optimisation increases the chlorophenol rejection of five cases by 8.54, 15.25, 16.2, 

19.59, 26.57% respectively, at the same time keeping an allowable pressure drop constraint. 

It also appears that considering the pressure drop as a constraint actually deviates the 

optimisation process to raise the rejection parameter by using a lower feed flow rate but at a 

higher temperature. Table 9 shows that for each case, the temperature has achieved its up 

limits and the pressure has moved to the lower limits in order to achieve the two objective 

functions of the problem. This is considered as a positive result when considering 

comparative results of raising the operating pressure – a well-known key parameter of raising 

rejection.  

 

      Table 9. Optimal values for Problem 2 

 

Case  
Feed conc. 

Cb(0) x10
3
, 

Rej 

(Max.) 

Experimental 

Ploss, 

 

GA 
Decision variables 
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kmol/m³ Sundaramoorthy 

et al. [22] 

Sundaramoorthy 

et al. [22] 

Rej 

 
Fb(0) Pb(0) Tb 

1 6.226 0.83 1.93 0.90 1.92243E-4 7.53 40 

2 3.891 0.77 1.89 0.89 1.93143E-4 7.47 40 

3 2.335 0.75 1.84 0.88 1.93936E-4 7.45 40 

4 1.556 0.72 1.79 0.87 1.94295E-4 7.41 40 

5 0.778 0.66 1.74 0.84 1.94572E-4 7.32 40 

      Where GA Ploss = 1.38 atm 

 

The temperature influence is given in Table 10 for high feed concentration (Case 1). 

Interestingly, Table 10 shows that the chlorophenol rejection drops with the decrease of the 

up limit of temperatures. This is due to choosing a minimum operating pressure as an 

objective function. This might cancelled its impact and results in a reduction in a rejection 

parameter due to decrease in temperature. This should be compared to using a higher 

operating pressure as the case of Table 8, which slightly affects the rejection parameter. 

 

 

 

Table 10. The up limit of temperature on results for case 1 of Problem 2 

 

Up limit of 

Temperature 

GA 

Rej 

Decision variables 

Fb(0) Pb(0) Tb 

40 0.90 1.9224E-4 7.53 40 

39 0.89 1.9199E-4 7.53 39 

38 0.88 1.9172E-4 7.53 38 

37 0.87 1.9142E-4 7.53 37 

36 0.86 1.9110E-4 7.53 36 

35 0.84 1.9076E-4 7.53 35 

34 0.83 1.9039E-4 7.53 34 

                                  Where GA Ploss = 1.38 atm 

 

6. Conclusions 

In this study, optimisation of chlorophenol rejection from wastewater is considered using 

model based techniques. A one-dimensional mathematical model for the prediction of the 

performance of wastewater spiral-wound RO process is developed and implemented. The 
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consistency of the proposed model is tested against actual experimental data of chlorophenol 

rejection from the literature using a pilot-scale RO system with a single spiral-wound 

membrane element. The model is then augmented with a novel genetic algorithm platform 

involving two objective functions of maximizing chlorophenol rejection and minimizing the 

operating pressure for a set of five different feed concentration while maintaining the 

treatment operation within an allowable pressure loss i.e. with significant energy savings. The 

results show that the rejection parameter of chlorophenol can be optimized up to 26.57% for 

the set of five inlet feed concentration and all within the allowable constraint of pressure 

drop. The results clearly show that RO problems are very complex and multimodal with the 

net inference that many global solutions may exist. Such other global solutions will be 

explored in further related research. 

 

      

References 

1. M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global optimal design of reverse 

osmosis networks for seawater desalination: modeling and algorithm, Desalination 

184 (2005) 259-271. 

2. A. Villafafila, I.M. Mujtaba, Fresh water by reverse osmosis based desalination: 

simulation and optimisation, Desalination 155 (2003) 1-13. 

3. Y-y. Lu, Y-d. Hu, D-m. Xu, L-y. Wu, Optimum design of reverse osmosis seawater 

desalination system considering membrane cleaning and replacing, Journal of 

Membrane Science 282 (2006) 7-13. 

4. Z.V.P. Murthy, J.C. Vengal, Optimization of a Reverse Osmosis System Using 

Genetic Algorithm, Separation Science and Technology 41 (2006) 647-663. 

5. C. Guria, P.K. Bhattacharya, S.K.Gupta, Multi-objective optimization of reverse 

osmosis desalination units using different adaptations of the non-dominated sorting 



31 

 

genetic algorithm (NSGA), Computers and Chemical Engineering 29 (2005) 1977-

1995. 

6. J.H. Holland Adaptation in natural and artificial systems. Ann Arbor, MI: University 

of Michigan Press.; 1975. 

7. E.S. Fraga, T.R. Senos Matias, Synthesis and optimization of a nonideal distillation 

system using a parallel genetic algorithm, Computers and Chemical Engineering 20 

(1996) S79-S84. 

8. R. Raj Gupta, S.K. Gupta, Multiobjective optimization of an industrial nylon-6 

semibatch reactor system using genetic algorithm, Journal of Applied Polymer 

Science 73 (1999) 729-739. 

9. I.R.S. Victorino, J.P. Maia, E.R. Morais, M.R. Wolf Maciel, R.M. Filho, Optimization 

for large scale process based on evolutionary algorithms, Genetic algorithms, 

Chemical Engineering Journal 132 (2007) 1-8. 

10. J. Na, K.S. Kshetrimayum, U. Lee, C. Han, Multi-objective optimization of 

microchannel reactor for Fischer-Tropsch synthesis using computational fluid 

dynamics and genetic algorithm, Chemical Engineering Journal (In-Press) 

11. J.K. Rajesh, S.K. Gupta, G.P. Rangaiah, A.K. Ray, Multiobjective Optimization of 

Steam Reformer Performance Using Genetic Algorithm, Industrial and Engineering 

Chemistry Research 39 (2000) 706-717. 

12. F. Fang, B-J. Ni, W-M. Xie, G-P. Sheng, S-G. Liu, Z-H. Tong, H-Q. Yu, An 

integrated dynamic model for simulating a full-scale municipal wastewater treatment 

plant under fluctuating conditions, Chemical Engineering Journal 160 (2010) 522-

529. 

13. B. Djebedjian, H. Gad, I. Khaled, M.A. Rayan, Optimization of reverse osmosis 

desalination system using genetic algorithms technique, In Twelfth International 

Water Technology Conference, IWTC12, Alexandria, Egypt 2008 

14. T-M. Lee, H. Oh, Y-K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H. Nam, S. Lee, 

Prediction of membrane fouling in the pilot-scale microfiltration system using genetic 

programming, Desalination 247 (2009) 285-294. 

15. S-M. Park, J. Han, S. Lee, J. Sohn, Y-M. Kim, J-S. Choi, S. Kim, Analysis of reverse 

osmosis system performance using a genetic programming technique, Desalination 

and Water Treatment 43 (2012) 281-290. 



32 

 

16. K. Bourouni, T. Ben M’Barek, A. Al Taee, Design and optimization of desalination 

reverse osmosis plants driven by renewable energies using genetic algorithms, 

Renewable Energy 36 (2011) 936-950. 

17. C.C. Yuen, Aatmeeyata, S.K. Gupta, A.K. Ray, Multi-objective optimization of 

membrane separation modules using genetic algorithm, Journal of Membrane Science 

176 (2000) 177-196. 

18. A. Okhovat, S.M. Mousavi, Modeling of arsenic, chromium and cadmium removal by 

nanofiltration process using genetic programming, Applied Soft Computing 12 (2012) 

793-799. 

19. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, 

modeling and optimization of membrane separation using artificial neural network 

and multi-objective optimization using genetic algorithm, Chemical Engineering 

Research and Design 91 (2013) 883-903. 

20. H.K. Lonsdale, U. Merten, R.L. Riley, Transport properties of cellulose acetate 

osmotic membranes, Journal of Applied Polymer Science 9 (1965) 1341-1362. 

21. M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Development of a mathematical model 

for apple juice compounds rejection in a spiral-wound reverse osmosis process, 

Journal of Food Engineering 192 (2017) 111-121. 

22. S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral 

wound reverse osmosis membrane modules: Part II — Experimental validation, 

Desalination 277 (2011) 257-264. 

23. C. Koroneos, A. Dompros, G. Roumbas, Renewable energy driven desalination 

systems modelling, Journal of Cleaner Production 15 (2007) 449-464. 

24. R. Leardi, Genetic algorithms in chemometrics and chemistry: a review, Journal of 

Chemometrics 15 (2001) 559-569. 

25. M. Kumar, M. Husian, N. Upreti, D. Gupta, Genetic algorithm: Review and 

application, International Journal of Information Technology and Knowledge 

Management 2 (2010)  451-454. 

26. K. Thirugnanasambandham, V. Sivakumar, K. Loganathan, R. Jayakumar, K. Shine, 

Pilot scale evaluation of feasibility of reuse of wine industry wastewater using reverse 

osmosis system: modeling and optimization, Desalination and Water Treatment 57 

(2016) 25358-25368. 



33 

 

27. Y. Li, J. Wei, C. Wang, W. Wang, Comparison of phenol removal in synthetic 

wastewater by NF or RO membranes, Desalination and Water Treatment 22 (2010)  

211-219. 

 

Appendix A  

The diffusivity of brine and permeate Db(x) and Dp(x) (m²/s) are given by the relations. 

𝐷𝑏(𝑥) = 6.725𝐸 − 6  𝑒𝑥𝑝 {0.1546𝐸 − 3  𝐶𝑏(𝑥) 𝑥18.01253 −
2513

𝑇𝑏(𝑥)+273.15
}                              

(1)            

𝐷𝑝(𝑥) = 6.725𝐸 − 6  𝑒𝑥𝑝 {0.1546𝐸 − 3  𝐶𝑝(𝑎𝑣) 𝑥18.01253 −
2513

𝑇𝑝(𝑥)+273.15
}                          

(2)          

While the viscosity of brine and permeate μb(x) and μp(x) (kg/m s) are given by the relations. 

𝜇𝑏(𝑥) = 1.234𝐸 − 6  𝑒𝑥𝑝 {0.0212𝐸 − 3  𝐶𝑏(𝑥) 𝑥18.0153 +
1965

𝑇𝑏(𝑥)+273.15
}                              (3) 

𝜇𝑝(𝑥) = 1.234𝐸 − 6  𝑒𝑥𝑝 {0.0212𝐸 − 3  𝐶𝑝(𝑎𝑣) 𝑥18.0153 +
1965

𝑇𝑝(𝑥)+273.15
}                            (4) 

The density of brine and permeate ρb(x) and ρp(x) (kg/m³) are given by the equations below: 

𝜌𝑏(𝑥) = 498.4 𝑚𝑓(𝑥) + √[248400 𝑚𝑓(𝑥)
2 + 752.4 𝑚𝑓(𝑥)  𝐶𝑏(𝑥) 𝑥18.0153]                           (5) 

𝜌𝑝(𝑥) = 498.4 𝑚𝑝(𝑥) + √[248400 𝑚𝑝(𝑥)
2 + 752.4 𝑚𝑝(𝑥)  𝐶𝑝(𝑎𝑣) 𝑥18.0153]                        (6) 

Where:  

𝑚𝑓(𝑥) = 1.0069 − 2.757𝐸 − 4  𝑇𝑏(𝑥)                                                                                      

(7) 

𝑚𝑝(𝑥) = 1.0069 − 2.757𝐸 − 4  𝑇𝑝(𝑥)                                                                                      

(8) 
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The Reynolds number along the feed and permeate channels 

Reb(x) and Rep(x) (dimensionless) can be calculated from: 

𝑅𝑒𝑏(𝑥) =
𝜌𝑏(𝑥) 𝑑𝑒𝑏 𝐹𝑏(𝑥)

𝑡𝑓 𝑊 𝜇𝑏(𝑥)
                                                                                                              (9) 

𝑅𝑒𝑝(𝑥) =
𝜌𝑝(𝑥) 𝑑𝑒𝑝 𝐽𝑤(𝑥)

𝜇𝑝(𝑥)
                                                                                                              

(10) 

Where deb and dep (m) are the equivalent diameters of the feed and permeate channels 

respectively. 

𝑑𝑒𝑏 = 2𝑡𝑓                                                                                                                               (11) 

𝑑𝑒𝑝 = 2𝑡𝑝                                                                                                                                 

(12) 

𝑡𝑓 and 𝑡𝑝  (m) are the heights of feed and permeate channels.  
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