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We report the effect of low-energy thermal neutron irradiation on the antiproliferative activities of a
highly hydrophobic organometallic arene ruthenium dithiolato—carborane complex [Ru(p-cymene) (1,2-
dicarba-closo-dodecarborane-1,2-dithiolato)] (1), and of its formulation in Pluronic® triblock copolymer
P123 core—shell micelles (RuMs). Complex 1 was highly active, with and without neutron irradiation,
towards human ovarian cancer cells (A2780; ICsyp 0.14 uM and 0.17 pM, respectively) and cisplatin-
resistant human ovarian cancer cells (A2780cisR; ICs¢ 0.05 and 0.13 pM, respectively). Complex 1 was
particularly sensitive to neutron irradiation in A2780cisR cells (2.6 x more potent after irradiation
compared to non-irradiation). Although less potent, the encapsulated complex 1 as RuMs nanoparticles
resulted in higher cellular accumulation (2.5x), and was sensitive to neutron irradiation in A2780 cells
(1.4x more potent upon irradiation compared to non-irradiation).

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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Introduction

Boron neutron capture therapy (BNCT) has raised considerable
interest for the treatment of high-grade gliomas and either cuta-
neous primaries or cerebral metastases of melanoma [1]. This bi-
nary method consists of the nuclear reaction of nontoxic and
nonradioactive 1°B atoms and low-energy thermal neutrons that
produces high-energy “He?* a-particles and ’Li>* ions. The dissi-
pation of the high kinetic energy of these particles is achieved in a
small distance (less than one cell diameter), which allows accurate
destruction of the targeted cells [2].

Dicarba-closo-dodecarboranes are a class of boron-rich com-
pounds with globular structure and diameter of ca. 1 nm (diameter
of a rotating phenyl) that possess unusual properties, including
high symmetry and remarkable stability [3]. These clusters contain

* Corresponding authors.
E-mail addresses: Stuart.Green@uhb.nhs.uk (S. Green), P.J.Sadler@warwick.ac.uk
(PJ. Sadler), N.Barry@warwick.ac.uk (N.P.E. Barry).

http://dx.doi.org/10.1016/j.jorganchem.2015.05.011

ten boron atoms; they possess a rather low cytotoxicity and are
extremely stable in biological media. They are well suited to boron
neutron capture therapy [4,5], but also have potential in other fields
of drug discovery, molecular imaging, and targeted radionuclide
therapy [6]. However, effective delivery of boron agents is still a
critical issue which impairs their further clinical development [7].
We have recently discussed how the combination of arene ruth-
enium(Il) complexes and carboranes has unexplored potential in
medicine [8]. Such complexes also exhibit unusual chemistry: co-
ordination of the bulky, electron-deficient carborane ligand 1,2-
dicarba-closo-dodecarborane-1,2-dithiolato to an arene-Ru metal
center leads to the isolation of a stable 16-electron complex [Ru(p-
cymene) (1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1) [9].
However, since this complex is highly hydrophobic, exploration of
its biological applications is hampered by the lack of solubility in
water [10]. To exploit the chemistry of carborane-containing arene
ruthenium complexes in aqueous solution, and to take advantage of
their unique properties, we have encapsulated the 16-electron
complex 1 in Pluronic® triblock copolymer P123 micelles (Fig. 1).
We have recently shown that although entrapment of the 16-

0022-328X/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


Delta:1_-
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.�0/
mailto:Stuart.Green@uhb.nhs.uk
mailto:P.J.Sadler@warwick.ac.uk
mailto:N.Barry@warwick.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jorganchem.2015.05.011&domain=pdf
www.sciencedirect.com/science/journal/0022328X
http://www.elsevier.com/locate/jorganchem
http://dx.doi.org/10.1016/j.jorganchem.2015.05.011
http://creativecommons.org/licenses/by/4.�0/
http://dx.doi.org/10.1016/j.jorganchem.2015.05.011
http://dx.doi.org/10.1016/j.jorganchem.2015.05.011

18 1. Romero-Canelon et al. / Journal of Organometallic Chemistry 796 (2015) 17—25

T <
|
PN
OF o
‘*‘ C___q + " O\/%+{o o
20 0
® =BH
1
b

O water, 25 °C
A water, 35 °C
== per fit, water, 25 °C
== per fit, water, 35 °C

T T 1
0.01 0.1
K
A"

T T T T T T T
2 3 4 5 6789

Self-assembly

—_—

OH
20
RuMs
C
1
10" 4, O RPMI, 25 °C
A RPMI, 35 °C
10° - == pcr fit, RPMI, 25 °C
== pcr fit, RPMI, 35 °C
_ 10" 4
£

T T T T T T
2 3 4 5 8678

aA")

Fig. 1. (a) Self-assembly formation of RuMs (purple dots in 1 are B—H vertices). (b) and (c) Small-angle X-ray scattering (SAXS) experimental profiles and fitting with spherical
core—shell micelle model of micelles RuMs at 25 °C and 35 °C in water and at 25 °C and 35 °C in RPM], respectively; 5 mg/mL aqueous solutions. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

electron complex 1 in Pluronic® micelles (RuMs) leads to a reduc-
tion in its anticancer potency towards ovarian cancer cells A2780,
the micelles exhibit enhanced selectivity towards cancer cells
compared to normal cells (up to a factor 8) [11]. This formulation
was fully characterised by using a combination of analytical tech-
niques, including synchrotron small-angle X-ray scattering, high-
resolution transmission electron microscopy, and light scattering
methods [11]. Polymer encapsulation of metal carborane com-
plexes provides the potential for delivering high amounts of boron
to cells which is of interest for BNCT [12]. We report here the effect
of low-energy thermal neutron irradiation on the antiproliferative
activity of both complex 1 and RuMs particles in the A2780 ovarian
cancer cell line, and in A2780cisR cisplatin-resistant cancer cell line.

Results
Synthesis and characterisation

The organometallic half-sandwich Ru" arene complex [Ru(p-
cymene) (1,2-dicarba-closo-dodecarborane-1,2-dithiolate)] (1) was
synthesised as reported previously [13]. This complex has a pseudo-
octahedral structure, with a m-bonded arene occupying 3 coordina-
tion sites, a S-bound chelated dithiolato dicarba-closo-dodecarbor-
ane ligand, and a vacant 6th site (Fig. 1). It is a 16-electron complex
and therefore electron-deficient at the metal [14]. Complex 1 is
highly hydrophobic and insoluble inwater [ 15]. To achieve dispersion
in water [16], we encapsulated complex 1 in the water-soluble
amphiphilic triblock copolymer P123 (poly(ethylene glycol)-block-
poly(propylene glycol)-block-poly(ethylene glycol)) (PEO-b-PPO-b-
PEO), according to a previously reported procedure (Fig. 1) [11].

To gain further insight into the structure of RuMs in RPMI cell
culture medium, and to compare the sizes of the assembly in RPMI

versus water at ambient temperature and at 35 °C, solutions of
RuMs were analysed by synchrotron small-angle X-ray scattering
(SAXS; Fig. 1). The experimental profiles were fitted using IgorPro
software [17] to a core—shell spherical micelle model Poly-
CoreShellRatio [18] (PCR) according to a previous procedure for
similar micelles [19]. Some aggregation was observed for all the
samples (high turn at low q values), however the PCR model fitted
excellently for all micellar solutions from 0.2 A~! with very low
dispersity parameters (between 0.13 and 0.16, 0 being an ideal
mono-disperse system; Table 1).

Cell testing

We studied the time-dependence of the antiproliferative activ-
ity of complex 1 and micelles RuMs and P123Ms (micelles made of
Pluronic® copolymers without complex 1) in A2780 human ovarian
cancer cells (Table 2). Cells were exposed for variable times (1, 4, 16,
24, 48 and 72 h) to complex 1 (dissolved in 5% dimethyl sulfoxide
(dmso)/95% saline:RPMI and further diluted in cell culture medium
until working concentrations were achieved) or to RuMs micelles
(dissolved in 100% saline:RPMI, further diluted with cell culture
medium to working solutions). After this, drugs were removed and
cells were washed and placed in fresh growth medium for a further
72 h as a recovery period. Cell viability was then assessed using the
sulforhodamine B (SRB) colorimetric assay. Complex 1 was found to
be highly potent towards A2780 cells (Table 2), particularly after
24 h of drug exposure (IC59 170 nM), and it is also 39 x more potent
than RuMs micelles, which still exhibit good (micromolar) activity
towards cancer cells.

Since the optimum time for drug exposure was 24 h, we
determined the ICsq values of complex 1 and micelles RuMs in
A2780cisR cells after 24 h of drug exposure. Complex 1 was found
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Table 1

Physical characteristics of RuMs determined by SAXS at 5 mg/mL in water and RPMI, at 25 °C and 35 °C.
Parameter Water (25 °C) Water (35 °C) RPMI (25 °C) RPMI (37 °C)
Radius core (nm) 7.53 + 0.02 7.32 +0.02 7.93 +0.20 7.55 + 0.06
Thickness shell (nm) 0.80 + 0.04 0.60 + 0.03 0.90 + 0.39 1.81 = 0.10
Total radius (nm) 8.33 + 0.06 7.92 + 0.05 8.83 + 0.59 9.36 + 0.16
Dispersity 0.14 + 0.01 0.13 + 0.01 0.13 + 0.02 0.16 + 0.02

Table 2 (Centronic FCO5A/500/U235) embedded in the beam shaping as-

Time-dependence of ICsg values for complex 1 and RuMS in A2780 ovarian cancer
cells. All experiments included 48 h of pre-incubation time, 72 h of recovery time in
drug-free medium and variable drug exposure times.

ICs0 (uM)

Exposuretime 1h 4h 16h 24 h 48 h 72 h
Complex 1 >50 >50 204 +08 0.17+0.02 0.16 + 0.08 0.16 + 0.05
RuMs >50 >50 18 +2 6.7+ 0.3 54+ 03 52+05

Treatment

to be more active towards the cisplatin resistant cancer cell line
(A2780cisR), as noted in Table 3, whilst micelles RuMs exhibit
similar cytotoxicity in both cell lines (resistance factor 1.1).

We then investigated the cellular accumulation of ruthenium
from A2780 cells exposed to complex 1 or to the RuMs using
equimolar Ru concentrations of 0.5 pM. For this experiment, cells
were exposed for 24 h and no recovery time was allowed. The
metal content was determined by inductively coupled plasma
mass spectrometry (ICP-MS) after cells had been digested over-
night in concentrated nitric acid. Intracellular ruthenium in sam-
ples with RuMs was 2.5 x higher than that from complex 1
(15.6 + 0.3 ng of Ru x 10° cells for RuMs versus 6.2 + 0.4 ng Ru for
complex 1).

Finally, we investigated whether complex 1 and RuMs micelles
induced apoptosis in A2780 cells. For this experiment, we used 24 h
of drug exposure time and no-recovery time. Fig. 2 shows there is
no significant apoptosis after the first 24 h, highlighting the
importance of the recovery time in the mechanism of action of the
ruthenium compounds.

Boron neutron capture experiments

We then studied the antiproliferative activity of complex 1 and
RuMs micelles in A2780 and cisplatin-resistant A2780cisR human
ovarian cancer cells, after thermal neutron irradiation. The mea-
surements were performed in the thermal neutron field available at
the Dynamitron accelerator in Birmingham, United Kingdom. This
field has a large epithermal neutron fluence and a low gamma-dose
rate contamination, approximately 1 Gy/h at an accelerator current
of 1 mA. The plates containing the cancer cells incubated with
complex 1 and RuMs micelles were sealed in a plastic bag con-
taining culture medium, and the bag was clipped on a holder
submerged in a tank of water (Fig. 3). This water tank provides
further neutron moderation, which results in a peak in the thermal
neutron flux at several centimetres depth. On-line monitoring of
the neutron beam was provided by a pair of fission chambers

Table 3

sembly near to the beam port. The relationship between the count
rate in these chambers and the thermal neutron flux at depth in the
water phantom has previously been well characterised via foil
activation measurements [20]. At a proton beam current of 1 mA,
the thermal neutron flux at 20 mm depth in water is
3.60 x 108 cm™2 571,

The water tank was positioned in front of the beam, and the cells
were irradiated for ca. 90 min at a nominal beam current of 600 pA.
Exact beam-on time in the cell irradiations was controlled based on
the chamber counts to ensure that each irradiation provided an
equal cumulative thermal neutron flux. The integrated thermal
neutron flux was 1.38 x 10'? cm~2 at the position of the cells. We
also incubated cells with boric acid (1 mM concentration) as a
positive control.

After 90 min of neutron irradiation, drugs were removed and
cells were washed without recovery or placed in fresh growth
medium for a further 72 h as a recovery period. Cell viability was
then assessed using the SRB colorimetric assay. Fig. 4 shows the
concentration dependence of A2780 and A2780cisR cell-survival
upon incubation of complex 1 and RuMs micelles with and
without neutron irradiation, and with and without recovery
(Table 4). Since 72 h recovery time offered the best conditions for
A2780 cells, we investigated the antiproliferative activity of com-
plex 1 and RuMs micelles in cisplatin-resistant A2780cisR cells only
after 72 h recovery.

Discussion

Design and stability of complex 1 and of the ruthenium micellar
system

Inorganic compounds offer different mechanisms of drug action
depending on the metal used, their structures and redox properties
[21—61]. Thus, they can be utilised for the design of novel drugs in
the treatment of a broad range of diseases [62]. Ruthenium com-
plexes have been recognised as particularly promising drug can-
didates for the treatment of cancer since the beginning of the 1990s
[63]. In 1992 [64], Tocher and co-workers observed an increase of
the hypoxic cell cytotoxicity of metronidazole [1-B-(hydroxyethyl)-
2-methyl-5-nitro-imidazole] after coordination to a benzene
ruthenium dichlorido fragment [65]. Since then several groups
have explored the anticancer activity of air-stable and water-
soluble arene ruthenium(Il) complexes [66,67]. The combination
of the remarkable properties of half-sandwich complexes with the
unique features of dicarba-closo-dodecarborane clusters results in

ICs0 values (uM), resistance factors ((ICso(A2780cisR)/IC50(A2780)), and cellular accumulation of complex 1 and micelles P123Ms and RuMs for A2780 human ovarian cancer
cells, and A2780cisR cisplatin-resistant human ovarian cancer cells after 24 h of drug exposure.

Compound 1Cs50 (UM) Cellular accumulation (ng of Ru x 10° cells)
A2780 A2780cisR Resistance factor A2780

P123Ms >100 >100 - -

1 0.17 + 0.02 0.130 + 0.008 0.76 62 +04

RuMs 6.7+03 7.93 + 0.04 1.1 15.6 + 0.3

cisplatin 1.2+0.1 124+ 03 10.3 —
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Fig. 2. Flow cytometry analysis of A2780 cells exposed to complex 1 or RuMs micelles compared to a negative control. FL1 reads Annexin fluorescence and FL2 reads propidium

iodide fluorescence.

interesting new molecules [8]. Applications of these in organo-
metallic synthesis, catalysis, or bioinorganic chemistry, for
example, can be envisaged, although their high hydrophobicity
impairs their further development as anticancer drug candidates.
We have recently shown that the combination of nanotech-
nology tools with medicinal inorganic chemistry has the potential
to offer several advantages for drug formulation and delivery [68].
Control of drug solubility by increasing the aqueous solubility of
highly lipophilic complexes or decreasing the solubility of com-
plexes which might otherwise be rapidly excreted provides a ‘slow-
release’ strategy that may engender less toxicity and improve the
therapeutic response than a burst release. Modulation of drug
distribution may also be achieved. The uptake of drugs encapsu-
lated in nanoparticles is likely to depend on the shape, size and
surface recognition of the nanoparticles by cells rather than on the
characteristics of the drug. The nanoparticle might be designed so
that it has vectors on its surface which can target specific cell

receptors as well as having the capacity to encapsulate the drug, so
reducing side effects and limiting attack to target cells or organelles
only. Also nanomedicines may provide multidrug delivery and
theranostic compounds since more than one drug can be encap-
sulated for combination therapy and reporter groups can be con-
jugated onto particles [16].

Synthetic polymer therapeutics are of particular interest in
medicine, due to their synthetic versatility, as well as their tunable
properties [69]. A number of biologically-active polymer—drug
conjugates and polymeric formulations, such as micelles, hydrogels
and polymer-coated nanoparticles, are currently in clinical devel-
opment [70]. Among the most commonly used polymers for ap-
plications in medicine, the ABA Pluronic® triblock block copolymers
are particularly suitable for the design of bio-inspired, bio-
engineered and biomimetic polymer nanoparticles [10]. The uti-
lisation of Pluronic® block copolymers as drug delivery systems
[71-76], biological response modifiers [77—81], pharmaceutical

Fig. 3. Experimental set-up used for the neutron beam irradiation of complex 1 and RuMs micelles and P123Ms in cells. Right: Irradiation chamber; Left: Cell plate in the water tank

positioned in front of the neutron beam.
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recovery. Concentration dependence of A2780cisR cell survival upon incubation (e) with complex 1 and (f) of RuMs micelles, with 72 h recovery.

Table 4

ICs0 values (uM), resistance factors ((ICso(A2780)/IC50(A2780cisR)) of complex 1 and micelles P123Ms and RuMs towards A2780 human ovarian cancer cells, and A2780cisR
cisplatin-resistant human ovarian cancer cells after neutron irradiation. Ratio of ICso values (non-irradiated versus irradiated) for 1 and RuMs in both cell lines.

Recovery time (h) Compound ICs50 (UM) ICs0 ratio (—/+ Irrad)
A2780 A2780cisR A2780 A2780cisR
Non-irradiated Non-irradiated Irradiated
0 1 0.60 + 0.08 — - 1.1 —
RuMs 8.12 + 0.05 - - 0.8 -
72 1 0.177 + 0.002 0.130 + 0.008 0.050 + 0.004 13 2.6
RuMs 6.7+ 03 7.93 + 0.04 9.33 + 0.09 14 0.8
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ingredients [72,82,83], and steric stabilisers to lyotropic liquid
crystalline particles [84—86], has led to recent advances in
biochemistry [10].

The SAXS analyses demonstrated that RuMs self-assembly is the
same in water and in RPMI media and leads to core-shell micelles
with a core radius of around 7.7 nm, and a shell thickness of around
1.1 nm. Although the thickness of the shell is very thin, the same
model used with no shell did not provide an acceptable fit, which
thus confirms the presence of a shell. It is also anticipated that the
core seen by SAXS is not only composed of the entire core of the
micelle, but also of the part of the PEO corona which is poorly hy-
drated. The shell seen by SAXS is more likely to reflect the part of
the corona which is fully hydrated. Interestingly, the diameters of
RuMs micelles in RPMI and water are similar at ambient temper-
ature and at 35 °C.

Antiproliferative activity of the ruthenium systems without neutron
irradiation

We have recently shown that not only does the entrapment of
the 16-electron complex 1 in Pluronic® micelles lead to a retention
of the anticancer activity of 1, but also that a certain selectivity
between cancer and healthy cells is achieved by the utilization of a
nanocarrier (selectivity factor of 8 for the micelles, compared to 2
for the complex alone) [11]. This might be due to a passive targeting
of cancer cells via the “enhanced permeation and retention” (EPR)
effect [87]. This effect is widely used in oncology since the dis-
covery made by Maeda et al., who in the 1980's demonstrated the
principle of passive targeting of colloidal particles to tumours
[88—90]. EPR is most effective for colloidal material of molecular
weight above 40 kDa and can occur even in the absence of targeting
ligands on nanoparticles [91]. RuMs are made of 66 + 4 P123
monomers of individual average weight 5800 g/mol, and 59 + 14
complexes 1 of molecular weight 441 g/mol [11], so the molecular
weight of RuMs is about tenfold greater than this threshold.
Nonetheless, the size of the micelles is relatively small (ca. 19 nm in
diameter), which may impair the passive targeting of the micelles
via the EPR effect. However, the class of Pluronic® copolymers offers
a pool of more than 50 materials with various molar mass ratio
between the PEO and PPO blocks, and there is a wide scope for
adapting this combination of organometallic complexes and Plur-
onic® copolymers for designing bigger particles and for increasing
the selectivity factor.

Importantly, the ICs5¢ value of complex 1 remains unchanged
after 24 h of drug exposure (Table 2), while the value for the RuMs
micelles further improves at 72 h. We hypothesise that this could
be related to the release of the complex from the micelles and into
the cancer cells. Furthermore, according to the cellular uptake
studies, the ruthenium accumulation is more efficient with RuMs,
since at the same administered Ru concentration there is a two-fold
greater accumulation of Ru for the micelles compared to the
complex alone (15.6 + 0.3 ng of ruthenium x 10° cells for RuMs
versus 6.2 + 0.4 ng for complex 1). Finally, formulating complex 1 in
polymer micelles also allows their dispersion in water in a manner
suitable for administration to cancer cells (without the need to add
dmso).

Here, we also showed that complex 1 is highly potent towards
A2780 cells (Table 2), but is more active towards cisplatin-resistant
A2780cisR cells than towards the parent A2780 cells (0.13 + 0.02
versus 0.17 + 0.01 uM; resistance factor 0.76), whilst RuMs micelles
exhibit similar cytotoxicity towards both cell lines (6.7 + 0.3 versus
7.93 + 0.04; resistance factor 1.1). These results suggest that both
complex 1 and RuMs micelles have a different mode of action from
that of cisplatin, a tendency observed previously for arene ruthe-
nium metal-based drugs [92,93].

Antiproliferative activity of the ruthenium systems after neutron
irradiation

Boron neutron capture therapy is the traditional area for
application of dicarba-closo-dodecarborane molecules in medicine.
This binary method consists of the nuclear reaction of nontoxic and
nonradioactive '°B atoms and low-energy thermal neutrons that
produces high-energy “He?* a-particles and “Li>* ions. The dissi-
pation of the high kinetic energy of these particles is achieved in a
small distance (less than one cell diameter), which allows accurate
destruction of the targeted cells. Therefore, the efficiency of this
therapy depends on the number of boron atoms delivered to cancer
cells, while the selectivity strongly depends on the preferential
accumulation of boron in tumour tissues rather than in normal
tissues [94]. Dicarba-closo-dodecarboranes contain ten boron
atoms; they possess a rather low cytotoxicity and these clusters are
extremely stable in biological media. These characteristics explain
why dicarba-closo-dodecarborane clusters have the potential to be
efficient BNCT agents. However, dicarba-closo-dodecarborane
clusters on their own do not possess the ability to target cancer cells
selectively.

To increase the selectivity of dicarba-closo-dodecarboranes
towards cancer cells and therefore to increase the clinical feasi-
bility of boron neutron capture therapy, various approaches have
been developed. A first strategy is to attach borane clusters to
cellular building blocks. Indeed, most solid tumours are known to
possess a hypervasculature, a defective vascular architecture, and
an impaired lymphatic drainage [95]. Thus, while the normal
endothelial layer surrounding the blood vessels feeding healthy
cells restricts the amount of constituents (amino acids and
nucleic acid precursors for example) necessary for cell replica-
tion, the endothelial layer of blood vessels in diseased tissues
allows an elevated quantity of such nutrients to enter the cells
[6]. Another strategy is to attach the borane cluster to tumour
antibodies that can target specific cell types [96]. A third
approach is to use nano-containers such as lipoproteins and li-
posomes [97]. Encapsulation of hydrophilic borane compounds in
aqueous cores of liposomes, or incorporation of boron-containing
lipids in liposome bilayers can lead to a selective delivery of BNCT
therapeutics to tumours.

Here, we have studied the polymer encapsulation of a metal
carborane comple, its antiproliferative activity alone and in poly-
mer micelles, with and without activation by neutrons to assess its
potential for BNCT. Complex 1 is highly potent towards cisplatin-
resistant A2780cisR cancer cells, with ICs¢ values in the nano-
molar range. When irradiated for 60 min with low-energy thermal
neutrons, the antiproliferative effect of complex 1 was 2.6 x higher.
This dramatic enhancement of the cytotoxicity of 1 after neutron
irradiation unambiguously demonstrates the potential of this
organometallic compound for BNCT, in particular for treating tu-
mours having developed resistance mechanisms toward cisplatin,
one of the most-used drugs in cancer chemotherapy. It is also
apparent from Fig. 4 that the optimum conditions for achieving
enhanced effects from neutron capture activation of the ruthenium
compound is to allow the cells to recover for a period of 72 h after
irradiation. It is known that the antiproliferative effects of neutron
irradiation are not immediate [98], and our results seem to confirm
this delayed effect. Although the ICsy values with and without
neutron irradiation of RuMs micelles are in a similar range, in all
cases the effect of the neutron irradiation on the antiproliferative
activity of RuMs micelles is the strongest at 1 uM concentrations of
ruthenium. A dramatic effect of the neutron irradiation on the
potency of the RuMs micelles is observed for the two cell lines (up
to 32% difference in cell survival). Interestingly, this effect is less
important in the antiproliferative activity of complex 1, which
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might be related to the more efficient accumulation of Ru observed
with RuMs compared with complex 1.

Conclusions

BNCT has been investigated as an alternative anticancer therapy
in clinical trials in Japan, Europe, and the United States using
especially sodium borocaptate (NayBi2H11SH). However, selective
and effective delivery of boron agents is still a critical issue. For this
reason it is of central importance to explore new concepts able to
take advantage of these unique pharmacophores. We showed that
the combination of dicarba-closo-dodecarboranes with half-
sandwich complexes of ruthenium formulated in micelles made
of polymers can provide new agents which are potentially useful in
boron neutron capture therapy. Our results demonstrate that the
formulation of complex 1 in micelles leads to a two-fold increase in
accumulation of metal complex in cells, and that the effect of
neutron irradiation on the antiproliferative activity of the micelles
is dramatic at a micromolar concentration in ruthenium. Our
strategy is highly versatile, with choice of the metal complex and
polymer used for the self-assembly of the micelles. The natural
abundance of the activate isotope '°B is only 20% and it will be
interesting in future work to investigate the neutron capture ability
of 1%B-enriched carborane-containing complexes in micelles.

Materials and methods
Materials

The preparation of the complexes [Ru(p-cym)(1,2-dicarba-closo-
dodecaborane-1,2-dithiolato)] (1) was based on a published pro-
cedure [13]. The purity of complex 1 was assessed by 'H NMR
spectroscopy in CDCls and was in accordance with previous reports
[9,11,14]. The preparation of the RuMs micelles was carried out as
previously described [11].

Instrumentation

Inductively coupled plasma-mass spectrometry: Ruthenium con-
tent was determined using an ICP-MS Agilent technologies 7500
series instrument. Calibration curves were prepared using Ru
standard solutions in double-deionised water (ddw) with 3% nitric
acid, ranging between 50 and 0.5 ppb (9 points). Samples were
freshly prepared in ddw with 3% nitric acid. Readings were made in
no-gas mode with a detection limit of 1 ppt.

Small-angle X-ray scattering (SAXS): Measurements were carried
out on the SAXS/WAXS beamline at the Australian Synchrotron
facility at a photon energy of 11 keV. The samples in solution were
in 1.5 mm diameter quartz capillaries. The data were collected at a
sample-to-detector distance of 3.252 m to give a g range of
0.004—0.2 A, where q is the scattering vector and is related to the
scattering angle () and the photon wavelength (4) by the following
Equation (1):

4 sin(6)
== (1)

The scattering from a blank solution (H,0 or RPMI) was measured
in the same location as sample collection and was subtracted for each
measurement. Data were normalised for total transmitted flux using
a quantitative beamstop detector and absolute-scaled using water as
an absolute intensity standard. The two-dimensional SAXS images
were converted in one-dimensional SAXS profiles (I(q) versus q) by
circular averaging, where I(q) is the scattering intensity. Functions
were used from the NCNR package. Scattering length densities were

calculated using the “Scattering Length Density Calculator” provided
by NIST Center for Neutron Research.

Cell culture

A2780 human ovarian carcinoma cells and its cisplatin-resistant
derived cell line A2780cisR were obtained from the European
Collection of Cell Cultures (ECACC). Both cell lines were grown in
Roswell Park Memorial Institute medium (RPMI-1640) supple-
mented with 10% of fetal calf serum, 1% of 2 mM glutamine and 1%
penicillin/streptomycin. All cells were grown as adherent mono-
layers at 310 K in a 5% CO, humidified atmosphere and passaged at
ca. 70—80% confluency.

In vitro growth inhibition assays.

A) Assays including 72 h recovery time. The antiproliferative
activities of complex 1 and RuMs were determined for A2780
and A2780cisR human ovarian cancer cells. Briefly, 96-well
plates were used to seed 5000 cells per well. The plates
were left to pre-incubate with drug-free medium at 310 K for
48 h before adding different concentrations of the com-
pounds to be tested. A drug exposure period of 24 h was
allowed. After this, supernatants were removed by suction
and each well was washed with PBS. A further 72 h was
allowed for the cells to recover in drug-free medium at 310 K.
The SRB assay was used to determine cell viability. ICsg
values, as the concentration which causes 50% cell death,
were determined as duplicates of triplicates in two inde-
pendent sets of experiments and their standard deviations
were calculated.

B) Assays with no recovery time. Experiments were carried out
as described above, with the following modification. After
the 24 h exposure time, drugs were removed by suction, each
of the wells was washed with PBS and the SRB assay was run
immediately. In both cases (assays with and without recov-
ery time) stock solutions of complex 1 were prepared by
dissolving the solid in a mixture of dmso (5% v/v) and 1:1
saline:RPMI-1640 (95% v/v), working solutions were ach-
ieved by dilution of the stock with cell culture medium. Stock
solutions of RuMs were prepared similarly but without
dmso. Exact metal concentrations for all stock solutions were
determined using ICP-MS.

BNCT experiments

The in vitro growth inhibition assays were carried out as
described above using A2780 and A2780cisR ovarian cancer cells
with the following experimental modifications. After drug exposure
the 96-well plate was sealed in a plastic bag containing media, and
the bag was clipped on a holder submerged in a tank of water which
acts as a neutron moderator (Fig. 2). The water tank was positioned
in front of the beam, and the cells were irradiated for 60 min.

Ruthenium accumulation in cancer cells

Briefly, 1.5 x 108 cells/well were seeded on a 6-well plate. After
24 h of pre-incubation, complex 1 and separately RuMs were added
to give final concentrations equal to 0.5 pM Ru and a further 24 h of
drug exposure was allowed. After this time, cells were washed,
treated with trypsin-EDTA, counted, and cell pellets were collected.
Each pellet was digested overnight in concentrated nitric acid (73%)
at 353 K; the resulting solutions were diluted using double-distilled
water to a final concentration of 5% HNO3; and the amount of Ru
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taken up by the cells was determined by ICP-MS. These experi-
ments did not include any cell recovery time in drug-free media;
they were all carried out as duplicates of triplicates and the stan-
dard deviations were calculated.

Inductively coupled plasma-mass spectrometry (ICP-MS)

Cellular ruthenium content was determined using an ICP-MS
Agilent technologies 7500 series instrument. Calibration curves
were prepared using Ru standard solutions in double deionised
water (ddw) with 3% nitric acid. Samples were freshly prepared
after nitric acid digestion in ddw to 3% nitric acid dilution.

Induction of apoptosis

Flow cytometry analysis of apoptosis in A2780 cells caused by
exposure to complex 1 and RuMs, was carried out using the
Annexin V-FITC Apoptosis Detection Kit (Sigma Aldrich) according
to the manufacturer's instructions. Briefly, A2780 cells were seeded
in 6-well plates (1.0 x 108 cells per well), pre-incubated for 24 h in
drug-free medium at 310 K, after which they were exposed to
either complex 1 or RuMs (concentration equal to ICsp). Cells were
harvested using trypsin and stained using PI/Annexin V-FITC. After
staining, cell pellets were analysed in a Becton Dickinson FACScan
Flow Cytometer. For positive-apoptosis controls, A2780 cells were
exposed for 2 h to staurosporine (1 pg/mL). Cells for apoptosis
studies were used with no previous fixing procedure as to avoid
non-specific binding of the annexin V-FITC conjugate.
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