

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Access to the

published online version may require a subscription.

Link to publisher’s version: http://dx.doi.org/10.1109/FiCloud.2015.22

Citation: Amir M, Pillai P and Hu Y-F (2015) Aggregated sensor payload submission model for

token-based access control in the Web of Things. In: 2015 3rd International Conference on Future

Internet of Things and Cloud (FiCloud). 24-26 Aug 2015, Rome, Italy.

Copyright statement: © 2015 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153514834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1680/jmacr.16.00190
http://dx.doi.org/10.1680/jmacr.16.00190

Aggregated Sensor Payload Submission Model for Token-Based Access Control in the

Web of Things

Mohammad Amir, Prashant Pillai and Yim-Fun Hu

School of Engineering and Informatics,

University of Bradford, Bradford, UK

Mamir3@bradford.ac.uk, P.Pillai@bradford.ac.uk, Y.F.Hu@bradford.ac.uk

Abstract—Web of Things (WoT) can be considered as a

merger of newly emerging paradigms of Internet of Things

(IoT) and cloud computing. Rapidly varying, highly volatile

and heterogeneous data traffic is a characteristic of the WoT.

Hence, the capture, processing, storage and exchange of huge

volumes of data is a key requirement in this environment. The

crucial resources in the WoT are the sensing devices and the

sensing data. Consequently, access control mechanisms

employed in this highly dynamic and demanding environment

need to be enhanced so as to reduce the end-to-end latency for

capturing and exchanging data pertaining to these underlying

resources. While there are many previous studies comparing

the advantages and disadvantages of access control

mechanisms at the algorithm level, vary few of these provide

any detailed comparison the performance of these access

control mechanisms when used for different data handling

procedures in the context of data capture, processing and

storage. This study builds on previous work on token-based

access control mechanisms and presents a comparison of two

different approaches used for handling sensing devices and

data in the WoT. It is shown that the aggregated data

submission approach is around 700% more efficient than the

serial payload submission procedure in reducing the round-

trip response time.

Keywords—Internet of Things; Web of Things; Access

control; Data Aggregation; Big Data.

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of
internet-enabled devices which can be accessed and
interacted with via the internet. The Web of Things (WoT)
is an extension of the IoT and focuses more on the web-
based representation and interaction of internet-enabled
devices (or “things”) [1]. The WoT enables virtual
representation of devices and their related assets on the
World Wide Web. The virtual representation of devices and
their data opens up a plethora of opportunities for the WoT
since digital devices can now be as easily browsed, indexed,
and interacted with as traditional web pages [2]. Examples
of such opportunities include the ability to use HTTP verbs
in a Representational State Transfer (REST)-ful
architecture to virtually poll, monitor and control physical
devices. The representations of these devices are commonly
referred to as resources [3].

The WoT is synonymous with huge data traffics and
highly volatile and rapidly changing data. This makes
traditional access control mechanisms such as User-Based,

Authorization-Based and Role-Based Access Control (i.e.
UBAC, ABAC and RBAC respectively) highly unsuitable.
Instead, a more flexible and resource-oriented access
control mechanism is required [4]. It has been shown in a
previous study that Token-Based Access Control (TBAC)
mechanisms combined with a RESTful Application
Programming Interface (API) architecture are highly
appropriate for handling data in the WoT [5]. A novel
approach, Cascading Permissions Policy Model (CPPM),
was used to provide efficient scalability of the TBAC
mechanism for the WoT [5].

This paper builds on this earlier study and proposes a
new aggregated CPPM-TBAC model for submitting sensor
payloads to the server. Sensor payloads are packages
containing either sensor definitions (e.g. sensor ID, name,
description, properties, etc.) or sensing data (e.g. timestamp,
sensor reading, etc.), and are described more thoroughly in
subsequent sections. The server is a host machine which
processes the submitted payloads, stores them in a database
and uses the data in subsequent knowledge generation
processes. Again, more details are contained in the
following sections. The paper focuses on comparing the
previously defined serial sensor payload submission model
and procedure against the newly proposed aggregated
sensor payload submission model and procedure. The aim
of the study is to identify the most efficient approach which
has the smallest possible round-trip response time so that
the most suitable and appropriate scheme can be employed
for the highly volatile WoT environment. Since the access
control mechanism is present and employed in each
submission of a sensor payload, it is paramount that a highly
efficient submission model and procedure is devised in
order to minimise delays and maximise the network
efficiency in terms of handling more payloads in lesser time.

The rest of this paper is organized as follows: Section II
discusses the need for access control and briefly outlines the
CPPM-TBAC mechanism. Section III goes into more detail
regarding the CPPM-TBAC mechanism and describes the
model and procedure for the previously defined serial
sensor payload submission mechanism and the bigger
semantic framework which the CPPM-TBAC mechanism
forms a part of. In Section IV, the newly proposed
aggregated sensor payload submission procedure is
described and compared against its predecessor. This is
followed by an in-depth performance evaluation in section
V, showing the improved efficiency of the aggregated
sensor payload submission approach and its suitability for

reducing the round-trip response time when interacting with
devices on the WoT. Finally, Section VI presents the
conclusions of the paper.

II. CPPM-TBAC

In the WoT, capturing and processing an unbounded
number of devices (sensors, actuators, virtual entities, etc.)
is a reality [6]. These resources are typically very temporal
and short-lived which leads to dynamic and unpredictable
application scenarios and interaction patterns [7]. In short,
the following characteristics of cloud-based WoT
repositories can be concluded:

 Unbounded: New resources (both physical and virtual)
can be introduced at any time. For example, new devices
may be introduced as more equipment becomes
available at a disaster scene.

 Temporal: Resources are generally short-lived and
undergo various changes in their properties and
definitions. For example, legacy or faulty devices will
be replaced with newer or more capable platforms over
time. Also, the repositories may only store a certain
amount of historical data and any data outside this
boundary will become unavailable.

 Dynamic: Resources, their properties and definitions
can change dynamically in response to events or over
time. For example, a monitoring event in a natural
disaster may cause several devices in the near vicinity to
activate automatically.

Furthermore, for the WoT to truly flourish and be

deployed in a useful context, accessing resources should be
easy, intuitive and hassle-free. At the same time, access to
private resources should be protected and the means of
accessing this data should not be very complex and
unintuitive so as to hinder user adoption.

The main purpose of an access control mechanism is to
limit access to privately-owned resources and assets by the
owner of these resources. In this regard, several
methodologies exist:

1. User/Identity-Based Access Control (UBAC)
2. Authorisation-Based Access Control (ABAC)
3. Role-Based Access Control (RBAC)
4. Token-Based Access Control (TBAC)

In a previous study, the advantage of using TBAC over

the other access control mechanisms for the data handling
and processing needs of the WoT has been clearly identified
[5]. TBAC systems are based on the premise of reusable and
reconfigurable tokens that grant access to a set or group of
protected/private resources for a particular user [8]. After
generation, the tokens are transmitted to users/agents who
need to consume private resources. These private resources
are hidden from public view by default and are accessible
only by the resource owner. Tokens can be configured to
only expose the required resources and assets without
exposing the identity of the resource owner. This is
advantageous over UBAC which requires the identity of the

user to be transmitted with each request to access protected
resources. While roles in RBAC are a part of the overall
organizational structure and are therefore more permanent
and long-term artefacts, tokens in TBAC are much more
decoupled since they are resource-oriented and can be
easily generated, modified and revoked without affecting
the organization structure. This provides a significant
managerial advantage when tokens are used to control
access to temporal assets of the network. Finally, since
tokens are tied to resources as opposed to users who own
those resources, this scheme provides a resource-centric
access control scheme which is suitable for managing
interactions with resources in a WoT setting.

The CPPM-TBAC is part of a larger semantic
collaboration framework known as SAW: Semantically-
enriched and Semi-autonomous collaboration framework
for the WoT [9]. The CPPM-TBAC works over the asset
model for SAW which represents resources at different
levels of granularity and expressiveness. By utilising a
RESTful API, resources are exposed as web-accessible
URIs (Uniform Resource Identifiers) which can be
interacted with using the 4 common HTTP verbs: POST for
creating, GET for querying, PUT for updating and
DELETE for removing resources [10]. The performance of
the CPPM-TBAC in the context of serial sensor payload
submissions has already been detailed previously [5].

This paper extends the existing work by proposing a
new model and procedure for the CPPM-TBAC to support
aggregated sensor payload submissions. The performance
of the newly proposed mechanism will be evaluated in
detail and compared against the previously defined serial
sensor payload submission procedure. The consequent
sections present the methodologies of the two different
procedures as well as a critical numerical analysis to
determine which procedure fares better in terms of the
round-trip response time.

III. SAW FRAMRWORK WITH SERIAL SENSOR

PAYLOAD SUBMISSION PROCEDURES

This section provides a brief description of the asset
model of the SAW framework [9] in regards to the
terminology used in the rest of the paper. SAW has a
simple but extensible data hierarchy as illustrated in Fig. 1.
A datafeed (DF or feed) implements a generic device
template which can be used to model and represent any
kind of physical or virtual device within a specific
environment, for example, an Arduino board or a twitter
user respectively. A feed has one or more datastreams (DS
or stream) that describe a particular sensor or actuator asset
of the feed, for example, a light sensor on an Arduino board
or a twitter user’s tweet stream. Finally a stream can have
zero or more datapoints (DP or point), where each point
references a particular value at a given instance in time, for
example, a time-stamped light sensor value or a particular
tweet from the stream of a twitter user.

This asset model enables modelling of sensing devices
in any environment or at any level of granularity, using the

generic and extensible data definition templates adopted to
describe the assets. The CPPM-TBAC controls access to
resources in this asset model starting from the most
verbose, expressive and comprehensive datafeeds right
down to the least expressive and cardinal datapoints.
Tokens effectively enable the modelling of multi-faceted
and cascading sets of permissions for accessing resources
on the network. A set of tokens are generated automatically
for each datafeed to represent a common set of read and
write permissions. Further tokens can be generated by users
for refining access to datafeeds and datastreams.

Fig. 1. Data hierarchy

The CPPM-TBAC algorithm is demonstrated in Fig. 2.
First of all, two top-level visibility controls for resources
are defined:

1. Public access: These resources can be searched and
viewed by everyone and do not require a token.

2. Private access: These resources can only be accessed
if a token with the necessary permissions is used.
Child resources of a private visibility resource are
always private.

Then the actions on these resources are categorised as
either:

1. Read actions: Identified by the GET HTTP verb,
these actions view resource information.

2. Modify/write actions: Any action that uses the
remaining HTTP verbs has the potential to modify
resources on the network. Regardless of the visibility
of a resource, a token with the necessary permissions
is required to carry out these actions.

CPPM defines two upper-level scopes when forming
the tokens: (1) Global scope and (2) Local scope. The
global scope can contain the basic grants (CRUD
operations, i.e. create, read, update and delete) and the
extended access restrictions. On the other hand, the local
scope can only specify the basic grants for individual
resources or a group of resources. Permissions defined in
the global scope cascade to all public and private resources
of the resource owner. The local scope can then be used to
refine (extend/restrict) these permissions further if needed,
or to remove certain resources from the permission set
altogether.

The eventual applied access grants are calculated
according to the following methodology:

1. If global grants are present and local grants are absent
then apply the global grants on all public and private
resources for the resource owner.

2. If local grants are present and global grants are absent
then apply the local grants on the specified resources
for the resource owner.

3. If both global and local grants are present, then do the
following:
a. Apply the global grants on all public and private

resources of the resource owner;
b. For the feeds and streams specified in local

grants:
i. Keep the global grants which have not

been specified in the local scope.
ii. Apply the local grants which have not been

specified in the global scope.
iii. Overwrite the global grants which exist in

the local scope with the local scope grants.

This methodology is only applied on the basic grants
and not on the extended access restrictions which are
always defined in the global scope and cannot be
overwritten locally.

In the global scope, the basic grants consist of the
CRUD operations and any or all of these can be defined
with a value of 1 (grant) or 0 (restrict). CPPM employs the
least access methodology so that the absence of a grant is
equal to its restriction.

Fig. 2. Pictorial illustration of the CPPM Algorithm

A. Serial Sensor Payload Submission Procedure

The serial sensor payload submission procedure is
shown in Fig. 3. It shows multiple devices being connected
to a client, each sending sensor readings either periodically
or when stimulated. The purpose of the client is to construct
payloads for each device interaction. The payloads are
constructed in a way such that they can be processed by the
SAW network (if they are being submitted to the server) or
the connected devices (if they are being submitted to the
devices). Multiple devices can connect to the client at the
same time.

The constructed payloads depend on the type of
interaction. They can be one of the following:

1. A datafeed payload: This occurs when a new device
wants to register with the SAW network or an
existing device wants to update its definition. For
example, this can happen if a user wants to register
a new Arduino multi-sensor platform with the
SAW network;

2. A datastream payload: This occurs when a datafeed
wants to register a new datastream with the SAW
network or wants to update an existing datastream
belonging to it. For example, this can happen if a
user had added a new sensor to his/her multi-sensor
platform and wants to register the new sensor with
the SAW network;

3. A datapoint payload: This occurs when a
datastream wants to upload sensor readings to the
SAW network. An example of this is a sensing
device sending periodic readings to the SAW
network.

Fig. 3. TBAC serial payload submission procedure.

In the previously defined serial payload submission
procedure [5], each payload is processed and transmitted to
the SAW API sequentially by the client. For example, the
client will submit the payload D1 to the SAW API, and then
wait for a response. When it has received a response, it will
send the next payload.

Consequently, the API receives and processes each
payload in isolation of the other payloads. This means that
the server needs to initialise a new processing action and a
database connection for each payload it receives under this
methodology. So for example, if n number of payloads are
submitted in this manner and assuming that each payload
uses the same access token, instead of the server having to
check the access token only once, it will have to check it n
times because each payload is captured and processed in
isolation.

IV. PROPOSED EXTENION TO SAW

A. Aggregated Sensor Payload Submission Procedure

The proposed aggregated sensor payload submission
procedure is shown in Fig. 4. It shows multiple devices
being connected to a client, each sending sensor readings
either periodically or when stimulated.

Fig. 4. TBAC aggregated payload submission procedure.

This procedure is quite similar to the previous
procedure but varies in two major aspects:

1. At the client end: The client has to decide how many
payloads to combine and how to package this
combination as a new aggregated payload. It should be
kept in mind that the current iteration of SAW only
allows usage of a single access token for each request
(whether it’s a single payload or an aggregated payload).
Thus, the client has to ensure that it only aggregates
payloads for datafeeds, datastreams and datapoints that
can be processed by the network with the supplied
token. Since this intelligence is currently not available
in the client node, for simulation purposes the payloads
for aggregation are manually generated depending on
the supplied token to ensure that the request is valid. For
example, a payload is defined manually and then
replicated the desired number of times whilst ensuring
that all the generated payloads can be processed by the
supplied token;

2. At the server API end: The server API has to be able to
recognise an aggregated payload submission and then
extract the individual payloads for processing. As
mentioned in the previous point, the server expects a
single access token with each request. This access token
is used to check the associated grants stored in the
database to determine whether the client’s request can
be fulfilled.

At the client end, one of the crucial decisions is
determining the optimum number of payloads to combine
in order to achieve the best possible performance metrics.
This optimisation is not considered in this paper due to
limitation in time and scope. Instead, payloads are
aggregated on the fly for 100-1,000 devices and the results
compared against the same payloads but submitted in the
serial fashion.

In the current iteration, the payload aggregation creation
procedure is pretty simple. First of all, an aggregated
payload structure is created. This starts off as a blank
payload. Then, each of the generated payloads is taken and
appended to the aggregated payload. The final result is a
well-constructed payload packaged in a representation
format like JavaScript Object Notation (JSON).

B. Payload Processing Procedure

The payload processing procedure undertaken inside
the server web application is shown in Fig. 5. The requests
first pass through the RESTful API, and are then processed
by the web application. The processed data is stored in the
database for future interactions, and a response is sent back
to the client. The response indicates the result of the
payload submission request and includes any additional
parameters required as part of the response (e.g. new device
URI in the case of device registration).

Fig. 5. SAW payload processing procedure.

The RESTful API consists of two major components:
1. The resource endpoints: These are specially

designated URIs where resource interaction
requests are handled with the use of the HTTP
verbs. An example of a HTTP POST request to a
resource endpoint for a datastream called
“lightSensor”, belonging to a datafeed called

“Arduino”, is as follows (this will update the
“lightSensor” datastream in accordance with the
provided payload):

POST

/api/v1/feeds/Arduino/streams/lightSens

or

2. The CPPM-TBAC: After a request comes into one

of the resource endpoints, the CPPM-TBAC
mechanism communicates with the database to
authorise the request with the provided token. If the
provided token has the necessary grants, the request
is allowed to proceed ahead. Otherwise (or if no
token is provided), the request is terminated and the
user notified of having insufficient grants to carry
out the associated request.

In should be noted that the CPPM-TBAC phase will not

occur for publicly-exposed resources, since these are not
protected and a token is not required to interact with them.

In both the serial sensor payload submission and the
newly proposed aggregated sensor payload submission
procedures, the CPPM-TBAC needs to communicate with
the database to retrieve the access grants for the given
token. Such database operations are quite costly, and needs
to be repeated significantly more times in the serial sensor
payload submission procedure because each payload is
submitted in isolation of other payloads, and thus requires
its own isolated processing.

However, with the aggregated sensor payload
submission procedure, multiple payloads are received by
the server at the same time. This allows the server to
construct not only more optimised database queries but
also reduce the number of database queries needed
significantly by retrieving more data in each query. This
results in less initialisations of database connections
(typically just one), and as results indicate in the following
section, dramatically reduces the round-trip response time
of the payload submission requests.

V. COMPARISON OF SERIAL AND AGGREGATED

SENSOR PAYLOAD SUBMISSION PROCEDURES

The simulation setup consists of an Open Service
Gateway initiative (OSGi) Sensor Gateway Node (SGN)
node acting as the client (and henceforth referred to as the
client) and the SAW network acting as the server. The
OSGi standard is a service-oriented component model
which enables high modularity and portability of the
codebase and improves resource utilization [11]. The SAW
framework uses a combination of MySQL database for
user management and logging and monitoring, and
MongoDB (a No-SQL database) for storing tokens and
sensing devices definition and data.

The tests are carried out for the new device registration
interaction (submission of a new datafeed), with the
number of devices ranging from 100 devices to 1,000

devices. The round-trip response times are measured both
with CPPM-TBAC turned off and on.

Two important performance metrics are being
measured in this comparison:

 The round-trip response time between the client
submitting the request and getting a response from the
server;

 The percentage delay added when CPPM-TBAC is
turned on. The percentage delay added parameter was
used in the preceding study to evaluate the scalability of
the CPPM-TBAC scheme [5]. In this study, the focus is
on comparing the difference between the two payload
submission procedures and identifying any key trends.

A. Registering Datafeeds via Serial Payload Submission

Procedure

The response times for registering 100-1,000 datafeeds
using the serial sensor payload submission procedure are
shown in Fig. 6 (with TBAC disabled) and Fig. 7 (with
TBAC enabled).

Fig. 6. Response times for registering devices using the serial

sensor payload submission procedure with TBAC off.

Fig. 7. Response times for registering devices using the serial

sensor payload submission procedure with TBAC on.

Registration of 100 devices takes around 40 seconds
when TBAC is disabled. This is increased to 46 seconds
when TBAC is enabled, resulting in an increased delay of
14.6%. On the higher scale when registering 1,000 devices,
it takes nearly 6 minutes and 19 seconds with TBAC
disabled and 7 minutes and 30 seconds with TBAC
enabled. This translates to an increased delay of 18.7%
which is only marginally higher than the increased delay

for 100 devices. The full set of comparisons are available
in Table I and the added delay percentage plot can be seen
in Fig. 8.

TABLE I. COMPARISON OF DEVICE REGISTRATION TIMES USING THE

SERIAL SENSOR PAYLOAD SUBMISSION PROCEDURE WITH TBAC ON AND

OFF.

 With TBAC
disabled

With TBAC
enabled

Registration of 100
devices 40.8 seconds

46.7 seconds

(14.6% slower)

Registration of 500
devices 190.8 seconds

224.4 seconds

(17.6% slower)

Registration of 1,000
devices 378.9 seconds

449.8 seconds

(18.7% slower)

Fig. 8. Added delay percentage variation for device registrations

using the serial sensor payload submission procedure.

B. Registering Datafeeds via Aggregated Payload

Submission Procedure

The response times for registering 100-1,000 datafeeds
using the aggregated sensor payload submission procedure
are shown in Fig. 9 (with TBAC disabled) and Fig. 10 (with
TBAC enabled).

Fig. 9. Response times for registering devices using aggregated

sensor payload submission procedure with TBAC off.

40.775

190.79

378.91

0

100

200

300

400

100 500 1000

TI
M

E
TA

K
EN

, S

DEVICES

Serial payloads: Feed registration times with TBAC
disabled

46.725

224.4

449.8

0

200

400

600

100 500 1000

TI
M

E
TA

K
EN

, S

DEVICES

Serial payloads: Feed registration times with TBAC
enabled

14.59%

17.62%
18.71%

0%

5%

10%

15%

20%

25%

30%

100 500 1000

P
er

ce
n

ta
ge

 d
el

ay
 a

d
d

ed

No. of devices/sensors

Serial payloads: Percentage Delay Added to Response
Times

6.00

31.05

63.13

0

20

40

60

80

100

100 500 1000

TI
M

E
TA

K
EN

, S

DEVICES

Aggregated payloads: Feed registration times with
TBAC disabled

Fig. 10. Response times for registering devices using aggregated

sensor payload submission procedure with TBAC on.

The full set of comparisons are available in Table II and
the added delay percentage plot can be seen in Fig. 11.

TABLE II. COMPARISON OF DEVICE REGISTRATION TIMES USING THE

AGGREGATED SENSOR PAYLOAD SUBMISSION PROCEDURE WITH TBAC

ON AND OFF.

 With TBAC
disabled

With TBAC
enabled

Registration of 100
devices 6 seconds

11.958 seconds

(99.2% slower)

Registration of 500
devices 31 seconds

62.4 seconds

(100.9% slower)

Registration of 1,000
devices 63.1 seconds

127.3 seconds

(101.6% slower)

Fig. 11. Added delay percentage variation for device

registrations using the aggregated sensor payload submission

procedure.

Two things can be noted with these results instantly:

1. The response times are exponentially better in this
scenario. The response times have improved by
almost 700% when TBAC is disabled (Fig. 12) and
nearly 400% when TBAC is enabled (Fig. 13);

2. The delay when TBAC is enabled is almost double
compared to the serial sensor payload submission
procedure.

In regards to the first point, it can be see here that

aggregating payloads to reduce the number of requests
made to the server greatly improves the response time. This

is mainly due to the reduction in the number of database
initialisations that need to be done, as this is the most costly
operation on the server. Reducing the number of database
initialisations leads to a great improvement in response
times because the server can do more work with each
database connection.

Fig. 12. Improvement in response times with TBAC disabled for

aggregated payloads.

Fig. 13. Improvement in response times with TBAC enabled for

aggregated payloads.

In regards to the second point, it can be seen in Table II
that in this scenario, the response times double when TBAC
is enabled. In comparison, the added delay in response times
seen in the serial payloads scenarios was in the region of 15-
30%. However, the increase of response times to just over
100% when TBAC is enabled in the aggregated payloads
submission scenario can be easily explained.

When TBAC is enabled, the number of queries to the
database increase significantly due to checking of
permission policies for the supplied token. However, the
added delay due to this process is relatively small compared
to the time taken to initialise and close down the database,
and is thus quite largely masked in the overall response time
for serial payloads scenarios. For the aggregated payloads
scenarios, however, this delay is more noticeable because
the database is not being initialised or closed down again
and again as the payloads are being processed. So in the
aggregated payloads scenario, the actual added delay for
using TBAC is being observed.

More importantly, it should be noted that once again, the
added delay variation remains relatively uniform as the

11.96

62.40

127.27

0
20
40
60
80

100
120
140

100 500 1000

TI
M

E
TA

K
EN

, S

DEVICES

Aggregated payloads: Feed registration times with
TBAC enabled

99.23%

100.93%

101.61%

98%

99%

100%

101%

102%

100 500 1000P
er

ce
n

ta
ge

 d
el

ay
 a

d
d

ed

No. of devices/sensors

Aggregated payloads: Percentage Delay Added to
Response Times

679.30%

614.38%
600.25%

550%

600%

650%

700%

100 500 1000

P
er

ce
n

ta
ge

 d
el

ay
 a

d
d

ed

No. of devices/sensors

Aggregated payloads: Improvement in Response Times -
TBAC Disabled

390.74%

359.63%
353.43%

320%

340%

360%

380%

400%

100 500 1000

No. of devices/sensors

Lumped-sum requests: Improvement in Response Times -
TBAC Enabled

number of devices being registered are increased from 100
devices to 1,000 devices (Fig. 11). The added delay only
increases by a mere 2.58% as the number of devices
increases by 10 times from 100 devices, proving the CPPM-
TBAC can scale efficiently with increasing number of
devices in the WoT environment regardless of whether the
payloads are submitted in a serial or an aggregated manner.

VI. CONCLUDING REMARKS

This paper has proposed a new aggregated CPPM-
TBAC model for submitting sensor payloads to the server.
The new model extends the previously defined serial
sensor payload submission procedure by adding support
for payload aggregation through OSGi-enabled sensor
gateway nodes. The paper has also compared the
previously defined serial and the newly proposed
aggregated sensor payload submission models and
procedures for capturing and submitting sensor data in the
WoT. The methodologies for both procedures have been
clearly demonstrated to identify the different
characteristics of each technique.

It has been shown that the aggregated sensor payload
submission procedure fares significantly better than the
serial sensor payload submission procedure. In fact, an
improvement of over 700% can be seen in the reduction of
the round-trip response time when comparing the
aggregated sensor payload submission procedure against
the serial method. This is highly beneficial for improving
the overall response time in the WoT.

Future work in this area can look at the effect of varying
payload sizes for the submission procedures and analysing
if this affects the response times. Another area of further
exploitation can be the variation of the number of payloads
that are aggregated and analysing the kind of effect this has
the response times.

It is also evident that this study has not tracked the
performance of the Central Processing Unit (CPU) while
carrying out the simulations. A future extension of this
work can look at the effects of the aggregation density
(number of payloads combined into a single aggregated
payload) on the processing power and memory usage of the
server to see if the decreased response times are in fact
beneficial in the whole scheme of things, or if the impact
on the processing power required and memory used offset
the advantages gained in response times.

REFERENCES

[1] K. Janowicz, A. Bröring, . C. Stasch, S. Schade, T.

Everding and A. Llaves, “A RESTful proxy and data

model for linked sensor data,” International Journal of

Digital Earth, vol. 6, no. 3, pp. 233-254, 2013.

[2] A. Broring, P. Mau´e, . C. Malewski and K. Janowicz,

“Semantic mediation on the Sensor Web,” in Geoscience

and Remote Sensing Symposium (IGARSS), 2012 IEEE

International, Munich, 2012.

[3] D. Guinard and V. Trifa, “Towards the Web of Things:

Web Mashups for Embedded Devices,” in 2nd Workshop

on Mashups, Enterprise Mashups and Lightweight

Composition on the Web (MEM 2009), Madrid, Spain,

2009.

[4] G. Iachello and G. D. Abowd , “A Token-based Access

Control Mechanism for Automated Capture and Access

Systems in Ubiquitous Computing,” Georgia Institute of

Technology, Atlanta, GA, USA, 2005.

[5] M. Amir, P. Pillai and Y. Hu, “Cascading Permissions

Policy Model for Token-Based Access Control in the

Web of Things,” in Future Internet of Things and Cloud

(FiCloud) 2014, Barcelona, 2014.

[6] D. Miorandi, S. Sicari, F. D. Pellegrini and I. Chlamtac,

“Internet of things: Vision, applications and research

challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497-

1516, 2012.

[7] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess and D.

Savio, “Interacting with the SOA-Based Internet of

Things: Discovery, Query, Selection, and On-Demand

Provisioning of Web Services,” IEEE TRANSACTIONS

ON SERVICES COMPUTING, vol. 3, no. 3, pp. 223-235,

2010.

[8] “A Token-Based Access Control System for RDF Data

in the Clouds,” in Proceedings of the 2010 IEEE Second

International Conference on Cloud Computing

Technology and Science, Washington, DC, USA, 2010.

[9] M. Amir, Y. F. Hu, P. Pillai and Y. Cheng, “Interaction

Models for Profiling Assets in an Extensible and

Semantic WoT Framework,” in Wireless Communication

Systems (ISWCS 2013), Ilmeanu, Germany, 2013.

[10] M. Amir, P. Pillai and Y. Hu, “A Generic & Extensible

Asset Model for a Semantic Collaboration Framework,”

International Journal of Advanced Computer

Technology (IJACT), vol. 3, no. 1, pp. 88-96, 2014.

[11] M. Kuna et al., “Android/OSGi-based Machine-to-

Machine context-aware system,” in IEEE 11th

International Conference on Telecommunications

(ConTEL), Graz, 2011.

	Pillai_cover_sheet
	Paper 12

