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Abstract: This article presents the inflight demonstration of a new integrated 

aircraft communications system combining legacy and future radio 

technologies. Developed and validated under real environment conditions 

during flight trials, this system integrates all the aeronautical service domains 

within a common IPv6-based aeronautical network. The flight trials were 

held within the framework of the European SANDRA project at 

Oberpfaffenhofen, Germany in June 2013. The presented outcomes will 

emphasize the flexibility and scalability of the developed network and 

demonstrate the seamless service coverage of the given architecture across 

different airspace domains1. 

Keywords: Flight trials, Seamless Aeronautical Network, IPv6, AeroMACS, 

BGAN, VDL2. 

1. Introduction 

Aeronautical communications are currently facing a continuous increase in capacity 

demand. This ceaselessly request for more communication capacity is on the one hand due 

to the constant growth in the number of passengers and thus aircraft, expected to double by 

2035 [1], but also due to the introduction of new aeronautical communication services with 

high data volume demand. The latter comprise, among others, new operational safety-

critical services such as 4D-Trajectory as well as non-safety critical services like wireless 

in-cabin connectivity for passengers. To cope with this high demand in communications 

capacity, part of the ongoing research aims at developing new concepts and technologies 

for future aeronautical communications (like the European SESAR Joint Undertaking 

program [2] and the FAA Next Generation Air Transportation System (NextGen) [3]), with 

a strong emphasis on the development of new link technologies, such as the terrestrial L-

band Digital Aeronautical Communications System (L-DACS) link [4], and the European 

Space Agency (ESA) Iris program [5]. 

The introduction of new digital communication links is of paramount importance in the 

aeronautical sector as the existing Air Traffic Management (ATM) communication 

                                                 
1 The material in this paper was presented in part at DASC 2013, Syracuse, NY, USA 



 

 

infrastructure already operates close to the maximum capacity [6]. However, although the 

new systems will eventually replace the legacy communications systems, there will be a 

lengthy period where aircraft will be fitted with all of the systems for global 

interoperability. Hence, there is a need to integrate legacy and future data links into one 

large seamless aeronautical network to serve the future communication demand. 

The design, development, and validation of such a seamless network correspond to the 

focus of the European funded research project SANDRA (Seamless Aeronautical 

Networking through integration of Data links Radios and Antennas) [7], which integrates 

different communication links (legacy and future data links) and networks (such as 

ATN/OSI or ATN/IPS) with all the aeronautical service domains (ATS, AOC/AAC and 

APC) in a safe, high-performance and cost effective way, having IPv6 as unification point. 

The development of the entire corresponding ground network infrastructure is also part of 

the SANDRA architecture. The validation of the latter has been realized by performing 

flight trials on the airport of Oberpfaffenhofen close to Munich, Germany [8]. This paper 

gives an overview of the first SANDRA flight trials outcomes with a strong emphasis on 

the seamless handovers that have been carried out between legacy and future data links, 

namely VDL2, BGAN and the newly developed AeroMACS [9], and therefore, proving the 

flexibility and scalability of the SANDRA network. The seamless service coverage aspect 

of the SANDRA architecture has been demonstrated by the successful test of various 

applications in all aeronautical service domains. 

The rest of the article is organized as follows. The SANDRA concept is introduced 

followed by the overall system setup and details of the most relevant components. The 

flight trials, its main results regarding handovers, network technologies, and used 

applications are presented. 

 

Glossary 

AAC Airline Administrative 

Communications 
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surface Communications 

CLNP Connectionless Network Protocol 

AOC Airline Operations Center IDRP Inter-Domain Routing Protocol 

APC Aeronautical Passenger 

Communication 
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2. The SANDRA Concept 

The vision of SANDRA is the integration of aeronautical communications systems 

using well-proved industry standards to enable a cost-efficient global provision of 

distributed services. SANDRA system is considered as a ‘system of systems’ addressing 

four levels of integration: Service, Network, Radio, and Antenna. 
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Figure 1. SANDRA Flight Trial Network Architecture 

 

Considering the communications network, SANDRA spans across two segments, i.e., 

aircraft segment and the ground segment, as shown in Figure 1. The aircraft segment for the 

flight trials contains the main functional components: the Integrated Router (IR), the 

Integrated Modular Radio (IMR) and the antennas consisting of a satellite L-band antenna 

(BGAN), a VHF band antenna, and a C-band antenna for AeroMACS. Details about the 

SANDRA ground network are given in the following section. 

3. System Setup 

The system setup of the SANDRA flight trials is composed of two major segments, 

namely the airborne segment and the ground infrastructure.  

3.1 Airborne Segment 

The SANDRA airborne system has been integrated in an Airbus A320, displayed in 

Figure 2. 
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Figure 2. SANDRA Airborne System installed at an A320 including the experimental 

antennas 



 

 

As to the data links, 3 different radio technologies were integrated in the aircraft, 

namely BGAN, VDL2, and AeroMACS. The aircraft was already equipped with a BGAN 

and a VHF antenna (used to test VDL2), located on top at the rear of the fuselage and in the 

middle below the fuselage, respectively. The AeroMACS C-band antenna has been 

especially mounted on top of the fuselage for the SANDRA flight trials. The inline figures 

of Figure 2 show the positions of the BGAN, VHF and AeroMACS antennas on the 

fuselage of the aircraft. 

In order to be integrated in the aircraft, the SANDRA airborne system has been divided 

into 4 separate racks containing different pieces of equipment, as illustrated in Figure 2. 

The distribution of equipment within the racks was based on the different functionalities 

whereas the locations of the racks within the cabin were defined based on the positions of 

the antennas on the aircraft’s fuselage. The racks were organized as follows. The first rack 

contained the Integrated Router and the connectivity to the different end-user systems. The 

second rack was equipped with the two Integrated Modular Radio processing platforms, 

representing thus the link between the IR and the different RF equipment (one IMR used as 

redundancy back-up). The third rack was fitted with the RF units for the VDL2 and 

AeroMACS data links. Finally, the RF components handling the BGAN satellite link were 

located in the fourth rack at the rear of the cabin. So as to reduce as much as possible the 

antenna cable losses, the third and fourth racks were placed in the cabin right below the 

respective antennas. 

3.2 Ground Infrastructure 

The core part of the SANDRA ground infrastructure was located at Oberpfaffenhofen, 

Germany. It comprised all the IP-based networking components such as the Access Router 

and the Home Agent. Whereas the latter includes functionalities like IPsec (IPv6) to 

provide authentication and integrity and the NEMO protocol [10] to guarantee mobility to 

the airborne terminal, the former integrates an IPv6-over-IPv4 transition mechanism, 

entitled NeXT [11]. The Access Router also provides the router advertisement messages 

(ICMPv6) required by NEMO on the Integrated Router. This message is part of the 

Neighbor Discovery Protocol (NDP, RFC 4861). The SANDRA network provides 

connectivity not only to the different ground end systems but also to the ATN, the Internet, 

and to the Public Switched Telephone Network (PSTN, for passenger communication), 

enabling ATS (communication with Air Traffic Control (ATC)) and AOC services 

(business communication of the airline), as well as APC (e.g., for Internet access and 

mobile telephony) and airline non-operational services (AAC). 

About the ground infrastructure of the data links, two different base stations have been 

specifically installed for the SANDRA flight trials, namely a VHF Ground Station (VGS) 

and an AeroMACS base station. The latter was installed on top of a hangar building 

overlooking the Oberpfaffenhofen airport. Connectivity between this base station and the 

SANDRA laboratory has also been established via a VLAN. The antenna used for the 

AeroMACS base station was a directional antenna (90°) with a focus on the aircraft parking 

position. Furthermore car tests have been carried out at the Oberpfaffenhofen airport so as 

to estimate the received signal level from the AeroMACS base station. A C-band antenna 

has been mounted on the roof of a research vehicle. Thanks to the use of a spectrum 

analyzer, the signal level could be estimated on the runway, taxiing path, and parking 

position of the aircraft. 

Finally as to the ATN/OSI ground infrastructure, a VGS for VDL2 has been installed on 

the roof of SANDRA laboratory close to the airfield, although the ATN/OSI ground end 

system was located at Montreal, Canada and connected to the SANDRA laboratory via a 

Wide Area Network (WAN). The satellite connection was made over the BGAN satellite 



 

 

network. More exhaustive insights on the SANDRA ground infrastructure as well as on the 

overall SANDRA test-bed can be found in [12]. 

3.3 Oberpfaffenhofen Airport  

The SANDRA flight trials occurred from 24-26 of June 2013 at Oberpfaffenhofen 

airport (EDMO), Germany. This airport consists of one single runway. The parking position 

of the aircraft was in direct Line-of-Sight (LOS) with the AeroMACS base station and the 

VGS. 

4. Flight Trials Results 

4.1 Flight Sorties Description 

In total, 6 sorties in 3 days have been made with the D-ATRA aircraft at a rate of 2 

flights per day (one in the morning and one in the afternoon). The focus of the first day was 

mainly to evaluate the correct data transmission over the air for each of the 3 data links. 

Once the links were operational, the flight trials of the second and third day aimed at 

validating the SANDRA concept by performing a set of scenarios previously identified. In 

order to do so, various applications ranging from ATS over AOC, AAC to APC services 

were tested onboard the aircraft. 

On average, each sortie lasted roughly 90 minutes including taxiing, take-off, and 

landing phases. The scenarios were performed onboard during the 45 minutes of cruise. For 

each sortie, the aircraft was flying over Oberpfaffenhofen airport and continuing its route 

until the VHF connection was lost. Once out of VHF coverage, the aircraft was turning 

around to fly back over Oberpfaffenhofen airport and thus reentering the VHF coverage. 

This back-and-forth route over the airport allowed testing the seamless functionality of the 

SANDRA concept 

4.2 Seamless Aeronautical Networking Analysis 

Various specific scenarios have been performed during the flight trials to demonstrate 

the seamless aspect of the SANDRA network. 

4.2.1 Seamless Layer 3 Handover  

Whenever a change of traffic routing policy involving two different data links occurred, 

a handover was performed. During the flight trials handovers were performed between all 

three link technologies in both directions (e.g., BGAN to VDL2 and VDL2 to BGAN) and 

also between some combinations of different quality of service contexts within the same 

technology (BGAN background to BGAN streaming). Additionally, the handovers were 

classified depending on the triggering condition. One type was the “IMR triggered 

handover”, initiated by the Integrated Modular Radio when the aircraft was moving (or was 

already) out of coverage of one of the available links. The other type, the “IR triggered 

handover”, was a handover caused by the human operator changing the policy routing on 

the Integrated Router.  

In order to test the “IMR triggered handover”, an AeroMACS context was open while 

the aircraft was in parking position. Once set, traffic was generated from the end systems to 

put some load on the link. Then, the IMR was told that the aircraft was changing from a 

“standing” position to “en route”. Since AeroMACS is not available while the aircraft is 

cruising, the IMR initiated the procedure to open a new BGAN context and notified the IR 

of the upcoming change. Figure 3(a) shows the handover and how traffic is sent over 

BGAN again after the handover is completed. 



 

 

An “IR triggered handover” can be observed in Figure 3(b). Initially, all traffic is sent 

over a BGAN background context. While this best-effort type of service is good enough for 

applications like browsing or e-mailing, it’s not suitable to jitter sensitive applications like 

voice-over-IP (VoIP). For that reason, the IR operator requested a change on policy routing. 

Instead of interrupting the traffic upon the request, traffic is routed through the new context 

only after this has been completely established, therefore avoiding an interruption of the 

communication. The VoIP call members did not notice any loss of communication and in 

fact, no packets were lost during the handover and only one packet suffered reordering. 

 

 
(a) Integrated Modular Radio triggered handover from AeroMACS to BGAN 

 
(b) Integrated Router triggered handover for VoIP 

Figure 3. Triggered handover performances 

  

 

 

 

 



 

 

4.2.2 Seamless Layer 2 Handover  

The IMR, which represents the data-link and physical layer of the OSI stack, consists of 

the different radio protocol stacks (AeroMACS, VDL2, and BGAN). Furthermore, it 

includes an adaptation layer called Joint Radio Resource Manager (JRRM) that is 

responsible for managing and controlling the underlying radios in a uniform and consistent 

manner and provides a single interface to the network layer. 

To increase the assurance of the IMR, there are two JRRMs running simultaneously 

with one on each IMR processing platform, IMR-PC1 and IMR-PC2 respectively. At any 

time, there is one and only one JRRM acting as the Master and in charge of all the 

processing while the Slave JRRM keeps on synchronizing with the Master. Different time 

recordings for the hot swap process (when the Master JRRM was terminated and the Slave 

JRRM swapped as new Master) could be done during flight trials. The data tunnel switch 

time indicates the time window that data cannot be transmitted. This time was varying 

between 170ms and 184ms. Whereas, the overall switch time is the time starting from when 

the Slave JRRM detects a failure of the Master till all sub-modules complete the switching 

process. Here, the maximum recorded time is 286ms and minimum time is 180ms. Thanks 

to the multi-core and multi-threading programming technique, there is not much difference 

on the time required for processing single or multiple data tunnels. 

It took slightly longer time for the switch process to complete if radio stacks are running 

on the same processing platform with the new Master JRRM to be due to the computing 

resources shared between the JRRM and radio stacks. Similarly, the switching time is 

affected by the data tunnel traffic load, the heavier the user traffic, the longer time it will 

take.  

Figure 4 shows the time required for session establishment from randomly selected 

BGAN and AeroMACS sessions during the flight trial. The session establishment time 

means the overall time of a session establishment from reception of the session open 

request till the data tunnel is completed ready for data transmission. In order to express the 

processing time required by the JRRM more precisely, the processing time in JRRM only 

measures the time used within the JRRM modules excluding the radios stacks layer two 

processing time, such as ranging, registration or attachment time. The minimum session 

establishment time being seen is 3.02 seconds where the satellite terminal has already 

registered and attached to the network before session open request and the maximum time 

being seen is 22 seconds where a fresh network registration, attachment has to be done in 

order to setup and activate the Packet Data Protocol (PDP) context for the open request. On 

the other hand, the AeroMACS session establishment is much quicker; it takes less than 

1 second to complete a data connection with the ground station. However, the session 

establishment processing time used within the JRRM for BGAN and that for AeroMACS 

have the same order of magnitude despite the big overall difference in their end-to-end 

connection establishment due to the fact that JRRM treats all waveform equally in a 

uniform way. 
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Figure 4. Session establishment time 

4.2.3 ATN/OSI over IP-SNDCF 

The use of IP Sub-network Dependent Convergence Function (SNDCF) enables the 

ATN/OSI upper layers and network (CLNP-IDRP) protocols to be conveyed over IP 

protocol. This allows IP-based networks to be used to provide the underlying ATN sub-

network links between ATN routing entities. It was decided within SANDRA to experiment 

the use of IP-SNDCF on the aircraft (whereas today it is only used on ground), thus on a 

mobile system. The objective was to assess if ATN/OSI CLNP packets could be conveyed 

over VDL2 (as done today) and over SANDRA broadband radio IP links, in a seamless 

way. The advantage of a mobile IP-SNDCF is that avionics and ground stations can 

implement a single (or multiple but standardized) SNDCF for all mobile communication 

technologies instead of having different interfaces for each technology which is the case at 

present. 

A prototype Mobile IP-SNDCF module was developed and integrated on existing 

ground architecture, as well as on the aircraft. This allowed demonstrating end to end 

ATN/OSI communications over VDL2 and SANDRA mobile IP implementation over 

BGAN and AeroMACS [13]. 

4.3 Aeronautical Service Coverage 

Table 1 reveals the different applications that have been successfully tested on ground 

and in cruising phase so as to validate the SANDRA concept. As can be seen in Table 1, 

applications from all the different aeronautical service domains have been tested during the 

flight trials, emphasizing the seamless service coverage of SANDRA. As to the airborne 

end-system, most of the applications have been tested using a notebook or tablet directly 

connected to the Integrated Router either via Ethernet cable or via in-cabin Wireless Local 

Access Network. Their counterpart on the ground had various locations such as the 

SANDRA laboratory or the different internet servers. In the following, various applications 

of different service domains will be highlighted concerning safety relevant data, voice 

communication in the cockpit, airline operations services, and cabin communications. 

 

 



 

 

Table 1. List of applications tested during the SANDRA flight trials 

Application Domain 
airborne 

end-system 

ground end-

system 

ground  

end-system 

location 

AMBEATC10B VoIP ATS VoIP HW VoIP HW SANDRA lab 

CPDLC ATN/OSI apps. 
ATS CMU 

Notebook 
ATN ES Montreal 

Generic CPDLC tool ATS Notebook Notebook SANDRA lab 

Electronic flight 

information bulletin 

AOC 
Notebook server(s) Internet 

web chart application AOC Notebook server(s) Internet 

web flight planning 

application 

AOC 
Notebook server(s) Internet 

Electronic Flight Folder AOC Notebook Notebook,  SANDRA lab 

Flightstrips AAC Notebook Notebook SANDRA lab 

Generic 

arrival/departure 

manager 

AAC 

Notebook Notebook SANDRA lab 

Telemedicine 
AAC telemedicine 

tablet 

telemedicine 

server 
Internet 

VoIP call 
APC VoIP 

mobile 
VoIP Handset Internet 

web browser APC tablet web server Internet 

email APC tablet Email Server Internet 

SkypeTM APC tablet SkypeTM Internet 

 

4.3.1 AMBEATC10B VoIP 

The AMBEATC10B VoIP is an experimental hardware voice-over-IP appliance based 

on the AMBE ATC 10B vocoder circuit board. This is currently the only digital vocoder 

certified for air traffic control. The circuit board is integrated with a micro-controller and 

installed in a rack-mountable case with a push-to-talk button. The micro controller board 

runs a customized version of the Linux operating system reading/writing voice samples 

from the vocoder board and sending/receiving them over the SANDRA network using User 

Datagram Protocol (UDP)/IPv6. Both the airborne and the ground appliance were equipped 

with commercially available ATC headsets. 

The quality of service delivered by the SANDRA network for VoIP applications was 

evaluated using the AMBEATC10B VoIP appliance according to ITU recommendation 

P.80 “Methods for Subjective Determination of Transmission Quality”. ITU P.80 defines a 

conversation opinion test. Two subjects engage in a set of previously arranged domain-

specific conversations and rate them according to a defined scale. In addition the subjects 

were interviewed to better understand the rating. In the case of the SANDRA evaluation the 

conversations were constructed from the Air Traffic Control Simulation Speech 

Corpus [14]. Each conversation comprised six ATC phrases exchanged by the subjects. 

After the conversation each subject was asked to provide an opinion on the transmission 

quality (excellent=5, …, bad=1) and to indicate any difficulties understanding the 

conversation partner (yes=1, no=0).  



 

 

The SANDRA evaluation comprised four different speakers and a total of 65 

conversations (i.e., 390 phrases exchanged). This was limited by the flight time and the 

number of personnel available in the aircraft. It should be noted, that the participants were 

familiar with the transmission quality offered by DSB-AM systems. The subjective rating 

of the voice quality should therefore be understood as relative to the established ATC voice 

systems.  

Four of the 65 conversations were interrupted by reconfigurations of the data-links. 

Handovers from the AeroMACS link to the satellite link were seamless and generally not 

noticed by the conversing subjects. The smaller round-trip delay of the AeroMACS system 

compared to the satellite link was, however, perceived. Occasional packet loss on the 

satellite link was noticed by the users by missing syllables in the conversations, but not 

perceived as a great problem. 

The mean score over all conversations was 4.33 (excellent=5, good=4) on the airborne 

side and 3.93 (fair=3) on the ground side. The perceived lower audio quality of the ground 

users can be explained by the background noise in the aircraft that was included in the 

transmission. On the aircraft itself the background noise was attenuated by the headsets, 

providing the airborne user with a clear reproduction of the ground signal recorded in a 

quiet room. 

 

4.3.2 CPDLC ATN/OSI Application 

About the controller–pilot data link communications (CPDLC) ATN/OSI application, 

the ground end system was located in Montreal, Canada. During the inflight test of this 

application, a connection between the VGS on the ground and Montreal was established 

over the ATN/OSI ground network. The transmission of CPDLC messages was made over 

the VDL2 link. When the handover with BGAN (or AeroMACS) occurred, an IP 

connection through SANDRA ground network was established between the airborne and 

the ground end system in Montreal. The path for CPDLC messages switched thus from the 

ATN/OSI ground network to the IP-based SANDRA ground network. Figure 5(a) gives an 

example of CPDLC request exchanged every 10sec during first test on the 26th of June. One 

can notice that the LACK is received generally in 1sec (in IP over AeroMACS). 

Context Management (CM) / CPDLC messages were routed seamlessly over one 

medium or the other, without any impact on the upper layers. During the flight tests, the IP 

path (BGAN or AeroMACS) was given priority and whenever both the VDL2 and the IP 

path was available at the same time, traffic was automatically routed over the IP path. 

When the IP path became unavailable, traffic fell back to using the VDL2 path. 

 

4.3.3 Airline Operational Services 

Covering also the airliner operational service domain, two applications are hereafter 

described. These applications have been integrated and tested during the flight trials. The 

first one aims at providing the crew members with the current changes taking place in the 

airspace and airports in a scope of a particular flight. The application receives basic flight 

details from a user and then requests all the Notice to Airmen (NoTAM) messages 

concerned from a central server. The output data is presented in ICAO format. Instead, the 

second application emulates a web service for both basic flight planning and submission of 

flight plan request to the state ATM authority. Along with the other features, this 

application provides a digital map with current aeronautical situation, automated route 

selection, and numerous flight plan checks. 



 

 

A dedicated route, i.e., UUDD (Domodedovo, Moscow) -> EDDM (Munich), was first 

selected for such software tests, as depicted in Figure 5(b). The corresponding flight plan 

was successfully created and submitted. Then a positive response (approval) was received 

from the ATM service. And finally all necessary NoTAMs were requested and received 

regarding the chosen flight. All communication of both applications took place during 

taxiing and cruise phase. Despite some packets loss and consequent repeated requests in 

TCP/IP stack (which was not seen at application level) the software managed to 

communicate with the ground successfully.  

 

 
(a) CPDLC request exchanges 

 

 



 

 

 

 
 

(b) Web flight planning application with ICAO FPL form submitted and NOTAMs for 

UUDD-EDDM at time of flight trial 

Figure 5. Examples of demonstrated applications.  

4.3.4 Cabin Applications 

Also real life passenger cabin applications were tested whilst in flight. This involved a 

number of passenger scenarios including surfing the Internet and sending and receiving 

emails through their Internet portal. With the aid of smart phones those in the air 

demonstrated social media posting and messaging as well as SkypeTM video and audio calls 

all through the SANDRA radios. A Patient Monitor unit was also demonstrated 

successfully for crew use, whereby a crew member and a doctor on the ground can 

simultaneously monitor the vital signs of a passenger whilst in constant audio 

communication through the SANDRA radio system.  

4.3.5 Application’s Performance over Future Data Link 

Finally, having a closer look on the new integrated AeroMACS non-legacy data link, 

the end to end connectivity, affected not only by AeroMACS but also by all other 

networking systems (Integrated Router, Integrated Modular Radio, Access Router, Home 

Agent, etc.) has been verified using Internet Control Message Protocol (ICMP) Pings, with 

following measured delays: Min Delay = 33.314 ms, Max Delay = 265.054 ms, Average 

Delay = 76.823 ms, Standard Deviation = 32.172 ms and a packet loss rate measurement 

below 0.5%. 

Different applications have been successfully tested using AeroMACS connectivity, in 

particular:  

- AMBE ATC VoIP, both over Non Real-Time and Real-Time profiles, with an 

average 27 kbps throughput during voice transmission 

- FTP transfer of a file from the ground, with an average throughput of 937 kbps 

- ATN/OSI over IP-SNDCF traffic, with an average throughput of 0.5 kbps with 

peaks of 2.5 kbps 

- Electronic Flight Folder traffic, with forward link traffic peak close to 1 Mbps, and 

average traffic below 300 kbps;  

 

 



 

 

5. Conclusions 

Within this paper, the flight trial outcomes of a new integrated aircraft communications 

system have been presented. Developed within the framework of the SANDRA project, this 

system has been integrated in an Airbus A320 and tested in real flight conditions in June 

2013 at Oberpfaffenhofen airport, Germany. 

During these flight trials, the two key features of the SANDRA concept have been 

demonstrated. On the one hand the seamless service coverage of the SANDRA architecture 

across different airspace domains was shown. Having IPv6 as unification point, it has been 

proven that this system integrates a full range of aeronautical applications (ATS, 

AOC/AAC, APC).  

The second key feature of the SANDRA concept to be demonstrated during the flight 

trials was its global interoperability between legacy (VDL2, BGAN) and future data links 

(AeroMACS). This has been realized by performing first of all a handover on the ground 

between VDL2 and AeroMACS data links and secondly a handover while flying between 

VDL2 and the BGAN satellite link (for both cases, handovers have been performed in both 

directions). Transparent to the end-user, these handovers prove the interoperable and 

scalable aspect of the SANDRA network, which can switch reciprocally between legacy 

(non-IP) and future (IP) data links.  
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