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 

Abstract—Recently, significant advances in renewable 

energy generation have made it possible to consider 

consumers as prosumers. However, with increase in 

embedded generation, storage of electrical energy in 

batteries, flywheels and supercapacitors has become 

important so as to better utilize the existing grid by helping 

smooth the peaks and troughs of renewable electricity 

generation, and also of demand. This has led to the 

possibility of controlling the times when stored energy from 

these storage units is fed back to the grid. In this paper we 

look at how energy resource sharing is achieved if these 

storage units are part of a virtual power plant.  In a virtual 

power plant, these storage units become energy resources 

that need to be optimally scheduled over time so as to 

benefit both prosumer and the grid supplier. In this paper, 

a smart energy resources allocation algorithm is presented 

for a virtual power plants using genetic algorithms. It is also 

proposed that the cause of battery depreciation be 

accounted for in the allocation of discharge rates. The 

algorithm was tested under various pricing scenarios, 

depreciation cost, as well as constraint. The results are 

presented and discussed. Conclusions were drawn, and 

suggestion for further work was made.  

Keywords—Prosumers; Battery; Virtual Power Plant (VPP); 

Genetic Algorithm (GA); Smart Grid.  

I. INTRODUCTION 

The driving goals for the use of energy storage in the 
electricity grid is to promote the usage of renewable energy, 
improve grid reliability through the provision of peak and off-
peak services etc. and also to provide a cost effective means for 
grid operation [1], [2], [3], [4].  

There is an ongoing global restructuring of electric power 
utilities [5], [6]. This is changing the electric power utilities from 
its usual vertically integrated form to a form with a much 
liberalized market [5], [6], [7]. Therefore, opportunities are 
created in the electric power market for the energy consumer. 
With these emerging market opportunities, it is envisaged that 
the consumer role could change to that of a prosumer. The 
prosumer role involves both energy consumption and energy 
production. As the consumer role changes to that of a prosumer, 
energy storage becomes an important part of the prosumer. With 
energy storage, a prosumer can buy energy from the grid at a 

 
 

lower cost during off-peak period, and then sell the energy back 
to the grid at high prices during peak period. 

In Africa, countries are adopting renewable energy into their 
energy mix. In some countries such as Nigeria, Liberia, etc. there 
are large number of standby gasoline or diesel generators that 
provide electricity when the grid is unable to provide. Battery 
storage may be a way forward for African countries that are keen 
to adopt the use of renewable energy. The UK government has 
made energy storage a key strategy in its aim to move towards 
decarbonizing its energy supply. Renewables play a key part in 
this. In this paper we propose an environment in the future in 
which domestic consumers have batteries embedded in their 
houses, together with renewables. For such systems, it is 
essential to know when to utilize the batteries. With differential 
pricing within the day ahead power market, it is important to 
control the energy transactions. This paper proposes the use of 
genetic algorithms to optimize the energy transactions in a local 
community, where a virtual power plant is based.   

Prosumer participation in the power market is done through 
a third part agent called the virtual power plant (VPP). This is 
because the energy required by the bulk power system when it 
purchases energy is large, and cannot be provided by a single 
prosumer. A VPP is an aggregator and a business entity that 
aggregates large numbers of small unit of prosumer’s energy 
resource like battery storage, photovoltaics, micro combine heat 
and power etc. VPP uses the aggregated unit to participate in the 
power market of the bulk power system on behalf of the 
prosumer. The financial reward for both the VPP and the 
prosumer is important, if both entity are to remain participant in 
the power market. A proper pricing scheme and coordination of 
the prosumer’s energy resource are required to achieve 
maximum reward for both entities.  

 The concept of domestic energy consumer using battery 
energy storage to participate in the power market was proposed 
by Kempton et al [8]. Work on  different energy management 
strategy for dealing with  battery electric vehicle has been done 
by these authors [9] [10] [11], [12]. These strategies are also 
applicable to virtual power plants, and could be used by a 
prosumer who wishes to have his battery embedded in his house.  

There are four main power markets in which domestic 
energy consumer could participate using battery storage. These 
includes; baseload power market, peak power market, regulation 
service power market, and spinning reserve. Base load power 
market requires the provision of energy round the clock to meet 
grid’s minimum energy demand. Peak power market requires 
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the provision of energy to the grid during peak period. 
Regulation service power market is a frequency control support 
service required by the grid. Spinning reserve market requires 
keeping an extra energy capacity for the grid. This extra capacity 
can be dispatch within 10 minute when there is grid capacity 
loss.  

II. ARCHITECTURE OF  VIRTUAL POWER PLANT 

INVESTIGATED 

Fig. 1 is a diagram describing the VPP model developed in 
this work.    

 
 Fig. 1. Framework for the VPP model. 

From Fig 1, N is the total number of prosumers within the 
community aggregated as a VPP.  Ed1 to EdN is the discharge 
energy from prosumer 1 to N battery respectively. Prsell is the 
prosumer sell price of energy from battery, or the price at which 
the VPP buys energy from the prosumer’s battery. L1 to LN is 
the load demand of prosumer 1 to N respectively. Prbuy is the 
price at which the prosumer buy energy from the VPP to meet 
its load, or the price at which VPP sells energy to the prosumer 
to meet load demand. Eimp and Eexp are the amount of energy 
imported from the grid, and exported to grid by the VPP. Pvimp 
and Pvexp are the VPP import and export price of energy to the 
grid respectively.  

A. Virtual power plant 

In Fig. 1. The VPP can buy energy from the grid (Eimp) at 
price Pvimp and from the prosumers (Ed1 to EdN from prosumer 
1 to prosumer N) at price Prsell respectively. The energy bought 
from the grid is use to meet the prosumer’s energy demand (L1 
to LN) respectively. The VPP buys power in bulk from the power 
market to meet its prosumer’s load demand, as would be 
expected. In this model the VPP can combine both energy from 
the grid and the prosumer’s battery to meet the load demand of 
each prosumer respectively.  (L1 to LN). The energy bought from 
each prosumer’s battery (Ed1 to EdN from prosumer 1 to 
prosumer N) are aggregated by the VPP. The aggregated energy 
is first use within the community to meet each prosumer’s load 
demand respectively before it can be traded in the power market 
(exported to the external grid) by the VPP on behalf of the 
prosumers.  

This model considered a VPP which has a day ahead forecast 
of each prosumer hourly load profile respectively, as well as the 
day ahead agreed prosumer’s sell price and buy price of energy. 
The VPP also has a day ahead forecast of the price at which the 

external grid would buy energy from the VPP (Pvexp) and sells 
energy to the VPP (Pvimp). Based on these forecast (assume no 
error band), the VPP prepare its day ahead schedule of its energy 
resource by optimally allocating its energy resources so as to 
maximize profit in the day ahead power market. The energy 
resource allocation is done by determining the amount of energy 
that would be discharge from each prosumer’s battery. Based on 
the amount of energy to be discharged from the prosumer 
battery, the amount of energy to be imported from the external 
grid to meet the prosumer’s load demand, and the amount of 
energy to be exported to the external grid is then determine. VPP 
can only export energy after the load demand of the prosumers 
are first met by the energy discharge from the prosumers battery.   

B. Prosumer 

A community consisting of three prosumers (N=3) was 

considered in this model. Each prosumer was considered as 

having a fully charged battery energy storage embedded inside 

their home respectively. The battery energy capacity was 

considered to be the same for all the prosumers.  The day ahead 

hourly load profile of each prosumer is shown in Fig. 2. 

 
 Fig.2 Forecasted hourly load profile of each prosumer. 

Fig. 2, is a typical hourly load profile of three different class 
of domestic energy consumers within residential community in 
the United State. This data was obtained from Xcel energy [13]. 
This hourly load profile was assumed to be each prosumer’s day 
ahead hourly load profile in this work. As shown in Fig. 2, each 
of the prosumers have got a different hourly load profile.   

III. MATHEMATICAL FORMULATION 

A. VPP Energy Balance 

The VPP energy balance during import and export of energy 

at time interval t is represented in (1) & (2) as follows. 
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      i is an integer. N is the total numbers of prosumers connected 
to the VPP. 𝐸𝑖𝑚𝑝𝑡

 and 𝐸𝑒𝑥𝑝𝑡
are the amount of energy imported 

from the grid by the VPP, and the amount of energy exported to 
the grid by the VPP respectively during the time interval t. Edi,t 
and  Li,t  are the energy discharge from prosumer i battery, and 
the load of prosumer i respectively during the time interval t.  



B. VPP Profit 

The VPP profit Vppprofit, at each time interval t over the day’s 

total number of time interval (T) is calculated as follows.  
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Where 𝑉𝑝𝑝𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑡
 and 𝑉𝑝𝑝𝑐𝑜𝑠𝑡 𝑡

 are the VPP revenue and 

cost during time interval t respectively. T is the day’s total 
number of time interval. Both VPP revenue and cost are 
calculated respectively as follows.  
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Where 𝑃𝑟𝑠𝑒𝑙𝑙 𝑡
, 𝑃𝑟𝑏𝑢𝑦𝑡

, 𝑃𝑣𝑖𝑚𝑝𝑡
, and 𝑃𝑣𝑒𝑥𝑝𝑡

 are the prosumer 

selling price of energy to the VPP, prosumer buy price of energy 
from the VPP, the VPP import price of energy, and the VPP 
export price of energy respectively during the time interval t.  

C. Prosumer Net Cost 

The prosumer’s net cost Prcost, at each time interval t over the 

day’s total number of time interval T is calculated as follows.  
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D. Battery Constraints 
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Where  𝐸𝑑𝑚𝑖𝑛𝑖
 and 𝐸𝑑𝑚𝑎𝑥 𝑖

 are the bound constraint, which 

are the minimum and maximum energy that can be discharge 
from prosumer i battery. Ebatti is prosumer i initial battery 
energy level. Since each prosumer was assumed to have a fully 
charged battery, the initial battery energy level is the same with 
the battery capacity. From (8), the total energy discharge from 
each prosumer’s battery over T must be less than or equal to their 
respective initial battery energy level.   

IV. IMPLEMENTATION 

To understand the optimization problem, the number of 

households chosen to participate in the VPP was kept at three. 

The optimization function is the VPP profit which would be 

expected to be given by (3). However, (3) does not account for 

the fact that the battery depreciates. Typically, the higher the 

discharge energy the shorter the life time of the battery. As such 

depreciation was reflected in the optimizing function in (9) as 

follows. 
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F is the VPP profit, and is the objective function to be 
maximize. Dep is the depreciation cost. The energy discharge 
(Ed) is squared to give an indication that the battery would 

degrade much faster when it is subjected to higher discharge. In 
this work, both Edmin and Edmax values were chosen to be 0 and 
1 per unit respectively for each and every prosumers. Ebatt 
(initial battery energy level) for each prosumer was chosen to be 
18 per unit respectively. Only discharging of battery has been 
considered in this work. Genetic Algorithm (GA) was used to 
determine the optimum day ahead energy discharge pattern from 
the battery given the day ahead pricing regimes and prosumer’s 
load profile to the VPP. To implement GA, an initial population 
of one thousand chromosome was randomly generated 
considering battery constraints. These chromosome represents 
the initial candidate solutions to the optimization problem F. 
Each chromosome is composed of three genes. Each gene 
represent the energy discharge variable from each of the three 
prosumers battery respectively. Each gene is composed of 24 
DNA which represents the prosumer’s battery energy discharge 
at each time interval of t (an hour) over the day’s total number 
of time interval T (24 hours). Fitness function (F in equation (9)) 
was used to calculate the fitness value of each chromosome. 
Selection, based on fitness value was used to eliminate half of 
the chromosome population that has the least fitness value. 
Random crossover points, and random pairs where used to 
generate a new population. The cycle is then repeated in order to 
reach an optimum solution.  

V. RESULTS & DISCUSSION 

Fig. 3 shows the price profile used by the VPP. These values 

are based on percentages above the import price, which is 

considered as the lowest price.  The values at the two peaks 

reflect the prices that would be charged to reduce load demand 

or increase battery discharge. Dep was set at 0.6 pence.  

 
Fig. 3. Price based on percentages, and stepped base value. 

 
Fig. 4. Effect of Percentage Pricing on Community. 

0 5 10 15 20
0

2

4

6

8

10

12

Time interval (Hours)

P
ric

e 
(P

en
ce

)

 

 

Import

Export

Prosumer Buy

Prosumer Sell

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

Number of Iteration

P
en

ce
, 

an
d 

P
er

 U
ni

t

 

 

Battery Energy (Per Unit)

VPP Profit (Pence)

Prosumer Net Cost (Pence)



Figure 4, shows how the VPPs profit changes and finally 
converges as the algorithm optimizes. It can be seen that this is 
at the cost of the prosumer. Also, as the algorithm optimizes to 
maximize VPP profit, the battery energy (total energy used from 
all prosumers battery) changes and finally converges to zero.   
Further investigation reveals that the price setting is unrealistic. 
Fig. 5 shows the proposed pricing that would enable the market 
to work better. This pricing setting is based on the energy need 
of the grid. This is what is reflected in the peaks and off-peaks 
period. During off-peak period, the grid is not interested in 
buying energy from the prosumer. Ideally, the Prosumers should 
be charging their batteries during off-peak period. The results of 
the optimization are given in Fig. 6 and Fig. 7. Fig. 6 shows that 
the cost to the prosumers has actually gone down compared to 
Fig.4. The VPP profit has also gone up. This profit is at the 
expense of the prosumer whom is not able to sell energy during 
peak period as a result of the low price margin between the VPP 
export price and the prosumer sell price, as well as the high 
battery depreciation cost. Fig. 7 shows the actual discharge from 
each prosumers battery. The results are not as one would expect. 
The batteries are meant to discharge at the peak periods. This 
would have resulted in supporting the grid as would be expected 
in peak hours from energy storage. The battery actually 
discharges at the off-peak hours and avoids the peaks hours 
completely. This is because of the optimization which favors the 
VPP. Since the VPP would be paying out to prosumer more than 
he would be gaining from selling the same to the grid, his 
decision would be not to purchase energy from the prosumer.     

 
Fig.5. Proposed pricing.  

 
Fig.6. Effect of Proposed Pricing on Community.  

 

The effect of the depreciation cost is tested by changing Dep 
to 0.06 pence. This allows the battery to discharge at higher 
currents. Fig.8 shows the new discharging levels. It is noticeable 
that they are higher than that of Fig. 7. In Fig. 9 we also notice 
that both the VPP profit and the prosumer’s net cost improved 
slightly because of the higher discharge. However, the peak 
times are still low. In order to make sure that the storage is used 
at peak time, the margin between the import and export price is 
modified during the peak as shown in Fig. 10. A key change is 
noticed in the prosumer discharging profile in Fig. 12, where 
discharging occurs during peak periods. From Fig. 11, the net 
cost to prosumers is also significantly lowering as the VPP seeks 
to purchase much energy from the battery storage. 

 
Fig.7. Prosumer battery discharge at Dep = 0.6 pence.   

 
Fig.8. Prosumer battery discharge at Dep = 0.06 pence.   

 
Fig.9. Effect of depreciation lowering on Community.   

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

Time interval (Hours)

P
ri
c
e
 (

P
e
n
c
e
)

 

 

Import

Export

Prosumer Buy

Prosumer Sell

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

140

Number of Iteration

P
e
n
c
e
, 

a
n
d
 P

e
r 

U
n
it

 

 

Energy Battery (Per Unit)

VPP Profit (Pence)

Net Cost (Pence)

0 5 10 15 20
-0.5

0

0.5

1

1.5

Time interval (Hours)

E
n
e
rg

y
 D

is
c
h
a
rg

e
 (

P
e
r 

U
n
it
)

 

 

Prosumer 1

Prosumer 2

Prosumer 3

0 5 10 15 20
-0.5

0

0.5

1

1.5

Time interval (Hours)

E
ne

rg
y 

D
is

ch
ar

ge
 (

P
er

 U
ni

t)

 

 

Prosumer 1

Prosumer 2

Prosumer 3

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Number of Iteration

P
e
n
c
e
, 

a
n
d
 P

e
r 

U
n
it

 

 

Energy Battery (Per Unit)

VPP Profit (Pence)

Net Cost (Pence)



The above experiments show that pricing is very important. 
Any algorithm will optimize but may not meet the objectives of 
introducing the VPP technology. Furthermore, for storage it is 
important to account for the actual discharge and its effect on the 
life-time of the battery. Economic models will attach a price 
based on life time. This may not be suitable for real-time 
optimization of energy resources. 

 
Fig.10. Modified pricing scheme.   

 
Fig.11. Effect of modified pricing scheme on Community.   

 
Fig.12. Effect of modified pricing scheme on discharge. 

 
Further work on this project will investigate types of 

communities with representative energy patterns based on 
national demographics. It is envisaged that VPP could be used 
for large African cities. However, tariff schemes need to be 
carefully addressed.  

VI. CONCLUSIONS 

In this paper, it has been demonstrated that it is possible to 

have a virtual power plant that is involved in embedded energy 

storage at the residential level. It has been shown that pricing 

plays a key role. However, whilst daily optimization may be 

possible to seek daily optimum, it is essential to include an 

element of the degradation effect as a result of high discharge 

rates from the prosumer batteries. This factor should be 

accounted for in any optimization. In this paper GA algorithm 

has been used to optimize a local community. It is feasible that 

adjustment of the loads is possible if scheduling is also used.  
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