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Abstract 

Nowadays Fiber Reinforced Polymers (FRPs) represent a well-established technique for rehabilitation of 

Reinforced Concrete (RC) and masonry structures. However, the severe degradation of mechanical 

properties of FRP under high temperature and fire as well as poor sustainability represents major weak 

points of organic-based systems. The use of eco-friendly inorganic geopolymeric matrices, alternative to 

the polymeric resins, would be highly desirable to overcome these issues. The present work aims to 

investigate the bond characteristic of a novel Steel Reinforced Geopolymeric Matrix (SRGM) 

strengthening system externally bonded to a concrete substrate having low mechanical properties. SRGM 

composite material consists of stainless steel cords embedded into a fireproof geopolymeric matrix. 

Single-lap shear tests by varying the bonded length were carried out. The main failure mode observed of 

SRGM-concrete joints was debonding at the fiber-matrix interface. Test results also suggest the effective 

bond length. On the basis of the experimental results, a cohesive bond-slip law was proposed. 

 

Keywords: A. Fabrics/textiles; B. Debonding; B. Fibre/matrix bond; C. Analytical modelling. 

 

1. Introduction 

Fiber Reinforced Polymers (FRPs) materials are the most common type of composite systems used for 

structural strengthening and rehabilitation applications of Reinforced Concrete (RC) structures. FRPs are 

comprised of continuous fibers (usually carbon, glass, or aramid) and an organic resin, typically epoxy, as 

a matrix. The researchers [1-3] and civil engineers [4, 5] are well-acquainted with the use of FRP 

composites Externally Bonded (EB) to RC members, and are eager to explore innovative materials that 
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could lead to more sustainable alternatives to traditional composites without compromising the 

advantages of such retrofitting systems. Promising newly developed types of matrices, that are potentially 

represent a more sustainable, and durable alternative than epoxy, are the so-called inorganic matrix [6-9]. 

They can be used both with traditional [6] or innovative reinforcing strips/sheets [10-12]. Among these, 

novel steel strengthening strips, made of stainless or Ultra High Tensile Strength Steel (UHTSS) cords 

[13, 14], poliparafenilenbenzobisoxazolo [15, 16] and basalt fabrics [17] are now available in the 

construction industry. Different inorganic-based strengthening systems for RC structures were proposed, 

for example Textile Reinforced Concrete (TRC) [18, 19], Textile Reinforced Mortar (TRM) [20], Fiber 

Reinforced Cementitious Matrix (FRCM) [11, 21], Fiber Reinforced Grout (FRG) [22-24]. Some studies 

highlighted both the effectiveness of inorganic based composite materials as EB strengthening system and 

the different bond behavior and load transfer mechanisms compared to FRP system [16, 25, 26, 27]. As 

regards to FRCM systems, friction between fiber filaments and between fibers and matrix was observed 

after the debonding process initiates [28, 29]. Furthermore, a specific qualification method was proposed 

by Ascione et al. [30]. 

Within the broad category of inorganic matrices, geopolymers have raised some interest in recent years 

[31]. They are inorganic aluminosilicates produced by alkali activation solutions and source materials. 

Thus, geopolymers are manufactured using activated industrial waste materials such as fly ash in the 

presence of sodium hydroxide and sodium silicate solutions. The geopolymeric matrices have significant 

advantages compared to the traditional epoxy resin used for FRP system, such as: excellent resistance to 

corrosion, high value of transition temperature, no emission of toxic gases under intense fire, excellent 

durability even in strong aggressive conditions (coastal areas, deicing salts, acid rain) and high resistance 

against sulfates [8, 9, 24, 32]. A further advantage of the geopolymeric matrices compared to epoxy 

adhesives is related to their inorganic silico-aluminate nature, which makes these materials similar and 

alternative to cementitious materials, due to high mechanical properties and environmental advantages. In 

fact, the cement industry contributes around 6% of all CO2 that is responsible for about 65% of global 

warming emissions [32], causing significant environmental issues. As a result, it is necessary to find new 

inorganic materials alternative to cementitious mortars which are environmentally stressful. To this end, 

geopolymers are a breakthrough development providing an essential alternative to cementitious materials, 

using novel environmentally friendly materials.  



3 
 

The use of geopolymer concrete in new RC members [33, 34] and geopolymeric matrices in the repair 

and strengthening of existing structures [24, 32] has been already investigated. With reference to the 

rehabilitation, two main applications were addressed: the use of geopolymeric mortars as repairing layer 

[32] or as binding agent to insure the adhesion between the external reinforcing sheets/strips/laminates 

and concrete substrate [24, 32]. When the geopolymeric matrix is used to embedded steel strips, the 

strengthening composite system is labeled as Steel Reinforced Geopolymeric Matrix (SRGM) [35, 36]. 

The studies available in literature show that geopolymer-based systems can be successfully used in 

strengthening applications of RC members [7, 9, 24, 35, 36], although their behavior is different from 

FRP composites due to differences in the debonding failure mechanism. Debonding failures are critical in 

strengthening applications because they can be brittles, and can control the overall performance of the 

system by triggering global member failure. With FRP composites, it is well-known that debonding 

typically occurs at the adhesive-concrete interface and usually involves a thin layer of the concrete 

substrate. Research available on debonding of steel reinforcing strips embedded into inorganic matrices is 

very limited. In general, the debonding was observed at matrix-steel cords interface [9, 24, 35, 36]. 

Consequently, the substrate, on which the composite is applied, could not play a key role in the design of 

the strengthening system. A complete understanding of the mechanism of interfacial load transfer of 

SRGM system bonded to concrete substrate is critical to design and has not yet been analyzed. 

This paper presents the results of an experimental investigation aimed to study the interfacial behavior 

and stress-transfer mechanism of the SRGM composite EB to a concrete substrate. To this end, single-lap 

shear bond tests were carried out. In order to simulate substrates of existing old RC structures, the 

specimens were cast with low concrete strength. This research is needed for the development and/or 

validation of analytical models to calculate the effective bond length, which can be used to evaluate the 

load carrying capacity of the interface. 

 

2. Experimental program 

The experimental campaign was carried out at the “Laboratory of Materials and Structural testing” of the 

University of Calabria (Italy). It is a part of a wider in-progress experimental program aimed at 

investigating the bond behavior of SRGM-concrete joints as well as the structural performance of full 

scale RC beams strengthened with this innovative system [35, 36]. In this paper, the results of twelve 
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single-lap shear tests, with variable bonded lengths, are presented and analyzed. Detailed information 

about the geometry and mechanical properties of the test specimens, the strengthening system and the test 

set-up are given in the following sections. 

 

2.1. Geometric and mechanical properties 

The single-lap shear test specimens comprised of the composite SRGM system bonded to a concrete 

prism as shown in fig. 1. The concrete prisms were 150 mm wide x 200 mm deep x 600 mm long. The 

composite SRGM system was bonded to a 150 mm x 600 mm concrete face. The specimens were labeled 

with the bonded length (lb) followed by “S” (if present), which indicates that the specimen was equipped 

with strain gages. 

The concrete compressive cylinder strength (fcm) was evaluated by testing six cylindrical samples (150 

mm x 300 mm) at 28 days and the average value was 16.8 MPa. Splitting tensile tests were also carried 

out at 28 days on six cylindrical samples (150 mm x 300 mm) and the average tensile strength (fctm) was 

1.7 MPa. 

 

2.2. SRGM Strengthening system 

The SRGM composite material consists of a stainless steel strip (Fig. 2(a)) embedded in an inorganic 

fireproof matrix (Fig. 2(b)). The properties of the steel strip provided by the manufacturer and/or trading 

company [37] are given in Table 1. It is a unidirectional reinforcing fabric made of stainless cords, 

particularly resistant to corrosion, suitable for interventions on substrates subject to rising damp and/or 

exposure to aggressive environments. The base material used for the manufacturing of steel fabrics is the 

same as the one used for tires. Therefore, a design process of the steel fabrics using the disposed worn 

tires will be environmentally friendly as well as the manufacturing process of geopolymeric matrices [38]. 

The properties of the matrix are given in the technical data sheet [39] and are summarized in Table 2. It is 

a polymers-based inorganic mineral with the addition of synthetic fibers, ready to use with the addition of 

1 liter of water per 5 kg (Fig. 2(b)), and suitable for structural repairs of deteriorated cover concrete being 

able to be applied with thicknesses between 2 and 40 mm.  

The main advantages of the polymer-based inorganic matrix are: high mechanical strength for both short 

and long curing, strong adhesion to concrete substrate, high resistance against sulfates, excellent 
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durability even in sever aggressive conditions (coastal areas, deicing salts, acid rain), excellent resistance 

to corrosion and high value of transition temperature (about 800°C).  

The use of geopolymeric matrices in external strengthening applications is not yet widely known and used 

in practical applications, as it could potentially be, due to some critical issues that characterize these 

applications. Manufacturing of geopolymers represents the main issue [6]. So far, good mechanical and 

physical properties of geopolymeric composites were obtained by controlling the curing conditions at 

high temperature and pressure. The present work investigates the SRGM-concrete interface behavior on 

specimens cured at room temperature and atmospheric pressure. 

 

2.3. Surface preparation and bond procedure 

Before bonding of the external SRGM reinforcing system, faces of concrete blocks were carefully cleaned 

in order to remove dust, loose particles, oil stains, and other parts that could affect bonding. Subsequently, 

the concrete surface was subjected to moist sandblasting and hydraulic scouring. The matrix was only 

applied to the bonded area of the embedded fibers and to bond the composite to the concrete substrate. 

The matrix was applied from the edge of the external longitudinal cords on one side of the strip to the 

edge of external longitudinal cords on the other side of the strip. A 3-4 mm layer of matrix (internal layer) 

was applied using molds to control the composite width and thickness (Fig. 3(a)). A single layer of steel 

strip was applied onto the matrix, and the cords were pressed onto the matrix to assure proper 

impregnation (Fig. 3(b)). A second 3-4 mm external layer of matrix was applied over the steel strip (Fig. 

3(c)). The bonded width was constant for all specimens (bf = 50 mm), whereas the bonded length (lb) of 

the composite was varied from 100 mm to 400 mm. 

 

2.4. Test set-up and instrumentation 

The single-lap shear test set-up, which is commonly used to study the bond characteristics of 

FRP/FRCM-concrete joints [15, 28, 29, 40] was adopted in this study. The classical push-pull 

configuration was used, in which the SRGM composite was pulled out of a restrained concrete prism 

(Fig. 4(a)). The concrete prism was restrained against movement by a steel plate bolted to the testing 

machine base. A steel plate was inserted to distribute the pressure to the prism. Tests were conducted 

under displacement control (0.0033 mm/s according to [30]) using a servo-hydraulic universal testing 
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machine. Assuming that the strain of concrete prism is neglected, the global slip may be defined as the 

relative displacement between points on the strip just outside the composite bonded area and the adjacent 

surface of the concrete prism (Fig. 4(b)). Global slip was measured using two linear variable displacement 

transducers (LVDTs). The LVDTs reacted off of a thin aluminum L-shaped plate that was attached to the 

steel cords adjacent to the beginning of the bonded area as shown in Fig. 4(c). The average of the two 

LVDT measurements was used to calculate the global slip. Furthermore, aluminum plates were attached 

to the end of the reinforcing strip with an epoxy resin to grip the steel cords during the tests. In order to 

measure the material strains of the steel strip, strain gages were attached along the bonded length. To 

apply the strain gages to the steel cords, slots were created during the application of the external layer of 

matrix in the locations of the strain gages (Fig. 4(c)). To avoid damage to the strain gages, the latter were 

installed after the hardening of the matrix. All the data obtained from load cell, strain gages, and LVDTs 

were automatically recorded through a data acquisition system with a frequency of 2 Hz. 

 

3. Experimental results 

3.1. Load-global slip response and failure modes 

The load-global slip (F-s) curves for all tested specimens are shown in Fig. 5. It should be noted that the 

curves are quite similar and the ultimate global slip value depends on the bonded length. In fact, for 

largest bonded lengths, the highest slips were recorded. The values of the maximum load and the 

maximum strain recorded along the reinforcing strip, for all the tested specimens, are given in Table 3. 

The maximum values were recorded for the specimen 400S (Fmax = 7.90 kN, εmax = 6.65 ‰), respectively. 

Fig. 6 shows an idealized load-global slip response to that presented in Fig. 5 with the corresponding 

stages of the stress-transfer mechanism for bonded length greater than the effective bonded length (leff). 

The first part of the idealized F-s response is represented by a linear branch (OA) associated with elastic 

behavior of the interface (local bond-slip law, τ-s). After point A (Fig. 6), the response tends to be 

nonlinear; the interface between the fibers and the matrix exhibits some micro-damage, and the value of 

the applied load increases until the onset of debonding at the matrix–steel cords interface, which 

corresponds to point B (Fig. 6). After point B, a similar stress-transfer mechanism shifts along the bonded 

length, and the load remains approximately constant whereas the slip increases. As a result, the zone in 

which the stresses are transferred from the concrete substrate to the composite, labeled as stress transfer 
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zone (STZ), is fully established for bonded lengths greater than the effective bond length when the load 

reaches a value corresponding to debonding initiation. An increase of the global slip after initiation of the 

debonding process results in a simple translation of STZ further along the bonded length of the composite 

whereas its shape remains constant. It should be observed that the load-global slip response of the SRGM 

system bonded to concrete substrate is very similar to that of FRP-concrete joints [40]. 

However, the failure modes of SRGM-concrete joints are different compared with FRP-concrete joints. In 

fact, for FRP-concrete joints, it is well-known that interface crack propagation typically occurs within a 

thin layer of the substrate close to the FRP composite, and therefore the concrete mechanical and fracture 

properties and the surface treatment play an important role in the evaluation of the strengthening 

performance. However, for the SRGM-concrete joints, debonding was observed at steel cords-matrix 

interface and, only for the specimens 100 and 150S, debonding was developed at SRGM-concrete 

interface (Fig. 7). Consequently, the low mechanical properties of concrete substrate do not affect the 

bond performance of the strengthening system. 

As suggested by Carloni et al. [28], different impregnation of the matrix along the steel cords and/or 

potential misalignment during the tests, could result in a non-uniform distribution of the applied load 

among the steel cords. The non-uniform load distribution was evaluated by calculating the rigid rotation 

of the L-shaped plate. By knowing the global slips in the left and right of the steel reinforcing strip at the 

loaded end (Fig. 8(a)), the rotation angle  can be calculated 𝛼 = arctan
∆𝐿−∆𝑅

70
, where 70 mm is the 

distance between the two LVDTs (see Fig. 8(a)), ΔL and ΔR are the global slips recorded by LVDTs 

located at the left and right of the steel reinforcing strip, respectively. The load-α curves for all the tested 

specimens are calculated at each load stage and presented in Fig. 8(b). In general, the rotation angle 

ranges from -0.25° to 0.25° and, only for specimen 300S, the rotation angle is about 2°. This large 

rotation angle for specimen 300S indicates non-uniform distribution of the load and is deemed 

unacceptable. Therefore, the results for specimen 300S are not considered in the theoretical analysis 

presented below. 

 

3.2. Effective bond length 

The length needed to fully establish the STZ, i.e. the effective bond length (leff), can be defined as the 

distance between the two points of the nonlinear strain distribution in which the derivative of the strain 
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distribution function is zero close to the free end and constant close to the loaded end [27, 41]. Indeed, the 

zero value of derivative points out that load is not transferred and shear bond stress is equal to zero 

(stress-free zone). Instead, the constant value of derivative points out that debonding occurred and the 

shear bond stress is zero (fully-debonded zone). The average value of leff evaluated for the specimens 

equipped by strain gages is about 200 mm. For example, the strain distribution along the bonded length 

(leff) at different load levels, for the specimen 400S, is shown in Fig. 9. It should be noted that, at the 

maximum load (100% Fmax), the strain recorded by the strain gage located at 50 mm is almost zero, 

whereas the strain recorded by the strain gage located at 250 mm is 6.65%. By using a nonlinear strain 

relationship fitting the actual strain distribution along the bonded length [41], it is easy to prove that the 

derivatives at 50 mm and at 250 mm are approximately zero and constant, respectively, concluding that 

the effective bond length is 200 mm. 

Furthermore, being leff the length required to develop the maximum bond strength, the above result is also 

confirmed by analyzing the maximum load by varying the bonded length (Fig. 10). In fact, for bonded 

length higher than 200 mm, the maximum load is almost constant (specimens 200, 200S, 250, 250S, 300, 

300S, 400, 400S), whereas for bonded length less than 200 mm the maximum load significantly lower 

(specimens 100, 100S, 150, 150S).  

 

4. Analytical modeling for SRGM-concrete joint bond slip 

It is well-known that the load carrying capacity of externally strengthened RC members is affected by 

premature failure caused by debonding of external reinforcing layer from concrete substrate. In order to 

evaluate the interfacial bond mechanisms and carry out accurate numerical simulations of SRGM 

strengthened RC members, an appropriate local bond-slip law (τ-s) is required as such model is not yet 

available in literature. In this study, a cohesive steel strip-matrix interface law is calibrated and validated 

against experimental data. The cohesive law defines the relationship between the shear stress at the 

interface and the relative movement between two points, one located in matrix and the other in stainless 

steel strip. The following assumptions were made in the analysis: 

 SRGM strip is homogenous and linear elastic; 

 the thickness and width of SRGM strip is constant along the bonded length; 

 the interface is subjected only to shear loading and 
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 the strains in concrete and matrix are neglected. 

Consequently, local slips can only occur at steel strip-matrix interface. This assumption is confirmed by 

experimental tests (Fig. 7). 

As stated by Faella et al. [42], two approaches are available for calibration of an interface model based on 

experimental results: direct and indirect/inverse approaches. The procedure employed in this study is 

inspired to a direct approach. 

Generally, in order to obtain the local bond-slip relationship from the direct single-lap shear bond test, 

many strain gages should be attached with a small interval (10 mm - 20 mm) on the surface of the 

reinforcing strip. As a result, the strain distribution along the interface corresponding to every step load 

can be obtained. Fig. 11 shows a sketch of test set-up required for single-lap shear bond tests. Assuming 

that the interval of strain gages (Δx) is a constant value (50 mm or 100 mm in this study), considering 

equilibrium, the bond stress can be obtained using the following expression: 

x

tE

dx

d
tE

iiff

ffi





 )( 1


     

(1) 

where τi is the average interfacial bond stress in section i; εi and εi-1 are the strain values of the i
th

 and i-1
th 

gages arranged along the reinforcing strip, respectively, according to the reference system shown in Fig. 

11; where Ef and tf are the elastic modulus and thickness of the external reinforcement, respectively. The 

local slip between steel strip and matrix can be expressed as: 
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where si is the local slip between steel strip and matrix at section i; ε0 is the strain in the steel strip at the 

free end of the bonded area (Fig. 11) and εj (j=1, i) is the strain value of the j
th

 strain gage arranged on the 

reinforcing strip. The free end slip strain can be assumed approximately as zero in the case of using a long 

bond length (greater than 200 mm in the present study). 

An alternative method to obtain interfacial τ-s relationship without the necessity to record the strain 

distributions of SRGM system is used in the present study. It was proposed by Dai et al. [40] for FRP 

systems and assuming that at any location of an FRP-concrete interface, under the boundary condition of 

zero free end slip (lb ≥ leff), exists a unique τ-s relationship and a unique relationship between the strain of 

FRP sheets and interfacial slip. The latter can be expressed as follows: 
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where ε is the strain in FRP sheets at any location and s is the corresponding slip at that location. A first 

order differential calculus of ε to x yields the following equation: 
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Therefore, using equation 4, the interfacial bond stress (equation 1) can be expressed as: 
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)(
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(5) 

It should be noted that the bond-slip relationship can be determined if the relationship between strain and 

slip is defined. During the single-lap shear bond tests, the pullout forces and corresponding slips at the 

loaded end can be measured accurately through load cell and displacement transducers (LVDTs), 

respectively. As a result, the relationship between the strains of steel strip and the slips at the loaded end, 

namely as f(s), can be directly obtained from the single-lap shear tests. 

Assuming that the behavior of steel reinforcing strip is linear elastic up to brittle failure, the average value 

of strain at loaded end (Fig. 11) was calculated, at each load step, as: 

fff tbE

F


       

(6) 

where F is the pullout force recorded by the load cell (see Fig. 11). The values of F are shown in Fig. 5. 

As stated in subsection 2.4, the slip s at loaded end was measured using two LVDTs. The experimental 

relationships between the strains of steel strips and interfacial slips at the loaded ends, for the specimens 

with bond length greater than the effective bond length (200 mm), are shown in Fig. 12. It was found that 

the exponential expression (equation 7), proposed by Dai et al. [40] for FRP system and based on an 

empirical assumption, fits very well the experimental results of the present study. Specifically, A and B 

are two parameters obtained through a nonlinear regression analysis. 

  BsAsf  exp1)(

     

(7) 

By knowing the function f(s), the bond stress-slip relationship (equation 5), the interfacial fracture energy 

(Gf) and the slip smax corresponding to the maximum bond stress τmax (at which dτ/ds=0), can be obtained 

as follows: 

    BsBstBEA ff  exp1exp2

    

(8) 
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By substituting equation 10 into equation 8, the maximum bond stress τmax is equal to: 

fBG5.0max 

       

(11) 

For lb ≥ leff, the analytical maximum interfacial pullout force, Fmax,AN can be calculated by using the 

following relationship: 

fffAN tbAEF max,

      

(12) 

The results and the analytical/experimental comparison in terms of debonding load are given in Table 4, 

for all test specimens. 

Fig. 13 show the analytical/experimental comparison of the ε-s relationships. It should be noted that the 

analytical function (equation 7) fits very well the experimental response. The mean values of Gf, τmax and 

smax, calculated considering the specimens 200S, 200, 250S, 250, 300, 400S, 400 (Table 4), are equal to 

0.54 N/mm, 1.76 MPa, and 0.12 mm, respectively. In general, the coefficient of determination R
2
 is close 

to 1. This highlights that the regression curve fits quite well the experimental data. Furthermore, absolute 

average percentage error calculated on the debonding load is about 5.60%. In the previous calculations, 

the results obtained for specimen 300S were not considered due to excessive rotations during the test (Fig. 

8), as explained earlier. 

The cohesive bond-slip laws for all specimens listed in Table 4, excluding specimen 300S, together with 

the average law are shown in Fig. 14. Although the maximum interfacial strength (τmax) of the cohesive 

laws is different for the tested specimens, the fracture energy is quite similar for all specimens (Table 4, 

Fig. 14). Furthermore, recent studies available in the literature [43] showed that the variation of the 

maximum interfacial strength (τmax) do not have a strong influence on the numerical results.  

The reliability of the bond-slip law was also checked through a theoretical prediction, by means of a 

fracture mechanics based model [44], of RC beams strengthened with SRGM system applied by 

innovative Inhibiting-Repairing-Strengthening (IRS) technique [35, 36]. For IRS-SRGM strengthened 

beams debonding at fiber-matrix interface, similar to the failure mode of the SRGM-concrete joints (Fig. 

7), was observed during the experimental tests [35,36]. Therefore, the mean value of fracture energy (0.54 

N/mm) was used in the theoretical model to calculate the energy dissipated due to debonding. It was 
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shown that the analytical results fit very well with the experimental ones [36], pointing out the reliability 

of the proposed bond-slip law. Further details regarding the fracture mechanics based model and 

theoretical/experimental comparisons are given in Gunes et al. [44] and Bencardino and Condello [36]. 

 

5. Conclusions 

The bond behavior and shear transfer mechanisms of a new inorganic-based strengthening system bonded 

to concrete were experimentally and analytically investigated. Results obtained from single-lap shear 

bond tests, in terms of load-global slip response, debonding load, axial strains along reinforcing strip and 

failure modes, showed the effectiveness of the strengthening system. To simulate existing concrete 

substrate, the specimens were constructed with low concrete strength. On the basis of the obtained results, 

the following concluding remarks can be drawn: 

 The load-global slip response of SRGM system bonded to concrete substrate is very similar to that of 

FRP-concrete joints. 

 For SRGM-concrete joints, the debonding was observed at steel strip-matrix interface. As a result, 

the mechanical properties of concrete substrate do not affect the bond performance of the 

strengthening system. It is an interesting aspect of SRGM composite because the substrate on which 

the system is applied does not play a key role in the design of the strengthening system. 

 The effective bond length for SRGM system is about 200 mm. 

 A cohesive bond-slip law capable of simulating the interfacial behavior between steel cords/strip and 

inorganic matrix was calibrated and validated against the experimental results. The mean values of 

fracture energy, maximum shear bond stress and corresponding slip are equal to 0.54 N/mm, 1.76 

MPa and 0.12 mm, respectively. 

The study highlights the potentiality of the SRGM strengthening system. Nevertheless, further 

experimental and theoretical investigations are needed to consolidate the obtained results. Future work 

should investigate the bond and structural performances of SRGM systems under different environmental 

conditions, such as fire exposure and/or different temperature and pressure. 
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(a) (b) 

Fig. 1. Geometrical details of test specimens: (a) Longitudinal section; (b) Transversal section (all 

dimensions are in mm). 

 

 

  

(a) (b) 

Fig. 2. SRGM composite system: (a) Unidirectional stainless steel strip; (b) Geopolymeric matrix. 

 

 

 
  

(a) (b) (c) 

Fig. 3. Bond procedure: (a) First internal layer of matrix; (b) Steel strip; (c) Second external layer of 

matrix. 
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(a) (b) (c) 

Fig. 4. Test set-up: (a) Testing machine; (b) Detail “A”; (c) Detail “B”. 

 

 

Fig. 5. Load-global slip curves. 

 

 

Fig. 6. Idealized load-global slip response. 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

Fig. 7. Failure modes: (a) 100S; (b) 100; (c) 150S; (d) 150; (e) 200S; (f) 200; (g) 250S; (h) 250; (i) 300S; 

(j) 300; (k) 400S; (l) 400. 
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(a) (b) 

Fig 8. Rotation angle of L-shaped plate: (a) LVDT position; (b) Load against rotation angle. 

 

 

 

Fig. 9. Strain distribution along the bonded length (specimen 400S). 

 

 

 

Fig. 10. Maximum load against the bonded length. 
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Fig. 11. Analytical modeling. 

 

 

 

 

Fig. 12. Experimental strain-global slip curves at the loaded end. 
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(a) (b) 

  

(c) (d) 

Fig. 13. Experimental/Analytical comparison of the fiber strain-global slip curves: (a) 200S/200; (b) 

250S/250; (c) 300S/300; (d) 400S/400. 

 

 

 

Fig. 14. Cohesive interface bond-slip law. 
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Table 1 

Properties of unidirectional reinforcing stainless steel strips according to the manufacturer [37]. 

Property Value 

Grammage 2200 g/m
2 

Fibre direction (warp – steel) 99 % 

Fibre direction (weft) 1 % 

Threads diameter 0.11 mm 

Wire diameter 1.00 mm 

Strip width 100 mm 

Nominal thickness of the strip (tf) 0.24 mm 

Unitary resistance of the strip 380 N/mm 

Resistance wires 1470 MPa 

Modulus of elasticity wires (Ef) 73.5 GPa 

Elongation at break wires 2.00 % 

 

 

 

Table 2 

Properties of inorganic matrix [39]. 

Property Value 

Compressive strength at 28 days ≥ 45 MPa 

Elastic secant modulus in compression ≥ 20 GPa 

Adhesion to concrete ≥ 2 MPa 

Granulometric interval 0.1 – 0.5 mm 

Apparent volumetric mass of fresh mortar 2050 kg/m
3 

Minimum application temperature +5 °C 
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Table 3 

Test results. 

Specimen Bond length, lb [mm] Maximum load, Fmax,EXP [kN] Maximum strain, εmax [‰] 

100S 
100 

5.47 3.48 

100 4.76 - 

150S 
150 

6.38 4.58 

150 6.25 - 

200S 
200 

7.24 5.57 

200 6.39 - 

250S 
250 

7.20 6.24 

250 7.19 - 

300S 
300 

6.17 5.35 

300 7.15 - 

400S 
400 

7.90 6.65 

400 7.74 - 

 

 

 

 

 

Table 4 

Analytical results and comparisons. 

Specimen 
A 

[‰] 

B 

[mm
-1

] 

Gf 

[N/mm] 

τmax 

[N/mm
2
] 

smax 

[mm] 
R

2
 

Fmax, EXP 

[kN] 

Fmax, AN 

[kN] 

Error 

[%] 

200S 8.31 6.82 0.60 2.05 0.10 0.91 7.24 7.28 0.55 

200 7.60 3.70 0.52 0.96 0.18 0.90 6.39 6.78 6.04 

250S 7.62 8.71 0.51 2.2 0.08 0.97 7.20 6.72 6.67 

250 7.86 3.74 0.55 1.02 0.19 0.99 7.19 6.94 3.48 

300S 5.93 8.69 0.31 1.35 0.08 0.91 6.17 5.23 15.24 

300 7.50 5.95 0.49 1.46 0.12 0.88 7.15 6.57 8.11 

400S 7.95 8.48 0.56 2.36 0.08 0.93 7.90 7.44 5.82 

400 8.00 7.83 0.57 2.21 0.09 0.63 7.74 7.06 8.79 
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Figure captions 

Fig. 1. Geometrical details of test specimens: (a) Longitudinal section; (b) Transversal section (all 

dimensions are in mm). 

Fig. 2. SRGM composite system: (a) Unidirectional stainless steel strip; (b) Geopolymeric matrix. 

Fig. 3. Bond procedure: (a) First internal layer of matrix; (b) Steel strip; (c) Second external layer of 

matrix. 

Fig. 4. Test set-up: (a) Testing machine; (b) Detail “A”; (c) Detail “B”. 

Fig. 5. Load-global slip curves. 

Fig. 6. Idealized load-global slip response. 

Fig. 7. Failure modes: (a) 100S; (b) 100; (c) 150S; (d) 150; (e) 200S; (f) 200; (g) 250S; (h) 250; (i) 300S; 

(j) 300; (k) 400S; (l) 400. 

Fig 8. Rotation angle of L-shaped plate: (a) LVDT position; (b) Load against rotation angle. 

Fig. 9. Strain distribution along the bonded length (specimen 400S). 

Fig. 10. Maximum load against the bonded length. 

Fig. 11. Analytical modeling. 

Fig. 12. Experimental strain-global slip curves at the loaded end. 

Fig. 13. Experimental/Analytical comparison of the fiber strain-global slip curves: (a) 200S/200; (b) 

250S/250; (c) 300S/300; (d) 400S/400. 

Fig. 14. Cohesive interface bond-slip law. 
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