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penalized: A MATLAB Toolbox for Fitting

Generalized Linear Models with Penalties.

William McIlhagga
University of Bradford

Abstract

penalized is a flexible, extensible, and efficient MATLAB toolbox for penalized maxi-
mum likelihood. penalized allows you to fit a generalized linear model (gaussian, logistic,
poisson, or multinomial) using any of ten provided penalties, or none. The toolbox can
be extended by creating new maximum likelihood models or new penalties. The toolbox
also includes routines for cross-validation and plotting.

Keywords: generalized linear models, penalized regression, lasso, MATLAB.

1. Introduction

Consider a linear regression model y = Xβ + e, where y is a vector of n observations, X is
a matrix of covariates, β is a vector of p coefficients, and e is a vector of n random errors.
Fitting this model involves two tasks: model selection, where a subset of the coefficients from
β are included in the model and the rest are excluded (that is, set to zero); and estimation,
where the values of the included coefficients are determined. Both of these tasks can be
accomplished in one step by adding a penalty term to the regression. For example, Mallows
Cp (Mallows 1973), the AIC (Akaike 1973), and the BIC (Schwarz 1978), can all be written
as a penalized least-squares problem

1
2n ‖y −Xβ‖22 + λ ‖β‖0 (1)

where ‖β‖0 is the number of nonzero coefficients (the L0 norm) of β and λ is a value which
may depend on the dispersion in the model and the number of observations. Model selection
and estimation are accomplished by finding the β which minimizes Equation 1.

Unfortunately, the L0 norm is non-convex, so it is quite hard to find the minimum of Equa-
tion 1. Partly for this reason, it has become popular to use an L1 penalized regression (the
LASSO, Tibshirani 1996) for model selection and estimation:

Pλ(β) = 1
2n ‖y −Xβ‖22 + λ ‖β‖1 (2)

where ‖β‖1 =
∑

i|βi| is the L1 norm of β. The value of the penalized regression Pλ(β) is not
meaningful in the same way that Mallows Cp or the AIC is, so the ideal penalty weight λ is
usually determined by minimizing some other criterion, such as cross-validation error. The
L1 penalty can also be added to maximum likelihood estimation; in this case we maximize

Pλ(β) = 1
n log `(y;β)− λ ‖β‖1 (3)
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(For linear regression, log `(y;β) = −1
2 ‖y −Xβ‖2.)

While the LASSO has plenty of desirable characteristics, it has some potentially undesirable
ones too. The LASSO selects coefficients in the model by shrinking all coefficients towards
zero, so the model with the correct signs and zeros for the coefficients will tend to underfit the
data. Any attempt to mitigate the shrinkage by reducing the penalty weight λ will lead the
LASSO to add in extra irrelevant coefficients. These problems have led to the proposal of a
number of alternative penalties, (for example, SCAD (Fan and Li 2001), MC+ (Zhang 2010;
Mazumder, Friedman, and Hastie 2011), FLASH (Radchenko and James 2011), and Relaxo
(Meinshausen 2007)) together with their own algorithms and software implementations. Some
of these implementations only work with linear regression, or are difficult for the end-user to
obtain and use.

It would be useful to be able to carry out penalized model fitting using any penalty, applied
to any likelihood, as the problem demands rather than as software availability permits. The
penalized toolbox is a set of MATLAB (The MathWorks, Inc. 2007) functions which allows
you to do this. The toolbox contains functions for penalized maximum likelihood, objects
which represent common generalized linear models (least-squares, logistic, multinomial, and
poisson), a wide selection of penalty functions, a cross-validation routine, and some plotting
functions. Any penalty can be combined with any generalized linear model, and new models
and penalties can be added to the toolbox.

This paper describes the toolbox: how to use it, how it works, and how the likelihood models
and penalty functions are designed. After a tutorial walkthrough of the toolbox, which shows
the sorts of analyses that can be carried out, I outline the maximization algorithm used in the
toolbox. Next, I describe the likelihood models and penalty functions, especially how they
interface to the core maximization algorithm. Finally, the toolbox is compared with glmnet
(Friedman, Hastie, and Tibshirani 2010).

2. A tutorial

The penalized toolbox is loosely modelled on glmnet (Friedman et al. 2010) so some of this
tutorial may appear familiar to users of that R (R Development Core Team 2008) package.
To start, change to the directory containing the toolbox and type

> install_penalized

This will add the necessary paths to your MATLAB path. penalized is pure MATLAB, and
uses no MEX files. (You can uninstall_penalized later if you want.) This tutorial can be
run interactively by typing the command

> echodemo jsstutorial

To begin, assume we have a set of 0-1 observations y together with a covariate matrix X
which can be modelled by a logistic regression. To create a logistic model, type

> model = glm_logistic(y, X, 'nointercept')

(Note that all models in the toolbox are prefixed with glm_. The third argument 'nointercept'

specifies that glm_logistic should not add an intercept to the design matrix; otherwise an



William McIlhagga 3

10
−4

10
−3

10
−2

10
−1

−1

−0.5

0

0.5

1

1.5

λ

co
ef

fic
ie

nt
s 

β

(A)

10
−4

10
−3

10
−2

10
−1

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400
(B)

λ

cr
os

s−
va

lid
at

ed
 d

ev
ia

nc
e

Figure 1: (A) A plot of fitted coefficients against λ on a reversed log scale. (B) A plot of the
cross-validation error against λ. The vertical dotted line at λ = 0.0142 marks the value of λ
that yields the smallest cross-validation error.

intercept is added. The intercept is never penalized. To perform a LASSO (L1 penalized) fit
of this model, type

> fit = penalized(model, @p_lasso)

The first argument to the function penalized is the model being fitted. The second argument
is a penalty function handle. (The syntax @function is like a C function pointer). Here the
penalty function is p_lasso, one of many penalty functions available in the toolbox. All
provided penalty functions are prefixed with p_. The function penalized then fits an L1

penalized logistic regression over a range of penalty weights λ.

The flexibility of the toolbox comes from the modularization implied in this function call: any
model (which conforms to the calling conventions) and any penalty function (likewise) can
be used.

The returned value, fit, is a structure. The field fit.lambda contains the sequence of λ
values used for penalization. These are automatically selected by the function or manually
controlled by the options lambdamax, lambdaminratio, and nlambda which may be passed
to penalized. (For more information on how penalized automatically selects the values of
λ, and how this selection process can be influenced or overridden, type help options) The
field fit.beta contains the coefficients: fit.beta(:,i) gives the fitted coefficients β for the
penalty weight fit.lambda(i). If the model has an intercept, it is stored in fit.beta(1,i).
The fitted coefficients can be plotted against λ by typing

> plot_penalized(fit)

yielding the graph shown in Figure 1A. If the model has an intercept, this is omitted from
the plot.

One way of selecting the best value of λ is to pick that which minimizes the Akaike Information
Criterion (AIC, Akaike (1973)). The AIC can be computed and plotted against lambda by
typing
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> AIC = goodness_of_fit('aic', fit);

> semilogx(fit.lambda,AIC)

The function goodness_of_fit supplied in the package computes the goodness of fit from the
fit structure. Instead of 'aic', you can also pass 'bic' (the Bayesian Infomation Criterion),
'deviance', or 'log-likelihood'. However, the calculation of AIC and BIC assumes that
the degrees of freedom is equal to the number of nonzero parameters, which is only know to
be true for the LASSO penalty (Zou, Hastie, and Tibshirani 2007).

Alternatively, the best value of λ may be selected by cross-validation. A 5-fold cross-validation
of the penalized logistic model can be carried out by typing

> cv = cv_penalized(model, @p_lasso, 'folds', 5)

The option 'folds' gives the number of folds; otherwise the arguments to cv_penalized are
the same as those to penalized. (Note that 5 is the default number of folds, so the option
wasn’t necessary here.) The return structure cv contains the results of the cross-validation.
The cross-validation error can be plotted against lambda by typing

> plot_cv_penalized(cv)

The results are shown in Figure 1B. The minimum cross-validation error is obtained at λ =
0.0142, which is recorded in cv.minlambda, and plotted as a vertical dashed line.

Consider now a linear regression model with observations y and covariate matrix X and an
intercept. We create this by typing

> model2 = glm_gaussian(y, X);

Since the 'nointercept' option is omitted, an intercept is added to the model.

Instead of the LASSO penalty, we might try the clipped LASSO (Antoniadis and Fan 2001),
as implemented in the toolbox function p_clipso. The clipped LASSO penalty function is
defined as clipso(x) = min(|x|, α). To use the clipped LASSO with a value of α equal to 0.3,
we type

> fit = penalized(model2, @p_clipso, 'alpha', 0.3, 'standardize', true)

Additional parameters are added as name-value options in the call to penalized. Here there
are two. The 'alpha' option specifies the α value for the clipso penalty. The 'standardize'

option effectively scales the columns of X to have equal norms. This is useful when the penalty
function is not scale invariant (which is unfortunately the case for many penalty functions).
Standardization is reversed when the fitted coefficients are calculated. The results of this
fit can again be plotted using plot_penalized(fit), yielding the graph in Figure 2A. The
intercept is omitted from the plot.

Instead of a single value for α, a range of values can be efficiently fitted in a single function
call by setting 'alpha' to an array:

> fit = penalized(model2 ,@p_clipso, 'alpha', [inf, 1, 0.5, 0.3, 0.05])
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Figure 2: (A) A plot of fitted coefficients using the clipso penalty for parameter α = 0.3
against log λ. You can see the values of the coefficients “jump” when they reach the clipping
parameter α. (B) A plot of fitted coefficients for clipso parameter α = 0.05 against log λ.

(An infinite value for α makes p_clipso behave the same as p_lasso.) The returned fit

structure holds the coefficients for all values of penalty weight λ, and all the values of α
specified in the function call. That is, fit.beta(:, i, j) holds the fitted coefficients β for
the penalty weight fit.lambda(i) and the penalty parameter fit.alpha(j), where in this
case fit.alpha will be equal to [inf, 1, 0.5, 0.3, 0.05].

We can plot all these coefficients using plot_penalized(fit). This interactively displays
the fitted coefficients against λ for each value of α, pausing after each plot. A specific value
or values of α can be picked out for plotting by typing

> plot_penalized(fit, 'slice', 5)

This plots the fitted coefficients β against λ for the 5th α value (the slice), which is equal to
0.05. The result is shown in Figure 2B. The intercept is omitted from this plot. We can pick
the best value of λ and α simultaneously by cross-validation. Typing

> cv = cv_penalized(model2, @p_clipso, 'alpha', [inf, 1, 0.5, 0.3, 0.05], ...

'folds', 3)

will do a three-fold cross-validation of the model over a range of λ and the specified values of
α. The results can be plotted with plot_cv_penalized(cv), as shown in Figure 3A. In this
case, the plot superimposes the cross-validation error versus λ curve for each value of α on
the same axes. Error bars are omitted from this plot. The minimum cross-validation error is
attained for α = 0.05 and λ = 0.1895 (which are stored in cv.minalpha and cv.minlambda).
Cross-validation errors for specific values of α (with error bars) can also be plotted. For
example

> plot_cv_penalized(cv, 'slice', [1, cv.minalpha], 'errorbars', 'on')
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Figure 3: (A) A plot of the cross-validation error versus λ for all values of the penalty
parameter α. Error bars are omitted for clarity in this plot. (B) A plot of cross-validation
error versus λ for two specific values of the clipso penalty parameter α. The blue plot shows
cv error for α =∞, and the green plot for α = 0.05, which has the best cross-validation error.

will plot the cross-validation error for the 1st value of α (∞) and the cross-validation error
for the best value of α, saved in cv.minalpha. This is shown in Figure 3B. In this case the
best cross-validation error for α = 0.05 isn’t distinguishable from the best one produced by
the lasso (α =∞).

If you have a custom penalty function mypenalty, that requires a parameter γ, it can be used
by typing

> fit = penalized(model2, @mypenalty, 'gamma', 2)

and the results can be plotted, as before. The function mypenalty must follow the calling
conventions outlined in Section 5 below. Cross validation works just as before:

> cv = cv_penalized(model2, @mypenalty, 'gamma', 1:5, 'folds', 3)

Here the cross-validation is done for a range of γ values from 1 to 5. In this case, the field
cv.mingamma says which value of γ yielded the smallest cross-validation error.

Similarly, if you have developed a custom statistical model mymodel, it can be fitted with any
penalty by typing

> fit = penalized(mymodel, @mypenalty, 'gamma', 2)

Cross-validation and plotting work as before. The custom model mymodel must be a MATLAB
object with the methods outlined in Section 4.1 below.

3. The maximization algorithm

The algorithm used in the penalized toolbox is Fisher scoring over an active set with orthant
projection (Schmidt, Fung, and Rosales 2009; Park and Hastie 2007). It is described here
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simply to indicate how the likelihood model and the penalty function interact with it, as
there is nothing original in this implementation.

We consider only penalties π(β) that are a weighted sum of coordinate penalty functions, so
that π(β) =

∑p
i=1wiπi(βi), where πi is the penalty function for the i-th coefficient βi, and wi

are the penalty weights. We wish to maximize the penalized likelihood

Pλ(β) = 1
n log `(y;β)− λπ(β) (4)

Define the score s(β) as the gradient1 of the likelihood, s(β) = d log `(y;β)/dβ. Define
π′(β) = dπ(β)/dβ as the gradient of the penalty function (with elements widπi(βi)/dβi).
Define H(β) as the Hessian of the likelihood `(y;β) with respect to β, and Π as the Hessian
of the penalty π(β). This is simply a diagonal matrix with entries wid

2πi(βi)/dβ
2
i .

The Newton iteration

βt+1 = βt − ( 1
nH(βt)− λΠ)−1( 1

ns(β
t)− λπ′(βt)) (5)

is used to find the next estimate βt+1 from the existing estimate βt. In Fisher scoring, the
Hessian H is replaced by the negative of the Fisher Information matrix, −F, to give

βt+1 = βt + ( 1
nF + λΠ)−1( 1

ns(β
t)− λπ′(bt)) (6)

This iteration is rapidly convergent when βt is close to the maximum, but might be poor far
from it. Problematic convergence can be improved using a Levenburg-Marquardt adjustment,
adding in the term ωdiag( 1

nF), to yield

βt+1 = βt + ( 1
nF + λΠ + ωdiag( 1

nF))−1( 1
ns(β

t)− λπ′(βt)) (7)

The Levenburg-Marquardt weight ω is iteratively adjusted using a trust-region algorithm.
If there is some improvement in the penalized log-likelihood Pλ(βt+1) − Pλ(βt) then ω is
decreased or kept the same, depending on the size of the improvement. However, if there
is no improvement in the penalized log likelihood, then ω is repeatedly increased until some
improvement occurs. If, after many attempts with increasing ω, there is still no improvement
in the penalized log-likelihood, then the iteration halts.

However, (7) assumes that the penalty functions are differentiable. Most interesting penalties
are not, so the algorithm must be changed to deal with this. An active set algorithm is used,
as follows.

The vector β is divided into two parts, the ‘active’ vector βA, where differentiability of the
penalty holds, and the ‘inactive’ vector β∼A, where it doesn’t. The algorithm assumes that
the only singularity of the coordinate penalty functions πi is at zero, so the active vector is
simply all the non-zero entries of β, and the inactive vector is all the zero entries.

Nondifferentiability at zero is handled using subderivatives. At a nondifferentiable point β of
the penalty π, let π−(β) be the left derivative and π+(β) be the right derivative. The subdif-
ferential is the interval [π−(β), π+(β)], and a subderivative is any value in the subdifferential.

Each modified iteration step proceeds in two parts:

1 The notation df/dx, where f is a scalar, is the gradient (∂f/∂x1, . . . , ∂f/∂xn) with respect to x. The
notation df/dx, where f is a vector, is the Jacobian matrix with elements Ji,j = ∂fi/∂xj .
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(A) Gradient ascent on the inactive vector: Any elements βi in β∼A for which

1
ns(βi) /∈ [λwiπ

−
i (βi), λwiπ

+
i (βi)]

(where s(βi) is the i-th element of the score) do not satisfy the first-order optimality
conditions for the maximum, and so are candidates for addition to the active vector.
Theoretically, all elements βi in β∼A for which the above holds could be added to the
active vector, but in practice the algorithm is more stable if, at every iteration, only
the few elements which violate the optimality conditions the most are added (Perkins,
Lacker, and Theiler 2003). For those few elements, we set βi = βi + εs(βi), for some
small ε. These elements then enter the active vector.

(B) Fisher update on the active vector: Holding the inactive vector fixed, use the up-
date

βt+1
A = βtA + ( 1

nFA + λΠA + ωdiag( 1
nFA))−1( 1

ns(β
t
A)− λπ′(βtA)) (8)

where FA and ΠA are the information and penalty matrices restricted to elements of the
active vector. This step may only be valid when βtA and βt+1

A are in the same orthant.
Thus, βt+1

A is projected onto the closest point in the orthant containing βtA for which
twice-differentiability does hold (Andrew and Gao 2007), giving us the update rule

βt+1
A = ProjA{βtA + ( 1

nFA + λΠA + ωdiag( 1
nFA))−1( 1

ns(β
t
A)− λπ′(βtA))} (9)

where ProjA is the orthant projection operator, which simply zeros all elements of βt+1
A

which have a different sign from βtA. Elements of the active set which are zeroed then
join the inactive set. If the projected step doesn’t lead to a reduction in the penalized
likelihood Pλ(β), then the trust-region procedure shrinks the step until it does.

3.1. Warm starts

Because we are interested in the value of the coefficients β over a range of penalty weights
λ, a continuation process is used to estimate them efficiently: the best fitted value β∗k for a
given penalty weight λk is used as the initial value of the iterations with the next penalty
weight λk+1.

A continuation process is also used when there are a range of penalty parameters to fit (e.g.,
α in clipso). Writing β∗k,j to be the best fitted coefficients for penalty weight λk and penalty

parameter j, the initial value β0
k,j for the k-th value of λ and the j-th value of the penalty

parameter can be either:

1. The best fit from the previous value of the penalty parameter, β∗k,j−1. This option is
selected by typing penalized( ..., 'warmstart', 'relax'). You can think of this as
fixing a particular weight λ, then “relaxing” the penalty parameter from the first value
specified to the last. This is the default option.

2. The best fit from the previous value of penalty weight λ, β∗k−1,j . This option is selected
by typing penalized( ..., 'warmstart', 'lambda'). You can think of this as fixing a
particular penalty parameter at j, then fitting successive values of the weight λ.
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3. Use both warm starts above and pick the best. This option is selected by typing
penalized( ..., 'warmstart', 'both'). Obviously this takes twice as long.

4. The likelihood

The maximization algorithm needs the score vector s(β) and Fisher information matrix F
from the likelihood model. For some likelihoods – generalized linear models (Nelder and
Wedderburn 1972; McCullagh and Nelder 1989) – these are relatively simple to compute. In
this section, we briefly review the construction of generalized linear models and specify how
they interface with the maximization algorithm.

A generalized linear model has a number of independent observations yi with expected values
E(yi) = µi. Each observation has an associated covariate vector xi = {xi1, xi2, ...xip}, which
are the rows of a covariate matrix X. The linear predictor is a weighted sum of covariates,
ηi = xiβ where β is the vector of coefficients that we wish to estimate. The linear predictor
is related to the expected value of yi by the link function f(µi) = ηi.

Because the observations are independent, the log-likelihood of the data `(y;β) with respect
to the coefficient vector β is the sum of the log-likelihoods of the observations: `(y;β) =∑n

i=1 `i(yi;β). The derivative of the log-likelihood with respect to the j-th element of β is:

s(β)j =
∂`(y;β)

∂βj
=

n∑
i=1

d`i(yi)

dµi

dµi
dηi

∂ηi
∂βj

=
n∑
i=1

d`i(yi)

dµi

dµi
dηi

xi,j (10)

In vector notation, s(β) = X>Dm where m is a vector of derivatives with elements mi =
d`i(yi)/dµi and D is a diagonal matrix with elements Di,i = dµi/dηi.

The Fisher information matrix F is given by

F = E((∇`(y;β))(∇`(y;β))>) = E((X>Dm)(X>Dm)>) = X>DE(mm>)DX (11)

Because the observations are independent, E(mm>) is a diagonal matrix with elements
E(m2

i ) = E((d`i(yi)/dµi)
2). Calling this matrix V, the information matrix can be written

as F = X>DVDX. The information matrix over the active set is just FA = X>ADVDXA,
where XA is the covariate matrix restricted to those columns which are in the active set.

4.1. Interface to the maximization algorithm

The score and information matrix could be supplied by a function, which is typically what
occurs in maximization routines (see for example, the MATLAB function fminunc in the
optimization toolbox). However, because the likelihood depends on a substantial amount of
data (the observations y and covariates X), and needs additional book-keeping functions, it
is best implemented as an object, which has methods that can be called by the maximization
algorithm as needed. The most straightforward interface would be for the likelihood object
to supply the log-likelihood log `(y;β), the score s(β) and the information matrix F(β) as
requested. However, the full information matrix could be extremely large, even when the
active set is small. A more efficient interface is for the likelihood object to supply the compo-
nents needed to compute the information matrix, and allow the maximization algorithm to
assemble them in an efficient way.
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Thus, if model is a likelihood object representing a generalized linear model, the log-likelihood
at β is computed by a call to the method logl:

> L = logl(model, beta)

The components m, D, V, and X as a function of β are returned by a call to the method
scoring:

> [L, m, D, V, X] = scoring(model, beta)

Here L is the log-likelihood again; it’s efficient to return it at the same time as the other
quantities {m,D,V,X}. The diagonal matrices D and V are returned as column vectors;
when all diagonal entries in D or V are the same, these can be returned as scalars.

Though the meaning of the elements in the tuple {m,D,V,X} are specified for generalized
linear models, the maximization algorithm doesn’t care; it requires only that the information
matrix FA is equal to X>ADVDXA and the score s(β) is equal to X>Dm. For example,
the likelihood object could return the tuple {Dm, 1,DVD,X} or {m, 1,V,DX} instead of
{m,D,V,X}, as they yield exactly the same score and information matrix.

As well as the above two methods logl and scoring, the likelihood object must also have
the following methods:

obj = constructor(...) The constructor creates the likelihood object. All of
the provided constructors will add an intercept unless
a 'nointercept' option has been given. However, this
is just a convention.

p = property(model) returns a structure containing a number of model
properties. The structure should contain fields n and p

for the number of rows and columns in X respectively;
nobs for the number of observations, which may be
different from n (e.g., in glm_logistic); intercept

which is the empty matrix if no intercept, and 1 if an
intercept has been inserted as column 1; and colscale

which gives the L2 norms of the columns of X (used
for standardization).

p = property(model,'name') returns a specific property of the model indicated by
the name.

beta = initial(model) returns a suitable initial value for β, usually just zeros.
s = sample(model, index) returns a subset s of the model having observations in

the index. This is used in cross-validation.
beta = project(model, beta) projects β onto the allowable domain of the model,

when the domain of β is restricted. Otherwise, it re-
turns β unchanged.

Further details of these methods can be found by typing help models. The toolbox pro-
vides glm_gaussian, glm_logistic, glm_poisson, and glm_multinomial class constructors.
These all inherit from a base class glm_base, which provides many of the above methods.
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5. Penalties

The third component of the penalized toolbox is the penalty function π(β) =
∑p

i=1wiπi(βi).
If the weights wi in the penalty are different from 1, they can be specified in a call to penalized

by including the penaltywt option. For example, penalized(model, @penalty, 'penaltywt', w)

uses elements of the vector w as the penalty weights.

A penalty function is useful in a model selection role by inducing sparseness in the coefficient
vector β. The ability of a penalty function to induce sparseness arises from the discontinuous
derivative of the penalty at zero. Coefficients βi satisfy the first-order optimality conditions
when

1
ns(βi) ∈ [λwiπ

−
i (βi), λwiπ

+
i (βi)]

What this implies is that coefficients βi are “trapped” at the singularity (Fan and Li 2001)
until their score 1

ns(βi) exceeds the maximum subderivative multiplied by λwi. Thus penalties
which have a singularity at zero are sparsity inducing, because they trap coefficients at zero.

Because the singularity at zero is the only useful for inducing sparsity, the maximization
algorithm assumes that it is the only singularity. However, some penalties also have discon-
tinuous derivatives away from zero (such as p_clipso). These discontinuities don’t induce
sparsity, and are ignored by the maximization algorithm. This does not cause a problem
with p_clipso, but other penalties with non-differentiable points away from zero might pos-
sibly fail. The subderivative at zero also needs to be finite; otherwise coefficients will be
permanently trapped there.

5.1. Supplied penalty functions

The penalized toolbox supplies the following penalty functions:

Adaptive (Zou 2006): The adaptive LASSO is πi(βi) = |βi|/|β̂i|γ , where β̂i is a consistent
estimate of βi, such as the ordinary least-squares estimate. The adaptive LASSO is
discussed further in Section 6.2.

Concave PF (Nikolova 2000, p. 653): The concave PF penalty is given by πi(βi) =
k|βi|/(k + |βi|). This penalty behaves like the LASSO when k = ∞, and like the
L0 penalty when k = 0.

Clipso (Antoniadis and Fan 2001): The clipped LASSO is πi(βi) = min(|βi|, α). The scaled
clipso is πi(βi) = min(|βi|, λα).

Elastic (Zou and Hastie 2005): This is a linear combination of LASSO and Ridge, πi(βi) =
α|βi|+(1− α)β2i .

FLASH (Radchenko and James 2011): The FLASH algorithm is not defined as a pe-
nalized optimization, but it has an implied penalty. The FLASH penalty, with pa-
rameter δ, is equal to |βi| when βi = 0, and is equal to (1 − δ)|βi| when βi 6= 0.
The equivalence between the FLASH algorithm and this penalty is shown in Ap-
pendix A. To use FLASH as described in Radchenko and James (2011), you must call
penalized(model, @p_flash, ..., 'warmstart', 'lambda') to get the correct warm-
starts.
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LASSO (Tibshirani 1996): The LASSO, or L1 penalty, is πi(βi) = |βi| .

Lq : The Lq penalty is just the Lq norm, πi(βi) = |βi|q. When q is less than 1, this
penalty will trap all elements of β in the inactive set because the subderivatives are
infinite. However, it can be used in penalized when a range of different q is provided.
For example the call penalized(model, @p_Lq, 'q', [1 0.8 0.6 0.4 0.2 0]) will
work, because the first value of q is just the lasso, and subsequent values of q use the
lasso solution as a warm start.

MC+ (Zhang 2010; Mazumder et al. 2011): The MC+ penalty is easiest defined by its
derivative π′i(βi) = sign(βi)(1 − |βi|/(α))+ when βi 6= 0, and πsubi (βi) = [−1, 1] when
βi = 0.

None : This penalty function doesn’t penalize, for cases where unpenalized maximum like-
lihood is needed. So πi(βi) = 0. When using this penalty, the convergence criteria for
penalized may need to be tightened. See help options.

Ridge (Hoerl and Kennard 1970): The ridge penalty is πi(βi) = β2i . When using the ridge
penalty, you must supply a starting value for λ, using the lambdamax option, e.g.,
penalized(model, @p_ridge, 'lambdamax', 1).

SCAD (Fan and Li 2001): The Smoothly Clipped Absolute Deviation penalty is easiest
defined by its derivative

π′i(βi) =


sign(βi) |βi|< λ

sign(βi)(aλ− |βi|)/((a− 1)λ) λ ≤ |βi|< aλ

0 |βi|≥ aλ

SCAD behaves like the lasso when |βi|< λ, does not penalize when |βi|≥ aλ, and
smoothly transitions between these two behaviours when λ ≤ |βi|< aλ. The parameter
a must be greater than 2.

Other penalty functions can be defined and used so long as they adhere to the calling con-
ventions given next.

5.2. Interface to the maximization algorithm

In the maximization algorithm, the penalty function must supply, at different times, the indi-
vidual penalties πi(βi), the derivatives π′i(βi), the subdifferential [π−i (βi), π

+
i (βi)], and the sec-

ond derivatives π′′i (βi), when requested. Switching between these is accomplished with a mode
parameter. Any additional parameters needed by the penalty function are passed in as fields
in an options structure. For example, the call penalized(model, @clipso, 'alpha', 0.3)

will create an options structure which contains a field options.alpha equal to 0.3. This
options structure is then passed to the penalty function.

The penalty function takes four arguments - a mode string, a coefficient vector, the current
value of λ, and an options structure options, with any extra parameters as fields. The
following call patterns are expected:

> p = penalty('', beta, lambda, options)
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An empty mode string asks the penalty function to return the penalty values for a coeffi-
cient vector beta; p(i) is the penalty πi(βi) for coefficient beta(i). The total penalty is
lambda*sum(w.*p) where w is a vector of weights, usually 1. The vector of weights can be
specified by the option penalized(... 'penaltywt', w).

. d = penalty('deriv', beta, lambda, options)

This returns a vector d of derivatives, where d(i)=dπi(βi)/dβi. Elements of d in the inactive
set are ignored, so any value can be returned for them. For elements of d in the active set,
and where the derivative is discontinuous, return either endpoint of the subdifferential or the
average of the endpoints.

> [lo,hi] = penalty('subdiff', beta, lambda, options)

This returns the subdifferential intervals for elements beta(i). The return values should be
lo(i)= π−i (βi) and hi(i)=π+i (βi). Elements of lo and hi that are in the active set are
ignored, so any value can be used there. If all subdifferential intervals in the inactive set are
the same (which is usually the case), then lo and hi can be scalars rather than vectors.

> p2 = penalty('2ndderiv', beta, lambda, options)

This returns the vector of second derivatives of the penalty for the parameter beta. If all
second derivatives are the same, p2 can be a scalar. Elements of p2 that are not in the active
set are ignored.

> tf = penalty('project', beta, lambda, options)

This returns true if the orthant projection ProjA is required for the coefficient vector β. This
is true for most penalties; exceptions are ridge and none.

For example, suppose we want to create a new penalty π(β) = log(1 + α|β|), which we
will call abslog. The penalty will be called with a specific parameter α = 1 by typing
penalized(model,@abslog,'alpha',1). The function penalized will put α into an options
structure which will be passed to our penalty function as the last parameter.

Thus the first two lines of our new penalty can be

> function [x,y]=abslog(mode, beta, lambda, options)

> alpha = options.alpha;

When the mode parameter is '', we return the penalty values in the x variable

> x = log(1+alpha*abs(beta));

When the mode is 'deriv', we return the derivative.

> x = alpha*sign(beta)./(1+alpha*abs(beta));

When the mode is 'subdiff' we return the endpoints of the subdifferential in x and y:

> x = -alpha; y = alpha;
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When the mode is '2ndderiv' we return the second derivative

> x = -alpha^2./(1+alpha*abs(beta));

Finally, when the mode is 'project' we return x=true;, because this penalty requires orthant
projection.

6. Related algorithms

The penalized toolbox can also be used to implement some other penalized likelihood algo-
rithms.

6.1. The relaxed LASSO

The relaxed lasso (Meinshausen 2007) is a way of successively reducing the shrinkage over the
active set of parameters. The relaxed lasso is defined as

Pλ(β) = log `(y;β)− φλ ‖β‖1 (12)

where φ is the relaxation parameter. Initially, φ = 1, but after the coefficients for a given λ
have been determined, φ is relaxed towards zero over the non-zero coefficients, while holding
the other coefficients at zero. This is simply the FLASH penalty with δ = 1 − φ, so we can
use the FLASH penalty to implement relaxed lasso (relaxo) with the following call

> fit = penalized(model, @p_flash, 'delta', 0:0.1:1, 'warmstart', 'relax')

(Note that 'warmstart', 'relax' is the default and can be omitted.) In this case, the FLASH
parameter δ = 1 − φ is relaxed in increments of 0.1. The penalized function fits a full
sequence of λ for δ = 0 – i.e., a LASSO fit – then for each fit, relaxes δ from 0 through to 1.

6.2. The adaptive LASSO

The penalized function allows you to set individual penalty weights for each coefficient by
adding a 'penaltywt' option. The weighted penalized likelihood

Pλ(β) = log `(y;β)− λ
p∑
i=1

wi|βi| (13)

can be run with the call

> fit = penalized(model, @p_lasso, 'penaltywt', w)

where w is a vector of the penalty weights wi (the penalty weight for any intercept is always
forced to be zero).

The adaptive lasso uses a particular set of penalty weights which ensure an oracle property and
near minimax estimation (Zou 2006). The adaptive lasso could be implemented in penalized

by setting wi = 1/|β̂i|γ where β̂i is a consistent estimate of βi, such as the ordinary least
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squares estimate. Unfortunately, this approach does not permit us to use cross-validation to
find the best value of the power γ, since γ needs to be a parameter for this to work.

Thus, we pass the adaptive lasso weights as a separate option in the call to the penalized

routine. The separate option is called 'adaptivewt'. The adaptive LASSO can be called in
two ways. If only one value of gamma is used, say 0.5, then the adaptive LASSO is invoked
as

> fit = penalized(model, @p_adaptive, 'gamma', 0.5, 'adaptivewt', {beta_ols})

where beta_ols is the vector of adaptive LASSO weights. The adaptive weight vector is
enclosed in a cell because when penalized reads the parameters, it assumes that any non-
standard option (that is, one which is not described in help options)whose value is an array
must be a penalty parameter which should then be ‘relaxed’ over. As the adaptive weights
are not a relaxation parameter, they are enclosed in a cell to avoid this misinterpretation. If
multiple values of gamma are used, then the call is, for example,

> fit = penalized(model,@p_adaptive, 'gamma', 1:-0.2:0.01, 'adaptivewt', {beta_ols})

Again the adaptive weights must be enclosed as a cell so that penalized interprets it correctly.

7. Performance

Flexibility and extensibility were the overriding design concerns for the penalized toolbox.
Performance was not completely ignored, however, and while penalized is slower than glmnet,
it completes in reasonable times. Table 1 gives some representative running times for penalized
compared to glmnet. The timings for penalized were obtained using MATLAB 2007b (32 bit)
running on a Samsung EP300E5C laptop (Core i3 2.4GHz, 6GB memory, using mains power)
under Windows 7(64bit). The timings for glmnet were obtained on the same machine using
R (64 bit). Each timing is an average of 15 runs. Each run fitted a sequence of 100 lambdas
on the same data set.

The design matrices X used in the timings were randomly generated with uncorrelated
columns; however, introducing correlations did not change the comparisons very much and so
are not shown. The true β coefficients oscillated between positive and negative values, with
an exponential decay on their magnitude. The rate of decay was such that the 7th coefficient
was half the size of the first. The set of λ values was selected by glmnet and then used by
penalized, to ensure that they both computed the same number of parameters.

penalized is rarely more than a few seconds slower than glmnet, and most of the time the
difference isn’t really noticeable. If using a parameterized penalty (e.g., p_clipso, p_Lq), the
time taken increases with the number of parameters. For example

> penalized(model2, @p_clipso, 'alpha', [inf 1 0.5 0.3 0.1])

will take about 5 times longer than

> penalized(model2, @p_clipso, 'alpha', 0.3)
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n 1000 5000 10000 100000 100 100 100
p 100 100 100 100 1000 5000 10000

Gaussian model

glmnet 0.02 0.06 0.10 0.81 0.04 0.11 0.20
penalized 0.28 0.62 1.08 8.09 0.43 0.93 1.58

Logistic model

glmnet 0.15 0.62 1.19 11.20 0.06 0.14 0.25
penalized 0.53 1.49 2.62 23.02 0.78 1.47 1.97

Table 1: Comparison of average timings, in seconds, for penalized in MATLAB and glmnet in
R. All times are in seconds and are an average of 15 runs. Each column is a different size of
problem given by the number of observations n and the number of parameters p.

Likewise, cross-validation time increases linearly with the number of folds.

7.1. Accuracy

The speed of penalized depends on the options controlling convergence at each level of λ.
The default convergence criteria were chosen to maximize speed while keeping the coefficient
estimates close to those provided by glmnet. Generally, the difference between the estimates
provided by glmnet and penalized were less than 0.5% of the norm of the coefficient vector.
Figure 4(A) compares the estimated coefficients from penalized (solid lines) and glmnet (dots)
for one run (n = 1000, p = 100) using a logistic model. Other models are similar. The
estimates from the two packages follow each other closely. The differences in the coefficients
are plotted against λ in Figure 4(B). The jags in this plot are due to different convergence
criteria. In glmnet the algorithm converges when all coefficients have a small enough change,
while in penalized it converges when the vector of coefficients has a small enough change.
This means that variables which enter the active set in penalized may not move very much
until the next lowest λ is used.

8. Conclusion

penalized is a flexible and efficient MATLAB toolbox for using and exploring penalized regres-
sion with generalized linear models. It allows the user to use any penalty with any generalized
linear model. The toolbox can be extended to include other log-likelihood models and other
penalties than those provided, making it simpler to explore the performance of any model
or penalty that can be coded to the toolbox API. The toolbox also has the option to select
the underlying maximization algorithm, so future versions may include a faster maximization
algorithm for the gaussian model.
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A. The FLASH penalty

The Forward Lasso Adaptive SHrinkage (FLASH) algorithm was described in Radchenko
and James (2011). They did not, however, specify the objective function that the algorithm
maximizes. Here it is shown that the FLASH algorithm is a form of penalized likelihood. We
only consider the least-squares case.

At iteration t, the FLASH algorithm computes two updates. The first update is the ordinary
least-squares update over an active set A:

βt+1
A = βtA + (X′AXA)−1X′A(y −XAβ

t
A) (14)

and the second is the lasso update

βt+1
A = βtA + (X′AXA)−1X′A(y −XAβ

t
A − λsign(βtA)) (15)

In either case, the step is βt+1
A − βtA. Thus

stepOLS = (X′AXA)−1X′A(y −XAβ
t
A)

stepLASSO = (X′AXA)−1X′A(y −XAβ
t
A − λsign(βtA))

FLASH takes a step which is a weighted sum of the least squares step and the LASSO step.
That is, the FLASH update is

βt+1
A = βtA + δ stepOLS + (1− δ)stepLASSO

= βtA + (X′AXA)−1X′A(y −XAβ
t
A − (1− δ)λsign(βtA))

This implies that the penalty is π(β) = (1 − δ)|β|, for coefficients in the active set, which is
the FLASH penalty defined here.

B. The multinomial model

This appendix describes how the multinomial model can be reformulated to fit the constraints
of the maximization routine. The core idea behind this reformulation is that a single multino-
mial observation (y1, y2, . . . , yq) can be thought of as q independent categorical observations
(y1, 0, . . . , 0), (0, y2, . . . , 0), . . . , (0, 0, . . . , yq).
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A set of multinomial observations is a matrix Y where the i, j-th element yi,j is the number
of times category j occurred in observation i. Each element yi,j has a certain probability pi,j
of occurring, and the log-likelihood of the observations is

L =

n∑
i=1

q∑
j=1

yi,j log pi,j

The matrix of observations Y can be viewed as a concatenated set of column vectors Y =
[y1,y2, . . . ,yq], one column for each category. Each column vector yj has an associated
probability vector

pj =


p1,j
p2,j

...
pn,j


The observation vectors y1,y2, . . . ,yq can be stacked into a single vector

y =


y1

y2
...
yq


and these observations are independent. The probability vectors p1,p2, . . . ,pq can likewise
be stacked to form a single vector

p =


p1

p2
...
pq


The log-likelihood can be written L = y> logp, and is unchanged. Next we assume that each
probability vector pk can be written as

pk =
exp(ηk,k)∑q
j=1 exp(ηk,j)

where each vector ηk,j = X̃βj and the exponentiation and division are both element by

element. X̃ is a matrix of covariates. The coefficient vectors βj can also be stacked to form
a single coefficient matrix

β =


β1

β2
...
βq


We wish to work out the gradient of L with respect to β, which will be written dL/dβ. By
the chain rule, this is

dL

dβ
=
dp

dβ

dL

dp
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The gradient dL/dp is simply y/p, where the division is element-by-element. The Jacobian
dp/dβ is

dp

dβ
=


dp1/dβ1 dp2/dβ1 . . . dpq/dβ1

dp1/dβ2 dp2/dβ2 . . . dpq/dβ2
...

. . .

dp1/dβq dp2/dβq . . . dpq/dβq


Each of the submatrices dpk/dβj is itself a Jacobian matrix given by

dpk
dβj

=
dηk,1
dβj

dpk
dηk,1

+
dηk,2
dβj

dpk
dηk,2

+ . . .+
dηk,q
dβj

dpk
dηk,q

= X>
dpk
dηk,j

where dpk/dηk,j is a diagonal matrix of derivatives.

B.1. Interface to the maximization algorithm

The scoring routine requires a tuple {m,D,V,J}. The vector m is just

m =
dL

dp
=

y

p

where division is element-by-element. The vector V is the expected value of m2, namely

V = E

(
y

p

)2

= y2 − y +
y

p
= y2 − y + m

Unfortunately, D and X are not so simple. The product DX must equal the Jacobian dp/dβ
The best value for D is 1, and X is the matrix

X =

(
dp

dβ

)>
=


dp1/dβ1 dp1/dβ2 . . . dp1/dβq
dp2/dβ1 dp2/dβ2 . . . dp2/dβq

...
. . .

dpq/dβ1 dpq/dβ2 . . . dpq/dβq



=


D1,1X̃ D1,2X̃ . . . D1,qX̃

D2,1X̃ D2,2X̃ . . . D2,qX̃
...

. . .

Dq,1X̃ Dq,2X̃ . . . Dq,qX̃


in which Di,j = dpi/dηj is a diagonal matrix and X̃ is the matrix of covariates mentioned
earlier.
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