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inequalities

A. Vourdas

Department of Computing,
University of Bradford
Bradford BD7 1DP, UK

E-mail: a.vourdas@bradford.ac.uk

Abstract. The set of subsystems Σ(m) of a finite quantum system Σ(n) with variables in Z(n),
together with logical connectives, is a Heyting algebra. The probabilities τ (m|ρn) = Tr[P(m)ρn]
(where P(m) is the projector to Σ(m)) are compatible with associativity of the join in the
Heyting algebra, only if the variables belong to the same chain. Consequently, contextuality in
the present formalism, has the chains as contexts. Various Bell-like inequalities are discussed.
They are violated, and this proves that quantum mechanics is a contextual theory.

1. Introduction

In recent work [1] we have studied the mathematical structure of the set of subsystems of a finite
quantum system Σ(n) with variables in Z(n) (the integers modulo n). A subsystem of Σ(n), is
another finite system Σ(m), with m|n. In this case the variables of Σ(m) take values in Z(m),
which is a subgroup of Z(n). Also, all states of Σ(m) are embedded in Σ(n) as described below.
We have shown that the set of subsystems of Σ(n) with logical connectives, is a distributive
lattice Λ(Σn). All finite distributive lattices are Heyting algebras[2, 3], and therefore Λ(Σn) is
a Heyting algebra.

Probability theory needs the concepts of conjuction, disjunction and negation for its
axioms. Kolmogorov probabilities are defined on a Boolean algebra (a powerset 2Ω), where
the intersection, union and complement play the role of conjuction, disjunction and negation.
Let q(Ei) be the Kolmogorov probability for event Ei. Then

q(E1 ∨ E2)− q(E1)− q(E2) + q(E1 ∧ E2) = 0. (1)

Refs [4, 5, 6] proved this equality, using the associativity property of the lattice. Alternatively,
it is introduced as the axiom of additivity of probability (the last term generalizes it to non-
exclusive events).

Quantum mechanics uses the orthomodular lattice of closed subspaces of a Hilbert space [7,
8, 9], which has various Boolean algebras as sublattices. Kolmogorov probabilities are defined on
them, but the topic of contextuality and Bell inequalities [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
proves that there is inconsistency between the various parts of the full formalism.

Various aspects of contextuality have been studied in the literature. In a bipartite system
with a space-like separation, it leads to non-locality which is a special form of contextuality.
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In a single spin one particle, contextuality is proved through a logical contradiction. We are
interested in another form of contextuality, which appears in the formalism of subsystems of a
finite quantum system.

We consider the quantum probabilities, τ(m|ρn) = Tr[P(m)ρn], where P(m) is the projector
to the subsystem Σ(m) and ρn is a density matrix of the system Σ(n). In ref[1] we have shown
that these probabilities are incompatible with the associativity of the join in the distributive
lattice of subsystems Λ(Σn), because they do not obey the equality of Eq.(1), but they obey the
inequality

τ(m1 ∨m2|ρn)− τ(m1|ρn)− τ(m2|ρn) + τ(m1 ∧m2|ρn) ≥ 0. (2)

Only if the m1,m2 belong to the same chain, Eq(2) is valid as an equality. For this reason,
chains play the role of contexts, in the present formalism.

Within a context (chain), the quantum probabilities τ(m|ρn) obey an equality analogous
to Eq.(1), and they behave like Kolmogorov probabilities. But when we consider various
contexts together, this equality and other important relations which are derived from it (e.g.,
Boole’s inequality τ(m1 ∨m2|ρn) ≤ τ(m1|ρn) + τ(m2|ρn) which is used in the proof of Bell-like
inequalities), are no longer valid. In the present formalism, the term non-contextual quantum
mechanics, means that the equality of Eq.(1) is assumed to be valid. The term contextual
quantum mechanics, means that Eq.(1) is only valid within a context (chain).

Ref[19] has studied ‘logical Bell inequalities’ for Boolean variables. For Heyting variables,
which are relevant in the present formalism, they acquire some extra terms, as discussed in
[1]. The validity of these inequalities is based on the assumption that quantum mechanics is
non-contextual theory, and their violation in experiments, proves that quantum mechanics is a
contextual theory. In this paper we extend the work of [1], and present new Bell-like inequalities,
together with examples which violate them. There are many technical details associated with
the lattice structure of the set of subsystems, which are important for understanding why the
Bell-like inequalities are violated, but which are not presented here (see [1]). In this paper
we present a methodology for deriving novel Bell-like inequalities, starting from an equality in
Boolean algebra, and using Boole’s inequality for probabilities (which is valid in non-contextual
quantum mechanics).

In section II we present briefly Heyting algebras in the present formalism, in order to
eastablish the notation. In section III we discuss the set of subsystems of Σ(n), and probabilities
associated with projectors to these subsystems. In section IV we present various Bell-like
inequalities and examples of their violation. We conclude in section V, with a discussion of
our results.

2. Preliminaries

(1) r|s or r ≺ s denotes that r is a divisor of s. GCD(r, s) and LCM(r, s) are the greatest
common divisor and least common multiplier correspondingly, of the integers r, s. D(n) is
the set of divisors of n.

(2) Heyting and Boolean algebras: A set A viewed as a lattice (i.e., with the operations ∨ and
∧) is denoted as Λ(A). Throughout the paper we have various finite distributive lattices
and for simplicity we use the same symbols ≺, ∧, ∨, ¬, for the ‘partial order’, ‘meet’, ‘join’
and ‘negation’, correspondingly. We also use the same symbols O and I for the smallest
and greatest elements.
Every finite distributive lattice is a Heyting algebra. If a ∈ Λ(A), then ¬a is the largest
element such that a ∧ (¬a) = O. The elements of a Heyting algebra obey the relations

a ∨ (¬a) ≺ I; a ≺ ¬¬a (3)
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A special case of Heyting algebera are the Boolean algebras. In this case the relations of
Eq.(3) are valid as equalities:

a ∨ (¬a) = I; a = ¬¬a (4)

The relation a∨ (¬a) = I is the ‘law of the excluded middle’ and it does not hold in general
in Heyting algebras.

(3) The Heyting algebra of divisors of n: The set D(n) with divisibility as partial order, and
with

k ∧m = GCD(k,m); k ∨m = LCM(k,m) (5)

is a finite distributive lattice and as such it is a Heyting algebra with O = 1 and I = n.
We denote it as Λ[D(n)]. ¬k is the largest divisor of n, such that k ∧ (¬k) = 1.

(4) The Heyting algebra of subgroups of Z(n) : If m ≺ n then Z(m) is a subgroup of Z(n). The
set Z(n) = {Z(m) | m ∈ D(n)} of the subgroups of Z(n), with subgroup as partial order,
and with

Z(k ∧m) = Z(k) ∧ Z(m); Z(k ∨m) = Z(k) ∨ Z(m); ¬Z(k) = Z(¬k) (6)

is the Heyting algebra Λ[Z(n)], and it is isomorphic to Λ[D(n)]. In this case O = Z(1)
and I = Z(n). The elements of Z(m) can be embedded into a supergroup Z(k) (where
m ≺ k ≺ n), by mapping a ∈ Z(m) into ka

m ∈ Z(k).

3. Subsystems of Σ(n)
Σ(n) is a quantum system with variables in Z(n) and Hilbert spaceH(n). |Xn; r〉 where r ∈ Z(n),
is the basis of position states (the Xn in this notation is not a variable, but it simply indicates
position states). Through a Fourier transform we get the basis of momentum states:

|Pn; r〉 = n−1/2
∑
r,s

ωn(rs)|Xn; r〉.; ωn(r) = exp

(
i2πr

n

)
(7)

For m ≺ k ≺ n, the Σ(m) is a subsystem of Σ(k). In this case the variables of Σ(m) take values
in Z(m), which is a subgroup of Z(k), and all states of Σ(m) are embedded in Σ(k) as follows:

m−1∑
r=0

ar|Xm; r〉 →
m−1∑
r=0

ar|Xk;
kr

m
〉; m ≺ k. (8)

The system Σ(1) is physically trivial, and it consists of the ‘vacuum’ state |X1; 0〉 = |P1; 0〉.
We define the projector to the system Σ(m) (as embedded into a supersystem Σ(k)), as

P(m) =

m−1∑
r=0

|Xk;
kr

m
〉〈Xk;

kr

m
|; m ≺ k; m,k ∈ D(n). (9)

All these projectors commute with each other.
The set Σn of all subsystems of Σ(n), with partial order ‘subsystem’, and with the logical

connectives

Σ(m) ∧ Σ(k) = Σ(m ∧ k)

Σ(m) ∨ Σ(k) = Σ(m ∨ k)

¬Σ(m) = Σ(¬m); m,k ∈ D(n) (10)
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is the Heyting algebra Λ(Σn), and it is isomorphic to Λ[D(n)]. In this case O = Σ(1) and
I = Σ(n). The physical meaning of these connectives is discussed in [1]. In similar way we
define the logical operations in the set Hn of the Hilbert spaces of the subsystems of Σ(n). This
is also a Heyting algebra isomorphic to Λ[D(n)] and Λ(Σn), which we denote as Λ(Hn).

In ref[1] we have proved that the space H(m1 ∨m2) is given by

H(m1 ∨m2) = span[H(m1) ∪H(m2)]⊕ S(m1,m2). (11)

The span[H(m1) ∪ H(m2)] contains all superpositions of states in H(m1) and H(m2). The
S(m1,m2) is orthogonal to it. The

T(m1,m2) = P(m1) +P(m2)−P(m1 ∧m2)

S(m1,m2) = P(m1 ∨m2)−P(m1)−P(m2) +P(m1 ∧m2), (12)

are projectors to the spaces span[H(m1)∪H(m2)] and S(m1,m2), correspondingly. In the special
case that m1,m2 belong to the same chain, H(m1 ∨m2) = span[H(m1) ∪H(m2)].

We next define the quantum probabilities

τ(m|ρn) = Tr[ρnP(m)]; σ(m1,m2|ρn) = Tr[ρnS(m1,m2)]; m,m1,m2 ∈ D(n), (13)

where ρn is density matrix describing the system Σ(n). From Eq.(12), it follows that

τ(m1 ∨m2|ρn)− τ(m1|ρn)− τ(m2|ρn) + τ(m1 ∧m2|ρn) = σ(m1,m2|ρn). (14)

From this follows the inequality of Eq.(2). For variables in a chain, σ(m1,m2|ρn) = 0 for all
density matrices, and the τ(m|ρn) obey the equality of Eq.(1). For this reason, contexts in the
present formalism are the chains in the Heyting algebra.

For later use, we also define the

P̃(m) = P(m)−P(1); τ̃(m|ρn) = Tr[ρnP̃(m)]. (15)

3.1. Example

We consider the Λ(Σ12) which comprises of the subsystems of Σ(12). The projectors to these
subsystems are

P(1) = |X12; 0〉〈X12; 0|

P(2) = |X12; 0〉〈X12; 0|+ |X12; 6〉〈X12; 6|

P(3) = |X12; 0〉〈X12; 0|+ |X12; 4〉〈X12; 4|+ |X12; 8〉〈X12; 8|

P(4) =

3∑
ν=0

|X12; 3ν〉〈X12; 3ν|

P(6) =
5∑

ν=0

|X12; 2ν〉〈X12; 2ν|

P(12) = 1 (16)

In this case we have 3 maximal contexts:

{Σ(12),Σ(6),Σ(3),Σ(1)}; {Σ(12),Σ(6),Σ(2),Σ(1)}; {Σ(12),Σ(4),Σ(2),Σ(1)}. (17)
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In Σ(12) we consider the state

ρ = |s〉〈s|; |s〉 =

11∑
ν=0

aν |X12; ν〉;

11∑
ν=0

|aν |
2 = 1, (18)

and we find

τ(12|ρ) = 1; τ(6|ρ) =

5∑
ν=0

|a2ν |
2; τ(4|ρ) =

3∑
ν=0

|a3ν |
2

τ(3|ρ) = |a0|
2 + |a4|

2 + |a8|
2; τ(2|ρ) = |a0|

2 + |a6|
2; τ(1|ρ) = |a0|

2. (19)

We next calculate the σ(m1,m2) of Eq.(14). We find that

σ(4, 6|ρ) = |a1|
2 + |a5|

2 + |a7|
2 + |a11|

2;

σ(4, 3|ρ) = |a1|
2 + |a2|

2 + |a5|
2 + |a7|

2 + |a10|
2 + |a11|

2;

σ(2, 3|ρ) = |a2|
2 + |a10|

2, (20)

and that the rest σ(m1,m2|ρ) = 0.

4. Bell-like inequalities

Ref [19] has studied ‘logical Bell inequalities’ for Boolean variables. Their violation proves the
contextual nature of quantum mechanics. In ref[1] we have generalized them for the case of
Heyting variables. In this case, they acquire extra terms which we call ‘Heyting factors’ and
which are zero in the case of Boolean variables.

In the present formalism:

• Quantum mechanics is a non-contextual theory, means that an equality analogous to Eq.(1)
holds. In this case we easily prove Boole’s inequality for probabilities:

τ(m1 ∨ ... ∨mN |ρn) ≤ τ(m1|ρn) + ...+ τ(mN |ρn). (21)

• Quantum mechanics is a contextual theory, means that an equality analogous to Eq.(1)
is valid only for variables within a context (chain). When we consider various contexts
together, then the inequality of Eq.(2) holds. In this case we cannot infer Boole’s inequality
for probabilities. An example where Boole’s inequality is violated, is presented below.

There are many Bell-like inequalities, which are proved using Boole’s inequality for probabilities
and which would be valid if quantum mechanics were a non-contextual theory.

Proposition 4.1. We assume that quantum mechanics is a non-contextual theory. If

m1 ∧ ... ∧mN = r; m1, ...,mN ∈ D(n)− {1}, (22)

then

N∑
i=1

τ̃(mi|ρn) ≤ N − τ(r|ρn)−
N∑
i=1

fi; fi = 1− τ(mi ∨ ¬mi|ρn). (23)

fi are ‘Heyting factors’ and are zero for Boolean variables.

Proof. The proof has been presented in [1].
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The following propositions start from an equality in Boolean algebra, and use Boole’s
inequality for probabilities, to derive a Bell-like inequality. There are many equalities in Boolean
algebra which can be used in a similar way, and they will lead to various Bell-like inequalities.
Below we give two of them. Violation of these inequalities, supports the fact that quantum
mechanics is a contextual theory.

Proposition 4.2. We assume that quantum mechanics is a non-contextual theory. Let

q(A), q(B), q(C) be probabilities corresponding to quantum events A,B,C, which are assumed to

be elements of a Boolean algebra. Then

q(A) ≤ q(A ∧B) + q[A ∧ (¬B)] (24)

q(A) ≤ q(A ∧ C) + q(B ∧ C) + q[(¬A) ∧ (¬B) ∧ C] (25)

Proof. Using the basic rules of Boolean algebra we prove that

A = (A ∧B) ∨ [A ∧ (¬B)]

C = [C ∧ (A ∨B)] ∨ {C ∧ [¬(A ∨B)]} = [C ∧A] ∨ [C ∧B] ∨ [C ∧ (¬A) ∧ (¬B)] (26)

Using Boole’s inequality (in a non-contextual quantum mechanics) we get

q(A) = q{(A ∧B) ∨ [A ∧ (¬B)]} ≤ q(A ∧B) + q[A ∧ (¬B)], (27)

and also

q(C) = q{[C ∧A] ∨ [C ∧B] ∨ [C ∧ (¬A) ∧ (¬B)]}

≤ q[C ∧A] + q[C ∧B] + q[C ∧ (¬A) ∧ (¬B)]. (28)

In our formalism, q(A) will be the τ(m|ρn). It can be measured with the

M = aP(m) + b[1n −P(m)]. (29)

We have to perform this von Neumann measurement on many systems in the state ρn, and count
the number of times the system will collapse into a state which belongs entirely in H(m).

4.1. Example

We consider the example discussed in section 3.1, and we show that Eqs.(21),(24),(25) are
violated. An example which shows that Eq.(23) is violated, has been presented in [1]. Therefore
quantum mechanics is a contextual theory.

(1) We consider Boole’s inequality of Eq.(21), and we take m1 = 4, m2 = 3, m3 = 6. In this
case m1 ∨m2 ∨m3 = 12 and the inequality becomes

τ(6|ρ) + τ(4|ρ) + τ(3|ρ) ≥ τ(12|ρ). (30)

We substitute the values from Eq.(19) and we get

5∑
ν=0

|a2ν |
2 +

3∑
ν=0

|a3ν |+ |a0|
2 + |a4|

2 + |a8|
2 ≥ 1 (31)

which reduces to

2|a0|
2 + |a4|

2 + |a6|
2 + |a8|

2 ≥ |a1|
2 + |a5|

2 + |a7|
2 + |a11|

2 (32)

An example where this is violated is the case a0 = a4 = a6 = a8 = 0.
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(2) We consider the inequality of Eq.(24). The events A,B are taken to be projections to the
subsystems Σ(12),Σ(4), correspondingly. Then

q(A) = τ(12|ρ); q(B) = τ(4|ρ). (33)

The inequality becomes

τ(12|ρ) ≤ τ(12 ∧ 4|ρ) + τ [12 ∧ (¬4)|ρ], (34)

which reduces to

τ(12|ρ) ≤ τ(4|ρ) + τ(3|ρ). (35)

We substitute the values from Eq.(19) and we get

1 ≤ τ(4|ρ) + |a0|
2 + |a4|

2 + |a8|
2 (36)

An example where this is violated is the case a0 = a4 = a8 = 0.

(3) We consider the inequality of Eq.(25). The events A,B,C are taken to be projections to
the subsystems Σ(12),Σ(4),Σ(3), correspondingly. Then

q(A) = τ(12|ρ); q(B) = τ(4|ρ); q(C) = τ(3|ρ). (37)

The inequality becomes

τ(12|ρ) ≤ τ(12 ∧ 3|ρ) + τ(4 ∧ 3|ρ) + τ [(¬12) ∧ (¬4) ∧ 3|ρ], (38)

which reduces to

τ(12|ρ) ≤ τ(3|ρ) + τ(1|ρ) + τ(1|ρ). (39)

We substitute the values from Eq.(19) and we get

1 ≤ 3|a0|
2 + |a4|

2 + |a8|
2 (40)

An example where this is violated is the case a0 = a4 = a8 = 0.

5. Discussion

We have studied the set of subsystems of a finite quantum system Σ(n), as a distributive lattice
(Heyting algebra). We have shown that the quantum probabilities τ(m|ρn) do not obey the
equality of Eq.(1), which is intimately related to the associativity of the join in the lattice, but
they obey the inequality of Eq.(2). Only if the variables belong to the same chain, Eq(2) is valid
as an equality.

In the present formalism chains play the role of contexts. The τ(m|ρn) can be viewed as
Kolmogorov probabilities only within a particular chain. When we consider various contexts
together, Eq.(1) and other relations which are derived from it, are not valid. This is related to the
fact that the space H(m1 ∨m2) is larger than the space of superpositions span[H(m1)∪H(m2)]
(Eq.(11)).

In this paper we extended the work of [1], and gave new Bell-like inequalities in proposition
4.2. They combine equalities in Boolean algebra, with Boole’s inequality for probabilities.
Boole’s inequality follows from Eq.(2), but it does not follow from Eq.(1). Consequently, the
inequalities in proposition 4.2 are valid for variables within a context (chain), but they are
violated when variables take values in different contexts. More Bell-like inequalities can be
proved with this methodology. In section 4.1 we gave examples which show that these inequalities
are violated. This shows that quantum mechanics is a contextual theory.

The work studies contextuality within the formalism of subsystems of a finite quantum
system.
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