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RESEARCH ARTICLE

Thyroid Hormone Activation of Retinoic
Acid Synthesis in Hypothalamic Tanycytes

Patrick N. Stoney,1 Gisela Helfer,2 Diana Rodrigues,1

Peter J. Morgan,2 and Peter McCaffery1

Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus.
Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have
been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored
the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a
gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The
resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo
exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to
an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the
actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice
culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that
TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression
of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has
been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems
has the capability to mediate some of the functions of TH in the hypothalamus.
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Introduction

Thyroid hormones (TH) act to control gene expression by

binding and activating specific nuclear receptor family

transcription factors. TH is known to regulate energy balance

and metabolism, with actions in both peripheral tissues and in

the brain (reviewed by Lechan and Fekete, 2006; Lopez et al.,

2013). Increased food intake (hyperphagia) is a characteristic

symptom of hyperthyroidism, the overproduction of TH. This

is generally believed to result from increased energy expenditure

in peripheral tissues, but some hyperthyroid patients increase

their food intake enough to gain weight (Gurney et al., 1970),

suggesting that it is not simply a compensatory change. TH sig-

nalling may be important to initiate the drive to feed as deiodi-

nase 2, the enzyme that activates TH signalling by converting

thyroxine (T4) into the transcriptionally more active triiodo-

thyronine (T3), is upregulated by fasting in the hypothalamus

(Diano et al., 1998), the region of the brain controlling feeding,

growth, and reproductive status. Moreover, acute and chronic

administration of low doses of T3 has been shown to increase

feeding without affecting energy expenditure (Kong et al.,

2004). These observations suggest that TH has central, as well

as peripheral effects on the regulation of feeding behavior and

metabolic states. Hyperthyroid rats show an upregulation of the

orexigenic gene agouti-related protein (Agrp) in the hypothala-

mus accompanied by a decrease in proopiomelanocortin (Pomc),

the precursor of the anorexigen alpha-melanocyte-stimulating

hormone (a-MSH; Varela et al., 2012). In addition, the impor-

tance of TH signalling in the hypothalamus is highlighted in

the regulation of energy balance of seasonal animals (Barrett

et al., 2007). This highly conserved pathway is now considered

to be the basis of long-term changes in energy balance, growth

and reproduction, in birds and mammals. In Siberian hamsters,

hypothalamic implants releasing T3 promote long day-like (i.e.

summer-like) reproductive and body weight responses (Murphy
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et al., 2012) and conversely local delivery of T3 is able to block

short day (winter-like)-induced weight loss (Barrett et al.,

2007). From these findings it is now generally concluded that

local hypothalamic T3 availability is responsible for long-term

seasonal changes in energy metabolism.

The observations described above suggest that TH signal-

ling is an important regulator of hypothalamic function. TH is

thought to control genes affecting growth and energy balance in

seasonal mammals including Agrp, Ghrh, and Pomc (Ross et al.,

2009), although this control may be indirect. However despite

considerable investigation, the genes directly regulated by TH

in the hypothalamus are largely unknown; indeed, the genes

regulated by TH in much of the brain remain undiscovered.

Retinaldehyde dehydrogenase 1 (Raldh1, also known as

Aldh1a1) is regulated by a number of hormone activators of

nuclear receptors, such as estrogen (Fujiwara et al., 2009) and

androgen (MacLean et al., 2008), as well as metabolite-

regulated nuclear receptors such as LXR (Huq et al., 2006). Via

its synthesis of retinoic acid (RA) from retinaldehyde, Raldh1

itself then controls the activity of further nuclear receptors, the

retinoic acid receptors (RARs). In the hypothalamus, Raldh1 is

specifically localized to tanycytes, radial glia-like cells lining the

third ventricle, potentially acting to communicate between the

cerebrospinal fluid, circulation, and hypothalamic neurons

(Shearer et al., 2010). They have an intermediary role to play in

the control of appetite and energy balance (Bolborea and Dale,

2013) and help to mediate molecular exchange between blood,

brain, and cerebrospinal fluid (Langlet et al., 2013), including

transport of leptin (Balland et al., 2014). Raldh1 was explored

in vivo as a TH-regulated gene in the rat hypothalamus and was

found to be rapidly induced and potentially under direct TH

control. Gene regulation by RA was studied in an organotypic

slice culture system developed for this study. This system was

free of secondary in vivo influences but maintained the struc-

tures necessary for hypothalamic function. It was shown that

RA regulates the expression of hypothalamic genes known to

affect energy balance and growth and may act as an intermedi-

ary in the action of TH in the hypothalamus. Further, it was

demonstrated that Rarb and Ghrh were epigenetically repressed

and the RA signalling pathway may be a means of epigenetic

control of gene expression in the hypothalamus.

Materials and Methods

Animals
Sprague Dawley rats were bred in the University of Aberdeen animal

facility. Fischer F344/N male rats were supplied by Harlan Sprague

Dawley Inc. (Indianapolis, USA). All animals were kept in a

12h:12h light:dark cycle with unlimited access to food and water.

All procedures conformed to Home Office regulations and local

ethics committee guidelines.

T3 Administration
T3 (Sigma Aldrich) was dissolved in 1 N NaOH at 1 mg/ml and

then diluted to 40 mM in phosphate-buffered saline (PBS), pH 7.4.

Eight-week-old male Sprague Dawley rats were injected subcutane-

ously with 65 mg/kg (100 nmol/kg) T3. Control animals were

injected with an equivalent volume of 1 N NaOH diluted in PBS. 4

hours post-injection, the animals were killed and the hypothalami

were dissected and rapidly frozen on dry ice.

Nissl Staining
Male rat pups were transcardially perfused with saline followed by

4% paraformaldehyde (PFA) in phosphate buffer. The brains were

removed and incubated overnight at 48C in 4% PFA, washed in

PBS and transferred to 30% sucrose in PBS. 40 mm-thick coronal

brain sections were cut using a cryostat, mounted on polylysine-

coated slides, and allowed to dry. Tissue sections were stained with

cresyl violet, dehydrated through an ethanol series into xylene, and

mounted with DPX (Fisher Scientific).

Hypothalamic Organotypic Slice Cultures
To exclude circadian-driven changes in gene expression, all hypo-

thalamic slice cultures were set up at the same time of day (com-

mencing at ZT07-8). P10-12 male rat pups were euthanized with

Euthatal. The brains were removed under sterile conditions and

placed in ice-cold slice culture medium consisting of 50% minimal

essential medium, 25% Hank’s buffered salt solution, 25% heat-

inactivated horse serum, containing penicillin-streptomycin and Glu-

tamax, supplemented with 5 mg/ml additional glucose and buffered

with 25 mM HEPES. The cortices were removed and the brains

were sliced into 400 mm coronal sections using a McIlwain tissue

chopper. Slices were transferred into cold medium, separated using

forceps under a dissection microscope and slices containing the third

ventricle were isolated. Each hypothalamus yielded five to six slices.

The slices were trimmed and cut in half along the midline, giving

two sets of slices per animal, with each containing the same (but

alternate) regions. Each sample consisted of one set of slices. After

incubation in ice-cold culture medium for 1 to 2 hours, each set of

slices was transferred onto a Millicell-CM cell culture insert (Milli-

pore) in a six-well plate using a sterile glass pipette. Excess medium

was removed from the tissue and 1 ml of fresh slice culture medium

was added below the insert. Slices were transferred to 358C, 5%

CO2. After 24 hours, the medium was removed and replaced with

serum-free, vitamin A-deficient medium consisting of Neurobasal

Abbreviations

Agrp Agouti-related protein
ARC Arcuate
DMN Dorsomedial
HDAC Histone deacetylase
PFA Paraformaldehyde
PVN Paraventricular
Pomc Proopiomelanocortin
Raldh1 Retinaldehyde dehydrogenase 1
RARs Retinoic acid receptors
TH Thyroid hormone
TSH Thyroid-stimulating hormone
VMN Ventromedial
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medium containing B27 supplement without vitamin A, penicillin-

streptomycin and Glutamax (all reagents from Invitrogen) and

5 mg/ml additional glucose. Slices were incubated at 358C, 5% CO2

for a further 3 days. Slices were maintained in vitamin A-deficient

medium to deplete the tissue of retinol and minimize retinoic acid

synthesis by endogenous Raldh1.

The medium was replaced with fresh serum-free, vitamin A-

free medium and slices were treated with 10 mIU bovine thyroid-

stimulating hormone (TSH), 50 nM T3, 10 nM, or 1 mM all-trans-

RA (all from Sigma Aldrich), 50 ng/ml trichostatin A (Cayman

Chemical Co.) or 100 mM sirtinol (Tocris). Sirtinol, retinol and RA

were dissolved in DMSO and therefore an equivalent volume of

DMSO (0.1%) was added to wells containing control slices. One set

of slices from each animal was treated with the other set being used

as control. Treatment times are indicated in figure legends. After

treatment, slices were fixed in 4% paraformaldehyde for 2 hours at

room temperature for immunohistochemistry or excised from the

culture inserts, transferred to microcentrifuge tubes and frozen rap-

idly on dry ice for RNA extraction.

Slice Immunohistochemistry
After 6 days ex vivo, hypothalamic slices were washed with PBS and

fixed by immersion in 4% PFA for 2 hours at room temperature.

Slices were labeled using antibodies against vimentin (V9, Sigma

Aldrich) and Darpp-32 (19A3, Cell Signaling) and appropriate fluo-

rescent secondary antibodies (Jackson ImmunoResearch). The mem-

branes carrying the slices were transferred onto microscope slides

and mounted using mounting medium containing Hoechst. Label-

ling was visualized by fluorescence microscopy.

Primary Tanycyte Culture
Primary tanycyte cultures were prepared from 10-day-old male

Sprague Dawley rat pups as previously described (Bolborea et al.,

2015; De Seranno et al., 2004; Prevot et al., 2003). Brains were

removed under sterile conditions, placed in ice-cold DMEM/F-12

medium containing penicillin/streptomycin and 25 mM HEPES and

the median eminence dissected. Median eminences from 8–10 pups

were pooled together, dissociated and plated out in DMEM/F-12

containing 10% foetal calf serum and penicillin/streptomycin in a

25 cm2 cell culture flask. Medium was replaced every 3 days. The

composition of primary tanycyte cultures was assessed after 8 to 10

days in vitro by immunohistochemistry for the tanycyte marker

vimentin and the astrocyte marker GFAP; all cells expressed vimen-

tin, but only a small number expressed GFAP. RNA was also

extracted from cultured cells and tested by PCR for expression of

the tanycyte markers Dio2, Darpp32, Rax, Tshr, and Gpr50.

Primary cultured tanycytes were transferred to 12-well plates

for experiments after 8-10 days in vitro. The day after plating out,

tanycytes were treated with 50 nM T3 or vehicle for 24 hours. RNA

was extracted from treated cells for qPCR analysis.

Quantitative Polymerase Chain Reaction
Total RNA was extracted from slices using a Qiagen RNeasy RNA

purification kit. cDNA was synthesized from 500 ng total RNA

using High Capacity RNA-to-cDNA Master Mix (Applied Biosys-

tems Ltd). Dio2 and Dio3 primers were obtained from Qiagen

(QuantiTect Primer Assays Rn_Dio2_2_SG and Rn_Dio3_1_SG,

respectively); other primers (Table 1) were designed using Primer-

BLAST (Ye et al., 2012). qPCR reactions were set up using Sensi-

Mix SYBR master mix (Bioline) and were run on a Roche

LightCycler 480 and analysed using LightCycler 480 1.5 software.

Expression of genes of interest was normalized to Actb levels. Stand-

ard curves and blank controls were run for all sets of primers.

Results shown are from a minimum of two independent experiments

per condition. Gene expression in T3-injected rats was compared to

that of vehicle-injected controls using unpaired Student’s t-tests.

Expression in treated hypothalamic slices was compared to control

slices from the same individuals by paired Student’s t-tests or

ANOVA.

Results

Peripheral Administration of T3 Upregulates
Hypothalamic Raldh1 Expression
Thyroid hormone signalling in the hypothalamus is thought

to play a crucial role in the control of energy balance, but lit-

tle is known about its direct targets in the hypothalamus. To

investigate potential targets of TH signalling in the hypothal-

amus, male Sprague Dawley rats were given a single subcuta-

neous injection of 100 nmol/kg T3 at 8 weeks of age.

Treated rats were killed 4 hours post-injection and the hypo-

thalami were rapidly removed for qPCR analysis of hypo-

thalamic genes known to affect energy balance.

Deiodinase 3 (Dio3) has previously been shown to be

directly induced by T3 (Barca-Mayo et al., 2011; Bianco

et al., 2002) and was used as a positive control. Dio3 was

strongly upregulated in the hypothalamus of T3-treated rats

(Fig. 1A), confirming that peripheral administration of T3

increased hypothalamic T3 and that the time between admin-

istration and dissection was sufficient for alterations in hypo-

thalamic gene expression. Despite the presence of T3 in the

hypothalamus, no significant changes in the expression of

agouti-related protein (Agrp), growth hormone-releasing hormone

(Ghrh), neuropeptide Y (Npy), cocaine- and amphetamine-

regulated transcript (Cart) or proopiomelanocortin (Pomc) were

observed in T3-treated animals after 4 hours (Fig. 1A).

Raldh1, which encodes the RA synthetic enzyme retinal-

dehyde dehydrogenase 1 present in tanycytes (Shearer et al.,

2010), was investigated as a gene regulated by several nuclear

receptor family members (Fujiwara et al., 2009; Huq et al.,

2006; MacLean et al., 2008). This gene was significantly

upregulated in the hypothalamus of T3-treated rats (Fig. 1A).

In addition, a sequence with high similarity to a DR4-type

TH response element (TRE; AGCTCAgtcaAGGTGA; Fig.

1B) was identified in the promoter of the rat Raldh1 gene,

close to the transcription start site. The upregulation of

Raldh1 just 4 hours after T3 administration and the presence

of a potential TRE in the promoter of the rat Raldh1 gene

Stoney et al.: Sequential Nuclear Receptors Activation in Tanycytes
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suggest that Raldh1, and so RA synthesis, may be a direct tar-

get of TH signalling in the hypothalamus.

Cultured Hypothalamic Slices with Tanycytes Are
Responsive to Thyroid Stimulating Hormone
The function of T3 and RA in the hypothalamus was further

explored using an ex vivo organotypic culture system. This

technique was modified from that of House et al. (1998) and

allowed T3 and RA to be studied independently of feedback

from the rest of brain or body. The brain was removed from

P10-12 male Sprague Dawley rat pups and cut into 400 mm-

thick coronal slices. Slices were trimmed dorsally at the level

of the mammillothalamic tract and laterally at the fornix,

both of which were visible in the slices (Fig. 2A, B). These

slices contained the ventricular region and median eminence

(ME) in addition to the arcuate (ARC), ventromedial

(VMN), dorsomedial (DMN), and paraventricular (PVN)

hypothalamic nuclei. Trimming the slices using visible ana-

tomical cues minimized variation but allowed for differences

in brain size between individual animals. The slices were

standardly cultured in serum-free vitamin A-free medium for

72 hours before treatment, depleting the tissue of vitamin A

and thereby preventing endogenous synthesis of retinoic acid.

Crucially for these studies, these slices could be cultured

in a way that maintained health of the neurons, the integrity

of the hypothalamic nuclei and also the viability of cells vital

to TH and RA signalling, the tanycytes. The tanycytes are

specialized radial glia-like cells in the cell layer lining the

third ventricle thought to be critical for the transduction of

extrahypothalamic signals into the parenchyma. Tanycytes are

the cells in which both RA is synthesized (Shearer et al.,

2010; Shearer et al., 2012b) and thyroxine (T4) is converted

to the more active T3 (Yasuo et al., 2007). To confirm the

presence of tanycytes in cultured rat hypothalami, slices were

maintained ex vivo for 6 days and then fixed in 4% PFA.

Immunohistochemistry using antibodies against the tanycyte

markers vimentin (Fig. 2C-E; Leonhardt et al., 1987) and

dopamine- and cAMP-regulated phosphoprotein (DARPP-32,

Fig. 2F-H; Meister et al., 1988) demonstrated that tanycytes

were present after 6 days of ex vivo culture, with processes

projecting into the parenchyma of the hypothalamus.

Short-term slice cultures of adult mouse hypothalamus

have been shown to be responsive to thyroid-stimulating hor-

mone (TSH) after 4 hours ex vivo, upregulating Dio2 expres-

sion and downregulating Dio3 in the ependymal cell layer of

the ventromedial hypothalamus (Unfried et al., 2009). TSH

was used as a positive control to test the response of tanycytes

in cultured rat slices to a hormonal signal. Slices were main-

tained in culture for 4 days, then treated for 48 hours with

10 mIU bovine TSH before qPCR analysis. TSH treatment

of cultured slices induced a 4-fold increase in Dio2 expression

(P50.005; Fig. 2I) and reduced Dio3 by 95% (P 5 0.02;

(Fig. 2J). These data demonstrate that tanycytes are main-

tained in cultured rat hypothalamus for up to 6 days and that

FIGURE 1: T3 upregulates Raldh1 expression in the rat hypothalamus in vivo. A: Eight-week old male Sprague Dawley rats were injected
subcutaneously with 100 nmol/kg T3. The hypothalamus was removed 4 hours after T3 injection for qPCR analysis. Expression of Agrp,
Pomc, Npy, Cart, and Ghrh was unaffected by short-term T3 treatment, but hypothalamic Raldh1 was significantly upregulated 4 hours
after T3 injection, compared with vehicle-injected animals. Dio3 was used as a positive control for the activity of T3. N 5 3 animals per
treatment group. B: A sequence closely matching the consensus sequence of a DR4-type thyroid hormone response element (TRE) was
identified in the rat Raldh1 promoter, suggesting direct regulation of Raldh1 expression by T3. Statistical significance was assessed
using Student’s t-test. ** P < 0.01. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 2: Hormone-responsive tanycytes are maintained in hypothalamic organotypic culture. 400 lm coronal slices were cut through
the hypothalamus of P10-12 Sprague Dawley rat pups. The mammillothalamic tract and fornix (A, B) were used as anatomical landmarks
to trim the slices. Nissl staining of P10 rat sections (A) shows the location of the DMN, VMN and arcuate (ARC) nuclei in relation to these
landmarks. Slices fixed after 6 days of culture in vitamin A-deficient medium and labelled using antibodies against the tanycyte markers
vimentin (C–E) and dopamine- and cAMP-regulated phosphoprotein (DARPP-32; F–H) show that tanycytes are present in cultured slices.
To test the response of tanycytes in cultured hypothalamus to hormonal signals, slices were treated with 10 mIU thyroid-stimulating hor-
mone (TSH) for 48 hours before qPCR analysis of gene expression. TSH upregulated Dio2 (I) and downregulated Dio3 (J), demonstrating
that tanycytes are not only present after 6 days ex vivo, but respond as expected to TSH in terms of gene expression. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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cultured tissue can behave like the in vivo hypothalamus in

terms of hormonal control of gene expression.

T3 Upregulates Raldh1 Expression
in Cultured Hypothalamus
A key function for TSH in the hypothalamus is to increase

deiodinase 2 and decrease deiodinase 3 in cells, including

tanycytes, of the ependymal layer of the hypothalamus (Helfer

et al., 2013) and so locally increase T3 levels, the most tran-

scriptionally active form of TH. T3 is known to signal within

the hypothalamus and is essential as a mediator for environ-

mental regulators of growth and energy balance (Mullur

et al., 2014). However, the genes on which T3 directly acts

upon to bring about these changes in the hypothalamus are

poorly understood. Given Raldh1’s induction by T3 in vivo

(Fig. 1A), this was tested in the ex vivo slice culture assay. Sli-

ces were treated with 50 nM T3 for 48 hours before analysis

of gene expression by qPCR.

Raldh1 was potently induced by T3, with a 4-fold

increase in expression in T3-treated hypothalamic slices

(P< 0.001; Fig. 3A), indicating that activation of thyroid

hormone signalling in the hypothalamus itself is sufficient to

upregulate Raldh1 expression and therefore regulate synthesis

of RA in the hypothalamus. Thus, regulation of Raldh1

expression, and therefore potentially the rate of RA synthesis,

in the hypothalamus may provide one route by which T3 can

bring about changes in hypothalamic gene expression.

Induction of Raldh1 was similar to that of the T3 cata-

bolic enzyme Dio3, previously shown to be upregulated by T3

(Bianco et al., 2002) and with a TRE in its promoter (Barca-

Mayo et al., 2011) and which was increased over six-fold in T3-

treated slices compared to controls (Fig. 3B; P 5 0.0003). Both

the rat and mouse Raldh1 promoters contain a potential TRE

(Fig. 1B). In contrast, T3 did not significantly alter expression

of Agrp, Ghrh or Pomc, genes thought to be regulated by TH in

vivo in F344 rats (Ross et al., 2009) as part of its action to con-

trol weight and energy balance (Fig. 3A). Similarly, other genes

known to be involved in hypothalamic regulation of these proc-

esses, Npy and Cart, were unaffected by T3 (Fig. 3A).

In vivo, the only cells of the hypothalamus that normally

express Raldh1 are the tanycytes (Shearer et al., 2012b), the

same cells in which T4 is converted to T3 by deiodinase 2

(Dio2). To confirm whether Raldh1 can be induced in tanycytes

by T3, primary tanycyte cultures were established following

previously described protocols (Bolborea et al., 2015; De Ser-

anno et al., 2004; Prevot et al., 2003) which are approximately

95% pure. These cells expressed the typical markers of tanycytes

including Dio3, Vim, Rax, Gpr50 and Darpp-32 (and weakly

Dio2 and Raldh1) by PCR (Fig 3C) and vimentin by immuno-

chemistry (Fig 3D) and T3 was found to significantly induce

Raldh1 by 2.5 fold (P 5 0.0020; Fig. 3E).

To investigate whether RA may be synthesized locally in

the hypothalamus by TH-induced Raldh1 the expression of a

gene regulated by RA, and not by TH in the hypothalamus,

was investigated. Cyp26b1 is highly RA-inducible in hypo-

thalamic slices (P 5 0.0006; Fig. 4A) but was not induced by

50 nM T3 after 4 or 48 hours (Fig. 4B, D). Weak, although

significant induction is seen after incubation with T3 for 24

hours (Fig. 4C) which may represent a weak response to T3

or possibly may result from low amounts of RA generated

from endogenous retinol in the slices, mediated by T3-

induced Raldh1. In contrast to Cyp26b1, treatment of hypo-

thalamic slices with T3 resulted in robust induction of both

Dio3 (as a positive control; P 5 0.025) and Raldh1

(P< 0.0001) in hypothalamic slices after 24 hours (Fig. 4C)

which was maintained at 48 hours (Fig. 4D).

The influence of TH on the same set of genes was then

investigated in vivo. TH rapidly induced both Dio3 and Raldh1

(P 5 0.0097 and P 5 0.006, respectively; Fig. 4E). This was

faster in vivo than ex vivo, suggesting that culture of slices possi-

bly results in a decline in the speed of tissue responsiveness or

that in vivo TH is perhaps transported or concentrated more

effectively in the hypothalamus, or possibly that extrahypotha-

lamic effects on tanycytes may potentiate Raldh1 expression in

vivo. Cyp26b1 was not induced so rapidly by TH (Fig. 4E) but

significant 2-fold induction was evident by 24 hours

(P 5 0.0192; Fig. 4F) following sequentially from the early

increase in Raldh1. This temporal delay in Cyp26b1 induction

would be expected if Cyp26b1 was responding not to exogenous

T3, but to an increase in RA synthesis by Raldh1.

RA Upregulates Growth-Associated Genes
in Cultured Hypothalamus
If RA may act as a downstream mediator of TH’s actions

within the hypothalamus then it would be presumed that RA

may induce some of the growth-associated genes which TH

does not directly control. Hypothalamic slice cultures were

treated with 1 mM RA for 48 hours before qPCR analysis.

Rarb was used as a positive control for RA activity, as its pro-

moter contains a well-characterized RA response element

(RARE; Leid et al., 1992). Rarb expression was 7.8-fold

higher in RA-treated slices than controls (P 5 0.004; Fig. 5).

In cultured slices, RA significantly upregulated expres-

sion of the orexigenic gene Agrp (70% increase relative to

control; P 5 0.012; Fig. 5) as well as Ghrh (67% increase;

P< 0.001). Npy and Cart expression was unaffected by RA

treatment (Fig. 5). Pomc showed a small but significant

increase in expression in RA-treated slices (27% increase;

P 5 0.040). The gene encoding PC2, a prohormone conver-

tase involved in the processing of POMC into hormones

including ACTH and a-MSH (Pritchard et al., 2002), was

Stoney et al.: Sequential Nuclear Receptors Activation in Tanycytes
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also upregulated by RA treatment (Pcsk2; 32% increase;

P< 0.001).

The experiments described thus far were performed in

hypothalamic slices from outbred Sprague Dawley rats. To

determine if the effects of RA are applicable to multiple

strains of rat, hypothalamic slice cultures were established

using tissue from another commonly used rat strain, the pho-

tosensitive inbred Fischer F344/N. Slices from F344/N rat

pups were treated with 1 mM RA after 4 days ex vivo and

harvested after 48 hours for qPCR analysis (Fig. 6). The

response of F344/N hypothalamic slices to RA was similar to

that of the Sprague Dawley hypothalamus (Fig. 6). As was

observed in Sprague Dawley slices, RA induced significant

upregulation of Rarb (5.96-fold, P< 0.001) and Ghrh expres-

sion (1.80-fold, P 5 0.004) in the F344/N hypothalamus.

Smaller but significant increases in the expression of Pomc

(1.40-fold, P 5 0.022) were seen with RA. RA treatment of

F344/N hypothalamus increased Agrp expression by a similar

FIGURE 3: T3 upregulates Raldh1 in organotypic cultures of rat hypothalamus. A: Hypothalamic slices from P10 male Sprague Dawley
rats were cultured for 4 days and then treated for 48 hours with 50 nM T3 before qPCR analysis. As in vivo, Raldh1 was upregulated in
T3-treated hypothalamic slices. Agrp, Ghrh, Pomc, Npy and Cart were unaffected by T3. B: Dio3 was used as a positive control for T3
activity. Numbers of samples are shown. C: Primary cultures of tanycytes expressed tanycyte markers Dio3, Vim, Rax, Gpr50 and Darpp-
32. Some markers such as Dio2, were only weakly expressed and this was also the case for Raldh1. D: The cultured tanycytes strongly
expressed vimentin by immunohistochemistry and several of the cells extended long processes. E: Addition of 50nM of T3 to cultured
tanycytes significantly induced their expression of Raldh1. Statistical significance was assessed using paired Student’s t-test. ** P < 0.01;
*** P < 0.001. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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amount to that seen in Sprague Dawley slices (F344/N: 1.68-

fold increase, P 5 0.051; Sprague Dawley: 1.70-fold increase,

P 5 0.012), although this increase was not quite significant.

Npy expression was unaffected by RA. Together, these data

suggest that the hypothalamic response to RA treatment is

similar between the two rat strains.

Hypothalamic RA Signalling Is under
Epigenetic Control
Epigenetic regulation of gene expression via DNA/histone

modifications is known to control aspects of hypothalamic

function, such as hormone synthesis (Miller et al., 2011) and

sexual maturation of the brain (Matsuda et al., 2011). In

FIGURE 4: Time course of ex vivo and in vivo induction of genes in the hypothalamus by thyroid hormone. The relative timing of gene
induction by T3 was examined for Dio3, as a positive control Raldh1, the RA synthetic enzyme of the hypothalamus and Cyp26b1, a RA-
responsive gene. Cyp26b1 was demonstrated to respond to RA by direct addition of RA to hypothalamic slices (A). None of the three
genes examined were responsive within 4 hours of addition of T3 to hypothalamic slices (B) but significant increases of both Dio3 and
Raldh1 were evident after 24 (C) or 48 hours T3 treatment (D). Cyp26b1 was only weakly (but significantly) induced at 24 hours (C). In
vivo, Dio3 and Raldh1 were both significantly and rapidly induced by 4 hours (E) and, at least for Raldh1, maintained for 24 hours (F).
Cyp26b1 did not respond as rapidly in vivo but was induced two-fold by 24 hours (F) and thus follows the expression of the Raldh1
gene necessary for RA synthesis. Statistical significance was assessed using unpaired Student’s t-test. * P < 0.05; ** P < 0.01; ***
P < 0.001. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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some cases, this is believed to be a behavioural control mecha-

nism that, for instance, contributes to imprinting action of the

environment on the young animal that results in altered behav-

iour in the mature animal. Epigenetic control via histone acety-

lation is particularly active in promoting RA signalling, and

derepression of RA signalling may be a major rate-limiting tar-

get of histone deacetylase (HDAC) inhibitors (Epping et al.,

2007). To explore whether the RA signalling system in the

hypothalamus is acted upon by such an epigenetic mechanism,

cultured hypothalamic slices were treated with a low concentra-

tion of RA (10 nM) which results in weaker induction of gene

expression. This was combined with trichostatin A (TSA), a

class I/II HDAC inhibitor (HDACI), or sirtinol, an inhibitor

of the sirtuin (class III) family of HDACs.

In cultured slices from F344/N rats, 10 nM RA was suffi-

cient to increase expression of Rarb (2.5-fold increase relative to

controls; Fig. 7A), but not Ghrh (Fig. 7B). TSA alone did not

affect Rarb expression, but potentiated the response to RA (4.1-

fold increase relative to control; 64% higher than RA alone).

Ghrh expression was not altered by 10 nM RA or TSA alone,

but RA and TSA in combination induced a 2.25-fold increase

in Ghrh (Fig. 7B). Sirtinol had no effect on Ghrh expression

FIGURE 5: Retinoic acid regulates expression of Agrp and Ghrh in the rat hypothalamus. Hypothalamic slices from male Sprague Dawley
rats were cultured for 4 days and then treated for 48 hours with 1 lM RA before qPCR analysis. Agrp and Ghrh expression was signifi-
cantly upregulated in RA-treated slices. Pomc and Pcsk2 showed smaller, but still significant increases in expression in RA-treated cul-
tures. Npy and Cart were unaffected by RA treatment. Rarb was used as a positive control for RA activity. Numbers of samples are
shown. Statistical significance was assessed using paired Student’s t-test. * P < 0.05; ** P < 0.01; *** P < 0.001. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 6: The F344/N rat hypothalamus is also responsive to RA. Hypothalamic slices from male F344/N rats were cultured for 4 days
and then treated for 48 hours with 1 lM RA before qPCR analysis. Responses to RA in slices from F344/N rat pups were very similar to
those in Sprague Dawley slices. Ghrh was significantly upregulated in RA-treated slices, with smaller but significant increases in Pomc.
Agrp appeared upregulated to a similar extent to that observed in Sprague Dawley slices (Fig. 4), although this did not reach statistical
significance in this case. Rarb was used as a positive control for the activity of RA. N 5 6 per group for all genes. Statistical significance
was assessed using paired Student’s t-test. * P < 0.05; ** P < 0.01; *** P < 0.001. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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and although the response of Rarb to RA was higher in the pres-

ence of sirtinol (3.3-fold increase relative to controls) than with

RA alone (2.5-fold; Fig. 7A), the difference was not significant.

Expression of Agrp, Pomc and Npy was not significantly altered

by 10 nM RA even in the presence of TSA or sirtinol (Fig. 7C-

E). These data suggest that the expression of some RA-responsive

genes in the hypothalamus may be further regulated as a result of

epigenetic chromatin modifications by class I/II HDACs.

Discussion

TH controls growth-associated physiology but T3, the most

active TH metabolite, does not directly regulate genes involved

FIGURE 7: RA regulation of gene expression in the hypothalamus is subject to epigenetic control by class I/II histone deacetylases. After 4
days ex vivo, F344/N hypothalamic slices were treated for 48 hours with trichostatin A (TSA), a class I/II histone deacetylase inhibitor
(HDACI), or sirtinol, a class III HDACI, in the presence or absence of 10 nM RA. qPCR analysis was performed using primers for Rarb, Ghrh,
Agrp, Npy and Pomc. Rarb was upregulated by 10 nM RA and TSA, but not sirtinol, enhanced the effect of RA (A). Ghrh expression was
significantly upregulated by 10 nM RA only in the presence of TSA (B). Agrp, Npy and Pomc were unaffected by HDACIs (D–E). Numbers
of samples per condition are shown in (A) and were the same for each gene examined. Data were analysed by ANOVA followed by Tukey’s
post hoc tests. ** P < 0.01; *** P < 0.001. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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in this process and gene targets of TH in the hypothalamus

have proved enigmatic (Barrett et al., 2007). This study shows

that, in vivo, T3 very rapidly induces expression of a key

enzyme, Raldh1, required for RA synthesis by tanycytes, the

source of RA for the hypothalamus (Shearer et al., 2010). That

RA levels rise in the hypothalamus on addition of TH is sug-

gested by the induction of a RA reporter gene, Cyp26b1, a

gene relatively refractory to TH. An organotypic culture system

was then developed as a simple system to identify genes imme-

diately downstream of RA and demonstrated that RA (but not

T3) has the potential to induce several growth-associated genes.

Thus, the capacity of TH to increase RA synthesis provides a

putative mechanism by which TH may control RA-inducible

genes which may include those that regulate appetite and

growth. Further, it was shown that the RA signalling system in

the hypothalamus is itself partially repressed by an epigenetic

mechanism (histone deacetylation) and can be stimulated by

inhibition of histone deacetylases.

RA has only recently been recognized to be active in the

hypothalamus as a regulatory factor and the hypothalamus is

one of the few brain regions in which RA functions, along-

side regions such as the hippocampus and olfactory system

(Goodman et al., 2012; Hagglund et al., 2006; Shearer et al.,

2012a). However the importance of RA and its precursor,

vitamin A, to control feeding and weight, was recognized

much earlier. The sudden removal of vitamin A from the diet

of rats causes rapid weight loss and a reduction in food intake

which can be countered by administration of RA (Anzano

et al., 1979). Weight loss induced by vitamin A deficiency

(VAD) persists even in force-fed animals, indicating that

VAD affects the fundamental mechanisms of weight control

in addition to regulating feeding behaviour. Further evidence

for the involvement of vitamin A and RA in growth and

energy balance comes from the study of photoperiodic ani-

mals such as hamsters which display increased growth and

feeding under long day (summer-like) conditions compared

to short (winter-like) daylength. Many components of the RA

signalling pathway are upregulated in the hypothalamus of

long day-acclimatized rodents including the retinoic X recep-

tor (RXR) which can heterodimerize with either the TH

receptor or the RA related receptor (Helfer et al., 2012; Ross

et al., 2005; Ross et al., 2004; Shearer et al., 2010; Shearer

et al., 2012b). Finally, the importance of Raldh1 in energy

balance is highlighted in the finding that Raldh12/2 mice are

highly resistant to diet-induced obesity (Ziouzenkova et al.,

2007). This phenotype was ascribed to an excess of retinalde-

hyde in adipose tissue due to a lack of Raldh1. However,

more recent studies have identified Raldh1 as the only

RA-synthesizing enzyme in the mouse hypothalamus (Helfer

et al., 2012; Shearer et al., 2010) and therefore the downreg-

ulation of hypothalamic RA signalling in Raldh12/2 mice

may also play a role in prevention of obesity.

The data presented in this study suggest that TH signal-

ling has the potential to lie upstream of RA in the hypothala-

mus, as T3 upregulated Raldh1 expression both in vivo and ex
vivo. This is consistent with previous observations in VAD rats.

Expression of both TRs and RARs is suppressed in the brain

of VAD rats (Husson et al., 2003). Injecting VAD rats with

RA only reactivated RA signalling, but T3 administration reac-

tivates RAR and TR expression, suggesting that RA signalling

can lie downstream of TH signalling in the brain. In the hypo-

thalamus, RA is synthesized by tanycytes, the only cells in the

hypothalamus that express both Dio2 and Raldh1, with Dio2

synthesizing T3, which can then act to induce Raldh1 and

increase levels of RA potentially to act on both tanycytes and

neurons. This proposed pathway is illustrated in Figure 8. This

system is notable for the very rapid induction of Raldh1 tran-

script. Raldh1 protein is transported along the length of the

tanycyte fibres (Shearer et al., 2010), which have been shown

to contact Agrp/Npy neurons in the hypothalamus (Coppola

et al., 2007), potentially releasing RA immediately adjacent to

the target cells. This novel pathway provides a new route by

which TH may promote expression of neuronal Agrp to

increase appetite (Varela et al., 2012) and may also provide a

mechanism by which TH could increase Ghrh to promote

growth (Ross et al., 2011). The potential also exists for this to

be a mechanism by which TH controls neurogenesis given the

recent finding of RA’s control of cell proliferation in the neuro-

genic regions of the hypothalamus (Shearer et al., 2012b). b2-

tanycytes have been proposed as a neural stem cell population

(Lee et al., 2012) and express Fgf10 (Haan et al., 2013). This

potentially influences the birth of new neurons that modulate

hypothalamic control of energy balance (Kokoeva et al., 2005;

Lee et al., 2012; McNay et al., 2012).

The action of Raldh1 as a downstream effector of TH

was recently described in the developing mouse cerebral cor-

tex (Gil-Ibanez et al., 2014). Our own analysis of the mouse

Raldh1 promoter identified a putative TRE, similar to the

rat. Further, non-verified gene array analysis of hypothyroid

rats, 24 hours after TH treatment, identified Raldh1 as a

putative TH-inducible gene in the hypothalamus (Barrett

et al., 2014). This same gene array analysis also identified

two other unverified retinoid-related genes potentially down-

stream of TH; the first Dhrs7c (dehydrogenase/reductase SDR

family member 7C, SRP-35) which synthesizes retinaldehyde

from vitamin A, the substrate of Raldh1 (Treves et al., 2012).

Also putatively identified to be strongly induced by TH was

Rpe65, a retinoid isomerase (Kiser and Palczewski, 2010).

This study did not show an effect of T3 or RA on Npy/
Cart expression. However Npy is presumed to be downstream

of TH given that it is upregulated in hyperthyroid animals
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(Lopez et al., 2010). Hence, there must be alternative regulatory

pathways downstream of TH signalling that control NPY, either

in the hypothalamus, or extrahypothalamic. Other signalling

routes may also exist for TH regulation of Agrp, as recently sug-

gested to involve mTOR (Varela et al., 2012), but such pathways

may set up long-term changes in contrast to the rapid action of

TH to induce Raldh1. That RA was found to result in a slight

increase in Pomc expression was unexpected given that Agrp was

increased and these factors usually display reciprocal changes.

Pomc expression is known to be regulated by RA in the pituitary

(Paez-Pereda et al., 2001) and protein expression of adrenocorti-

cotropic hormone (ACTH), a product of POMC, appeared

increased by RA in organotypic cultures of mouse hypothalamus

(Shearer et al., 2010). There are instances in which Pomc and

Agrp are simultaneously increased in the hypothalamus, in condi-

tions where both TH and RA signalling are increased (Ross

et al., 2009). Further, there is some evidence that NPY suppresses

Pomc expression via the Y2 NPY receptor (Garcia de Yebenes

et al., 1995) and in vivo NPY may be capable of opposing the

transcriptional activation of Pomc by RA.

Some, but not all, of the RA-regulated genes in the

hypothalamus were subject to regulation by epigenetic modi-

fications. Epigenetic control of gene expression via histone

acetylation has been previously shown to mediate, in part,

some of the effects of environmental influences on the brain

(reviewed by Fagiolini et al., 2009), including alteration of

energy balance. For example, changes in HDAC expression

and histone acetylation have been observed in the ventrome-

dial and paraventricular hypothalamic nuclei of mice that

were either fasted or fed a high-fat diet (Funato et al.,

2011). In addition, epigenetic changes in the foetal hypo-

thalamus caused by maternal stress have been linked to

long-term alterations in energy balance, including suscepti-

bility to diet-induced obesity (Paternain et al., 2012; Stevens

et al., 2010).

These observations suggest that epigenetic modifiers play

an important role in the regulation of metabolic states, particu-

larly in the case of persistent changes over longer timescales.

There is some evidence that the RA signalling pathway is a

major target of HDACIs (Epping et al., 2007). Unliganded

RARa is known to suppress transcription of RA target genes by

recruiting components of the corepressor complex (Hauksdottir

et al., 2003), including HDACs, and HDACIs act partly via

derepression of RA signalling (Epping et al., 2007). The data

presented in this study, in which induction of Rarb and Ghrh

by RA was potentiated in the presence of a class I/II HDACI,

FIGURE 8: A proposed model of retinoic acid function in the hypothalamus. Thyroid hormone circulates in the blood in the form of thy-
roxine (T4) and is taken into hypothalamic tanycytes via transporters such as monocarboxylate transporter 8 (MCT8). T4 is converted by
type II deiodinase (DIO2) to the more active triiodothyronine (T3), which is inactivated by DIO3. Stimuli such as fasting can result in a
local increase in T3 in the tanycytes, upregulating Raldh1 expression. RALDH1 synthesizes retinoic acid (RA), which enters the nucleus
and upregulates expression of target genes via binding to retinoic acid receptors (RAR). Tanycytes project long processes into the
parenchyma which contact hypothalamic neurons and RA may be released immediately adjacent to target cells. Histone deacetylases
(HDAC) may further modulate the action of RA on its target genes. In seasonal animals, the release of thyroid-stimulating hormone
(TSH) from the pars tuberalis of the pituitary (PT) is increased in summer-like, long-day conditions. TSH binds to its receptor (TSHR) on
the surface of tanycytes and increases DIO2 expression while supressing DIO3, and leading to an increase in T3 in the tanycytes. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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suggests that epigenetic regulation of hypothalamic function

can, in part, act via the RA signalling pathway.

In summary, this study has demonstrated an extra step

of regulatory control in the hypothalamic tanycytes which

provides a mechanism by which TH has the possibility to

control gene expression through sequential nuclear receptor

steps, first the TH receptor followed by the RA receptor.

Such a route may provide an amplification step for TH sig-

nalling. This pathway also provides a point of epigenetic reg-

ulation of hypothalamic function. In the hypothalamus,

HDACs are involved in masculinization of the brain during

the early postnatal period potentially through the nuclear

receptor estrogen receptor a and aromatase (Matsuda et al.,

2011). Control of corticotropin-releasing hormone in the

hypothalamus by the glucocorticoid receptor, another member

of the nuclear receptor superfamily, is potentially mediated by

HDACI (Miller et al., 2011). Epigenetic changes in the

DNA methylation and histone acetylation states of the pro-

moters of hypothalamic genes involved in energy balance,

such as Pomc and Npy, have been found to result from mater-

nal undernutrition or stress (Paternain et al., 2012; Stevens

et al., 2010). This represents a mechanism by which hypo-

thalamic plasticity may be moulded.
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