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Abstract 

The silkworm, Bombyx mori, is an important economic insect as well as a model organism for 

lepidopteran insect. The integrins are evolutionarily conserved from sponges to humans and play 

vital roles in many physiological and pathological. To explore the diverse functions of the insect 

integrins, eleven integrins including six α and five subunits were first identified from silkworm. 

Phylogenetic analysis showed that gene duplication events occurred during evolutionary history of 

the silkworm, which makes greatly increased the numbers of the integrins compared to other 

invertebrates. The silkworm integrin α were clustered into three groups: PS1, PS2 and PS3. The β 

were mainly gathered in insect β and insect βν in invertebrates. However, β4 has a great difference 

in the sequences characteristics with other known insect integrins and was clustered into a novel 

phylogenetic branch. And expression profiles demonstrated that the integrins exhibits distinct 

patterns, but mainly expressed in hemocytes. α1 and β2 subunits were the predominant subunit 

both in the embryogenesis and larva stages. Five integrins specificly expressed in hemocyte with 

remarkably similar expression patterns. Interestingly, the integrins were significantly up-regulated 

by 20-hydroxyecdysone (20-E) in vivo. These results indicate that integrins play diverse function 

in hemocytes of silkworm. Overall, our results provide new insight into the function and 

evolutionary features of the integrins. 
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Introduction 

    Integrin is an important class of cell surface glycoprotein, which can mediate cell-to-cell and 

cell-to-extracellular matrix (ECM) interactions as well as transduce the bidirectional 

transmembrane signal through its unique signaling pathway[1]. The integrins are widely expressed 

in metazoans from sponges to humans and each is conserved composed of a large extracellular 

portion, a single transmembrane segment, and a short cytoplasmic domain (Except for β4, it owns 

a large cytoplasmic domain)[2]. In mammalians, there are 18 α and 8 β having been identified and 

they constitute at least 24 heterodimers[3]. They play crucial roles in many physiological and 

pathological processes including immune response, cell adhesion, migration,apoptosis, tissue 

organization and repair[4-8]. Integrins also widely express in cancer cells and contribute to cancer 

progression and metastasis by increasing cancer cell survival, proliferation, migration and 

invasion, moreover, several integrins are considered as potential targets for cancer therapy[9, 10].    

In Drosophila melanogaster, essential roles of integrins in cell adhesion, migration, 

developmental, proliferation, apoptosis and innate immunity have been well studied[11-17]. 

Drosophila integrins are also important to anchoring the stem cell to their niche[18-20] and it is 

essential for intestinal stem cells maintenance and proliferation[20]. However, there are 

comparatively few works on the integrins of other insects, and the present limited research mainly 



focus on the influence to insect cellular immunity. In Manduca sexta, α1, α2 and α3 play different 

roles in immune response and control different steps of celluar immunity [21]. Besides, β1 

specificly expresses in plasmatocytes and is required for hemocytes encapsulation[22]. Three α 

and one β subunit have been identified from Pseudoplusia includes, and they are likely to regulate 

haemocyte adhesion during encapsulation[23, 24]. In Ostrinia furnacalis, β1 effects the spreading 

and encapsulation of plasmatocytes[25, 26]. RNA interference of β1 impairs the cellular immune 

response and larval development in Spodoptera exigua[27]. In Anopheles gambiae and Ceratitis 

capitata (medfly), β subunit also could regulate the bacterial phagocytosis[28, 29]. 

To extend the knowledge of the integrins in insect, we have choosen the silkworm, Bombyx 

mori, which not only an economically important insect model for silk production, but also is an 

excellent model for fundamental research. In this study, we report the identification, 

characterization, expression analysis and functional study of the integrins in silkworm. Eleven 

integrins, including six α and five β subunits were identified in silkworm, and their gene 

phylogeny relationships, temporal and spatial expression profiles were investigated carefully, their 

responses to treatment of 20-ecdysone (20-E) were also surveyed. 

Materials and methods 

Biological materials 

The Chinese silkworm strain Dazao (P50) was used in this study, maintained in State Key 

Laboratory of Silkworm Genome Biology. The larvae were feed with fresh mulberry leaves on an 

artificial diet under a temperature of 25°C, 60%-90% relative humidity and a 16 hours light/8 

hours dark cycle. To obtain the expression profiles of the integrin in Silkworm, the sample from 

different embryonic stages and different tissues at day 3 of the fifth instar were isolated and stored 

in liquid nitrogen until use. 

 

Identification of the integrin family in Silkworm 

    The integrin family was identified using a bioinformatic apprroach based on Silkworm 

genome. The databases of Silkworm including Bombyx mori 9× genomic sequencing 

database, Bombyx mori EST database, CDS database, and predicted protein database all from 

SilkDB (http://www.silkdb.org/silkdb/). The amino acid sequence of the integrin family genes 

from H.Sapiens, D. Drosophila and other insects were obtained from the GeneBank 



(http://www.ncbi.nlm.nih.gov/). Integrin sequences from other species were used as queries to 

BLAST against the silkDB with an E-value threshold of 10
-6

[30, 31]. Subsequently, each putative 

protein was futher validated by domain prediction using SMART (http://smart.embl-heidelberg.de/) 

and pfam(http://pfam.sanger.ac.uk/). 

 

RNA extraction 

Total RNA were extracted using TRIzol reagent (TaKaRa, China) basically according to the 

manufacturer's protocol. After digesting the residual genomic DNA using RNase-free DNase I 

(TaKaRa, China) for 30min at 37°C. First-strand cDNA was synthesized by using 2μg of total 

RNA in a 20μL reaction mixture using M-MLV Reverse Transcriptase (Promega, USA) according 

to the protocol provided by the manufacture and stored at -20°C.  

 

Full-length cDNA cloning  

According to the predicted CDS sequences and expressed sequence tags (EST) in the 

SilkDB(http://www.silkdb.org/silkdb/), primers were designed and the fragments of the integrin 

subunits were acquired by polymerase chain reaction (PCR). Subsequently, 3' and 5' RNA 

ligase-mediated rapid amplification of cDNA ends (RLM-RACE) were performed to obtain their 

full-length cDNA by using GeneRacer
TM

 kit (Invitrogen) with the gene-specific primer. Finally, all 

of the open reading frames (ORF) deduced from the full-length cDNA sequences were confirmed 

by PCR. All PCR products were cloned into PMD19-T Simple vector (TaKaRa, China) and 

sequenced at invitrogen(Shanghai, China). 

 

Bioinformatics and phylogeny analysis 

    The open reading frames (ORFs) of each integrin in Silkworm were 

determined with the ORF Finder software (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The 

signal peptide predicted by SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/). And the domain 

was predicted by using SMART (http://smart.embl-heidelberg.de/), Pfam 

(http://pfam.sanger.ac.uk/) and PROSITE (http://us.expasy.org/prosite). The deduced amino acid 

sequences of putative integrins were aligned using the ClustalX program, and two phylogentic 

trees on α and β subunit were constructed by the neighbor-joining method with 10,00 bootstrap 



replicates using MEGA 4.0 program[32]. The sequences used for this analysis were shown in 

supplementary data Table S1.    

 

RT-PCR 

The semi-quantitative RT-PCR amplification was performed under the following condition: 

94°C for 4 min, followed by 30 cycles of 94°C for 30s, 56°C for 30s and 72°C for 45s, finally, 

72°C extension for 10min. Gene-specific primers for integrins used in this experiment are listed in 

supplementary data Table S3, and BmActin3 gene was used as an internal control.  

 

qRT-PCR 

Quantitative Real-Time PCR (qRT-PCR) was performed with SYBR
® 

Premix Ex Taq
TM

 Ⅱ 

(TaKaRa, China) with an StepOnePlus
TM

 Real -Time PCR system (Applied Biosystems). The 

conditions for the PCR were 95°C for 30s, followed by 40 cycles of 95°C for 5s and 60°C for 30s. 

The primers for all genes used in this experiment are listed in supplementary data Table S4. The 

housekeeping sw22934 gene was used as indicator of the expression level of each gene and 

relative gene expression data was calculated with the 2
-ΔΔCt 

method[33]. Online t-test software 

Graphad Software (http://www.graphpad.com/quickcalcs/ttest1.cfm) was used to evaluate the 

statistical significance (P<0.05).  

 

Injection of 20E 

To investigate the effect of 20-hydroxyecdysone (20E) on integrin transcript levels, 1.5μg 

20E (Sigma,USA) was injected to each larva on the second day of the 5
th

 instar. 1×PBS containing  

corresponding amount of alcohol was used as a control. Then the silkworm were feed with fresh 

mulberry leaves under standard conditions. Hemocytes were collected 18 hours after the injection.  

Results 

Cloning and characterization of the integrin family 

The completion of genome sequencing makes it possible to identify the integrins in the entire 

genome of silkworm, Bombyx mori[34-36]. The integrins from H.Sapiens, D. Drosophila and 

other insects were downloaded from NCBI as queries. Total of thirteen members, including eight α 

and five β subunits of the integrin family were identified through search of the silkworm genome 



database (SilkDB) (Table.1). Complete cDNAs were acquired using PCR amplification and 

rapid-amplification of cDNA ends (RACE) , and then the results were confirmed through 

amplification of the complete ORFs. Finally, six α and five β members were obtained and 

confirmed. The results have been submitted to the Genebank and are available under the accession 

numbers given in table 1. Similar to other species, the integrins in silkworm consist of three 

domains, a large extracellular portion, a single transmembrane segment, and a short cytoplasmic 

domain[2].   

 

Phylogenetic analysis 

To analyze the relationships between silkworm integrins and other species, two phylogenetic 

trees were constructed by MEGA 4.0 using amino acid sequences from various species (Fig S1).  

Hughes divided the integrin α subunits into four families based on evolutionary descent[4]. 

The I-DOM group, which have an “inserted” domain or “αI domain”, not found in invertebrates 

(Fig 1). The PS1 and PS2 groups integrins have been found in various species, from invertebrates 

to vertebrates. In contrast, the PS3 group have only been found in insect so far[4, 24, 37] , which 

seems to be specific for insects[37]. The result showed that the six silkworm α integrin subunits 

clustered into PS1, PS2 and PS3 respectively (Fig 1). The silkworm α1 belongs to PS1 group, and 

it is related most closely to P.includens α1 (Identity: 76%) and D.melanogaster αPS1 (43%). α2 

related most closely to M.sexta α2 (43%) and D.melanogaster αPS2 (24%), and clustered into PS2 

group. α3, αPS1, αPS2 and αPS3 are all classified into PS3 group, which also contain 

D.melanogaster αPS3, αPS4 and αPS5. α3 is related most closely to M.sexta α3, they share 55% 

identity with each others. αPS1, αPS2 and αPS3 are related most closely to M.sexta α1, they share 

35%, 33% and 23% identity with M.sexta α1, respectively. In the silkworm genome, four out of 

six α subunits were located on chromosome 10 (Table 1), interestingly, αPS1, αPS2 and αPS3 

closely clustered on nscaf2855 with different transcriptional orientations (Fig 3). 

The integrin β subunits can be classified into three major phylogenetic branches[4, 37-39]. 

The integrin β subunits from vertebrates were clustered into two groups, namely vertebrate A 

(including β1, β2, and β7 from human) and B (β3-β6 and β8 from human), the invertebrate 

sequences composed the third group, which seems to be specific for invertebrates [37, 38]. For 

this reason, forty-one different sequences of the integrin β subunits from invertebrate were used to 



construct the phylogenetic tree in this study (Fig S1). The analysis showed that integrin β from 

insecta can be classified into three distinct groups in invertebrates (Fig 2). β1 is related most 

closed to S.exigua β1, and there are in turn related to other insecta β group subunits, which 

including the integrin β from coleoptera, lepidoptera, diptera and hymenoptera. Insecta βv group 

contain multiple integrin β subunits from silkworm, and the compositions of the βv group are as 

rich as β group. Two members (β2 and β3) from this group and β4 were all closely together on 

nscaf2847, which were located on chromosome 4 in silkworm genome (Fig 3). The third group 

only contain the integrin β subunits from coleopteran and hymenoptera. Unexpectedly, β4 from 

silkworm and βpat-3 separately cluster together, and are not belong to any one of the above three 

groups.  

 

Expression profiles 

The expression of the different integrins during embryogenesis stages were examined by 

RT-PCR (Fig 4). α1, α2 and β1 were highly expressed throughout development, the expression of 

α3 and β4 reached the peak from day 3 to day 7. The expression of β5 appeared to high at early 

stages and declined gradually thereafter. In contrast, other members were lowly expressed at early 

stages while expression levels increased gradually after day 7.  

Microarray data from SilkDB database allowed us to analyze the tissue-expression profiles of 

the integrins in Silkworm[40]. All integrins have corresponding probes in the oligonucleotide chip 

(Table.1), and a heat map was created based on signal intensity value (Fig S2). Significantly, the 

majority of the integrins were mainly highly expressed in hemocytes compared to other tissues. β1 

was widely expressed in various tissues on day 3 of the 5
th
 instar larvae. 

The integrins expression profiles were verified by qRT-PCR in nine different tissues, 

including epidermis, head, testis, ovary, midgut, malpighian tube, silk gland, fat body and 

haemocyte, on day 3 of the 5
th
 instar larvae (Fig 5A-J). The results showed that almost all the 

members were highly expressed in hemocytes except α2 and β5. Besides, α1 and β2 were two 

dominant subunits in hemocytes (Fig 5L). Interestingly, five members (αPS1, αPS2, αPS 3, β2 and 

β3) were specifically expressed in hemocytes (We thought that the extremely low signal in head 

was caused by the pollution of small amount of hemocytes) (Fig 5D, E, F, H, I). α1, α2, β1 and β5 

were also abundantly expressed in other tissues, but α3 had a low expression in several 



organizations, such as fat body, head and ovary (Fig 5A, B, G, K). 

 Moreover, we also investigated the temporal expression patterns of the integrins in the 

hemocytes. Overall, the expression level of the integrins reached their lowest point at the 

wandering stage of the 4
th
 instar, and then their expression level rised consistently. Interestingly, 

the hemocyte-specific integrins (αPS1, αPS2, αPS3, β2 and β3) have similar trends of expression 

(Fig 5D’, E’ , F’, H’, I’). α1 stayed at a high level with a small oscillation. The expression of α2 

and β4 have remained at a relatively low level until the end of the 5
th
 instar (Fig 5B’, J’). And α3 

and β1 transcript levels gone up steadily (Fig 5B’, K’).  

 

Regulation of the integrins’ expression by 20E 

20-E was injected into the larvae to test whether ecdysone can regulate the expression of the 

integrins in hemocytes. The results showed that almost all the integrin members were significantly 

up-regulated by 20-E, except for α3 (Fig 6). α2 and β5 were not test because both of them were 

not or lowly expressed in hemocytes (Fig 5).  

Discussion 

The integrins are widely exist in metazoan, ranging from sponge to human. The Integrins are 

transmembrane receptors which function by forming heterodimers based on two distinct subunits. 

Actually, there are eighteen α and eight β subunits in H.sapiens, they constitute at least 

twenty-four heterodimers. The numbers may be fewer in lower organisms, but it is clear that there 

are at least two integrin αβ heterodimers since primitive bilateria[3]. C.elegans has two α and one 

β subunits, which compose two dimers. In D.melanogaster, there are five α subunits and three β 

subunits, and the βPS could form three different heterodimers by the combination of αPS1, αPS2, 

αPS3[41]. In our study, six α and five β subunits have been identified from silkworm genome 

(Table 1). The number more than other insects, the hypothesized reasons are: (1) There are 

relatively few studies on insect integrins (except Drosophila), additionally, the lack of genomic 

information makes it difficult to identify new members. (2) Gene duplication events occurred 

during evolution of silkworm. The integrins are necessary to form a heterodimer, which target cell 

membrane to perform functions. Thus, exploring combinations between α and β subunits will be 

required in the future.  



The expression of the integrins shows obvious tissue specificity in lepidoptera. In M.sexta 

and P.includens,α1 and α3 are mainly expressed in hemocytes, α2 is highly expressed in fat body 

and lowly expressed in hemocytes, β1 is specificly expressed in hemocytes[21, 22, 24]. 

O.furnacalis β1 is mainly expressed in hemocytes[25]. In the present study, α1 is highly expressed 

in hemocytes, α2 showes very low expression level in hemocytes, α3 is mainly expressed in 

hemocytes, and β2 (homologue of β1 from M.sexta) specificly expressed in hemocytes (Fig 5). 

The results imply that these members may play conserved roles in lepidoptera. 

Overall, according to their sequence feature and expression patterns (Fig 1 and Fig 5), six 

integrin α subunits from silkworm can be classified into three groups: PS1 (α1), PS2 (α2) and PS3  

(α3, αPS1, αPS2 and αPS3 ). This suggested that integrin α subunits may play various functions in 

silkworm. α1 is widely expressed in various tissues containing hemocytes, which indicates that α1 

may be relate to the development of multiple organs. α2 is probably an important subunit in 

regulating hemocytes adhesion[21, 24]. α3, αPS1, αPS2 and αPS3 were speculate linked to the 

development of hemocyte and the celluar immunity. Besides, duplicate events and analogous 

expression patterns of αPS1, αPS1 and αPS3 suggested that their functions are highly conserved in 

silkworm. The integrin β subunits can be classified into three groups: insect β (β1), insect βv (β2, 

β3 and β5) and β4 (Fig 2). β1 is likely to play diverse functions in various organs, and it may also 

have effects on the spreading of plasmatocytes[25]. β2 and β3 are related closely to β1 from 

M.sexta, it is may be essential for celluar innate immune response[22, 42]. β5 seems to be 

different with β2 and β3, and it is related closely to βv from D.melanogaster. Therefore, we 

speculates that it may be responsible for the clearance of apoptotic cells[17]. β4 and βpat-3 seem 

to form a novel phylogenetic branch (Fig 2.), the sequence and structure characteristics of β5 has a 

great difference with other integrins known in insect, as we know they may be related to BmNPV 

infection in B.mori[43]. Obviously, further surveys on identifying the functions of the integrins is 

required. 

Integrin signaling is important for anchoring the stem cell to their respective niches[19] and 

they also play essential roles in intestinal stem cells maintenance and proliferation in 

Drosophila[20]. In our studies, majority of the integrins are highly or specificly expressed in 

hemocytes of the silkworm (Fig 5). These indicates that the integrins may have great influence  



on regulating the hematopoiesis and hematopoietic stem cells, which had been identified in our 

previous studies[44]. Moreover, a part of integrins are specifically expressed in hemocytes, even 

in some single hemocyte lineage, for example, β1 in plasmatocytes of M.sexta[22], αPS3 in 

granulocytes and β2 in plasmatocytes of B.mori (Unpublished data). This property shows that 

integrin have the potential to be used as hemocyte or single hemocyte lineage label, which is an 

useful and urgently required tool in hematopoietic research[44].  

In our study, eight integrin subunits were significantly induced by 20E (Fig 6). It has been 

reported that ecdysone is associated with hematopoiesis in silkworm, 20E may not only could 

control the hemocyte cell cycle event[45], but also stimulate hemocytes to be discharge from the 

hematopoietic organs in vitro[46]. It has not been reported that integrins can be regulated by 

ecdysone in hematopoietic system. Some published documents[47] and our preliminary 

experiments (data no shown) suggested that the density of hemocytes changed 12-18 hours after 

20-E injection, and the integrin expression diversity peaked at 18 hours after injection. We 

speculate the integrins may paly a role in the development of hemocytes. However, it is not clear 

the integrins are directly or indirectly regulated by 20E, and the mechanisms remain unclear. 

Furthermore, Detection of the transcriptal level could not refulect real information sometimes, so 

more researches are required to identify the functions of the integrins in silkworm.  

In summary, eleven integrin orthologs in silkworm have been been identified in our study. 

The sequence characteristics, express patterns were analyzed carefully. These results will provide 

fundamental knowledges and will be useful for further exploring the functions of the integrins in 

silkworm.  
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Legend 

Table 1. Summary of the integrin family identified in the silkworm genome. 

Fig 1. The phylogenetic tree of the integrin α family based on the full-length amino acid by 

the neighbor-joining method. Boostrap values (1000 replications) of > 60% were showed. The 

silkworm α subunits are labeled with red diamonds. 

Fig 2. A neighbor-joining tree for integrin β subfamily in invertebrates based on the 

full-length amino acid. The number closed to individual branches represents the percentage of 

1000 bootstrap iterations supporting the branch, and values below 60% were omitted. The 

silkworm β subunits are labeled with red circles.  

Fig 3. The genomic locations of the integrins in silkworm. The red boxes represent the integrin 

gene localization and transcriptional oritation were indicated by black arrows.  

Fig 4. Developmental expression patterns of the integrin family during embryogenesis in 

silkworm. Actin3 was used as an internal control.  

Fig 5. Analysis the relative transcript abundance of the integrin family in different larval 

tissues on day 3 of the fifth instar larvae and the hemocytes from day 3 of 4
th

 instar to the 

whole 5
th

 instar of silkworm by qRT-PCR. Abbreviation: Ep, epidermis; He, head; Te, testis; Ov, 

ovary; Mi, midgut; Ma , Malpighian tube; Si, silk gland; Fa, fat body; Ha, haemocyte; L, larval; M, 

molting. (A-K) Relative transcript abundance of the integrin, temporal expression profile of β5 not 

detected because it not expressed in hemocytes. (L) Relative transcript abundance of the integrin 



family in hemocytes. sw22934 was used as an internal control. 

Fig 5. Relative transcript levels of the integrins in response to 20-E treated 18 hours in vivo. 

The corresponding amount of alcohol was used as a control. The differences between the 

experimental and the control groups were analyzed by the Student’s t test, **P<0.01, ***P<0.001. 

All experiments were repeated at least three times. 

Fig S1. Species, proteins and genbank accession numbers of integrins used in phylogenetic 

reconstructions. 

Fig S2. Microarray analysis of the expression of the putative integrin family genes on day 3 

of the fifth instar larvae of Silkworm, Bombyx mori. Gene expression levels are represented by 

Green (lower expresson) and red (Higher expression) boxes. The columns represent ten dfferent 

tissues, namely, hemocyte, midgut, head, testis, ovary, integument, malpighian tubule, fat body, 

anterior/median silk gland (A/MSG) and posterior silk gland (PSG). 

Fig S3. Primer sequences, sizes of PCR production and melting temperature for  

semi-quantitative RT-PCR. 

Fig S4. Primer sequences, sizes of PCR production and melting temperature for qRT-PCR. 


