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Human memory is content addressable—i.e., contents of
the memory can be accessed using partial information
about the bound features of a stored item. In this study,
we used a cross-feature cuing technique to examine how
the human visual system encodes, binds, and retains
information about multiple stimulus features within a
set of moving objects. We sought to characterize the
roles of three different features (position, color, and
direction of motion, the latter two of which are
processed preferentially within the ventral and dorsal
visual streams, respectively) in the construction and
maintenance of object representations. We investigated
the extent to which these features are bound together
across the following processing stages: during stimulus
encoding, sensory (iconic) memory, and visual short-
term memory. Whereas all features examined here can
serve as cues for addressing content, their effectiveness
shows asymmetries and varies according to cue–report
pairings and the stage of information processing and
storage. Position-based indexing theories predict that
position should be more effective as a cue compared to
other features. While we found a privileged role for
position as a cue at the stimulus-encoding stage, position
was not the privileged cue at the sensory and visual
short-term memory stages. Instead, the pattern that
emerged from our findings is one that mirrors the
parallel processing streams in the visual system. This
stream-specific binding and cuing effectiveness
manifests itself in all three stages of information

processing examined here. Finally, we find that the Leaky
Flask model proposed in our previous study is applicable
to all three features.

Introduction

Our visual world is complex and usually cluttered
with a large number of objects, many of which can be
simultaneously in motion. The ability to track and
identify multiple moving objects in a visual scene is
therefore essential for navigating and interacting with
the surroundings. Significant research in vision science
has been devoted to understanding the functional
architecture of the visual system that enables the
accomplishment of these tasks. Despite its relatively
effortless execution, the underlying processes form a
complicated computational problem for three reasons
(Öğmen & Herzog, 2010). First, the tasks intrinsically
demand that identities of objects be established and
remain tolerant to continual changes in their defining
features produced, for example, by different perspective
views of an object when it moves. For example, the
frontal and side views of an approaching animal can be
drastically different. This problem was recognized by
the gestalt psychologist Joseph Ternus, who called it
the ‘‘problem of phenomenal identity’’ (Ternus, 1926,
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1938). This problem has also been known as the
feature-invariance problem. Second, while we can
establish and maintain the identities of objects in a
feature-invariant manner, these features are not com-
pletely discounted, since our percept at any instant
consists of objects with their specific features. Hence,
along with feature-invariant representations, the brain
should also have feature-specific representations. Fi-
nally, as objects move and occlude each other, features
of different objects and features of the background can
continuously blend with each other. Hence, the visual
system should be able to correctly attribute features to
objects (feature-attribution problem; Öğmen, Otto, &
Herzog, 2006) and bind together different features of a
given object (feature-binding problem; Revonsuo &
Newman, 1999). We reason that addressing these
problems requires a detailed understanding about how
individual features contribute to the construction and
maintenance of an object’s identity and how they are
temporally related.

Much of relevant research has focused on the topic
of feature binding. Classically, it has been established
that the processing of different visual features is
mediated by distributed cortical areas. For example,
evidence from previous electrophysiological recordings
and functional-imaging studies suggests that surface
features (e.g., color, form) of an object are processed in
areas along the ventral pathway (Zeki, 1976; Desimone,
Schein, Moran, & Ungerleider, 1985), while the object’s
spatiotemporal features (e.g., direction of motion) are
processed in areas along the dorsal pathway (Maunsell
& Van Essen, 1983; Born & Bradley, 2005). This
anatomical and functional segregation leads to the
questions of how and where in the brain visual features
come to be integrated in the first place. Over the years,
many solutions to the problem of feature binding have
been proposed. According to Riesenhuber and Poggio
(1999), perceptual binding is based on ‘‘grand-mother’’
neurons or neuron populations that are functionally
selective for specific combinations of features. Howev-
er, given that visual features such as form or color can
all take on innumerable values, this way of binding
processing seems impractical in many cases. Moreover,
there has been evidence showing that the same neuron
population can be activated by many different combi-
nations of features (Basole, White, & Fitzpatrick,
2003). Alternatively, some researchers have suggested
that bound features are represented via synchronized
spiking activities of neurons from different brain areas
(Von Der Malsburg, 1981; Gray, König, Engel, &
Singer, 1989), but conflicting results have been reported
as well (Fries, Neuenschwander, Engel, Goebel, &
Singer, 2001; Thiele & Stoner, 2003; Dong, Mihalas,
Qiu, von der Heydt, & Niebur, 2008).

In other studies, the pivotal role of visual attention
in binding is emphasized not only in perception

(Treisman & Gelade, 1980; Treisman & Schmidt, 1982;
Braet & Humphreys, 2009; Hyun, Woodman, & Luck,
2009; Reeves, Santhi, & DeCaro, 2005) but also in
visual short-term memory (Wolfe, 1999; Rensink, 2000;
Wheeler & Treisman, 2002; Fougnie & Marois, 2009;
but see Allen, Baddeley, & Hitch, 2006; VanRullen,
2009). For example, Hyun and colleagues (2009) used a
visual-search paradigm and measured the lateralized
N2pc event-related-potential component, a hypothe-
sized indicator of an observer’s allocation of attention
to the contralateral hemifield. The amplitude of N2pc
was found to be larger in a task that required observers
to bind the color of the target to its location compared
to that in a task that simply required observers to detect
a target color. This indicates that the binding of an
object’s color to its location demands attentional
resources. Saiki (2003a, 2003b) introduced the Multiple
Object Permanence Tracking paradigm, in which the
stimulus consisted of a rotating pattern (three dots of
different colors forming a triangle) behind a fan-shaped
occluder (which also rotated in some experiments).
There were three conditions. In the replacement
condition, one of the dots in the pattern was replaced
by a dot of a different color; in the switch condition,
two of the dots in the pattern briefly switched colors;
and in the normal condition, there was neither
replacement nor switch. Observers had to report if
there was any irregularity (replacement or switch) in
the stimulus. Performance was good for detecting
replacement but was substantially poorer for detecting
switches. These results suggest that binding of color
and location is poor under dynamic conditions even
when there are only three objects, in contrast to static
conditions (Luck & Vogel, 1997) where feature-location
binding of four objects was possible.

Combined, these findings do not provide a coherent
picture concerning how object representations emerge
and how bound features become associated with these
representations.

Pylyshyn and Storm (1988) devised a Multiple-
Object Tracking paradigm to investigate how the
identities of objects are maintained in the absence of all
features but position and motion. Observers were
presented with a multiple-object motion stimulus and
were instructed at the beginning of each trial to
selectively track a specific subset of objects, the target
set. After a period of linear motion, they were tested on
their ability to distinguish which objects belonged to
this target set. Observers could typically track four or
five targets with 85% accuracy. In experiments of this
type, because all objects appear identical during the
motion period, information about object identities
obtained initially must be maintained until responses
are made based on other stimulus features, i.e., position
and motion. The researchers proposed the Fingers of
INSTantiation model, in which low-level internal
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pointers, referred to as visual indices, attach themselves
to the tracked objects and move automatically with the
objects. This position-based indexing mechanism oc-
curs preattentively and forms the basis for subsequent
cognitive operations on indexed objects (for a modified
version of this model, see Alvarez & Franconeri, 2007).
However, the contribution of other stimulus features,
such as direction of motion, color, or shape, has also
been examined in many studies employing variants of
the Multiple-Object Tracking paradigm, and the results
suggest that they all can play a role in indexing moving
objects (Keane & Pylyshyn, 2006; Fencsik, Klieger, &
Horowitz, 2007; Horowitz, Fine, Fencsik, Yurgenson,
& Wolfe, 2007; Makovski & Jiang, 2007; Iordanescu,
Grabowecky, & Suzuki, 2009).

Another position-based indexing model was pro-
posed by Kahneman, Treisman, and Gibbs (1992).
They used an ‘‘object-specific priming’’ paradigm and
proposed that object representations are created by
opening ‘‘object files’’ and are maintained by indexing
these object files by their instantaneous position.
According to this view, successive states of objects are
updated by inserting features into their object files. One
problem with this model is that in order to open an
object file, one needs access to the features that define a
distinct object; however, features cannot be accessed if
an object file is not already opened. Another problem
with this model is that in order to decide which feature
to insert in which object file, one needs to know the
spatial extent of each object. The spatial extent in turn
requires the use of features other than position, as one
needs to compute boundary and surface features of the
object to determine where in space the object starts and
where it ends. Hence, while spatial position can play an
important role in indexing objects and maintaining
their identities, other features must also play a role in
these processes.

Despite the aforementioned evidence that features
other than position can play a role in indexing objects,
position remains as the predominant cue in experiments
designed to study stimulus encoding and storage.
Typically, in these experiments, an array of items is
shown briefly, followed by a retention period. At the
end of the retention period, a position cue is used to
prompt the subject to report one or more features of
the stimulus that was presented at the corresponding
position. However, human memory is content address-
able in a more general sense, in that we can access
memory by using any partial information about its
contents. Hence a general study of content-addressable
memory should address how any given feature of the
stored item can allow the retrieval of other features of
that item. From this perspective, the efficiency of the
memory is not characterized just by how well features
are stored but also by how well they can be recalled by
partial contents (cues). In the present study, we used a

cross-feature cuing technique to investigate the effi-
ciency of information encoding and retention in the
form of content-addressable memory. Specifically, we
sought to characterize the roles of three different
features (position, color, and direction of motion) in the
construction and maintenance of object representations
across different processing stages, from perceptual
encoding to sensory (iconic) memory and visual short-
term memory (VSTM). We hypothesize that the
effectiveness of cross-cuing—i.e., how well one feature
can be retrieved, given another—reflects the ability of a
feature to serve as an index for content-addressable
memory as well as the strength of the binding between
those two features. We expect that the effectiveness of
cross-cuing will be affected by the number of objects in
the display as well as the delay in cuing the feature that
identifies the object to be reported.

In the cross-cuing approach, observers reported one
feature of a single object, its final position, direction of
motion, or color, while one of the other two features
was cued. Using this approach, we investigated
processing for each stimulus feature and the relation-
ship between these features across different early stages
of visual information processing. Experiment 1, in
which the target was cued immediately after all objects
stopped moving and disappeared, aimed to characterize
the stimulus-encoding stage prior to memory stages.
While the observers had to hold in memory informa-
tion about this cued target during the adjustment
phase, having a single target item and no delay after
stimulus offset minimized the involvement of memori-
zation in their performance. Experiment 2 with varying
cue delays aimed to tap into iconic memory and
VSTM. We varied the set size in Experiment 1, but not
in Experiment 2—unlike in our previous study (Öğmen
et al., 2013)—because our pilot data showed that for a
set size of 1, the drop of performance over time was
negligible (flat line), although the effect of cue delay
was statistically significant. This is consistent with our
previous finding (Öğmen et al., 2013). In Experiment 2,
only a set size of 6 was chosen for all feature
combinations; when compared with the findings for a
set size of 1, performance at this set size as a function of
cue delay was sufficient to assess the loss of information
during each processing stage.

Methods

Participants

The first author and three observers who were
unaware of the purpose of the study, had normal or
corrected-to-normal vision, and had no color deficiency
(according to self-reports and the online version of the
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Ishihara test) participated in all experiments. Observers
were not informed about the specific purposes of the
experiments. Experiments were conducted according to
a protocol adhering to the Declaration of Helsinki and
approved by the University of Houston Committee for
the Protection of Human Subjects.

Apparatus

A Visual Stimulus Generator system (Cambridge
Research Systems, Rochester, UK) with a VSG2/3
video card driving a NANAO FlexScan color monitor
(20 in., 100 Hz) was used to create and display stimuli;
programming was implemented in Cþþ. The screen
resolution was 800 3 600 pixels, of which 656 3 492
pixels (18.583148, or 1.7 arcmin/pixel in terms of visual
angle) were used for object display. The screen edges
were visible during the experiments, but the border of
the display area was not. Observers used a computer
mouse to give their response, and their heads were kept
still on a head/chin rest at a distance of 1.0 m in front of
the monitor.

Experiment 1: Stimulus encoding

Stimuli

Objects were circular disks of different readily
distinguishable colors that were randomly selected
from the CIE L*a*b* color system (perceptually
uniform). A constraint was used so that the color
separation of any two objects was not less than 178 in
L*a*b* space (with this separation, colors were salient
and readily distinguishable; also see Selection operator
ST
i¼1;i 6¼t½:�, paragraph later, for further justification of

this separation angle). The diameter of each object was
chosen to subtend a visual angle of 18. Objects were
displayed on a gray (40 cd/m2) background.

Procedure

Observers started each trial by clicking the mouse.
Objects of a specific set size appeared on the screen at
random, nonoverlapping locations. All objects re-
mained stationary on the screen for 1 s, then started
moving along linear trajectories at a constant speed of
58/s, each in an independent, randomly selected
direction. Like the color-separation constraint, the
motion directions were constrained so that no two
objects had motion directions closer than 178. In our
previous study using a similar task (Shooner, Tripathy,
Bedell, & Öğmen, 2010), we used two durations of
motion, 200 ms and 5 s. The results showed that at 200
ms, motion information was sufficiently suprathreshold
that increasing the duration of motion did not improve

encoding or storage of motion. Hence in this study
motion duration was fixed at 200 ms for all trials.
Objects did not interact with each other when their
positions overlapped—i.e., they moved across each
other without any change in their motion. However, if
an object hit the invisible border of the display area, it
would bounce back and change its direction of motion
by reversing either the horizontal or vertical component
of the velocity vector.

After the objects stopped moving, they were all
removed from the display. One of them was randomly
selected to be the target for report. In this experiment,
the cue was given immediately after the disappearance
of the objects, and observers provided their responses
using a mouse.

In separate blocks, the procedure described was
applied to six types of conditions corresponding to the
following six combinations of cued and reported
features (Figure 1a through c illustrates three of
them):

(a) Position/motion direction
(b) Position/color
(c) Motion direction/position
(d) Motion direction/color
(e) Color/position
(f ) Color/motion direction

At the beginning of each block, observers were
informed about which feature would serve as the cue
and which feature they would be reporting. This
blocked design is consistent with a real-world scenario
in which the observer has a predefined goal and
analyzes the stimulus based on preselected feature
dimensions. On the other hand, a randomized design
would better capture the situation in arbitrary envi-
ronments in which the observer does not have any a
priori attentional focus on stimulus features. Our goal
in using the blocked design was to remove the
uncertainty about the cue and the item to be reported,
so as to study cue–report combinations in their
strongest form. Removing this uncertainty allowed
observers to focus their attention on the relevant
feature dimensions. On the one hand, this allowed
stronger association/binding between the attended
feature dimensions; on the other hand, it reduced the
noise in the data that would arise from trial-to-trial
variability. In this experiment, the cue was delivered
immediately at stimulus offset so as to access the
stimulus-encoding stage prior to memory. We ac-
knowledge that, since it takes time for the observer to
detect and decode the cue, an inevitable time delay
occurs after the stimulus offset. However, given that
the cue type was predictable and the stimuli were highly
salient, and since observers were reporting a single
item, we expect the effect of sensory memory to be
minimal.
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In the cases where position was cued (conditions a
and b), a small black dot was presented at the terminal
position of the target object to prompt the observer’s
response (Figure 1a). For motion direction to be cued
(conditions c and d), an arrow—a black line segment
extending from the center of the screen—was shown,
with its orientation indicating the target’s motion
direction (Figure 1b).1 If the target had bounced, its
final direction of motion was cued.

For the conditions related to color, a color wheel
containing all possible colors of objects was used. A
total of 180 colors on the color wheel, with each
assigned an angular value (resolution¼ 28/color), were
defined along a circle in the CIE L*a*b* color space.

All colors had equal luminance, which was set at L¼15
cd/m2 and varied in hue. The color wheel was centered
at the white point (a ¼ 0.2044 and b ¼ 0.4808), and its
radius was chosen to maximize the discriminability of
the colors (approximately 2.08).

When color was cued (conditions e and f), the color
wheel was presented at the center of the screen together
with a small disk of the target’s color (Figure 1c). The
small disk that showed the target’s color was located
outside of the color wheel and connected to it by a bar
with an arrow (not shown) pointing towards the wheel
center at the part of the wheel that matched the color of
the target.

Figure 1. Time course of a trial in Experiments 1 (no cue delay) and 2 (varying cue delay) for the cases of (a) cuing the target’s terminal

position and reporting its color (position was cued by a small black dot, and observers reported the cued target’s color on a color

wheel); (b) cuing the target’s final direction of motion and reporting its position (direction of motion was cued by a black arrow

extending from the center of the screen, and observers adjusted the mouse cursor’s location—represented by a cross—to report the

cued target’s position); and (c) cuing the target’s color and reporting its direction of motion (color was cued on a color wheel, and

observers adjusted the black bar—which extended from the center of the screen—to report the cued target’s direction of motion).
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To report, observers moved the mouse cursor on the
screen, causing the reporting indicator of a noncued
object feature to appear. The direction indicator, which
was to report the target’s motion direction, was a black
bar of fixed length extending either from the target’s
terminal location (condition a, not shown) or from the
screen center (condition f; Figure 1c). The position
indicator, which was to report the target’s position
(conditions c and e), was a small black cross (Figure 1b)
representing the location of the mouse cursor as it was
moved. The color indicator (conditions b and d) was
designed in a similar manner as the case for cuing color,
except that the small disk could be moved along a circle
around the color wheel and its color changed corre-
sponding to its location (Figure 1a). The observers were
required to indicate where on the color wheel the
highlighted color best matched the target’s color.

On each trial, observers responded by moving the
reporting indicator of each type to best match the
corresponding target feature and clicking the mouse.
An additional indicator of the same design but in a
different color (gray when reporting motion direction
or position, the target’s actual color when reporting
color) then appeared to provide the observers with
feedback as to the correct response, and the trial ended.
Observers started a new trial whenever they clicked the
mouse again.

Design

For each combination of cued and reported features,
seven set sizes (one, three, four, six, eight, nine, twelve
objects) were tested. Each combination was run in five
separate sessions to obtain a total of 100 trials per set
size. Therefore, there were 20 trials per set size in each
session, yielding 7320¼140 trials per session, or 1403

5¼700 trials per combination, for each observer. Trials
of all set sizes were randomly interleaved within every
session. Each session took an observer approximately
15 min to finish.

Experiment 2: Iconic memory and VSTM

In separate blocks, the six types of experimental
conditions from Experiment 1 were run again in
Experiment 2, with for the following changes:

� The number of objects was fixed at six in all
conditions.
� On each trial, the cue was provided not immediately
after object disappearance but after a variable-
duration delay. The delay on each trial was randomly
selected from seven different values (0, 50, 100, 250,
500, 1000, 3000 ms).

Again, there were 20 trials per delay condition in
each session (or 203 7¼ 140 trials per session). A total
of five sessions yielded 140 3 5¼ 700 trials for each of
the six conditions. Observers followed the same steps as
in Experiment 1.

Data analysis

Similar to the methods we used in a previous study
(Öğmen et al., 2013), we investigated the qualitative
and quantitative aspects of the observers’ performance
by implementing statistical modeling of the error
distribution for each object feature being probed. We
analyzed the error distributions using a hierarchical
family of models and compared the performance of
these models. Interpretation of the data in each cue–
report condition was then based on estimates of the
parameters given by the best-performing model.

We will proceed shortly to consider the details of
each model. It should be noted here that, in the present
study, we slightly modified the procedure of fitting the
models to empirical data. The procedure we used
before (Öğmen et al., 2013) involved binning the data in
each experimental condition to generate a frequency
histogram, which was rescaled to unit area to obtain
the corresponding probability density function, after
which a nonlinear least-squares optimization routine
was employed to find the values of the model
parameters that provided the best fit to the empirical
probability density function. However, binning the
data might introduce artifacts, as fitting results
typically exhibit sensitivity to the bin size. In the
current study, we therefore used cumulative distribu-
tion functions (cdfs) to specify the distribution of
response errors. Using CDFs in the form of a stepwise
monotonic increasing function, in which accumulation
occurs at every single value of the error variable,
removes the need for binning the data. The selection of
the best-performing model was based on the adjusted
R2 values obtained for each model. The difference
between the adjusted R2 values was rather small; hence
we also carried out Bayesian analysis in which the
expectation-maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977) was used for finding maximum-
likelihood estimates of the parameters. This algorithm
is described in detail in Supplementary information 2.
For model selection, we used the Akaike information
criterion and the Bayesian information criterion. These
two model selection methods provided the same
outcome in 11 out of 12 cases. However, there were
some differences between the least-squares and Bayes-
ian approaches. They provided the same model in seven
out of 12 cases, but different models in the remaining
five cases. Hence we report the results from both least-
squares (in the main text) and Bayesian approaches (in
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Supplementary information 2). Notwithstanding the
differences in model selection, the general qualitative
trends obtained with least-squares and Bayesian
approaches were essentially similar.

As detailed in the section Design, our experiments
investigated three object features: position, direction of
motion, and color. Of these, position was defined in 2-
D coordinates, while direction of motion and color
were drawn from circular spaces. Therefore, statistical
modeling was carried out separately for the horizontal
and vertical components of position errors and needed
to take into account the circular properties of direction
of motion and color parameter spaces.

Statistical modeling

Model 1: Gaussian

The simplest model in the family is the cdf of a
circular (wrapped) Gaussian:

CDFðeÞ ¼ CDF Gðe;l; rÞf g; ð1Þ
where the cumulative distribution function CDF(e) of
error variable e (e¼ reported feature value� actual
feature value) is given by a Gaussian distribution
G(e;l,r) whose parameters represent the accuracy
(mean: l) and the precision (1/r, where r is the
standard deviation) of processing. The precision pa-
rameter 1/r captures the qualitative aspect of perfor-
mance, with smaller values of r corresponding to
higher qualities of encoding for the processed items.

For a practical implementation, the effect of multiple
wraps was tested in Shooner et al. (2010). Three
Gaussians were initially included in the sum, and the
outcome was compared with that produced by only one
Gaussian. The difference was negligible due to the
small variance of the distributions, which meant using a
single Gaussian was sufficient to model the empirical
data, and the circular nature of features could be
ignored. However, we consistently applied three wraps
in all conditions of reporting color and motion
direction in the current study for the following reasons:
(a) The variance of our data was large in some
conditions; (b) the wrapping effect could not be ignored
on the misbinding component (see Model 3; Model 3
was not used by Shooner et al., 2010); and (c) we
observed no difference between three and five wraps.

Model 2: Gaussian þ Uniform

In this model (Zhang & Luck, 2008), the distribution
of errors is represented by

CDFðeÞ ¼ CDF w:Gðe;l; rÞ þ ð1� wÞf
:Uð�180; 180Þg; ð2Þ

where the cumulative distribution function CDF(e) is

obtained from the corresponding probability density
function that consists of two components:

(a) A Gaussian distribution G(e;l,r) described in the
Gaussian model

(b) A uniform distribution U over the interval (�180,
180), which represents guessing

The weight of the uniform distribution (1 � w)
represents the proportion of trials in which observers
base their responses on guesses rather than on the
target information available. The weight w of the
Gaussian captures the quantitative aspect of perfor-
mance by providing a relative measure for the intake of
encoding, with a larger value corresponding to a
greater possibility that a response is based on having
some access to information from the cued target.

Model 3: Gaussian þ Uniform þ Gaussian

This model (Bays et al., 2009) includes an additional
term to account for misbinding errors—i.e., errors
resulting from incorrect associations of features with
objects, when observers get confused and report the
features of another object instead of the selected target:

CDFðeÞ ¼ CDF
n
w:Gðe; lt; rtÞ þ ð1� w� wmÞ

:Uð�180; 180Þ

þ wm:S
T
i¼1;i 6¼t Gðe;lt þ ei;t;rtÞ

� �o
;

ð3Þ
where the first two terms represent the same Gaussian
and uniform distributions as in the Gaussianþ
Uniform model and the third term represents errors
stemming from misbinding reports. The selection
operator ST

i¼1;i6¼t½:� determines which item from the set
of (T� 1) noncued objects is the one that generates the
subject’s response due to a misbinding error. The
misbinding term is expected also to have a Gaussian
distribution, with the same standard deviation as the
first Gaussian but with the mean shifted from the first
Gaussian by the difference ei,t in the reported feature
space between the cued target and the misbinding
object. This is because the empirical cdf is always
computed with respect to the cued target item. For the
Gaussian component that describes misbinding, the
wrapping effect cannot be ignored, especially when the
misbinding object is shifted far away from the center of
the first Gaussian. The weight wm is to represent the
proportion of trials in which misbinding occurs.

Selection operator ST
i¼1;i6¼t½:�: Technically, the third

term on the right-hand side of Equation 3 needs to be
computed based on all noncued objects, as misbinding
may potentially occur on any of them (Bays et al.,
2009). A synthetic simulation that we performed,

Journal of Vision (2015) 15(13):14, 1–32 Huynh, Tripathy, Bedell, & Öğmen 7
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however, showed that doing so can result in misleading
estimates for this component. In order to estimate
spurious contributions from different terms, we can
simulate experiments where the contribution of a given
term is nulled. Under this condition, the analysis of the
other term provides an estimate of the spurious
contributions that would result from this term. We
simulated three scenarios: In the first simulation, by
using the actual stimuli without any constraints on the
directions of motion,2 we had the computer respond
always to the cued target with zero error. This
effectively transforms the probability distribution
resulting from the first term on the right-hand side of
Equation 3 to a delta Dirac function. The computed
error distribution from the misbinding term provides
an estimate of its spurious contribution (since the
computer is always responding to the target). This
distribution was found to be significant because when
the number of objects is large, there is a good
probability that there will be another target moving in a
similar direction as the cued one. We did the same
analysis for the other two cases—i.e., the computer
responds to the noncued object that is closest to the
cued target either in position (closest cued feature) or in
direction of motion (closest reported feature)—and also
found significant spurious contributions from the first
term on the right-hand side of Equation 3.

To minimize the potential interference that results
from directions or colors that are too close to each
other, we constrained our stimuli so that no two items
in any stimulus had a direction or color difference of
less than 178. This value was chosen to obtain a rough
symmetry of the three feature dimensions, in which
the constraint for position was nonoverlapping
(center-to-center distance between any two objects
must be larger than 18). Accordingly, the ratio of the
minimum to the maximum possible separation was
equivalent along each feature dimension. Given these
constraints, we analyzed two versions of this model—
i.e., misbinding with the object that is closest to the
cued target in either the cued feature space (closest
cued feature) or the reported feature space (closest
reported feature).

Goodness-of-fit measure and model comparison

The models described are different from each other in
terms of decomposition approaches and complexity to
account for different aspects of the data. Increasing the
degrees of freedom usually makes a model better at fitting
the observed data, but the cost is that the model also may
capture random patterns of noise (overfitting) and hence,
compared to a simpler model, be less likely to translate
well to other data sets from the population.We computed
adjusted coefficients of determination (adjusted R2) to
evaluate and compare the performance of the models.

Just like the coefficient of determination (R2),
adjusted R2 reflects the efficacy of a model in
reproducing empirical data by measuring the fraction
of variation in the dependent variable that is explained
by the independent variable(s). However, using ad-
justed R2 is more appropriate when comparing multiple
models with different degrees of freedom, as it
compensates for the addition of independent variables
if doing so does not significantly improve the explan-
atory power of a model. The following equation is used
to compute adjusted R2:

Adjusted R2 ¼ 1� ð1� R2Þ n� 1

n� p� 1
; ð4Þ

where n is the sample size and p is the number of
independent variables (parameters) in the model.

Results

Experiment 1: Stimulus encoding

Analysis of performance

We computed the magnitude of response error on
each trial as the absolute difference between the actual
and reported values of the probed feature, and rescaled
it to the range [0, 1] by using a transformation metric
defined by the following equation:

TP ¼ 1� jej=MAX; ð5Þ
where e is response error and MAX represents the
maximum possible value of jej. For direction of motion
and color, this is a constant value (1808). For position,
since response error typically depends on the size of the
display screen and slightly varies across observers,
MAX takes the maximum magnitude of position error
produced by each observer in each cue–report combi-
nation. Finally, TP represents transformed perfor-
mance, which takes the values of 1.0 and 0.5 for perfect
and chance levels of performance, respectively.

Figure 2 plots TP (left y-axis) and jej (right y-axis)
averaged across observers as a function of set size, with
each panel showing the data for one reported feature
and different symbol colors representing different cue
types. A two-way repeated-measures ANOVA shows
that, in all cases, the main effects of set size—position
reported: F(6, 18)¼ 109.092, p , 0.0001, g2

p¼ 0.973;
direction of motion reported: F(6, 18)¼ 82.350, p ,
0.0001, g2

p¼ 0.965; color reported: F(6, 18)¼ 127.519, p
, 0.0001, g2

p¼0.977—and cue type—position reported:
F(1, 3)¼ 18.080, p¼ 0.024, g2

p¼ 0.858; direction of
motion reported: F(1, 3)¼ 34.547, p¼ 0.01, g2

p¼ 0.920;
color reported: F(1, 3)¼188.679, p¼0.001, g2

p¼0.984—
are significant. The interaction between set size and cue
type is significant when direction of motion is reported,
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F(6, 18)¼ 6.341, p¼ 0.01, g2
p¼ 0.679, and when color is

reported, F(6, 18)¼ 14.356, p , 0.0001, g2
p¼ 0.827, but

not when position is reported, F(6, 18)¼ 1.244, p¼
0.331, g2

p¼0.293. For observer-specific effects, we used
a two-way ANOVA separately for each observer to
compare performance with respect to set size and cue
type. The same pattern of results (Supplementary
Figure S1.1) for each feature dimension is observed for
all observers, except that the main effect of cue type is
not significant when position is the reported attribute
for one of the four observers (DHL).

Consider first the effect of cue type. We find that, for
set sizes larger than 1, performance for direction of
motion is better when cuing with position than when
cuing with color. Similarly, the performance for
reporting color is better when cuing with position than
with direction of motion. On the other hand, the
performance for position when cuing with direction of
motion is not as good as when cuing with color. The
similar performance obtained at a set size of 1 for the
different cues is not surprising. On single-object trials,
the observers can simply pay attention to the feature
being probed instead of the cued feature, which is not
useful for tracking. Furthermore, one can see that
performance for each feature is very high and similar to
each other (compare data points for set size 1 across the
three panels). This indicates that, in isolation, features
were matched to each other in salience. However, their
pair-wise associative encoding as a function of set size
was different, as shown by different drops in perfor-
mance as a function of set size.

Figure 3 shows a rough sketch of our results for a
more intuitive look into the role of each stimulus
feature and the relationships between features. The size
of the arrows linking two features represents the
effectiveness of using the feature at the tail of the arrow
to report the feature at the head of the arrow. For each
case, the transformed performance averaged across set
sizes is shown next to the corresponding arrow. The
sketch highlights the following important points: First,
position is an effective cue whether direction of motion

or color is reported. In contrast, color and direction of
motion are more effective as cues in reporting position
than in reporting each other. Inspection of Figure 3
suggests that feature binding and content-addressable
access in sensory encoding is reflective of the two
parallel pathways: dorsal and ventral streams special-
ized in motion and color. The early parts of ventral and
dorsal streams are retinotopically organized (e.g.,
Tootell, Silverman, Switkes, & De Valois, 1982; Sereno
et al., 1995; Engel, Glover, & Wandell, 1997), and the
retinotopic organization provides position information
to both streams. However, when stimuli are in motion,
retinotopic position information needs to be converted
to nonretinotopic position information. Computation
of visual attributes such as form (Öğmen et al., 2006),
luminance (Shimozaki, Eckstein, & Thomas, 1999),
color (Nishida, Watanabe, Kuriki, & Tokimoto, 2007;
Cavanagh, Holcombe, & Chou, 2008), size (Kawabe,

Figure 3. Diagram showing the effectiveness for each cue–

report combination for the stimulus-encoding stage (Experi-

ment 1). The size of the arrows represents the effectiveness of

using one feature to recall another. The cue is at the tail of the

arrow, while the reported feature is at the tip of the arrow. The

number next to each arrow shows the average TP across set size

for that particular cue–report combination. Different colors

represent different cue types (blue¼ cuing position, red¼ cuing

direction of motion, green¼ cuing color).

Figure 2. Transformed performance (left y-axes) and errormagnitude (right y-axes) in Experiment 1, averaged across observers, as a function

of set size for position (left panel), direction of motion (middle panel), and color (right panel). Each symbol color corresponds to a cue type

(blue¼ cuing position, red¼ cuing direction of motion, green¼ cuing color). Error bars correspond to 61 standard error of the mean.
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2008), and motion (Cavanagh et al., 2008; Boi, Öğmen,
Krummenacher, Otto, & Herzog, 2009) are shown to
occur according to motion-based nonretinotopic refer-
ence frames, suggesting that nonretinotopic position
information is available to both dorsal and ventral
streams. While there is still a debate on more abstract
representations of position in ventral and dorsal
streams, such as a distinction between near versus far
space (Lane, Ball, Smith, Schenk, & Ellison, 2013), it is
reasonable to assume that, for the basic features
examined in this study, position is a common attribute
to both of these pathways. Hence binding and content-
addressable access occur more effectively within each
pathway than across pathways, as reflected by rela-
tively weak connections between color and direction of
motion.

As for the effect of set size, we observed a
progressive degradation of performance with increasing
set size for all cue–report combinations. The traditional
view of information-processing bottlenecks is that
stimulus encoding and sensory memory are high-
capacity stages followed by VSTM, where the bottle-
neck occurs. In contrast to this view, Öğmen et al.
(2013) showed that a substantial bottleneck occurs
already at the stimulus-encoding stage for motion
processing. The results here are consistent with this
previous finding and generalize the observation of an
early bottleneck for motion direction to all three of the
feature dimensions investigated here.

Taken together, these results indicate (a) a more
effective binding within dorsal and ventral pathways
compared to across the pathways and (b) significant

Figure 4. (a) Decomposition of performance for the horizontal component (X) of position in Experiment 1. Left panels show the results for

intake (w) along with guessing (1� w� wm) and misbinding (wm) rates; right panels show the results for precision (1/r: left y-axes) and
standard deviation (r: right y-axes); upper and lower panels show the results for the cases of cuing direction of motion and color,

respectively; and x-axes represent set size. Error bars correspond to 61 standard error of the mean across observers. Parameters for each

cue type are shown for the winning models (see top of each panel). In cases that either version of Model 3 won, data at a set size of 1 are

taken from Model 2, because Model 3 is not applicable. (b) Same as (a), for the vertical component (Y) of position in Experiment 1.
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capacity limits prior to sensory memory for all features
and their associations.

Statistical modeling

As detailed already under Data analysis, we
decomposed performance into quantitative and qual-
itative measures by fitting to our data Models 1 and 2
and two versions of Model 3. The averaged estimates
for all relevant parameters in the models are plotted
as a function of set size in Figures 4 through 6 for
position (4a: horizontal component; 4b: vertical
component), direction of motion, and color, respec-
tively. In each figure, the left panels show the
estimates for intake (w) along with guess (1� w� wm)
and misbinding (wm) rates; the right panels show the
estimates for precision (1/r : left y-axis) and standard
deviation (r : right y-axis); and the upper and lower
panels show the results for the two different cue
types. Note that, only the winning (highest adjusted
R2) model in each cue–report condition is shown here.
Results of model-selection analyses for all conditions

are shown in Table 4, and the adjusted R2 values are
given in Table 5.

Consistently across feature dimensions, we find
that both intake and precision of encoding decrease
with increasing set size. However, the relationships
between standard deviation or intake and set size are
more poorly approximated by straight lines than are
the results for direction of motion found by Öğmen
et al. (2013), and a lower asymptote seems to occur
in some conditions. In addition, visual inspection of
the effect of cue type on intake and precision of
encoding for each stimulus feature suggests that the
advantage of using one cue over another (e.g., using
position vs. color as a cue for reporting the direction
of motion) manifests itself through both the quan-
titative and qualitative aspects of performance.
Although there were some differences between the
least-squares and the Bayesian methods in the
selected models, the same qualitative findings are
also observed in Bayesian analysis (Supplementary
information 2).

Figure 4. Continued.
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Experiment 2: Iconic memory and VSTM

Analysis of performance

Using the same procedure as in the previous
experiment but with a varying-delay interval inserted
between the termination of motion and the onset of the
cue, this experiment allows us to investigate processing
of information for different feature dimensions in
subsequent memory stages. Figure 7 plots transformed
performance TP (left y-axis) and magnitude of error jej
(right y-axis) averaged across observers as a function of
cue delay and cue type for reporting position (left),
direction of motion (middle), and color (right). For
individual data, see Supplementary Figure S1.2. A two-
way repeated-measures ANOVA shows that the main
effect of cue delay is significant for each of the three
features—position reported (with Huynh–Feldt cor-
rection for sphericity): F(2.26, 6.78)¼ 9.967, p¼ 0.009,
g2
p ¼ 0.769; direction of motion reported: F(6, 18)¼

15.271, p , 0.0001, g2
p ¼ 0.836; color reported: F(6, 18)

¼ 17.793, p , 0.0001, g2
p ¼ 0.856—whereas the main

effect of cue type is marginally significant for position,
F(1, 3)¼ 9293, p¼ 0.055, g2

p ¼ 0.756; not significant for
direction of motion, F(1, 3) ¼ 3.944, p¼ 0.141, g2

p ¼
0.568; and significant for color, F(1, 3) ¼ 730.980, p ,
0.0001, g2

p ¼ 0.996. The interaction between cue delay
and cue type is not significant—position reported (with
Huynh–Feldt correction for sphericity): F(3.585,
10.756)¼ 0.805, p ¼ 0.537, g2

p ¼ 0.211; direction of
motion reported: F(6, 18)¼ 2.385, p¼ 0.071, g2

p¼ 0.443;
color reported: F(6, 18) ¼ 0.300, p¼ 0.929, g2

p ¼ 0.091.
To further investigate how features are temporally

related, we demarcated sensory memory from VSTM
and analyzed the effect of cue type in each of these
processing stages. One way to demarcate between the
two memory systems is to fit to the empirical data an
exponentially decaying model (Shooner et al., 2010;
Öğmen et al., 2013). In this method, the duration of

Figure 5. Decomposition of performance for direction of motion in Experiment 1. Left panels show the results for intake (w) along

with guessing (1 � w � wm) and misbinding (wm) rates; right panels show the results for precision (1/r: left y-axes) and standard

deviation (r: right y-axes); upper and lower panels show the results for the cases of cuing position and color, respectively; and x-axes

represent set size. Error bars correspond to 61 standard error of the mean. Data for each cue type are shown for the winning models

(see top of each panel). In cases that either version of Model 3 won, data shown for a set size of 1 are taken from Model 2 (shown as

an isolated data point at a set size of 1), because Model 3 is not applicable.
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the model’s initial transient phase represents the
lifetime of sensory memory, and VSTM takes place
(or, perhaps, starts to dominate) when the model
enters its steady phase. Our data, however, do not
show a consistent exponential trend across subjects

and conditions (see Supplementary Figure S1.2).3

Therefore, we employed another demarcation ap-
proach in which exponential fits were not imple-
mented. Transformed performance values (individual
data) at different time samples were grouped into

Figure 7. Transformed performance and error magnitude in Experiment 2, averaged across observers, as a function of cue delay for

position (left panel), direction of motion (middle panel), and color (right panel). Each symbol color corresponds to a cue type (blue¼
cuing position, red¼ cuing direction of motion, magenta¼ cuing color). Error bars correspond to 61 standard error of the mean.

Figure 6. Decomposition of performance for color in Experiment 1. Left panels show the results for intake (w) along with guessing (1�
w� wm) and misbinding (wm) rates; right panels show the results for precision (1/r: left y-axes) and standard deviation (r: right y-
axes); upper and lower panels show the results for the cases of cuing position and direction of motion, respectively; and x-axes

represent set size. Error bars correspond to 61 standard error of the mean. Data for each cue type are shown for the winning models

(see top of each panel). In cases that either version of Model 3 won, data shown for a set size of 1 are taken from model 2 (shown as

an isolated data point at a set size of 1), because Model 3 is not applicable.
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homogeneous subsets using Duncan’s multiple-range
test. Members of the same subsets have means that
do not differ significantly from one another. In order
to determine which subset corresponds to which
memory stage, we used the following rationale. Our
temporal samples for the cue delay consisted of the
following values: 0, 50, 100, 250, 500, 1000, and 3000
ms. In general, the duration of sensory memory
depends on stimulus parameters, and one cannot use
an a priori fixed value to decide at which cue delay
sensory memory has completely decayed (Coltheart,
1980). However, based on the large literature, one
can assert that the duration of sensory memory is
definitely shorter than 3 s (Sperling, 1960; Dick,
1974; Coltheart, 1980; Shooner et al., 2010). Hence,
cue delays that belong to the same subset as 3 s are
taken to represent VSTM. Those nonzero cue delays
that fell into subsets that were significantly different

from the one containing 3 s were taken to belong to
sensory memory. In doing this, we have assumed that
when performance does not reach an asymptote
before or around 1 s but continues to drop, the
asymptote is presumed to occur at some point
between 1 and 3 s. When the effect of cue delay is not
significant (flat data from 0 to 3 s), performance can
be said to have dropped to the VSTM level at the
very beginning. One explanation for this would be
that at a set size of 6, a significant portion of
information is already lost at the stimulus-encoding
stage (see Figure 2) and the cued attribute being used
does not provide a fast direct access to the remaining
information. In other words, by the time the cue
allowed access to the required information, nearly all
of the additional information available during the
initial encoding and sensory memory stages had
faded away.

Table 1. Duncan’s multiple-range test results in Experiment 2. For each observer, different colors (blue, green, yellow, and red) are
used to represent different homogeneous subsets. Time samples belonging to the same subset as 3 s are always shown in red, while
other colors are used for the remaining groups.
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Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934452/ on 10/11/2015



Although the multiple-range test was carried out
on individual data to examine the idiosyncratic
behavior of each subject (Table 1), our interpretation
was based on both these test results and the general
trend reflected by averaged data to minimize the
noise in grouping. Consideration of the averaged
data is especially necessary when the statistical-
grouping results are not identical across subjects. For
example, when position or direction of motion is
cued and color is reported, the results in Figure 7
suggest that only performance at 3 s would corre-
spond to VSTM. However, this is not the case for all
subjects, as shown in Table 1. Table 2 shows our
demarcation between sensory memory and VSTM for
each cue–report combination. The effect of cue type
for each memory system was then investigated
accordingly using paired-samples t-tests with Bon-
ferroni correction for multiple comparisons (two-
tailed; a ¼ 0.0167; transformed performance at time
samples attributed to the same memory systems were
combined). We observed that the effect of cue type
remains significant over time for color but vanishes
for position and direction of motion. In the case of
position, the vanishing occurs at VSTM, whereas for
motion it already occurs in sensory memory (Table
3). Based on these changes in the effect of cue type,
we elaborated the diagram in Figure 3 to represent
the relationships between features in sensory memory

and VSTM. The results for all three processing stages

are reproduced in Figure 8, with the following

implications: First, there is an asymmetry in the

reciprocal relations between color and direction of

motion, and this asymmetry persists in all three

stages, with color being a more effective cue for

direction of motion than vice versa.4 Second,

position systematically loses its advantage as the

most efficient cue as one progresses from stimulus

encoding to VSTM. Third, the reciprocal relation

between color and direction of motion remains weak

in all three stages. Hence, if the interpretation of this

in terms of within-pathway bindings and associations

is correct, then this pathway specificity is present not

Report

Memory system

Sensory memory VSTM

t (3) p t (3) p

Position 3.805 0.032 1.324 0.277

Direction 1.566 0.215 1.713 0.185

Color 20.156 ,0.0001 6.771 0.007

Table 3. Paired-samples t-test results for the effect of cue type
during the sensory-memory and VSTM stages.

Table 2. Demarcation for different processing stages based on Duncan’s test (individual data) and visual inspection of averaged data
(Figure 9).
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just at the initial stimulus processing and encoding
stage but also in the subsequent memory stages.

Statistical modeling

In Experiment 1, a bottleneck of processing was
observed at the encoding stage for all features, as
reflected by the degradation of performance with
increasing set size. Analyzing the extent to which these
performance degradations change over time provides
information about the distribution of information loss
across different processing stages. Figures 9 through 11
plot precision and intake as a function of cue delay and
cue type for position (Figure 9a: horizontal component;
Figure 9b: vertical component), direction of motion,
and color, respectively. In each figure, the left panels
show the results for intake w, the right panels show the
results for precision 1/r, and the upper and lower
panels with different marker colors show the results for
two different cue types. Similar to Experiment 1, only
the winning model in each cue–report condition was
selected. Results of the model-selection analyses are
shown in Tables 4 and 5. As mentioned earlier, the flat

performance at a set size of 1 forms the baseline for our
analysis and is represented by the horizontal lines
extended from the single data points (at cue delay¼ 0 s)
in Figures 9 through 11. These data points correspond
to the intake or precision obtained in the case of a
single object in Experiment 1. Consistently across
features, we find that the major bottleneck for the
quality of information (precision) resides at the
stimulus-encoding stage rather than memory. At least
62% (78% with Bayesian analysis; see Supplementary
information 2) of the total precision decay occurs
during encoding. This replicates the finding for cuing
position and reporting the direction of motion from
Öğmen et al. (2013). The bottleneck for the quantity of
information (intake) shows a wider range. The drop of
intake at the encoding stage is also substantial in most
cases (�66%), with its lowest value being (according to
the least-squares analysis) 39% when position is cued
and direction of motion is reported and (according to
Bayesian analysis) 49% when position is cued and color
is reported. Overall, these results indicate significant
loss of information at the encoding stage both in terms
of quality and quantity.

Figure 8. Top: Diagram showing the effectiveness for each cue–report combination for all three stages. Conventions are the same as

those in Figure 3. The middle and bottom panels show cue effectiveness for the two replicated (middle) and control (bottom)

conditions presented in Supplementary information 3.

Journal of Vision (2015) 15(13):14, 1–32 Huynh, Tripathy, Bedell, & Öğmen 16
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General discussion

Feature binding and content-addressable access

The visual system processes features of stimuli in
specialized areas and pathways. However, these fea-
tures need to be bound together in order to construct
unified object representations. In addition, because
human memory is content addressable, the binding of
features also plays a critical role in memory access. By
using a cross-cuing technique, we examined how

features are bound together and how they can
effectively allow access to each other during the initial
stages of stimulus encoding as well as during subse-
quent stages of sensory memory and VSTM. Previous
research has suggested that position is the index used to
build and maintain unified object representations
(Pylyshyn & Storm, 1988; Kahneman et al., 1992).
While we found position to be a more effective cue, and
hence index, for accessing other features in the initial
stimulus-encoding stage, this privileged role is lost in
sensory memory and in VSTM. In fact, in VSTM, color
and direction of motion are more effective cues for

Figure 9. (a) Decomposition of performance for the horizontal component (X) of position in Experiment 2 (set size fixed at 6): Intake

(w: left panels) and precision (1/r: right panels) as a function of cue delay and cue type; upper and lower panels show the results for

the cases of cuing direction of motion and color, respectively. Error bars correspond to 61 standard error of the mean. Data for each

cue type are shown for the winning models (see top of each panel). Data at a set size of 1, shown only at cue delay¼ 0 s, are taken

from Experiment 1. Horizontal lines are to indicate that performance in this case is largely independent of cue delay. The numerical

value above each panel indicates information loss for N¼ 6 targets during the encoding stage; this value is calculated as the ratio of

the drop of intake or precision at cue delay ¼ 0 s to that at cue delay ¼ 3 s. Note that the value of 1.06 would imply a gain of

information; however, this value is within the error range and hence should not be interpreted as information gain. (b) Decomposition

of performance for the vertical component (Y) of position in Experiment 2 (set size fixed at 6). Same conventions as (a).
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position than vice versa. On the other hand, a
characteristic that is present in all three stages of
information processing is the effectiveness of binding
and memory access that mirrors the parallel processing
streams of the visual system: Within-stream mutual
couplings (between position and color in the ventral

stream, between position and direction of motion in the
dorsal stream) are much stronger than the mutual
coupling across streams (between color and direction of
motion). Taken together, these results suggest that
while the visual system effectively binds features of an
object to construct unified object representations, the

Figure 10. Decomposition of performance for direction of motion in Experiment 2 (set size fixed at 6): Intake (w: left panels) and

precision (1/r: right panels) as a function of cue delay and cue type; upper and lower panels show the results for the cases of cuing

position and color, respectively. Error bars correspond to 61 standard error of the mean. Parameters for each cue type are shown for

the winning models (see top of each panel). Data at a set size of 1, shown only at cue delay ¼ 0 s, are taken from Experiment 1.

Horizontal lines are to indicate that performance in this case is largely independent of cue delay. The numerical value above each

panel indicates information loss for N¼ 6 targets during the encoding stage; this value is calculated as the ratio of the drop of intake

or precision at cue delay ¼ 0 s to that at cue delay ¼ 3 s.

Figure 11. Decomposition of performance for color in Experiment 2 (set size fixed at 6): Intake (w: left panels) and precision (1/r: right
panels) as a function of cue delay and cue type; upper and lower panels show the results for the cases of cuing position and color,

respectively. Error bars correspond to 61 standard error of the mean. Data for each cue type are shown for the winning models (see

top of each panel). Data at a set size of 1, shown only at cue delay¼ 0 s, are taken from Experiment 1. Horizontal lines are to indicate

that performance in this case is largely independent of cue delay. The numerical value above each panel indicates information loss for

N¼6 targets during the encoding stage; this value is calculated as the ratio of the drop of intake or precision at cue delay¼0 s to that

at cue delay¼ 3 s. Note that the value 1.3 would imply a gain of information; however, this value is within the error range and hence

should not be interpreted as information gain.

Journal of Vision (2015) 15(13):14, 1–32 Huynh, Tripathy, Bedell, & Öğmen 18
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binding operations and the associated memory access
are carried out primarily in specialized processing
streams and hence reflect stream-specific quantitative
differences.

Previous studies have also shown a relationship
between the effectiveness of interactions between
features and their putative neural correlates. For
example, Kristjánsson (2006) studied priming along
three feature dimensions—color, spatial frequency,
and orientation—and showed that while spatial
frequency and orientation did interact with each

other, color did not interact with the other two
features. One possible interpretation of these findings
is that spatial frequency and orientation share neural
correlates, whereas color is processed by largely
independent mechanisms (Kristjánsson, 2006).
Fougnie and Alvarez (2011) studied how color and
orientation are stored in working memory and
reported that recall errors for these two features are
largely independent.5 They suggested that the extent
of overlap in neural coding for different features
determines the degree of independence in their
storage. The distinction between overlapping versus
nonoverlapping neural correlates was made in these
studies within the ventral stream (color vs. orienta-
tion/spatial frequency), whereas in our study we
made the distinction by contrasting ventral and
dorsal pathways. Notwithstanding this difference, a
common theme that emerges from these previous
investigations and our study is the influence of the
neural architecture and correlates in determining the
strength of associations or interactions between
features.

Bottlenecks of information processing

Figure 12a depicts the traditional view of bottlenecks
in visual processing. The stimulus-encoding stage is
parallel and hence assumed to be of large capacity.
Similarly, the traditional view of sensory memory is a
large-capacity preattentive store, the contents of which
decay rapidly. The hourglass analogy shows an initial
large-capacity stimulus processing and encoding stage
followed by a large-capacity sensorymemory. The leak in
the sensory-memory stage represents the rapid loss of
information. Long-term memory is also thought to be of
large capacity; hence the main bottleneck occurs in

Experiment Report Cue

Mode with

largest adjusted R
2

1 Position Color M3c

Direction M3c

Direction Position M3r

Color M2

Color Position M3r

Direction M2

2 Position Color M3c

Direction M3c

Direction Position M2

Color M2

Color Position M3r

Direction M2

Table 4. Model-selection results according to least-squares
fitting method (adjusted R

2). A repeated-measures ANOVA
shows that the main effect of model (M1, M2, M3c, M3r) is
significant in all cases. The winning model was selected for
each case based on follow-up planned comparisons between
models. Notes: M1 ¼ Gaussian. M2 ¼ Gaussian þ Uniform.
M3c ¼ Gaussian þ Uniform þ Gaussian closest cued feature.
M3r ¼ Gaussian þ Uniform þ Gaussian closest reported

feature.

Figure 12. (a) The Leaky Hourglass model of information-processing bottlenecks. According to this model the main bottleneck resides

in VSTM. (b) The Leaky Flask model proposed by Öğmen et al. (2013). This model proposes significant bottlenecks already at the

stimulus-encoding stage, and that attention interacts at all levels, including the sensory-memory stage. (Adapted from Öğmen H.,

Ekiz, O., Huynh, D., Tripathy, S. P., & Bedell, H. E. (2013). Bottlenecks of motion processing during a visual glance: The Leaky Flask

model. PLOS One, 8(12), e83671).
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VSTM, as depicted in the hourglass analogy. In our
recent work, in which we examined capacity limits for
direction ofmotion, we found significant limits already at
the stimulus-encoding stage (Öğmen et al., 2013). This
prompted us to modify the Leaky Hourglass model and
to propose instead the Leaky Flask model shown in
Figure 12b, where the narrow rim of the flask represents
the limited capacity of the encoding stage. In this model,
attention was shown to play a role in all three stages of
information processing. The involvement of attention in
sensory memory is also supported by recent imaging
(Ruff, Kristjánsson, & Driver, 2007) and psychophysical
studies (Persuh, Genzer, & Melara, 2012). The results
presented here generalize the Leaky Flask model to color
and position, in addition to direction of motion.

Keywords: visual memory, feature binding, content-
addressable memory, Leaky Flask
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Footnotes

1 The arrow provides a simple and direct indication
of direction of motion. The reason we used an arrow
rather than a moving stimulus is that the latter would
require integration time for the determination of
direction of motion. Since the delay after stimulus
offset is a critical variable in assessing encoding and
memory storage, we sought to minimize this additional
delay.

2 Our simulation was for the case of cuing position
and reporting direction of motion. However, the
outcome should be similar for the other feature
combinations.

3 The experimental design for one cue–report
combination in Experiment 2 (i.e., when position is
cued and direction of motion is reported) is similar to
that in our previous study (Öğmen et al., 2013). The
differences in the current study are that (a) no
distractors were involved but all objects had the
potential to be selected as the probed target and (b)
objects were removed from the display before the cue
came on. In fact, our average results in Experiment 2
(obtained for set size of 6) are about the same as in the

closest condition in the previous study (see figure 6 of
Öğmen et al., 2013; middle panel; target set size T¼ 5
and distractor set size D ¼ 0). Based on our previous
findings, we expected that the drop in performance
would be more pronounced and that the steady phase
would become more evident if set size were increased
(e.g., to 9). However, only a set size of 6 was used
throughout Experiment 2 of this study. This was to
avoid floor effects, because for set sizes greater than 6,
performance in some conditions is near chance level
(see Figure 2).

4 In our experimental design, subjects are presented
with color information during the static preview
period before motion begins. Hence, one may argue
that subjects may be encoding color first, followed by
motion, leading to the asymmetry found in the
results. To test this hypothesis, we ran the control
experiment presented in Supplementary Information
3, in which direction-of-motion information preceded
color rather than vice versa. The results of the control
experiment indicate that the asymmetry does not
result from the temporal order or duration of
features.

5 In Fougnie and Alvarez’s study (2011), a position
cue was used and observers were asked to sequentially
report color and orientation from VSTM. It was shown
that in trials where the observer was at chance in
reporting one feature, the report for the other feature
was better than chance—a finding interpreted as
independent storage of features. Independence of
feature storage would argue against any form of
binding specificity, whether across or within streams.
First, let us point out that whereas data clearly refute
the extreme form of binding, in which all features of an
object are always bound together, there is ample
evidence for feature binding in memory. In fact, our
data show that all three features studied here are
bound, at least in a pair-wise manner, since any feature
can be used to recall any other feature. The apparent
conflict between the findings of these studies can be
resolved by noting that the transfer of information
from iconic memory to VSTM is flexible and depends
on task demands (e.g., Gegenfurtner & Sperling, 1993).
As discussed under Methods, we used a blocked design
to study pair-wise feature binding in its strongest form.
Hence our task strongly promoted pair-wise binding of
selected features. Fougnie and Alvarez (2011), on the
other hand, used position as a cue, with color and
orientation as reported features. Hence their task
emphasized position–color and position–orientation
bindings much more than color–orientation bindings.
In fact, their results show that there was still color–
orientation binding (features were largely but not
completely independent), but this binding was weaker
than those with position. With our blocked design, we
examined each binding pair in its strongest form.
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Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934452/ on 10/11/2015



6 The model of this form can be considered as a
generalization of all models described earlier. Note
that, for simplification, we did not include the
summation operators to represent wrapped Gaussians
in those models. However, as mentioned earlier, the
wrapped form of the Gaussian must be used where
applicable.

7 Jensen’s inequality: lnð
PT

j¼1 cjÞ ¼ lnð
PT

j¼1
cj
pj
pjÞ �PT

j¼1 pj lnð
cj
pj
Þ.

8 Here, the second-order derivatives are found to be
negative in all cases.
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Kristjánsson, Á. (2006). Simultaneous priming along
multiple feature dimensions in a visual search task.
Vision Research, 46, 2554–2570.

Lane, A. R., Ball, K., Smith, D. T., Schenk, T., &
Ellison, A. (2013). Near and far space: Under-
standing the neural mechanisms of spatial atten-
tion. Human Brain Mapping, 34, 356–366.

Luck, S. J., & Vogel, E. K. (1997). The capacity of
visual working memory for features and conjunc-
tions. Nature, 390, 279–281.

Makovski, T., & Jiang, Y. V. (2007). Distributing
versus focusing attention in visual short-term
memory. Psychonomic Bulletin and Review, 14(6),
1072–1078.

Maunsell, J. H., & Van Essen, D. C. (1983). Functional
properties of neurons in middle temporal visual
area of the macaque monkey: I. Selectivity for
stimulus direction, speed and orientation. Journal
of Neurophysiology, 49, 1127–1147.

Nishida, S., Watanabe, J., Kuriki, I., & Tokimoto, T.
(2007). Human visual system integrates color
signals along a motion trajectory. Current Biology,
17(4), 366–372.
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Supplementary information

Supplementary information 1

Individual observer data for Experiments 1 and 2 are
shown in Supplementary Figures S1.1 and S1.2,
respectively.

Supplementary information 2

Bayesian method: Expectation-maximization (EM) algorithm

The EM algorithm starts with a certain initial
estimate for the parameters whose values will be
iteratively updated by means of two alternate steps
until convergence is observed.

1) The ‘‘E step’’ is to construct in the parameter space
a likelihood (L) function that represents the probability
that a given model has generated a set of data points.
The expectation of L is then determined by evaluating its
logarithm using the current estimate for the parameters.

Assume our model contains a mixture of two
wrapped Gaussians and a uniform distribution as
follows:6

Supplementary Figure S1.1. Transformed performance (left y-

axes) and error magnitude (right y-axes) for individual observers

(N¼ 4) in Experiment 1, averaged across trials, as a function of

set size for position (top), direction of motion (middle), and

color (bottom). Each symbol color corresponds to a cue type

(blue¼ cuing position, red¼ cuing direction of motion, green¼
cuing color). Error bars correspond to 61 standard error of the

mean for the specified observer.
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pðeÞ ¼ w1:
Xþ‘

m¼�‘

Gðe; l1 þm2p;r1Þ

þ w2:
Xþ‘

n¼�‘

Gðe; l2 þ n2p; r2Þ

þ w3:Uð�180; 180Þ; ð6Þ
where we have a set of seven parameters
{w1,w2,w3,l1,l2,r1,r2}, each of which has the same
meaning as elaborated in the Statistical modeling
section. The first three parameters are not independent
of each other but sum to 1 (w1þw2þw3¼ 1). Similarly,
l2 differs from l1 by the difference in the reported
feature space between the cued target and the
misbinding object (see Model 3 under Data analysis).
We therefore substitute l for l1 and let di be the
difference between l1 and l2 on trial i. We also assume
that r1¼ r2¼ r because subjects did not know whether
they were reporting the target or a nontarget object on
each trial.

Assume also that errors e are produced indepen-
dently across trials. From this, the likelihood function
can be written as

L ¼ P
N

i¼1
pðeiÞ; ð7Þ

where N is the number of trials.
2) The ‘‘M step’’ is to find the optimal values for the

parameters in the model, which are ones that maximize
the L function.

To do that, we first take the logarithm of L:

lnðLÞ ¼ ln
�

P
N

i¼1
pðeiÞ

�
¼
XN
i¼1

ln pðeiÞ½ �; ð8Þ

or

lnðLÞ ¼
XN
i¼1

ln w1:
X1

j¼�1

G j
1 þ w2:

X1

j¼�1

G j
2 þ w3:U

" #
;

ð9Þ
where

G j
1 ¼

1

r
ffiffiffiffiffiffi
2p
p e�

ðei�l� j2pÞ2

2r2

and

G j
2 ¼

1

r
ffiffiffiffiffiffi
2p
p e�

ðei�l�di�j2pÞ2

2r2

(j ¼�1, 0, 1). For simplicity, we have dropped in
Equation 8 the arguments of the Gaussian and uniform
distributions, reduced the number of Gaussians of each
component to three (for the reasons provided under
Data analysis), and used the subscripts of the
Gaussians to differentiate the two components of the

Supplementary Figure S1.2. Transformed performance (left y-

axes) and error magnitude (right y-axes) for individual observers

(N¼4) in Experiment 2, averaged across trials, as a function of cue

delay for position (top), direction of motion (middle), and color

(bottom). Each symbol color corresponds to a cue type (blue¼
cuing position, red¼ cuing direction of motion, green¼ cuing

color). Error bars correspond to 61 standard error of the mean.
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model. The function ln(L) is then evaluated by using
Jensen’s inequality:7

lnðLÞ �
XN
i¼1

(X1

j¼�1

p0ðG j
1jeiÞ:lnð

w1:G
j
1

p0ðG j
1jeiÞ
Þ

þ
X1

j¼�1

p0ðG j
2jeiÞ:lnð

w2:G
j
2

p0ðG j
2jeiÞ
Þ

þ p0ðUjeiÞ:lnð
w3:U

p0ðUjeiÞ
Þ
)
; ð10Þ

where p0ðG j
1jeiÞ; p0ðG j

2jeiÞ, and p0(Ujei) represent the
probabilities that a data point is most likely to be
captured by the first Gaussian, the second Gaussian,
and the uniform distributions in the model, respec-
tively, given its value ei Note that the superscript 0
indicates the current status of the parameters that
has sneaked into the inequality in the form of
conditional probability. From Bayes’s theorem we
have

p0 G j
1jei

� �
¼ w0

1:Gðei; l0 þ j2p; r0Þ
p0ðeiÞ

; ð11Þ

p0 G j
2jei

� �
¼ w0

2:Gðei; l0 þ di þ j2p; r0Þ
p0ðeiÞ

; ð12Þ

p0 Ujeið Þ ¼ w0
3:U

p0ðeiÞ
: ð13Þ

The right-hand side of Equation 10 is the lower bound
of ln(L), so we want to maximize its value. The
inequality can be rewritten as

lnðLÞ �
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ:lnðw1:G

j
1Þ

(

þ
X1

j¼�1

p0ðG j
2jeiÞ:lnðw2:G

j
2Þ

þ p0ðUjeiÞ:lnðw3:UÞ
	

�
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ:lnðp0ðG j

1jeiÞÞ
(

þ
X1

j¼�1

p0ðG j
2jeiÞ:lnðp0ðG j

2jeiÞÞ

þ p0ðUjeiÞ:lnðp0ðUjeiÞÞ
	
: ð14Þ

Since the second summation is a constant, the problem
boils down to finding the new values for the parameters
that maximize the first summation S:

S ¼
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞlnðw1G

j
1Þ

(

þ
X1

j¼�1

p0ðG j
2jeiÞlnðw2G

j
2Þ

þ p0ðUjeiÞlnðw3UÞ
	
: ð15Þ

We do so by taking partial derivatives of S with respect
to each parameter, setting each derivative equal to 0,
and solving the equations.8 The results are (note that

Experiment Report Cue

Model selection

by AIC

Model selection

by BIC

Final

selection

1 Position Color M3c M3c M3c

Direction M3c M3c M3c

Direction Position M2 M2 M2

Color M2 M2 M2

Color Position M2 M2 M2

Direction M3c M3c M3c

2 Position Color M3c M3c M3c

Direction M3c M3c M3c

Direction Position M2 M2 M2

Color M2 M2 M2

Color Position M3c M3c M3c

Direction M3c M2 M3c

Table 6. Model-selection results according to Bayesian method (AIC and BIC). A repeated-measures ANOVA shows that the main
effect of model (M1, M2, M3c, M3r) is significant in all cases. The winning model was selected for each case based on follow-up
planned comparisons between models. The notation for the models is the same as in Table 4.
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Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934452/ on 10/11/2015



the superscript 1 indicates the updated values for the
parameters):

l1¼
XN
i¼1

�
ei:
X1

j¼�1

p0ðG j
1jeiÞþ

X1

j¼�1

p0ðG j
2jeiÞþ poðUjeiÞ

�("

þ 2p:
�
p0ðG�1

1 jeiÞ � p0ðG1
1jeiÞ

þ p0ðG�1
2 jeiÞ � p0ðG1

2jeiÞ
�

� di:
X1

j¼�1

p0ðG j
2jeiÞ

)#

‚
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ þ

X1

j¼�1

p0ðG j
2jeiÞ

( )" #

ð16Þ

r1 ¼
( XN

i¼1

X1

j¼�1

p0ðG j
1jeiÞ:ðei � l1 � j2pÞ2

("

þ
X1

j¼�1

p0ðG j
2jeiÞ:ðei � l1 � di � j2pÞ2

)#

‚
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ þ

X1

j¼�1

p0ðG j
2jeiÞ

( )" #)1=2

ð17Þ

w1
1 ¼

XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ

( )" #

‚
XN
i¼1

X1

j¼�1

p0ðG j
1jeiÞ

("

þ
X1

j¼�1

p0ðG j
2jeiÞ þ p0ðUjeiÞ

)#
; ð18Þ

Supplementary Figure S2.1. (a) Same as Figure 4a but with data obtained from Bayesian analysis. (b) Same as Figure 4b but with data

obtained from Bayesian analysis.
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p0ðG j
2jeiÞ þ p0ðUjeiÞ

)#
; ð19Þ

w1
3 ¼ 1� w1

1 � w1
2; ð20Þ

with p0ðG j
1jeiÞ; p0ðG j

2jeiÞ, and p0(Ujei) given by Equa-
tions 11 through 13. These updated values become the
current values in the next iteration, and the algorithm
iterates these computations for the parameters until
convergence to a certain local maximum of the
likelihood function.

Bayesian-model comparison

We used penalized likelihood criteria of the Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) for model selection. The AIC and BIC
for a model are defined as

AIC ¼ �2lnðLÞ þ 2p; ð21Þ

BIC ¼ �2lnðLÞ þ plnðnÞ; ð22Þ
where L represents the maximized value of the
likelihood function of the model (obtained from the
EM algorithm), p is the number of free parameters in
the model, and n is sample size. These two criteria
both try to balance a good fit with the parsimony of
a model. Given a set of models, the selected model is
the one with minimum AIC or BIC values. If two
models yield AIC or BIC values that are insignifi-
cantly different from each other, the model with
fewer parameters is preferred according to Occam’s
razor.

Supplementary Figure S2.1. Continued.
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In general, AIC and BIC values point to the same
model. The only case in which they disagree is the
condition of cuing direction of motion and reporting
color in Experiment 2 (Table 6). In this condition, we
obtained equivalent BICs for GaussianþUniform
(Model 2) and GaussianþUniformþGaussian closest
cued feature (Model 3c) models (p¼ 0.055), so Model 2
should be selected. However, the smallest AIC was
found for Model 3c. Therefore, the AIC and BIC taken
together favor Model 3c.

Bayesian results

The results obtained from the models selected by
Bayesian analysis are shown in Supplementary Figures
S2.1 through S2.6.

Supplementary information 3

Control experiment

We conducted a control experiment to consider the
possibility that the asymmetry we observed in cue
effectiveness between color and direction of motion is
due to the way color and motion information are

presented. That is, consistently across our experiments,
color onset always preceded motion onset in the
presentation sequence. This temporal difference might
render it more advantageous for the subjects to first
encode color information, then add motion informa-
tion as it becomes available, leading to color being the
more effective cue.

In the control experiment, the temporal order of the
two stimulus features was reversed—i.e., motion was
presented first, followed by color. We repeated
Experiment 2 with some slight modifications for the
two conditions: (a) cuing color and reporting direction
of motion and (b) cuing direction of motion and
reporting color. All objects were presented in gray,
rather than in unique colors, during the 1-s static
previewing and the first 100 ms of motion. We
increased the motion duration from 200 to 300 ms, of
which the last 200 ms was left for color presentation.
Increasing motion duration should make no difference
to motion performance according to our previous
findings (Shooner et al., 2010), but it allows enough
time for color encoding and binding. The gray objects
were equiluminant with object colors. All other
conditions were kept the same as in Experiment 2 (see
Methods). Data were collected on three observers,

Supplementary Figure S2.2. Same as Figure 5 but with data obtained from Bayesian analysis.
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including DHL and two new observers who had
normal vision. For comparison, the unmodified ver-
sions of the two cue–report conditions (same as in
Experiment 2) were also run for each new observer.

We hypothesize that if the asymmetry found between
color and direction of motion simply reflects the
encoding order induced by the temporal difference
between these features, the asymmetry is likely to be
reversed in this control experiment (direction-of-mo-
tion cue should become more effective because it was
presented first). Otherwise, if the same pattern of results
emerges, we are confident that it reflects the natural
properties of the two features.

Results

Data for the replicated Experiment 2 and the control
experiment are plotted in Supplementary Figure S3.1,
in which similar patterns of results as in Experiment 2
are observed for both conditions. This is confirmed by
a mixed-model ANOVA, with experiment and cue
delay as between- and within-subjects factors, respec-
tively, to compare main Experiment 2 with replicated

Experiment 2—cuing color and reporting direction of
motion: F(1, 5) ¼ 0.517, p ¼ 0.504, g2

p ¼ 0.094; cuing
direction of motion and reporting color: F(1, 5)¼0.058,
p¼ 0.820, g2

p ¼ 0.011—and a two-way repeated-
measures ANOVA, with experiment and cue delay as
two factors, to compare replicated Experiment 2 with
the control Experiment—cuing color and reporting
direction of motion: F(1, 2) ¼ 0.091, p¼ 0.792, g2

p ¼
0.043; cuing direction of motion and reporting color:
F(1, 2) ¼ 0.363, p¼ 0.608, g2

p ¼ 0.154. In all cases, no
interactions between the two factors are significant.
The results indicate that reversing the order of
presentation onset of the two features did not change
performance.

To look at the effects of reversing the presentation
order on the asymmetry of the two features at each
processing stage, we first applied the same procedure as
in Experiment 2 (Duncan’s multiple-range test on
individual data combined with visual inspection of the
mean data) on the control experiment’s data to
demarcate sensory memory from VSTM for each cue–
report condition. We obtained the same demarcation
results as in Table 2 (see rows 4 and 6 of Table 2). We

Supplementary Figure S2.3. Same as Figure 6 but with data obtained from Bayesian analysis.
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Supplementary Figure S2.4. (a) Same as Figure 9a but with data obtained from Bayesian analysis. (b) Same as Figure 9b but with data

obtained from Bayesian analysis.

Supplementary Figure S2.5. Same as Figure 10 but with data obtained from Bayesian analysis.
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also followed the same logic as in Experiment 2 to
reproduce Figure 8 for the two replicated and control
conditions. These conditions are plotted together with
the results of the main experiment in Figure 8. Across

all experiments, we found that the asymmetry of color
and direction of motion remains stable regardless of
their temporal order. Hence, color is intrinsically the
more effective cue compared to direction of motion.

Supplementary Figure S2.6. Same as Figure 11 but with data obtained from Bayesian analysis.

Supplementary Figure S3.1. Data obtained from the replicated Experiment 2 (top) and the control (bottom) experiment for the two

conditions: cueing color and reporting direction of motion (left panels; green) and cueing direction of motion and reporting color

(right panels; red). Also in top panels (gray) are data from main Experiment 2: Transformed performance (left y-axes) and error

magnitude (right y-axes) averaged across observers are shown as a function of cue delay. Error bars correspond to 61 standard error

of the mean.
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