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Abstract 

Active Pharmaceutical Ingredients (APIs) are frequently prepared for delivery to the 
lung for local topical treatment of diseases such as Chronic Obstructive Pulmonary 
Disease (COPD) and asthma, or for systemic delivery. One of the most commonly 
used devices for this purpose is the pressurised metered dose inhaler (pMDI) whereby 
drugs are formulated in a volatile propellant held under pressure. The compound is 
aerosolised to a respirably sized dose on actuation, subsequently breathed in by the 
user.  

The use of hydrofluoroalkanes (HFAs) in pMDIs since the Montreal Protocol initiated a 
move away from chlorofluorocarbon (CFC) based devices has resulted in better 
performing products, with increased lung deposition and a concomitant reduction in 
oropharyngeal deposition. The physical properties of HFA propellants are however 
poorly understood and their capacity for solubilising inhaled pharmaceutical products 
(IPPs) and excipients used historically in CFCs differ significantly. There is therefore a 
drive to establish methodologies to study these systems in-situ and post actuation to 
adequately direct formulation strategies for the production of stable and efficacious 
suspension and solution based products.  

Characterisation methods have been applied to pMDI dosage systems to gain insight 
into solubility in HFAs and to determine forms of solid deposits after actuation. A novel 
quantitative nuclear magnetic resonance method to investigate the physical chemistry 
of IPPs in these preparations has formed the centrepiece to these studies, accessing 
solubility data in-situ and at pressure for the first time in HFA propellants. Variable 
temperature NMR has provided thermodynamic data through van’t Hoff approaches. 
The methods have been developed and validated using budesonide to provide limits of 
determination as low as 1 µg/mL and extended to 11 IPPs chosen to represent 
currently prescribed inhaled corticosteroids (ICS), β2-adrenoagonists and 
antimuscarinic bronchodilators, and have highlighted solubility variations between the 
classes of compounds with lipophilic ICSs showing the highest, and hydrophilic β2-
agonist / antimuscarinics showing the lowest solubilities from the compounds under 
study.  

To determine solid forms on deposition, a series of methods are also described using 
modified impaction methods in combination with analytical approaches including 
spectroscopy (µ-Raman), X-ray diffraction, SEM, chromatography and thermal 
analysis. Their application has ascertained (i) physical form / morphology data on 
commercial pMDI formulations of the ICS beclomethasone dipropionate (QVAR® / 
Sanasthmax®, Chiesi) and (ii) distribution assessment in-vitro of ICS / β2-agonist 
compounds from combination pMDIs confirming co-deposition (Seretide® / 
Symbicort®, GlaxoSmithKline / AstraZeneca). 

In combination, these methods provide a platform for development of new formulations 
based on HFA propellants. The methods have been applied to a number of ‘real’ 
systems incorporating derivatised cyclodextrins and the co-solvent ethanol, and 
provide a basis for a comprehensive study of solubilisation of the ICS budesonide in 
HFA134a using two approaches: mixed solvents and complexation. These new 
systems provide a novel approach to deliver to the lung, with reduced aerodynamic 
particle size distribution (APSD) potentially accessing areas suitable for delivery to 
peripheral areas of the lung (ICS) or to promote systemic delivery. 

Keywords: pMDI, HFA, Analytical Method Development, Inhalation, Formulation, 
Complexation. 
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Figure 5.2.2.2.3- Raman spectra acquired on particulate depositions from 

Symbicort® 80/4.5 and regions of no visible deposition on aluminium plate 

positioned on Plate 4 of the ACI (x50 objective). 

Figure 5.2.2.2.4- Raman spectra acquired on particulate depositions from 

Symbicort® 80/4.5 and regions of no visible deposition on aluminium plate 

positioned on Plate 4 of the ACI (x100 objective). 

Figure 5.2.2.2.5- Raman spectra acquired on particulate depositions from 

Seretide® 50 on aluminium plate positioned on Plate 4 of the ACI (x100 

objective) highlighting features (marked *) in spectrum (red) corresponding to 

fluticasone and salmeterol. 

Figure 5.2.2.3.1 – Hyper-spectral arrays acquired over 15 x 15 µm region 

from plate 4 of a Sertide® 50 deposition, processed using direct classical 

least squares component matching for fluticasone (left) and salmeterol 

(right). Also shown are spectra obtained from regions of positive match for 

both compounds. 

Figure 5.2.2.3.2 – White light image and Raman map of Seretide® Evohaler 

50 (ACI plate 4) processed using DCLS component matching for fluticasone 

(green) and salmeterol (red). 

Figure 5.2.2.3.3 – Raman map of Seretide® Evohaler 125 (ACI plate 4) 

processed using DCLS component matching for fluticasone (green) and 

salmeterol (red). 
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Figure 5.2.2.3.4 – White light image and Raman map of Seretide® Evohaler 

250 (ACI plate 4) processed using DCLS component matching for fluticasone 

(green) and salmeterol (red). 

Figure 5.2.2.3.5 – White light image and Raman map of Symbicort® 80/4.5 

(ACI plate 4) processed using DCLS component matching for formoterol 

(green) and budesonide (red). 

Figure 5.2.2.3.6 – White light image and Raman map of Symbicort® 160/4.5 

(ACI plate 4) processed using DCLS component matching for formoterol 

(green) and budesonide (red). 

Figure 5.2.3.1.1 – Diffraction patterns obtained for blank Mylar (grey) and 

reference preparation (black) shown with reference pattern positions for the 

simulated PXRD pattern for BDP anhydrate (WOYPAB). 

Figure 5.2.3.1.2 – PXRD patterns over a 250 minute period (grey) of the 

emitted dose of QVAR® 100 pMDI device (160 actuations) collected in the 

modified second stage of the Copley TSI apparatus shown with reference 

BDP (black) and simulated pattern positions for BDP hydrate [blue 

(BCLMSN)]. 

Figure 5.2.3.1.4 – PXRD patterns over a 430 minute period (grey) of the 

emitted dose of Synasthmax® 100 pMDI device (160 actuations) collected in 

the modified second stage of the Copley TSI apparatus shown with reference 

BDP (black) and simulated pattern positions for BDP hydrate [blue 

(BCLMSN)]. 
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Figure 6.1.1 – Representative laser diffraction PSD and X90, X50 and X10 

values for the micronised budesonide used in the preparation of the pMDI 

devices. 

Figure 6.1.2 – SEM photomicrographs at x2 k (a), x5 k (b), x10 k (c) and x 15 

k (d) of the micronised budesonide used in the preparation of the pMDI 

devices showing the micronised particulates of less than 5 µm dimensions 

and therefore suitable for formulation as suspended solids in HFA for pMDI 

delivery. 

Figure 6.3.1.1 – Aerodynamic particle parameters for budesonide 

formulations prepared with (i) HFA134a (ii) HFA134a/EtOH (iii) 

HFA134a+TRIMEB and (iv) HFA134a/EtOH+TRIMEB. 

Figure 6.3.2.1 – SEM photomicrographs of material deposited (ACI plate 4) 

from (a) budesonide in HFA134a shown, (b) budesonide in HFA134a / 

ethanol (10% v/v), (c) budesonide / TRIMEB in HFA134a and (d) budesonide 

/ TRIMEB in HFA134a / ethanol (10% v/v) at magnifications between x5 and 

x20 k (specified in the data bar). 

Fig 6.3.2.2 - SEM photomicrographs of material deposited (ACI plate 7) from 

(a) budesonide / TRIMEB in HFA134a and (b) budesonide / TRIMEB in 

HFA134a / ethanol (10% v/v) at magnifications between x4 and x10 k 

(specified in the data bar). 

Figure 6.3.3.1 – Representative Raman spectra in the region 1800 and 500 

cm-1 for six budesonide particles deposited on ACI stage 4 from (i) 

budesonide in HFA134a (blue) and (ii) budesonide in HFA134a / ethanol (10 

% v/v) (purple) formulation compared to pure budesonide (red). 
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Figure 6.3.3.2 – Representative Raman spectra in the region 1800 and 800 

cm-1 for five spheroid particles deposited on ACI stage 6 from budesonide / 

TRIMEB in HFA134a / 10% v/v formulation compared to (i) pure budesonide 

(red) and (ii) TRIMEB (blue) spectra.  

Figure 6.3.3.3– Representative Raman spectra in the region 1800 and 1500 

cm-1 for five spheroid particles deposited on ACI stage 6 from budesonide / 

TRIMEB in HFA134a / 10% v/v formulation compared to (i) pure budesonide 

(red) and (ii) TRIMEB (blue) spectra. 

Figure 6.3.3.4 – Representative Raman spectra in the region 1800 to 800 

cm-1 acquired on ACI stage 6 from pure HFA134a formulation showing 

instances of pure (i) budesonide (red); (ii) pure TRIMEB (blue) and; (iii) host / 

guest complex (black). 

Figure 6.4.3.1 – Schematic illustration of the facilitation of Ostwald ripening 

processes by the inclusion of solubilising agents TRIMEB / ethanol 

(represented by an ellipse) in the pMDI preparations of budesonide. 
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1  Introduction 

1.1  Aim 

The overall aim of this study is to develop analytical methods to profile the 

physical chemistry of inhaled pharmaceutical products (IPPs) formulated in 

hydrofluoroalkane (HFA) propellants. Through development of novel 

analytical approaches, important product performance parameters such as 

solubility, solution speciation, and physical form (solid state and particulate 

forms post-deposition) will be obtained for the first time for these systems. 

Such insight will form the basis for development of formulation strategies for 

IPPs in HFA media and allow new approaches for more effective 

solubilisation and controlled deposition to be applied in concept formulations 

of IPPs. 

The objectives for study, describing key stages towards the overall aim, were 

developed in the context of study and are described in Section 1.3. 

1.2  Context for Study 

1.2.1  Diseases of the Lung and Associated Responses 

Active Pharmaceutical Ingredients (APIs) are commonly prepared as 

formulations for introduction directly into the lungs of humans. The physiology 

of the lung with its large surface area, moist mucosal membrane and 

excellent blood supply can be used as an organ for fast and efficient 

systemic delivery,[1,2,3,4] with advantages including the non-invasive nature of 

the route, increased speed of uptake via the thin epithelium[5] and reduced 

metabolism compared to delivery via oral routes.[4] Recent research is 
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showing particular interest in the delivery of peptides and proteins in this 

manner, as it avoids the necessity for injection (providing cost and patient 

adherence benefits) and metabolism in the gastro-intestinal tract (though 

there are metabolic enzymes present in the lungs).[4] A recent example is the 

treatment of diabetes mellitus by the administration of adenosine deaminase 

or insulin via the lung.[6,7]  

The most widespread group of therapeutics delivered to the lung are 

however locally acting topical medications used in the direct treatment of lung 

diseases.[8] A recent review by Ritchie et al. identifies 81 marketed 

respiratory drugs at the time of writing (2009), of which 29 are administered 

to the lungs directly for topical treatment of respiratory diseases.[9] The low 

concentrations needed for significant therapeutic effect can aid in the 

minimisation of systemic concentrations (hence side effects) and the onset of 

action is rapid. They are used in the treatment of diseases such as cystic 

fibrosis, pulmonary arterial hypertension and infectious pulmonary diseases, 

but are used most extensively in the treatment of chronic obstructive 

pulmonary disease (COPD) and asthma and are the mainstay treatments for 

these indications.[10] These two diseases are considered to be causes of 

substantial worldwide social and economic burden through morbidity and 

mortality.[11] Asthma treatments have progressed enormously over recent 

years and its management with traditional and newer drugs in various 

dosage forms has led to greater control of symptoms.[12] Conversely, COPD 

currently has less effective treatment regimes, and there have been fewer 

advances in development of successful drug therapies. Worldwide, it is the 

only cause of mortality that is continuing to increase in prevalence.[13] 
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The two diseases are frequently categorised together as they are both 

chronic inflammatory disorders causing bronchoconstriction, and until 

recently their distinction has been broadly in the reversibility (or lack) of the 

airflow obstruction caused by the disease: asthma being considered 

reversible and COPD not so.[14] More recently however, the pathophysiology 

of the diseases has become better understood, and statements including 

these characteristics have been developed to define the diseases: 

The Global Initiative for Asthma (GINA) states that Asthma is classed as a 

chronic inflammatory disorder of the airways in which many cells and cellular 

elements play a role. The chronic inflammation is associated with airway 

hyperresponsiveness that leads to recurrent episodes of wheezing, 

breathlessness, chest tightness and coughing and is usually associated with 

widespread airflow obstruction within the lung that is often reversible either 

spontaneously or with treatment.[14] The inflammation is persistent in asthma 

affecting all airways including the upper-respiratory tract and the nose, 

though the effects are most pronounced in the medium sized bronchi.[15] The 

symptoms occur in episodes, with the presence of inflammatory cells having 

been detected including mast cells, eosinophils, T-lymphocytes and dendritic 

cells,[15] though a recently published review by Barnes[16] concludes that 

greater than 100 mediators are involved in the complex inflammation 

processes. 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) states 

that COPD is characterised by persistent airflow limitation associated with an 

enhanced and abnormal chronic inflammatory response in the airways and 

the lung to noxious particles or gases. It is usually progressive though is 
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classed as a preventable and treatable disease.[11,17] COPD is also 

characterised by systemic inflammation thought to be a cascade effect from 

the inflammation in the lung mediating circulatory inflammation cells and 

cytokines including neutrophils, T-lymphocytes and eosinophils.[18] The 

diagnosis of and differentiation between the two diseases is difficult. Asthma 

usually has its onset early in adolescence, however does have instances of 

adult onset.[15] COPD is typically diagnosed in patients in their fifties and 

sixties[14] and is primarily a disease of smokers in first world countries, though 

exacerbations are frequently observed in developing countries caused by 

pollution and working environment. 

The treatment of asthma and COPD is wide ranging, and includes avoidance 

of allergens, cessation of smoking and exposure to other toxic entities in 

addition to pharmacological approaches. Studies have included 

administration of theophylline,[19,20] broad-spectrum antibiotics,[21] mediator 

antagonists,[22,23] influenza vaccines,[24-26] oligonucleotides,[27] dietary 

antioxidants[28,29] and immunomodulators such as methotrexate[30,31] and 

newer biological TNF inhibitor treatments (adalimumab and etanercept).[32,33] 

By far the most prevalent form of pharmacological control however is in the 

use of inhaled corticosteroids as anti-inflammatory agents, β2 adrenoceptor 

agonist compounds (bronchodilators) and antimuscarinic (anticholinergic) 

bronchodilators prescribed in isolation or in combination.[14] A brief review of 

each in the context of the formulation of these materials into usable products 

is given in Sections 1.2.1.1 to 1.2.1.4. 
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1.2.1.1 Inhaled Corticosteroids (ICS) 

ICS compounds act in asthmatic patients to suppress the inflammation in the 

airways and their use is widespread and successful.[34] They are 

recommended as the first line therapy for all patients with persistent asthma 

and they are shown to be effective in controlling symptoms in patients of all 

ages and severity.[15] Their use in COPD treatments is, however, more 

controversial, and recent findings suggest they have no effect on the 

pulmonary inflammation associated with this condition.[14] Their action is in 

diffusion across cell membranes, binding to glucocorticoid receptors in the 

cytoplasm and inhibiting the recruitment of inflammatory cells in the airways, 

including eosinophils, T-lymphocytes and mast cells. They have a rapid effect 

on the suppression of mucosal inflammation.[35] Steroid compounds have 

been and continue to be given systemically in some asthma treatment 

regimes particularly in hospital emergency department early treatments,[36] 

but the inhaled approach is the mainstay of routine management.[14] 

Commonly used ICSs include beclomethasone dipropionate (BDP), 

budesonide, fluticasone propionate, mometasone furoate, hydrocortisone 

and flunisolide, delivered to the lung via pressurised metered dose inhalers 

(pMDI), dry powder inhalers (DPI), nebulisers and nasal sprays.[37] The 

compounds have relatively high molecular mass[9] and tend to be lipophilic in 

nature, with low aqueous solubility.[38,39] They are broadly speaking 

formulated as suspensions[40,41] or solutions for certain products such as 

BDP[42] and flunisolide[43] in modern propellant and aqueous based devices 

for dosing to the lung, as well as in solid form in DPIs.  
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1.2.1.2 β2 Adrenoceptor Agonist Compounds (β2 Agonists) 

β2 agonists act in the airways of patients with asthma and COPD by binding 

to the β2-adrenoreceptors present in a number of airway cells, with their 

major site of action thought to be in the smooth muscle surrounding the 

bronchi and bronchioles.[44] Their action is in the signalling cascade triggering 

a number of events contributing to the relaxation of the muscle post-binding 

activity;[14] this is primarily in the stimulation of the enzyme adenylate cyclase 

causing the increased production of cyclic adenosine monophosphate 

(cAMP), leading to relaxation of the smooth muscle and bronchodilation. The 

development of isoprenaline in the 1960s was the first to be studied 

extensively,[45] though acting on β1 and β2 adrenoreceptors it had little β2 

selectivity.[14] The development of short acting β2 agonists (SABA) such as 

salbutamol and terbutaline gave marked improvements in reducing 

associated side effects and more recently long acting β2 agonists (LABA) 

such as salmeterol xinafoate, formoterol fumarate and bambuterol have 

become commonly used treatments. There is an intense drive for 

pharmaceutical companies to develop new LABAs with increased duration[46] 

and hence reduction in dosing frequency leading to increased patient 

adherence.[47] Indacterol is a compound marketed by Novartis, recently 

approved for use in COPD control and termed an ultra long acting β2 agonist 

(uLABA) due to its once daily dosing requirement. The compounds exhibit 

different physico-chemical characteristics and these are thought to have a 

significant effect on their pharmacodynamics in the body.[48] A review by 

Anderson et al.[48] proposes that the difference in polarity (logP) of 
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salbutamol, formoterol and salmeterol (SABA, LABA and LABA respectively) 

is one of the key reasons they have different durations of action. 

1.2.1.3 Antimuscarinic (Anticholinergic) Bronchodilators 

Antimuscarinic bronchodilators are used in the control of the resting tone of 

the bronchial smooth muscle, which in cases of COPD is increased and is a 

cause of bronchoconstriction. The inhaled compounds block the cholinergic 

receptors (hence the synonym anticholinergic).[44] These agents are 

administered through the inhaled route avoiding systemic side effects 

associated with other anti-muscarinic receptors found in many other areas of 

the body. They are available in short and long acting forms i.e. short acting 

muscarinic antagonists (SAMA) and long acting muscarinic antagonists 

(LAMA). Currently available preparations of inhaled muscarinic antagonists 

are ipratropium bromide (SAMA) and tiotropium bromide (LAMA).[14] LAMAs 

are approved and used in the treatment of COPD but not currently asthma. 

They are considered less useful in asthma patients than LABAs,[14] though 

studies by Magnussen et al.[49] have shown benefits of tiotropium in patients 

with concomitant COPD / asthma and Fardon et al.[50] have noted 

improvements in patients administered with tiotropium and an ICS 

(fluticasone) in combination. Recently developed LAMAs include 

glycopyrrolate in its racemic and pure (R,R)- form (Novartis)[51] and aclidinium 

bromide (Menarini).[52,53] The quaternary ammonium substructure common to 

all LAMAs delivered via inhalation serves to promote hydrophilicity and limit 

systemic adsorption, hence side effects.[54] 
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1.2.1.4 Combination Products 

Management of asthma and COPD is a complex process, with different 

approaches being used by clinicians that are dependent on many variables, 

not least the presence of asthma or COPD or both concomitantly. 

Management has moved from the treatment of bronchoconstriction using 

SABA / LABA, to ICS, and more recently has used a combination of the two 

to act on bronchoconstriction and inflammation together.[55] Recent studies 

have shown that the administration of an inhaled ICS in combination with a 

LABA is more effective than increasing the dose of the ICS alone.[55,56] 

Further studies by researchers including Papi et al.[57] and Britton et al.[58] 

have concluded that the delivery of the ICS and LABA together have a 

synergism, increasing the therapeutic effect seen in doses administered 

sequentially from separate devices. These combination products are 

available in the form of Advair® / Seretide® (fluticasone propionate and 

salmeterol xinafoate) and Symbicort® (budesonide / formoterol fumarate) 

inhalers (GlaxoSmithKline and AstraZeneca respectively). It is now 

understood that there are important molecular interactions between these 

two classes of drugs in that LABAs may affect glucocorticoid receptors 

enhancing the anti-inflammatory effect of the ICS, and the ICS enhance the 

β2 agonist effect, reversing the uncoupling of β2 receptors occurring in 

response to inflammatory mediators.[14] 

1.2.2  Delivery to the Lung 

Successful delivery of drugs to the lung in an efficacious, accurate and 

precise manner is heavily dependent on the API, the formulation and the 
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delivery system.[59] The system is required to aerosolise the API in the correct 

particle size distribution to reach the desired region of the lung,[60] and it must 

do so in a precise manner so as to provide an accurate dose time after 

time.[61] It is broadly accepted that the aerodynamic particle size must be < 5 

µm to achieve successful deposition in the airways of the lung, with particles 

> 5 µm tending to be deposited in the oropharynx and swallowed. Particles of 

between 1 and 5 µm will deposit in the large and conducting airways whilst 

those < 1 µm are likely to reach the peripheral airways / alveoli or be 

exhaled.[62,63] It is however important to consider the mode of action for the 

therapeutic agent in question and where the optimum deposition may be for 

that particular medication. As discussed (Sections 1.1.1 to 1.1.3) there are 

three principal types of therapeutic agent for the treatment of asthma and 

COPD (i) ICS (ii) β2 agonists and (iii) antimuscarinic bronchodilators. It is 

known that airway smooth muscle predominates in the trachea and small 

airways and the β2 receptors are primarily located in the small airways and 

alveoli.[64,65] Airway inflammation is however present throughout the 

respiratory tract, though the peripheral airways demonstrate these effects the 

most.[66] It follows that different particle sizes and hence deposition regions 

may be required for different treatments, with ICS treatments potentially 

requiring particles in the range 1 to 5 µm to reach the peripheral airways and 

upper regions, whilst β2-agonists and antimuscarinic bronchodilators would 

be required in the upper range to allow deposition in regions of both smooth 

muscle and β2 receptors.[64,67] The depositions discussed occur through three 

principal mechanisms (i) inertial impaction (ii) sedimentation and (iii) 

Brownian motion / diffusion,[62] though further work by Gonda[68] suggests that 
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two further processes, interception and electrostatic precipitation, occur 

particularly when the aerosolised particles are very small (< 1 µm).  Inertial 

impaction occurs at bifurcations of the bronchial tree, particularly in the large 

central airways, when particles with high inertia are unable to follow the 

airstream and impact on the airway wall. Sedimentation is a product of a 

particle’s mass and residence time allowing smaller particles to sediment 

during breath holding / slow breathing, highlighting the importance of defined 

device instruction and patient adherence. Both impaction and sedimentation 

predominate in aerosol therapies between 1 and 10 µm.[62] Diffusion is only 

thought to occur for particles < 1 µm and is often overlooked for inhaled 

therapies, though this may be of consequence for more modern devices with 

mass median aerodynamic diameters (MMAD) approaching the lower size in 

the range.[69] 

Three principal types of medical device exist for the purpose of aerosolising 

APIs and introducing them to the lung (i) nebuliser systems (ii) dry powder 

inhaler (DPI) devices and (iii) pressurised metered dose inhaler (pMDI) 

devices. Nebuliser systems transfer solutions or suspensions of therapeutic 

agent into breathable aerosols that are subsequently breathed in to the lung, 

usually under normal tidal breathing. DPI devices act by transferring dry 

particles of API (and excipient) to the lung by a breath actuated mechanism 

and pMDI devices create an aerosol of medication using a volatile propellant 

subsequently breathed in to the airway after activation of the device. Each 

has their advantages and disadvantages, and an overview of each device is 

given in Sections 1.2.2.1 to 1.2.2.3. 
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1.2.2.1 Nebulisation Devices 

These devices are summarised as those that transfer solutions or 

suspensions of a medication into a breathable aerosol ready for introduction 

to the lung during tidal breathing. Nebulisation devices have been used in the 

delivery of drugs to the lungs for many years, with the first hand powered 

systems being developed in the mid-19th century, later becoming electrical 

devices in the 1930s.[70,71] Much research and development has been 

performed since these initial devices leading to an efficacious means of drug 

delivery in modern incarnations of the apparatus. Figure 1.2.2.1.1 shows a 

schematic representation of a typical nebulisation device (pneumatic type) 

whereby a compressed gas source is fed into a reservoir of the formulated 

API producing a breathable aerosol fed to the patient via a mouthpiece.  

Figure 1.2.2.1.1 – Schematic representation of a typical pneumatic type 

nebuliser device.[61] 
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Two principal types of nebulisers are utilised in modern medical practice with 

the aforementioned pneumatic devices being the first (and most common) 

and ultrasonic devices the second. Compressed gas nebulisers introduce a 

compressed gas through a nozzle causing negative pressure drawing liquid 

up the tube and incorporating it into the gas stream. This is then sheared into 

the gas stream and broken into droplets by surface tension forces.[72] 

Ultrasonic nebulisers generate high frequency waves from electrical energy 

that are passed to the surface of the formulated solution to create an aerosol. 

Aerosol delivery is then typically by fan or using the patient’s inspiratory flow. 

The design of both types of device and the incorporated formulation is 

primarily focussed on the production of droplets in the respirable range of 1 

to 5 µm to ensure delivery to the lower airways and maximise efficacy. 

Although this type of introductory system is being used less in light of the 

increased use of pMDI and DPI devices, it remains extremely important in the 

administration of medications in selected patient groups; specifically those 

who are too ill or too young to use pMDI / DPI devices. In addition to this, 

nebulisers do offer several other advantages over other devices, namely 

large dose administration over extended time periods and the removal of 

patient coordination requirements that are so essential with pMDI and 

DPIs.[70] They are however far less portable, have a significantly longer set 

up and administration time and have a higher cost associated to the 

hardware. They may also require the availability of compressed gases (air / 

oxygen) for their operation, all of which tends to restrict their use to patients 

treated in hospital or via home-based protocols. 
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A related device is the aqueous droplet inhaler (ADI), also referred to as 

solution metering or soft mist inhalers. These are relatively new portable 

devices designed to overcome some of the problems associated with DPI 

and pMDI devices, namely the coordination difficulties for users and the low 

lung deposition values sometimes achieved. They are similar in design to 

pMDIs but lack the volatile propellant. They dose a precisely measured liquid 

(most commonly water or ethanol based) to generate an aerosol in a 

mechanical (or electromechanical) manner, or via fine nozzle systems 

through which the formulation is forced. They offer a high respirable fraction 

when compared to DPI and pMDI devices,[73,74,75] though their commonly 

used aqueous formulation base has led to questioning of their microbial 

safety and stability in the case of multi-dose devices where material is stored 

in a reservoir.[69,74] Examples of the ADI in current use that rely on (i) soft 

mists formed by converging jet technology and (ii) electrostatic energy to 

produce a fine mist are Boeringer Ingelheim’s Respimat® and Battelle’s 

Mystic® devices respectively.[77] 

1.2.2.2 Dry Powder Inhalers (DPI) Devices 

DPI devices typically comprise API and a carrier particle, most commonly a 

sugar such as lactose, stored in a capsule or a proprietary blister type 

arrangement (incorporated into the device) punctured or released prior to 

actuation. These breath-actuated devices have been in existence in various 

forms since the first patented example in the 1860s, however major 

developments in the familiar multi-dose portable devices has been prevalent 

since the early 1960s.[61] 
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These devices require a strong inhalation from the patient via the mouthpiece 

to administer the dose to the lung post actuation of the device i.e. a short and 

powerful intake of breath. It is here where the most significant disadvantage 

to the DPI device lies, as patients suffering from diseases affecting the lungs 

can find this process too strenuous to successfully inhale an efficacious dose. 

Other disadvantages include high deposition in the throat and the upper 

airways such as tracheal regions of the lung and the necessity to keep the 

device and its contents dry; moisture and increased exposure to atmospheric 

humidity can cause powder clumping and reduced fine particle mass on 

actuation. Modern DPI devices exist in three major forms (i) capsule devices 

whereby individual capsules are loaded and punctured prior to each 

actuation (ii) multiple unit dose inhalers using an integral blister pack that 

punctures / peels individual blisters prior to actuation and (iii) reservoir 

devices using a reservoir of formulated API from which each dose is taken at 

actuation.[70,78,79] Many major pharmaceutical companies have their own 

proprietary technologies covering these three types of devices for example 

the Aerolizer® (Merck), the Accuhaler® (GSK) and the Turbuhaler® 

(AstraZeneca) respectively. A schematic of a reservoir type device is shown 

(Figure 1.2.2.2.1). 
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Figure 1.2.2.2.1 - Schematic representation of a reservoir type DPI device.[80] 

1.2.2.3 Pressurised Metered Dose Inhaler (pMDI) Devices 

pMDI devices are a more recent approach to the delivery of drugs to the lung, 

and as such have only been in development since the 1950s when the first 

device of this type was developed at Riker Laboratories (3M) using cold fill 

technologies and new metering valves first applied in the Medihaler-iso 

(isoprenaline) and Medihaler-epi (adrenalin) devices launched in 1956.[79,81] 

The devices consist of a suspension / solution of API in a volatile liquid 

propellant contained within a pressurised canister, often with the addition of 

one or more surfactants to the formulation chosen to aid in stability or to 

manipulate performance. Metering valves are used to form a controlled dose 

of formulated API in a fine atomised spray over ca. 100 to 200 milliseconds 

on actuation of the device, which is subsequently inhaled by the user. Figure 

1.2.2.3.1 shows a schematic representation of a typical pMDI device. 
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Figure 1.2.2.3.1 – Schematic representation of a typical pMDI device.[61] 

pMDI devices are considered advantageous due to (i) their small size and 

portability providing benefits over nebulisation systems (ii) the cost of 

production being relatively low and (iii) their containment of multiple doses. 

They also offer the user a breathable aerosol, do not require a significant 

inspiratory flow as with DPI devices (beneficial for users with reduced lung 

efficiency) and are not as susceptible to humidity and moisture exposure.[82] 

They are considered disadvantageous in some respects however leading to 

high deposition in the mouth and throat owing to their relatively large droplet 

production and high particle velocity at the mouthpiece,[4] though newer 

devices have improved this significantly as discussed in Section 1.2.3. 

Patient coordination also remains a problem, requiring inhalation and 

activation of the device to be timed accurately by the user. 
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1.2.3 pMDI Formulations; Chlorofluorocarbons (CFC) and 

Hydrofluoroalkanes (HFA) 

Historically, the use of chlorofluorocarbons (CFCs) in these devices was 

commonplace; however since the phasing out of these propellants under the 

Montreal Protocol (Substances that Deplete the Ozone Layer)[83] in 1987 

alternatives have been sought in the form of hydrofluoroalkanes 

(HFAs).[1,2,3,61] The drive to reformulate using HFAs has been slower than 

anticipated, and has not been simply a switching from CFCs to HFAs as was 

initially predicted.[84] The two most common propellants used in the 

formulation of pMDIs in modern pharmaceutics are 1,1,1,2-tetrafluoroethane 

and 1,1,1,2,3,3,3-heptafluoropropane, HFAs 134a and 227 respectively. The 

transition to these propellants is well underway, and should be essentially 

complete in developed countries at the time of writing.[84] The change has 

involved replacement of the materials used in the valves and canister linings 

of pMDI devices, and it has been found that excipients used in CFC 

preparations are not necessarily applicable in HFAs.[85] The final reformulated 

products have not only led to more environmentally acceptable products, but 

also more efficient ones, generally producing aerosols with smaller particle 

sizes aiding with deposition in the deep lung and reducing oroparyngeal 

deposition, hence more efficacious medications at equivalent doses 

compared to CFC formulations with reduced systemic side effects.[61] Figure 

1.2.3.1 shows a representation of the deposition profiles of the SABA 

salbutamol from CFC and HFA pMDI formulations taken using lung 

scintigraphy, clearly highlighting the reduced oropharyngeal deposition and 

concomitant increase in deposition in the lung.[86] 



 18 
 

 

Figure 1.2.3.1 – Representative deposition profiles showing the increased 

lung / decreased oropharyngeal deposition in HFA vs. historic CFC based 

formulations.[86] 

Many studies have been performed to verify these characteristics and 

delivery improvements have been observed using both in-vitro and in-vivo 

measurements. In-vitro studies by Leach et al.[69] noted a reduction in 

oropharyngeal deposition from between 90-94% to 29-30% for a CFC 

preparation of the ICS beclomethasone dipropionate (BDP) vs. the 

preparation in HFA134a, with a corresponding increase in lung deposition of 

55-60% vs. 4-7% for the CFC. Similar results were published by Cheng et 

al.[86] and Chuffart et al.[87] in their studies of the SABA compound 

salbutamol. Chuffart reported an increase from 33-55% for respirable 

particles from an HFA based formulation vs. those from CFC (multi-stage 

liquid impingement) and Cheng an increase from 16-24% from CFC to HFA 

based formulations, with corresponding decrease in deposition in the 

oropharynx from 78-56%. Pharmacokinetic / pharmacodynamic (PKPD) 
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studies of salmeterol and the ICS flunisolide by Kempsford et al.[88] and 

Nolting et al.[89] respectively have demonstrated lower systemic uptake of the 

drugs delivered from HFA vs. CFC based formulations, with lower maximum 

concentration (Cmax) values observed in each case. In slight contrast, work by 

Goldberg et al.[90] showed the SABA and LABA compounds fenoterol and 

formoterol to have little effect on the symptoms of asthmatics (Forced 

Expiration Volume, FEV) when administered from formulations using HFA 

and CFC in direct comparison. Busse et al.[91] however demonstrated a 

significant benefit in in-vivo trialling of the ICS BDP at equivalent doses in 

HFA vs. CFC, and concluded that 2.6 times the dose in CFC would be 

required to achieve the same improvement in FEV. A similar study using HFA 

and CFC prepared BDP by Micheletto et al.[42] used bronchial response to 

metacholine to model clinical efficacy and concluded a significantly reduced 

therapeutic dose in HFA was needed for clinical asthma management. 

It appears to be generally accepted that the HFA formulations bring about 

reduced oropharyngeal deposition vs. CFC and a concomitant increase in the 

respirable dose.[69,86,87,88,89] What is less clear is the effect this has on real 

patients in-vivo with studies showing little difference in the FEV for treatments 

with β-agonist compounds,[90,92] though a marked difference when using ICS 

compounds is observed.[42,91] Consideration of these findings seems 

consistent with the therapeutic effect of the different classes of compounds. 

These are discussed in more detail (Section 1.1.5), however in summary the 

reduced particle size of HFA based formulations is likely to have more benefit 

for ICS compounds, leading to deposition in the peripheral airways where the 

most significant inflammation occurs.[66] Antimuscarinic bronchodilators and 
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β2 agonists targeting the smooth muscle and β2 receptors present in the 

trachea, small airways and alveoli may have less benefit from the reduced 

aerodynamic particle size brought about by the reformulation in HFAs. 

1.2.4  Critical Characteristics of HFA pMDIs  

The reformulation of inhaled products in HFA based preparations has 

brought about the general increase in aerodynamic performance in-vitro and 

in-vivo as summarised in Section 1.1.3.1. These improvements have been 

largely attributed to lower initial spray velocity, rate of initial droplet 

evaporation, and the formation of initial droplet sizes, and how they differ in 

HFA vs. CFC preparations.[86] In this sense, the behaviour and subsequent 

performance of the pMDI preparations of IPPs is strongly dependent on the 

propellant characteristics particularly in terms of (i) their volatility / vapour 

pressure in combination with the device and (ii) their solubilising capacity for 

the drug(s), and potentially excipients, in question.[93] The use of HFA134a 

and HFA227 post the adoption of the Montreal Protocol are essentially fixed 

as these are the only two propellants to date to have undergone toxicology 

testing and gained approval. It is interesting to note that no low volatility 

propellants are approved for modification of vapour pressure as with the 

historic CFC based systems where trichlorofluoromethane and 

dichlorotetrafluoroethane (CFC-11 and -114) could be used to reduce the 

vapour pressure of dichlorodifluoromethane (CFC-12) as required. The 

physical properties of the new HFA preparations are then less easy to 

control, with the addition of excipients such as glycerol or polyethylene glycol 

the only means by which to control volatility. The use of these excipients may 

also be limited by solubility.[84,94,95]  
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The solubility of the drug in HFA based media is of paramount importance in 

the design and behaviour of pMDI devices. A solute dissolves in a solvent 

until the solution is saturated; this saturation is an equilibrium, with the 

dissolved solute in equilibrium with the undissolved solute.[96] This equilibrium 

solubility will be defined for a given solute in a given solvent at a given set of 

conditions (temperature / pressure) and will define the type of formulation 

that can be prepared for a pMDI. The solubility levels of the IPPs used tends 

to be very low (of the order of low µg/mL) meaning suspension based 

formulations are common, though strategies are often employed to increase 

the solubility using excipients and / or co-solvents such as ethanol[97,98] 

discussed later in this section. Other work has been performed modifying the 

IPP to produce salts to improve solubility[99,100] and a study by Seville et 

al.[101] has investigated the possibility of delivery of salbutamol as a prodrug 

with complete miscibility in HFA134a (compared to very low solubility in its 

normal form) that is metabolised in lung homogenates by esterase to liberate 

salbutamol in-vivo.  

Formulations of pMDIs are then often classified as two distinct types (i) 

suspensions and (ii) solution preparations and they exhibit markedly different 

properties. 

Suspension formulations are most commonly prepared using material 

micronised to particulates of respirable size (between 1 and 5 µm) before 

addition to the HFA.[93] These suspensions are commonplace, as IPPs tend 

to have low solubility in HFA propellants and fit well with this strategy. They 

do however suffer from stability issues including (i) creaming, whereby 

particles of IPP being less dense than the HFA propellant form a cream like 
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layer which floats on the propellant[102] (ii) sedimentation, where particles 

more dense than the propellant sink and (iii) flocculation, where differences in 

hydrophillicity / hydrophobicity between the propellant and the IPP may lead 

to flocculation or deposition on the canister walls.[103,104] All of these factors 

can lead to problems with emitted dose variability.[105] Correct patient use of 

these devices with prescriptive shaking and orientation is essential for 

reproducible dosing.[106,107] Excipients have been used to control these 

problems, with historic CFC preparations using oleic acid, sorbitan trioleate 

and soya lechtin to promote suspension stability, though the solubility of 

these excipients in HFAs is too low to make their transfer a useful option.[108] 

This has led a drive to investigate HFA compatible excipients, with oligolactic 

acids (OLAs) used as suspension stabilisers, and acylamide acids / mono-

functionalised M-PEGS showing promise for further evaluation as solubility 

enhancers. Stefely et al.[85] show a small but significant improvement in the 

solubility of amine containing entities using this approach in HFA134a / 

ethanol systems.  

Partial solubility of the IPP can also lead to stability problems in the form of 

the Ostwald ripening phenomenon. Ostwald observed in the early part of the 

20th century that a saturated solution of a compound containing small and 

large crystals is supersaturated with respect to the large and undersaturated 

with respect to the small particles.[109] Solubility is increased for smaller 

particles through surface to volume ratio effects (Gibbs-Thompson Effect), 

hence over time the smaller crystals dissolve and the larger crystals grow i.e. 

Ostwald ripening.[110,111,112] This can have significant effects on the 

concentration, and most importantly, the crystal size of API in solution over 
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time, which can clearly have a detrimental effect on aerosolisation 

characteristics.[113,114]  

Solution formulations are those which completely solubilise the IPP in the 

HFA based propellant. These have benefits in terms of homogeneity and 

reproducibility of delivered dose. Physical stability can also be improved with 

the avoidance of Ostwald ripening, sedimentation, flocculation and creaming 

effects described earlier for suspension approaches, though if they are near 

their limit of solubility at the formulated concentration, precipitation can occur 

as moisture slowly ingresses the system.[108] Increased chemical instability 

has also been noted.[115] For solution approaches to be feasible, the drug 

must have sufficient solubility in the propellant to allow delivery of a 

therapeutically appropriate dose in a small number of actuations.[116] As the 

solubility of the IPPs tends to be very low,[108] this is often a difficult situation 

to reach. Certain historic CFC preparations were prepared as solutions with 

the addition of excipients as flavours or anti-oxidants.[93] Strategies to achieve 

a solution pMDI often require the addition of further excipients / co-solvents 

to increase the solubilising capacity of the propellant. Mixed HFA / ethanol 

systems form the basis of several studies[108,117,118] and recent commercial 

products have been approved such as QVAR® / Sanasthmax®, (Chiesi) 

using HFA134a / ethanol / glycerol to produce a solution pMDI of BDP, and 

Aerospan® solubilising flunisolide in HFA134a / ethanol (Acton).  Other 

strategies for producing solutions include the addition of further excipients in 

the formulation. Evans et al.[21] studied the formation of micelles in CFC 

based systems using lecithin and approaches using soya 

phosphatidylcholine in CFC blends has been investigated by Labiris et al.[59] 
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Studies in HFAs are less widely reported however, though work has been 

described recently by Stefely et al.[85] using acylamide acids and mono-

functionalised M-PEGS to increase solubility of albuterol in HFA134a and 

HFA134a / ethanol mixtures, noting significant solubility increases of up to 30 

x (1.5 % w/w). Williams et al.[119] have reported the use of cyclodextrins in 

HFA134a based suspension formulations of aspirin and their effect on the 

stability of the systems. Similarly Steckel et al.[120] have investigated the use 

of derivatised cyclodextrin in the stabilisation of the ICS compound 

budesonide in HFA134a / ethanol / polyethylene glycol (PEG) mixtures. Their 

work uses CDs to stabilise budesonide suspensions produced from solutions 

of the drug in-situ in a pMDI and shows promise in delivering higher fine 

particle fraction (FPFs) and lower mass median aerodynamic diameters 

(MMAD). They do not however assess the solubility changes imparted by the 

inclusion of CD in the system and this may have a significant effect on the 

potential for promoting the Ostwald ripening effect through marginal 

increases in solubility.  

There are stability and homogeneity advantages inherent in the complete 

solubilisation of IPPs in pMDI formulations. As summarised, strategies using 

co-solvents and other excipients show promise in this area, and systematic 

study of relevant IPPs using such strategies is warranted. Work presented 

later in this thesis aims to investigate the physical chemistry occurring in the 

addition of ethanol co-solvents and cyclodextrins as solubility enhancers in 

HFA propellants. 

In addition to the stability and dose variability issues discussed, a further key 

difference in suspension and solution based pMDI formulations are the solids 



 25 
 

delivered from the device on actuation. Suspension pMDIs limit the emitted 

droplet size with the size of the particles suspended. The particles emitted 

are in general different in size from the primary particles used in the 

formulation.[68] Their size is dependent on the size of the droplet formed on 

actuation, the number and size of the particles this contains, and the 

presence of non-volatile excipients if present. These variables were 

summarised in a recent study by Stein et al.[121] seeking to develop new 

prediction models for aerodynamic particle size distribution (APSD) of 

suspension pMDI formulations. Solution pMDIs produce particles in-situ on 

actuation of the device. Once atomised, the droplets undergo rapid 

evaporation of the propellant and particles are formed. Their size depends on 

the droplets formed initially as they are homogenous solutions of solubilised 

IPP (large droplets forming larger particles, small forming smaller particles), a 

parameter that is controllable using the actuator design (valve size), vapour 

pressure of the propellant and non-volatile excipients.[116,121] As the process 

is rapid it tends to lead to the formation of smaller, spherical particles.[121]  

1.3  Strategy for Study and Key Objectives 

As highlighted, the characteristics of IPPs in HFA propellants are of 

paramount importance in understanding the behaviour and performance of 

these systems. Much research has been performed on the aerodynamic 

performance of the devices, including the assessment of product 

improvements post phasing out of CFCs and adoption of HFA propellants as 

summarised in Section 1.2.3. However, with a few notable exceptions the 

physical chemistry of these pMDI formulations is poorly understood. The 

studies presented in this thesis aim to develop novel approaches using 
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modern analytical techniques to access information on the properties of the 

formulations both in-situ and post actuation of the device. These approaches 

are in two distinct areas (i) analytical methodologies based around the in-situ 

characterisation of IPPs in solution i.e. the solubility and physical chemistry of 

the IPP in the formulation and (ii) solid state studies on the materials post 

actuation of the pMDI device for the study of physical form, morphology and 

distribution. 

1.3.1  Solution Studies 

As summarised, the solubility of drug in the propellant system is an essential 

parameter to ascertain formulation strategies (solution vs. suspension). 

Methods to assess solubility in volatile propellants with and without excipients 

/ co-solvents is complicated by their gaseous nature at ambient conditions, 

and analysis by conventional means is very challenging. Approaches using 

filtration and off-line analysis using chromatographic techniques have been 

studied by Traini et al.,[100] Dalby et al.,[122] Williams III et al.[123] and Myrdal et 

al.[124] Although elegant, these approaches are time-consuming in the 

preparation and equilibration of pMDI canisters, use relatively large amounts 

of expensive drug in doing so, and can suffer large cumulative errors in the 

processing steps involved. The approaches investigated and presented in 

these studies focus on quantitative nuclear magnetic resonance (qNMR) as a 

method of analysing the above systems and aim to highlight for the first time 

the advantages provided by analysis in-situ. Primarily, the analysis of 

systems in-situ at pressure using qNMR allows the determination of solubility 

in true dynamic equilibrium i.e. with partitioning between solution and solid 

phase without the removal of solids from the system. The filtration based 
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methods summarised[100,122,123,124] do not allow for this. Secondly, the ease 

with which NMR can be operated at variable temperatures (VT-NMR) allows 

experiments to be performed to access the thermodynamics of the systems 

under study through data manipulated using van’t Hoff approaches. Thirdly, 

structural data inherent in the NMR spectra recorded provide further insight 

into the systems under study, not previously available and lost when using 

off-line methods.  

Additional benefits to the NMR approach include (i) ease of sample 

preparation using very small quantities of drug; saturated suspensions can 

be transferred to conventional NMR tubes for liquid based samples (studies 

in model propellants), with cold transfer and pressurisation allowing 

preparation in-situ of the volatile propellants HFA134a and HFA227 and (ii) 

residual solids in prepared solutions will not affect the measurement being 

performed.* Only material dissolved in solution will give rise to a signal in the 

NMR experiment, therefore removing any need for pre-filtration steps as with 

other techniques and (iii) preparation and equilibration of the samples is 

considerably less labour intensive than pressurised filtration based methods, 

and automation of NMR acquisitions can lead to significant time-savings. 

*Residual solids in the NMR solution should not affect the quantitative 

response of the approach, however it is appreciated that the solid content of 

the sample preparation may lead to line broadening effects and a resultant 

loss in resolution / sensitivity from distortion of the local magnetic field.[125] 

It is the objective of these studies to develop and validate a robust and 

efficient qNMR methodology capable of determining solubility of IPPs in the 

volatile HFA propellants used in current pMDI formulations. The method will 
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be used to ascertain solubility of IPP compounds chosen to represent a 

broad range of currently available ICS, β2-agonist and antimuscarinic 

brochodilator compounds in model propellant HPFP and HFAs 134a and 

227.  An overview of these compounds and their chemical structures is 

provided in Table 1.3.1.1. 
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Table 1.3.1.1 – Summary of the classification and structures of the ICS, β2-

agonist and antimuscarinic bronchodilator compounds under study. 

Compound  Classification Compound Structure 

Beclomethasone ICS 
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dipropionate ICS 

 

Budesonide ICS 
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Mometasone 
furoate ICS 

 

Salbutamol SABA 

 

Salmeterol LABA 

 

Terbutaline SABA 

 
 

The methods will be used to investigate the solubility enhancements 

achievable and the potential for solution based pMDI formulation using 

excipients such as ethanol as a co-solvent and derivatised cyclodextrins 

added to form host / guest complexes. The inherent structural data in the 

NMR measurements potentially aids in characterisation of the complexes. A 

further objective is to undertake VT-NMR studies on the systems to further 

our understanding of the physical chemistry involved in the dissolution 

processes of compounds in these solvents with and without the excipients 

chosen to enhance solubility. 

Methods will be developed using HPFP (2H,3H-decafluoropentane) as a 

model propellant based on the work carried out by Rogueda,[126] who 

concluded the properties were comparable to those of HFAs 134a and 227. 

This helps in the early method development phases of the studies as the 
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compound is liquid at room temperature and is therefore considerably easier 

to work with. By its comparability to HFAs 134a and 227 used in current 

pMDI formulations[126] it also provides meaningful data in terms of actual 

solubility, and the values will be used in conjunction with these in many 

cases. Some common physico-chemical properties of HPFP, HFA134a and 

HFA227 are shown in Table 1.3.1.2.[126] 

Table 1.3.1.2 – Common physico-chemical properties of HFA134a, HFA227 

and HPFP.[126] 

Property (293 K) HFA134a HFA227 HPFP 
Molecular Mass (g/mol) 102.0 170.0 252.1 

Melting Point (K) 172.0 142.0 193.0 
Boiling Point (K) 246.7 256.5 326.6 

Vapour Pressure (bar) 5.72 3.90 0.25 
Density of liquid (kg/L) 1.226 1.408 1.598 

Refractive Index of liquid (nD) 1.19 1.22 1.26 
Dielectric constant of liquid 9.8 4.1 15.1 

 

The potential for disadvantages of the NMR based approaches will also be 

considered. As NMR is an inherently insensitive technique when compared to 

methodologies such as HPLC with high sensitivity detection such as UV, 

fluorescence and mass spectrometry used in previously published methods 

to assess solubility[100,122,123,124] careful consideration will be required to 

ensure suitable sensitivities can be achieved. Modern NMR spectrometers 

have however developed considerably in recent years and have the 

sensitivity improvements brought about by increased field strength, modern 

electronics and probe designs. Pulsed field gradient shimming protocols and 

stabilised lock referencing have also served to reduce peak broadening and 

maximise peak heights, thus increasing signal to noise (S:N). Forms of 

referencing to allow the data to be used in a quantitative manner will be 
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considered. Several possibilities exist here and investigations into their 

applicability will be included in these studies (i) calibration using the external 

standard approach[127] and (ii) incorporation of a physical reference material 

into the analytical solution at a known concentration – a type of internal 

standardisation. This approach may be acceptable if it can be guaranteed 

that the inclusion of the reference does not inherently affect the property 

being measured. This problem can be overcome if the reference can be 

physically isolated from the analytical solution by use of glassware such as 

co-axial inserts (iii) ERETIC (Electronic REference To access In-vivo 

Concentrations) methods have been utilised in recent studies to introduce an 

electronic reference appearing as a peak in the NMR spectrum that can be 

used quantitatively, for example those by Remaud  et al.[128] and Akoka et 

al.[129]  

1.3.2  Solid State Studies 

The solid state of the expelled API from the actuated pMDI device is 

important to consider. As highlighted earlier in this section, topical treatment 

of inflammation in the indications of asthma and COPD require the 

administration of ICS, β2-agonist and / or antimuscarinic bronchodilators to 

specific regions of the lung and their efficacy is heavily dependent on the 

physico-chemical properties of the material. For materials poorly soluble in 

the primarily aqueous based airway lining fluids the crystal form (including 

hydrates / solvates) or amorphous nature of the materials can have profound 

effects on the efficacy of the delivered dose. This process can dictate 

pulmonary targeting with an optimum dissolution profile existing for locally 

acting compounds, or a differing form for those targeted for systemic 
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delivery.[123] The control of these characteristics is heavily dependent on the 

design and formulation properties of the device. As previously discussed, 

products formulated as suspensions in HFA media are likely to deliver 

different solid forms on actuation to those formulated as solutions using co-

solvent systems and / or other excipients; actuation and formation of solids 

during the rapid evaporation of volatile propellant systems favours the 

formation of amorphous materials. Further, many of the available prescribed 

medications in the form of pMDI devices are formulated to incorporate 

combination therapies. As summarised in Section 1.2.1.4, ICS compounds 

are frequently formulated with LABAs, for example Symbicort® pMDI devices 

containing budesonide and formoterol fumarate (GSK) and Seretide® 

containing fluticasone propionate and salmeterol xinafoate (AstraZeneca). 

Clinical trials have shown that addition to formulations is more beneficial in 

controlling symptoms of COPD than increasing the dose of the steroid alone 

and there are data to suggest that delivery via combination devices is more 

beneficial than delivering separately.[57,130,131] These characteristics have the 

potential for investigation using modern analytical techniques combined with 

novel deposition approaches using standard and modified impaction / 

impingement apparatus.  

The objectives of the solid state studies presented herein are to develop and 

utilise standard and modified impactors / impingers to deposit materials from 

commercially available and novel pMDIs produced in-house. Study of the 

deposited materials will be undertaken using Powder X-ray Diffraction 

(PXRD), Scanning Electron Microscopy (SEM), and spectroscopic analysis 

(Fourier Transform Infrared [FTIR] and Raman). These techniques, used in 
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combination with the deposition methods developed, aim to provide a 

powerful means by which to assess distribution, form and morphology of the 

systems under study and enable conclusions to be drawn on their potential 

behaviour in-vivo.  

A combination of the developed methods will be used to assess commercially 

available combination pMDIs (Seretide® and Symbicort®) and prototype 

pMDI formulations generated in-house for the study of ethanol (co-solvent) 

and a derivatised cyclodextin inclusion on HFA134a prepared budesonide. 
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2.  Experimental  

2.1  Materials 

The source and batch numbers of materials used in these studies are 

summarised in Table 2.1.1. 

Table 2.1.1 – Source and batch information for materials used in these 

studies. 

Name     Source   Batch Code 

HPFP     Apollo Scientific  Q15C-95 

HFA134a     Solvay   A0150N0047 

HFA227     Solvay   A0150A0111 

Budesonide     Sigma Aldrich  017K1779 

Beclomethasone dipropionate  Jai Radhe   BMD-N-004-09 

Beclomethasone base   Jai Radhe   BMD-N-006-09 

Fluticasone propionate   Jai Radhe   408901-FP 

Salbutamol base    Jai Radhe   SB/101/09-10 

Salbutamol sulphate   Jai Radhe   SS/103/09-10 

Formoterol fumarate dihydrate  Sigma Aldrich  019K4705 

Mometasone fuorate   Jai Radhe   APL/72/C-09 

Terbutaline sulphate   Jai Radhe   TBS/105/07/08 
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Ipratropium bromide   Jai Radhe   IPI/0109001 

Isonicotinamide    Sigma Aldrich  1404358 

Benzoic Acid    Sigma Aldrich  MKF4260V 

Seretide®    GlaxoSmithKline  2000035C00 

Symbicort®    AstraZeneca   .0185R 

All chromatography solvents were of HPLC grade (Fisher Scientific) unless 

otherwise stated. 
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2.2  Analytical Method Development for In-Situ Measurement of 
IPPs in HFAs 

2.2.1  NMR Spectral Assignment (HPFP and Budesonide) 

A solution of budesonide was prepared for NMR analysis by dissolving ca. 15 

mg in deuterated chloroform (CDCl3). The solution was filtered to remove 

residual solids into a standard field matched 5 mm NMR tube. The sample 

was locked and shimmed using pulsed field gradients (PFGs) before 

obtaining standard 1H, 1H-1H COSY and 1H-13C HSQC NMR spectra using 

the JEOL ECA 600 MHz spectrometer. A solution of HPFP was prepared in 

CDCl3 by taking ca. 15 mg into the solvent and transferring to a 5 mm NMR 

tube. Acquisition of a standard 1H spectrum was obtained in the same 

manner. 

2.2.2  Purity of HPFP 

HPFP was characterised by injection of a liquid sample into the heated inlet 

of an Agilent 6890 gas chromatograph (GC) equipped with flame ionisation 

detection (FID) according to the method summarised (Table 2.2.2.1). 

Table 2.2.2.1 – Summary of gas chromatography conditions used to 

ascertain purity of HPFP sample. 

Column 

Supplier: Agilent 

Material: Fused silica 

Length: 30 m 

Internal diameter: 0.25 mm 
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Phase: HP5 MS 

Film thickness: 0.250 µm 

Carrier Gas 

Type and grade:  Hydrogen, Grade A 

Flow: 50 mL/min 

Injection 

Mode of injection: Manual, split (10:1) 

Temperature: 300°C 

Injector liner:  4 mm ID straight glass liner fitted with glass 

wool plug  

Load: 1 µL 

Detector 

Type: FID 

Temperature: 325°C 

Gases: H2:  30 mL/min 

       Air:  350 mL/min 

      Make-up:  30 mL/min  (Nitrogen) 
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Oven Temperature Profile 

Initial temp (°C): 40°C (10 min), 20°C/min to 100°C (2 min), 

20°C/min to 280°C (10 min) 

Area % calculations were carried out on the resulting peak integration values 

obtained from the chromatogram, showing the purity to be > 99.9 % by peak 

area. 

2.2.3  Co-axial NMR 

Standard co-axial NMR tubes (Wilmad Labglass, NJ, USA) consisted of a 

field matched NMR tube of suitable dimensions for insertion within the 

standard 5 mm NMR tube, incorporating a small capillary tube within the 

sampling volume of the NMR probe allowing addition of a physically isolated 

reference solution. The tube setup was utilised throughout the 

experimentation with the reference volume filled with deuterated acetonitrile 

(CD3CN). The outer volume of the co-axial setup was filled with 530.0 µL of a 

saturated suspension of budesonide in HPFP. The solution was prepared by 

adding excess budesonide to HPFP and allowing equilibration for > 24 hours. 

The transferred suspension was added unfiltered to the tube. 

2.2.4  Method Optimisation 

A co-axial tube setup prepared with a saturated suspension of budesonide in 

the analytical (outer) capacity and a reference solution of CHCl3 in CD3CN in 

the reference (inner) capacity was inserted into the JEOL 600 MHz NMR 

spectrometer. The sample was locked and shimmed using PFGs (CD3CN) 
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and a standard 1H NMR spectrum acquired. A repeat 1H experiment was 

performed using a solvent suppressed parameter set summarised below: 

Suppression Type: Presaturation 

Chemical Shift: 4.36 ppm 

Attenuation:  25 dB 

The acquisition of solvent suppressed data was repeated with attenuation 

levels increased from 25 to 55 dB with 5 dB step size. Peak area values were 

obtained for the 3 budesonide resonances between 5 and 7 ppm chemical 

shift values (A-ring protons) by peak integration. Plots of the peak area 

values vs. attenuation level were produced. 

A co-axial tube setup was prepared and analysed for a standard 1H NMR 

spectrum in an identical manner to that used in the solvent suppression 

investigation with an attenuation value of 55 dB. Solvent suppressed spectra 

were obtained using sequentially longer acquisition times (scan number) of 

16 minutes (256 scans), 134 minutes (2048 scans) and 935 minutes (14,336 

scans). Signal to noise (S:N) ratios were calculated for budesonide 

resonance at 6.5 ppm chemical shift values for each of the experiments 

performed. 

2.2.5  Quantitative Method Development 

A co-axial tube setup was prepared and analysed to acquire a standard 1H 

NMR spectrum in an identical manner to that used in the solvent suppression 

investigation with an attenuation value of 55 dB and 2048 scans. HPLC 

validation of the methodology was performed by preparation of a saturated 
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solution of budesonide in HPFP (excess budesonide was added to HPFP 

and equilibrated at room temperature for > 24 hours).  The saturated 

suspension was filtered through 0.45 µm syringe filters before diluting further 

(x2) in HPFP to dissolve any solids that may have passed through the 

filtration step. A further dilution was made in HPLC mobile phase to create 

the analytical solution. Reference solutions were created in duplicate at 21.0 

and 16.5 µg/mL in HPLC mobile phase. Injections of the reference and 

sample solutions were made on a Waters 2695 Separations Module HPLC 

system with 2487 variable wavelength detector (VWD) using conditions 

summarised in Table 2.2.5.1. 

Table 2.2.5.1 – Summary of HPLC conditions used to analyse filtered 

saturated suspensions of budesonide. 

Column:  Phenomenex C18 – 250 mm x 2.1 mm (5 µm) 

Mobile Phase: A – Water 

B – MeCN 

Isocratic 40% A : 60% B (0.2 mL/min) 

Temperature: 40°C 

Injection:  5 µL 

Detection:  UV at 240 nm  

Peak area values from integration of the budesonide peaks were used to 

calculate the concentration of budesonide in the prepared saturated solution 

using the external standard approach as follows: 
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Response factor, Rf = budesonide concentration (µg/mL) / peak area = 1.336 

x 10-3 

Sample concentration (µg/mL) = sample peak area x Rf = 21.7 µg/mL 

Dilution factor = 4, therefore budesonide solubility = 86.8 µg/mL (± 0.32) 

A series of reference solutions of budesonide in HPFP at known 

concentrations were prepared for analysis and validation of the quantitation 

provided by the NMR method developed. A dilution series was generated by 

creation of a solution of budesonide (0.634 mg) in HPFP (10 mL) and 

sonicating to ensure complete dissolution. Serial dilutions were performed in 

HPFP to generate a reference series as outlined in Table 2.2.5.2. 

Table 2.2.5.2 – Serial Dilutions to generate a reference series of budesonide 

in HPFP. 

Solution Solution volume 
(mL) 

Total dilution 
volume (mL) 

Resultant 
Concentration 

(µg/mL) 
A - - 63.4 
B 0.8 mL A 1 50.7 
C 0.8 mL B 1 40.6 
D 0.8 mL C 1 32.5 
E 0.8 mL D 1 26.0 

 

Each solution was transferred to the sample capacity of separate quantitative 

co-axial NMR tube arrangements and analysed using the 2048 scans and 55 

dB attenuation level solvent suppression method previously established on 

the JEOL 600 MHz spectrometer. The values obtained were used to 

calculate a quantitative value of budesonide concentration, which was 

directly compared to the known values allowing the calculation of a 
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calibration factor for the experimental arrangement used as shown below for 

the 63.4 µg/mL solution as a worked example: 

Peak area for CHCl3 (271.3 µg/mL) = 24.87 

Mean budesonide peak area = 18.24  

CHCl3 conc. x budesonide area (1H) = 199.0 

CHCl3 area (1H) 

 

True budesonide concentration = 63.4 µg/mL 

Calibration factor = 63.4 / 199.0 = 0.318 

Calculation of solute solubility using the co-axial arrangement (and calibration 

factor) was carried out as follows: 

Peak area for CHCl3 (297.1 µg/mL) = 35.27 

Mean budesonide peak area = 32.69  

CHCl3 conc. x budesonide area (1H) = 275.4 

CHCl3 area (1H) 

 

Applying calibration factor (0.316) = 275.4 x 0.316 = 87.0 µg/mL 

2.2.6  Reverse Co-axial NMR 

In order that pressurised systems could be analysed by the developed 

methods, it was necessary to devise a J Young style NMR set up whilst still 

allowing insertion of a co-axial type insert. Wilmad Labglass, NJ USA, 

produced bespoke tube arrangements whereby a J Young top fitting was 
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added to a coaxial insert. A simple reversing of the standard mode of 

operation of these tubes now allowed a pressurised inner capacity for 

addition of analytical solution, with the reference capacity sitting in the outer 

volume at ambient pressure. In order to maximise the sensitivity of this 

arrangement, tubes were manufactured with a larger than standard inner 

volume. Inserts with an inner capacity of 190 µL and 410 µL were 

manufactured. Both tube types were tested within standard 5 mm NMR 

tubes, though it was apparent that the reduced volume of reference solution 

in the reference capacity of the larger tube setup imparted operational 

problems with sample locking and precision of quantitation. 

A repeat of the validation exercise carried out for the original co-axial set up 

was carried out by creating a series of reference solutions of budesonide in 

HPFP at known concentrations. A dilution series was generated by creation 

of a solution of budesonide (0.605 mg) in HPFP (10 mL) and sonicating to 

ensure complete dissolution. Serial dilutions were performed in HPFP to 

generate a reference series as outlined in Table 2.2.6.1. 

Table 2.2.6.1 – Serial Dilutions to generate a reference series of budesonide 

in HPFP. 

Solution Solution volume 
(mL) 

Total dilution 
volume (mL) 

Resultant 
Concentration 

(µg/mL) 
A - - 60.5 
B 0.8 mL A 1 48.4 
C 0.8 mL B 1 38.7 
D 0.8 mL C 1 31.0 

 

Each solution was transferred to the sample capacity of separate quantitative 

reversed co-axial NMR tube arrangements, with the addition of 300 µL of 
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reference solution prepared accurately to contain ca. 10 µg/mL CHCl3 in 

CD3CN to the outer reference capacity. The samples were analysed using 

the 2048 scans and 55 dB attenuation solvent suppression method 

previously established on the JEOL ECA 600 MHz spectrometer. 

2.2.7  ERETIC NMR  

A sample of CHCl3 in CD3CN was created at 13 mg/mL and transferred to a 

standard 5 mm NMR tube. The sample was loaded in the JEOL 600 MHz 

NMR spectrometer before locking and shimming using PFGs. The ERETIC 

method was run using an ERETIC phase of 0 (zero) and offset of 10.0 ppm 

chemical shift (8 scan experiment). Processing of the resultant spectrum 

established a phase value of – 58, hence the experiment was repeated on 

the locked / shimmed sample (without removal of the lock or ejection of the 

tube) with a phase of +58 to provide a correctly phased ERETIC signal. The 

experiment was repeated with an offset of  -1.0 ppm chemical shift. 

Integration of the ERETIC peak and the reference (CHCl3) peaks obtains the 

numerical data necessary for the calibration of the system. A sample of an 

unknown can subsequently be run on the system under identical conditions 

after loading, locking and shimming using PFGs. It is important to remember 

not to retune the probe at this point as the ERETIC signal will once more 

become out of phase. Integration of the resonances of interest for the 

unknown sample can now be assessed vs. the calibrated ERETIC peak and 

used to calculate the concentration of the unknown in the system. A freshly 

prepared solution of in CD3CN was created at 84 µg/mL and transferred to a 

standard 5 mm NMR tube. The sample was loaded in the JEOL 600 MHz 

NMR spectrometer before locking and shimming using PFGs. An ERETIC 
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procedure, modified to incorporate a pre-saturation of the HPFP signal (4.368 

ppm) and incorporate the ERETIC signal at 9.0 ppm chemical shift was 

carried out as previously with initial assessment of the phasing of the 

ERETIC signal, followed by re-run of the same sample using the negative of 

the phasing applied. A total of 1064 scans were acquired in anticipation of 

the low level signals of the saturated budesonide suspension. The procedure 

was repeated immediately on a solution of saturated budesonide in HPFP (> 

24 hours) without alteration of the spectrometer parameters. Calibration of 

the system was carried out using the peak area integral values of the CHCl3 

peak and the ERETIC signal. This calibration was applied to the unknown 

budesonide suspension for calculation of solubility. 

Calculation of the solubility of budesonide in HPFP using this experimental 

approach is shown: 

Calibration 

Peak area for CHCl3 (84.0 µg/mL) = 5.87 

Peak area for ERETIC signal = 4.98 

ERETIC conc = CHCl3 conc. x ERETIC area = 71.27 

CHCl3 area 

Determination 

Mean budesonide peak area = 0.71  

Budesonide conc. = ERETIC conc. x budesonide area  = 75.5 

ERETIC area 

Budesonide conc. = 75.5 µg/mL 
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2.2.8  Temperature Calibration of NMR Probe 

A sample of MeOH in MeOD was created at ca. 15 mg/mL and transferred to 

a standard 5 mm NMR tube. The sample was loaded in the JEOL 600 MHz 

NMR spectrometer before locking and shimming using PFGs. The FTS 

Systems TC84 Variable Temperature Module temperature control system 

was set to 310 K and allowed to equilibrate the sample for 10 minutes, before 

acquiring a standard 1H NMR spectrum. The temperature was reduced by 5 

K and equilibrated for 10 minutes before repeating acquisition of the 1H NMR 

acquisition. The process was repeated with sequentially lower temperature 

set points down to a registered value of 253 K. Chemical shift differences 

between the CH3 and the OH resonances were utilised to calculate the true 

temperature of the sample at registered values on the temperature control 

apparatus.  

2.2.9  Quantitation of Budesonide in HPFP (278, 283 and 298 K) 

Samples of saturated budesonide were created in HPFP by addition of 

excess budesonide to HPFP solution in pressurise-able co-axial inners from 

the reverse co-axial tube arrangement. Three separate solutions were 

prepared in order to allow triplicate measurements to be performed. The 

suspensions were allowed to equilibrate at 298 K in a temperature controlled 

water bath for > 24 hours before preparing and analysing. The co-axial inners 

were added to a standard 5 mm NMR tube as previously described, pre-filled 

with 300 µL of reference solution (a solution of ca. 10 µg/mL CHCl3 in CD3CN 

prepared accurately). The samples were removed from the water bath and 

immediately transferred to the JEOL 600 MHz NMR spectrometer pre-
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equilibrated to 298 K and allowed 15 minutes to re-equilibrate tube solutions 

to 298 K. The tubes were locked and shimmed using PFGs and analysed 

using the 2048 scans and 55 dB attenuation solvent suppression method 

previously established. 

The process was repeated in exactly the same manner for the same three 

saturated suspensions of budesonide in HPFP at 278 and 283 K, with > 24 

hours equilibration time allowed for each temperature change. Fresh 

reference solution was prepared before each experiment was acquired. 

Solvent suppression parameters were modified slightly to accommodate the 

chemical shift movement of the solvent response brought about by the 

temperature difference of the acquisition. 

2.2.10 Cold Transfer of HFA134a and HFA227 and Associated 

Method Modification 

A specifically designed cold transfer system has been assembled for use in 

handling liquefied gases and their transfer to pressurisable NMR tubes. The 

system was used to charge pressure vessels with liquefied gases, namely 

HFA134a and HFA227, through a cold transfer system refrigerated with solid 

CO2. The pressurised liquid was subsequently transferred to the J Young 

style co-axial inserts through a series of valves allowing saturated 

suspensions of APIs in the pressurised solvents to be generated in-situ. A 

photograph of the set-up is shown as Figure 2.2.10.1. 
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Figure 2.2.10.1 – Cold transfer system designed and assembled to allow the 

filling of pressurisable NMR tubes with liquefied gases HFA134a and 

HFA227. 

Samples of HPFP, HFA134a and HFA227 were prepared using the reverse 

co-axial arrangement set up to include reference solution in the outer 

capacity as used in the quantitatively prepared solubility solutions. Each was 

loaded separately to the JEOL 600 MHz spectrometer. For each of the 

solvent systems, 1H NMR data was acquired after equilibration in the probe 

at 298, 283 and 273 K for 15 minutes. The chemical shift values for the 

centre of the main resonance for each of the fluorinated solvents was 

recorded at each temperature. This chemical shift value was written to 

individual method parameter files allowing a separate solvent suppression 

method to be established for each of the three solvent systems at each 

temperature (9 separate methods in total). 
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2.2.11 NMR Assignment of Inhaled Compounds 

For each of the API samples under study, a solution was created in CDCl3, 

CD3CN, MeOD or D2O dependent on their respective solubility. The solutions 

were filtered to remove any residual solids into standard 5 mm NMR tubes. 

The samples were locked and shimmed using the automated sequence 

before obtaining standard 1H NMR spectra using the Bruker 400 MHz 

spectrometer equipped with 5 mm QNP probe. Limited spectral assignment 

was completed for each of the APIs examined to establish resonances that 

could be utilised in the quantitation of solubility in the fluorinated solvent 

systems. 
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2.3  Physical Chemistry of Inhaled Pharmaceutical Products in 

HFAs 

2.3.1  Solubility Measurements at Ambient (298K) and Reduced 

Temperature (283 & 278K) 

Saturated suspensions of each of the APIs were created separately in-situ in 

HPFP, HFA134a and HFA227 and left to equilibrate at 298 K by placing the 

co-axial tube in a temperature controlled water bath for a minimum of 24 

hours. The co-axial inners were added to standard 5 mm NMR tubes as 

previously described, pre-filled with 300 µL of reference solution (a solution 

of ca. 10 µg/mL CHCl3 in CD3CN prepared accurately and freshly before 

each analysis). The samples were immediately transferred to the JEOL 600 

MHz NMR spectrometer pre-equilibrated to 298 K and allowed 15 minutes to 

re-equilibrate tube solutions to 298 K within the probe. The tubes were locked 

and shimmed using PFGs and analysed using the 2048 scans and 55 dB 

attenuation solvent suppression methods previously established for each of 

the solvents. Each sample preparation and acquisition was carried out in 

triplicate. 

The results for each of the APIs in each of the three solvents were reviewed 

and quantitatively worked up if there was sufficient analyte signal to allow 

reliable results to be determined (S:N > 3:1). In the event that reliable 

resonances were found and quantitation was possible, a result was recorded 

for each of the replicate measurements and the solutions we re-equilibrated 

at 283 K for a minimum of 24 hours, before repeating the analytical 

procedure. A final re-equilibration and repeat of procedure was carried out at 
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278 K under the same conditions if a positive result was obtained at 283 K. 

Should there be no identifiable analyte resonances, or should the S:N values 

be insufficient for the experimentation carried out at 298 K, no further 

experimentation was carried out.  

2.3.2  Solubility of Materials Using HPLC 

HPLC approaches were utilised in order to provide quantitative information 

on the samples in HPFP that were below the LOD values obtained using the 

final NMR methodology. For each API in question, a 6 point calibration series 

was created in 50:50 MeCN : Water over the range 100 to 0.1 µg/mL. A full 

scan UV spectrum was acquired to determine the optimum detection 

wavelength for each compound allowing optimisation of sensitivity and 

selectivity. 

Samples were equilibrated as saturated suspensions of each API separately 

in HPFP at 298 K for > 24 hours. Any residual solids were removed from the 

suspension by gravity filtration though paper filters (Whatman Ashless No.1). 

A portion of the filtered solution was evaporated to dryness at 40°C and 

reconstituted in mobile phase solution to pre-concentrate the analyte. The 

samples were analysed using a Waters 2695 Separation Module with 2487 

VWD according to a standard isocratic method (Table 2.3.2.1) 

Table 2.3.2.1 – Summary of HPLC conditions used in the analysis of IPPs in 

HPFP. 

Column: Phenomenex C18 – 250 mm x 2.1 mm (5 µm) 

Mobile Phase: 60% MeCN : 40% water 
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Flow:   200 µL/min 

Temperature: 40°C 

Detection:  UV (λ API specific) 

Providing these reverse phase conditions were appropriate for the analyte, 

linearity and LOD were calculated from the calibration series generated, with 

quantitation provided by triplicate determinations vs. the calibration series 

using the external standard approach. 

In some cases (salbutamol base, salbutamol sulphate and terbutaline) poor 

peak shapes were observed under the conditions applied. Mobile phase was 

modified and the analysis repeated under the conditions outlined in Table 

2.3.2.2. 

Table 2.3.2.2 – Summary of HPLC conditions used in the analysis of 

salbutamol base, salbutamol sulphate and terbutaline in HPFP. 

Column: Phenomenex C18 – 250 mm x 2.1 mm (5 µm) 

Mobile Phase: 60% MeCN : 40% 10 mM ammonium formate, pH 3.8 

Flow:   200 µL/min 

Temperature: 40°C 

Detection:  UV (λ API specific) 
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2.3.3  Van’t Hoff Solubility Plots 

The values obtained for solubility in the three propellant systems under study 

allow the evaluation of thermodynamic properties by plotting of data in the 

format of the van’t Hoff equation. Full details are given (Section 4.2.1.3); in 

summary, plots of lnχ (mole fraction) vs. 1/T (K-1) allow the derivation of 

thermodynamic properties (ΔH, ΔG and ΔS) from the slope of the curves 

produced. 

2.4  Strategies for Solubility Enhancement in HFAs 

2.4.1  Co-Solvent Model 

To allow the determination of budesonide solubility in a series of ethanol 

doped HPFP / HFA134a solutions, a further stage in the previously 

developed sample preparation protocol was incorporated. The HPFP / 

ethanol solution production was straight forward, with the addition of relevant 

volumes of ethanol incorporated into the co-axial inner of the tube set up. 

However, ethanol introduction in volatile HFA134a required a modification to 

the approach as the HFA134a volatility necessitates  transfer under pressure. 

A summary of both procedures is given. 

HPFP / EtOH - Saturated suspensions of budesonide were created 

separately in-situ in HPFP doped with 2.5, 5, 10, 15 and 20% ethanol levels 

(v/v). The HPFP was added initially to the solid in the co-axial NMR tube 

inner, and ethanol added to bring to volume – both additions were made 

accurately using gas tight syringes to ensure the final ratio of solvent was as 

accurate as practicable. A summary of the volumes is shown (Table 2.4.1.1). 
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Table 2.4.1.1 – volumes of HPFP and EtOH used to prepare saturated 

suspensions of budesonide at 2.5, 5, 10, 15 and 20% EtOH in HPFP. 

Concentration (% v/v) Volume HPFP (µL) Volume EtOH (µL) 
2.5 185 5 
5 181 9 

10 171 19 
15 162 28 
20 152 38 

 

HFA134a / EtOH - The HFA134a systems were prepared in a modified way. 

The same volumes were required to produce systems with ethanol 

concentrations of the same values, however incorporation was made difficult 

due to the volatility and transfer procedures required to charge the HFA134a 

(See section 2.3.10 for a summary of cold transfer procedure). Initial 

attempts at adding the HFA134a after addition of budesonide and ethanol 

appeared problematic as the ethanol had a tendency to be ‘pushed’ out of 

the tube on charging of the HFA134a. The modified procedure, allowing a 

more accurate volume control to be employed, required the charging of 

budesonide initially to the co-axial insert, followed by HFA134a to the desired 

volume. The system was then sealed with the J Young cap, and frozen by 

immersion in liquid nitrogen. Once solidified, the J Young cap was removed 

without loss of any volatile propellant, and ethanol added accurately to the 

desired volume using gas tight syringe as previously. The sample was 

capped, and allowed to warm (and melt) resulting in a suspension of 

budesonide in HFA134a / EtOH at the desired solvent concentration. 

Both HPFP / EtOH and HFA134a / EtOH preparations were left to equilibrate 

at 298 K by placing the co-axial tube in a temperature controlled water bath 

for a minimum of 24 hours. The co-axial inners were added to standard 5 mm 
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NMR tubes as previously described, pre-filled with 300 µL of reference 

solution (a solution of ca. 10 µg/mL CHCl3 in CD3CN prepared accurately and 

freshly before each analysis). The samples were immediately transferred to 

the JEOL 600 MHz NMR spectrometer pre-equilibrated to 298 K and allowed 

15 minutes to re-equilibrate tube solutions to 298 K within the probe. The 

tubes were locked and shimmed using PFGs and analysed using a modified 

1H NMR method allowing suppression of HPFP / HFA134a solvent signal and 

CH3 / CH2 resonances of EtOH in concert (Section 3.1.12). 

2.4.2  Solubility Measurements of IPPs in Ethanol / HPFP 

Solutions of all 11 IPPs under study have been prepared as saturated 

suspensions in HPFP / EtOH and analysed to determine the solubility change 

from standard HPFP solutions. The saturated suspensions were produced in 

exactly the same manner as described in Section 2.5.1 to a final solvent 

concentration of 10% (v/v) EtOH in HPFP.  The solutions were left to 

equilibrate at 298 K by placing the co-axial tube in a temperature controlled 

water bath for a minimum of 24 hours. The co-axial inners were added to 

standard 5 mm NMR tubes as previously described, pre-filled with 300 µL of 

reference solution (a solution of ca. 10 µg/mL CHCl3 in CD3CN prepared 

accurately and freshly before each analysis). The samples were immediately 

transferred to the JEOL 600 MHz NMR spectrometer pre-equilibrated to 298 

K and allowed 15 minutes to re-equilibrate tube solutions to 298 K within the 

probe. The tubes were locked and shimmed using PFGs and analysed using 

a modified 1H NMR method allowing suppression of HPFP / HFA134a 

solvent signal and CH3 / CH2 resonances of EtOH in concert (Section 3.1.12). 
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2.4.3  Solubility Measurements in Cyclodextrin / HFAs 

For each of the cyclodextrin (CD) samples, a solution was created in D2O. 

The solutions were filtered to remove any residual solids into standard 5 mm 

NMR tubes. The samples were locked and shimmed using the automated 

sequence before obtaining standard 1H NMR spectra using the Bruker 400 

MHz spectrometer equipped with 5 mm QNP probe. Limited spectral 

assignment was completed for the two CDs examined to establish potential 

resonances that could be utilised in the quantitation of solubility in the 

fluorinated solvent systems. 

Solutions of budesonide and heptakis-(2,3,6)-trimethyl-β-cyclodextrin 

(TRIMEB) were produced as saturated suspensions in the same manner as 

used for the pure APIs in this study (Section 2.4.1.1). A 50:50 w/w mix of the 

host and complex molecules was prepared remotely before transferring to a 

co-axial inner and adding HPFP, HFA134a and HFA227 separately to form a 

saturated suspension. The samples were left to equilibrate at 298 K by 

placing the co-axial tube in a temperature controlled water bath for a 

minimum of 24 hours. The co-axial inners were added to standard 5 mm 

NMR tubes as previously described, pre-filled with 300 µL of reference 

solution (a solution of ca. 10 mg/mL CHCl3 in CD3CN prepared accurately 

and freshly before each analysis). The samples were immediately transferred 

to the JEOL 600 MHz NMR spectrometer pre-equilibrated to 298 K and 

allowed 15 minutes to re-equilibrate tube solutions to 298 K within the probe. 

The tubes were locked and shimmed using PFGs and analysed using the 

2048 scan* and 55 dB attenuation solvent suppression methods previously 
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established for each of the solvents. Each sample preparation and 

acquisition was carried out in triplicate.  

*Where appropriate, the analysis time (scan number) was reduced as 

sufficient signal to noise was obtained in greatly reduced times owing to the 

increased solubility levels observed in the sample preparations incorporating 

CD. 

2.4.4  Generation of Host / Guest Complexes (Budesonide / 

TRIMEB) 

Further experimentation was carried out on the complexed budesonide / 

TRIMEB samples. A set of screening samples was created in the model 

propellant HPFP doped with EtOH at 10% (v/v) in order to isolate solid 

samples of the materials post evaporation of the solvent. Solutions were 

created at mole ratios of 0.5:1, 1:1 and 2:1 as summarised in Table 2.4.4.1 

and dissolved fully under sonication before allowing a slow evaporation of the 

solvent (via a single pierced hole in the cap of a standard 5 mm NMR tube) to 

produce solid samples that were harvested for further investigation. 

Table 2.4.4.1 – Sample preparation for the production of budesonide / 

TRIMEB samples at 0.5:1, 1:1 and 2:1 mole ratios. 

Mole Ratio Budesonide (mg) TRIMEB (mg) 
0.5:1 2.43 15.91 
1:1 4.85 15.90 
2:1 9.70 15.90 
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2.4.5  Evaluation of Host / Guest Complexes 

2.4.5.1 FTIR 

Samples of each of the isolated solids were prepared as KBr discs for 

analysis by FTIR. A sample (ca. 5 mg) was taken to an agate mortar and 

pestle, pre-dried in an oven at 80°C, and ground to a fine powder with KBr 

(ca. 350 mg) also pre-dried in the same manner. The resultant mixture was 

pressed to a 12 mm KBr disc under 10 tonne pressure using a SpecAc 

hydraulic press and die set, before removing and analysing using the Digilab 

UMA 400 FTIR in transmission mode. Spectra were acquired using 64 scans 

and 2 cm-1 spectral resolution post acquisition of a background spectrum 

under the same conditions for automated subtraction using the Digilab 

software. 

2.4.5.2 Raman  

Samples of each of the isolated solids were mounted for acquisition of 

Raman spectra on aluminium microscope slides and brought to focus using 

the x100 objective lens (0.90 NA) of the Renishaw InVia Raman microscope 

(calibrated daily prior to use wrt wavenumber shift using the internal silicon 

reference; manual adjustment to 520.0 cm-1). Spectra were acquired for each 

of the samples produced using 10 second exposure and 10 averaged 

accumulations. Scans were recorded over the range 100 to 3200 cm-1 using 

785 nm high powered diode laser to excite the samples at 100% power (ca. 1 

mW at sample). 

  



 60 
 

2.5  Solid State Characterisation of IPPs Post Deposition 

2.5.1  Raman Acquisition of Reference Compounds 

Raman spectra were acquired on the reference materials (APIs and 

excipients) by placing a small amount of the solid material onto an aluminium 

slide and bringing to focus under the 100 x objective (0.90 NA) of the 

Renishaw InVia Raman microscope (calibrated daily prior to use wrt 

wavenumber shift using internal silicon reference; manual adjustment to 

520.0 cm-1). Reference spectra were acquired using 785 nm high powered 

diode laser for excitation, with parameters chosen to obtain good quality 

spectra in a reasonable time-scale (10 second exposure, 5 averaged 

accumulations, ca. 1 mW applied laser power at sample). 

2.5.2  Deposition using Anderson Cascade Impactor  

A Copley Scientific Anderson Cascade Impaction (ACI) system was utilised 

to deposit material from the pMDI devices onto plates for subsequent 

analysis by remote techniques; primarily Raman and SEM. The ACI system 

was operated without pre-separation device, with the throat attachment 

directly applied to the upper chamber of the apparatus. Glass microscope 

cover slips and subsequently aluminium plates were placed on top of the ACI 

plate to collect deposited material and allow for subsequent removal and 

remote analysis. A flow rate of 28.3 L/min was applied for 8.3 seconds giving 

a total inspired volume of 4.0 L using a Copley high flow pump and calibrated 

Copley TPK flow controller. The flow was measured by means of an external 

Copley DFM2000 flow meter attached to the mouthpiece of the throat. The 

method was operated in accordance to the European Pharmacopoeia 7.1, 
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Section 2.9.18; Preparations for Inhalations: Aerodynamic Assessment of 

Fine Particles.[132] 11 ‘dummy’ actuations were carried out with the pMDI 

device (directly to air) before the device was attached to the ACI system and 

the 12th actuation carried out for collection. The apparatus was dismantled 

and the cover slips / aluminium plates removed for remote analysis. 

2.5.3  Raman Analysis of Deposited Materials 

The ACI plates of interest were brought to focus under the x50 objective 

(0.75 NA) of the Renishaw InVia Raman microscope (calibrated daily prior to 

use wrt wavenumber shift using internal silicon reference; manual adjustment 

to 520.0 cm-1). Point analysis was performed on selected deposited regions 

of the plates using the optimised conditions developed for the reference 

materials. Point spectra were acquired for Seretide® and Symbicort® 

depositions. Acquisitions were repeated using the x100 (0.90 NA) objective to 

assess spatial resolution improvements. 

Hyper-spectral arrays were collected using 785 nm hi-powered laser for 

excitation over an area of ca. 15 x 15 µm. Data were acquired over a 

reduced spectral range to expedite the procedure, with scans centred at 

1550 and 1450 cm-1 for Seretide® and Symbicort® depositions respectively. 

Final ‘mapping’ procedures were developed for each of the formulations and 

are summarised in Table 2.5.3.1. 
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Table 2.5.3.1 – Raman acquisition parameters for Seretide® and Symicort® 

deposited materials. 

 Seretide® Symicort® 
Excitation wavelength, nm 785 785 
Applied power, ca. mW at sample 1 1 
Number of averaged accumulations 2 2 
Exposure time, s 2 2 
Acquisition centre, cm-1 1550 1450 

 

The hyper-spectral arrays acquired on each of the preparations of Seretide® 

and Symbicort® were carried out using the Renishaw demonstration 

apparatus Renishaw UK (Wotton-under-Edge, Gloucestershire) equipped 

with the StreamLine™ Raman Imaging system, allowing acquisition of maps 

over considerably larger areas in vastly reduced times. The deposited 

samples were focused with x100 objective (0.90 NA) and regions of ca. 100 x 

100 µm were acquired for each sample separately, with 0.7 µm step-size (ca. 

20,500 spectra for each map). The other spectral parameters were kept 

constant. Each data set was processed to remove cosmic rays (nearest 

neighbour method), noise filtered and processed using DCLS component 

analysis using the previously acquired reference spectra.  

2.5.4  Deposition Using Twin Stage Impinger 

The twin stage impinger apparatus (Copley Scientific) was utilised to deposit 

materials of respirable fraction of the actuated pMDI device into the second 

stage of the glassware. A flow rate of 60.0 L/min was applied for 4.0 seconds 

giving a total inspired volume of 4.0 L using a Copley high flow pump and 

calibrated Copley TPK flow controller. The flow was measured by means of 

an external Copley flow meter attached to the mouthpiece of the throat. The 

method was operated in accordance to the European Pharmacopoeia 7.1, 
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Section 2.9.18; Preparations for Inhalations: Aerodynamic Assessment of 

Fine Particles.[132] The second stage of the impinger was modified to allow 

collection of the deposited material directly to apparatus ready to transfer for 

remote analysis. Two approaches were utilised; i) deposition directly to an 

aluminium sample pan for removal and remote analysis by DSC and ii) 

deposition directly onto an upturned aluminium sample pan covered with 

mylar film cut to a small disc of the same diameter using a cork borer. The 

mylar disc containing the deposited material was removed and placed on a 

PXRD silicone wafer sample holder, of the type used for acquisition of PXRD 

patterns on small amounts of material. The disc was then covered in another 

larger disc of mylar, and sealed down using adhesive plastic. This set up 

allowed sealing of the system and minimisation of moisture ingress during 

the analysis.  A schematic of the collection mechanism and PXRD set up is 

shown (Figure 2.5.4.1). 

  



 64 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.4.1 – Schematic representation of the standard TSI[132] and the 

modified stage 2 collection system. Also shown is the sample preparation 

approach for remote PXRD analysis. 

  

Al DSC Pan 

Mylar film 

Flow 

Mylar Disc 

Deposited 
sample (on 

Mylar) 

PXRD Silicon 
Wafer 

Adhesive 
film 



 65 
 

2.5.5  Powder X-Ray Diffraction Analysis of QVAR® and 

Synasthmax® pMDI Devices 

Deposition using the modified TSI set up was performed using 160 

actuations (over 10 – 12 minutes) of a QVAR® 100 pMDI device from 3M 

Ltd, UK, and the Synasthmax® pMDI device, Chiesi, Italy. The collected 

material was analysed remotely using the Bruker D8 powder X-Ray 

diffractometer under the following operating parameters; [λ(Cu-Ka) = 1.5418 

Å, voltage 40 kV, filament emission 40 mA] with 1 mm divergence slit, 1 mm 

receiving slit and 0.2 mm scatter slit. Samples were scanned under ambient 

conditions from 3-40° (2θ) using a 0.01° step width and a 1 s count time. The 

acquisitions were repeated in a cyclical fashion (9 repeats) with a 30 minute 

delay in-between each. A system blank was analysed in the same manner i.e. 

blank mylar sheet prepared analysed in the same way without the 

depositions of QVAR® product. 

2.5.6 Thermal Analysis of QVAR® and Synasthmax® pMDI 

Devices 

TGA and DSC data were recorded at King’s College London (KCL) on the 

material deposited on the aluminium foil substrate placed to receive material 

entering stage 2 of the TSI apparatus. QVAR® and Synasthmax® pMDI 

devices were actuated 80 and 50 times respectively in to the TSI, operated at 

60 L/min for 4.0 seconds giving a total inspired volume of 4.0 L over a period 

of ca. 6 minutes. The resultant foil was subsequently removed, weighed 

accurately and placed directly inside a hermetically sealed aluminium DSC 

pan with a 1 mm pinhole cap. DSC was performed between ambient and 
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350°C with a heating rate of 10°C/min under nitrogen purge gas. TGA was 

performed in open aluminium pans between ambient and 200°C with a 

heating rate of 10°C/min (TA Instruments TA2920 and TGA2050 

respectively).  

2.6  Product Studies 

2.6.1  Generation of pMDI Formulations 

A series of pMDI products were prepared for evaluation post actuation / 

deposition using Copley impaction systems. The preparation of solid samples 

was carried out at the University of Bradford as summarised in Table 2.6.1.1. 

Budesonide used in the preparations was first milled using the FPS Labomill 

laboratory scale Jet mill with an injection pressure of 7 barg and grinding 

pressure of 5 barg. Budesonide (500 mg) was added manually to the feed 

hopper of the mill, and micronized material was recovered from the collection 

vessel post processing. A relatively low yield was achieved (196 mg, 39.2 %) 

using this small-scale approach, though adequate material for formulation 

was harvested. Formulation of these systems into pMDI preparations was 

kindly arranged by collaborators at the University of Bath (Professor Robert 

Price, Dr. Jag Shur and Ms. Charlotte McDonnell) using a 3M laboratory 

scale pMDI production apparatus.  

Table 2.6.1.1 – Samples prepared for formulation in pMDI propellants. 

Budesonide 
(mg) TRIMEB (mg) Mole Ratio Propellant System Fill Volume 

(mL) 
32 - - HFA134a 10.0 
32 108 1 : 1 HFA134a 10.0 

33 - - HFA134a w. 10% 
EtOH 

10.0 

32 110 1 : 1 HFA134a w. 10% 
EtOH 

10.0 
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The solid samples were added to aluminium pMDI canisters and 1.0 mL 

ethanol added. The crimp cap and metering valve were applied and sealed to 

the canister, before filling 9.0 mL of HFA134a to the canister using the 3M 

laboratory rig. HFA134a (10.0 mL) was added to formulations in pure HFA. 

The canisters were stored inverted for 14 days to ensure the elastomer seal 

was swollen and the canisters were adequately sealed.  

2.6.2  Solution and Solid State Analysis 

The canisters were used (actuated) with a 3M device, freshly sourced from a 

QVAR® 100 product. A Copley Scientific Anderson Cascade Impaction (ACI) 

system was utilised to deposit material from the pMDI devices onto 

aluminium plates for subsequent analysis by remote techniques (HPLC, 

SEM, Raman). The ACI system was operated without pre-separation device, 

with the throat attachment directly applied to the upper chamber of the 

apparatus. A flow rate of 28.3 L/min was applied for 8.3 seconds giving a 

total inspired volume of 4.0 L using a Copley high flow pump and calibrated 

Copley TPK flow controller. The flow was measured by means of an external 

Copley DFM2000 flow meter attached to the mouthpiece of the throat. 

Vigorous shaking of the canister followed by 11 ‘dummy’ actuations were 

performed with the pMDI device (directly to air) before the device was 

attached to the ACI system and the 12th actuation carried out for collection. 

The apparatus was dismantled and the plates removed for remote analysis. 

A repeat of the procedure was performed with 5 actuations for collection and 

dissolution for HPLC analysis (APSD determination). Deposition using the 

modified TSI set up as summarised in section 2.6.4 was not possible with 

these samples due to the requirement for multiple (> 100) actuations for the 
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desired sensitivity; only a single 200 actuation canister was available for each 

preparation and many of these acquisitions had been performed for the 

NMR, SEM, Raman and HPLC investigations. 

2.6.2.1 SEM and PSD 

SEM was performed on the feed and micronized material used in the 

preparation of the pMDI canisters to confirm visually the particle morphology 

and size of the material ensuring its appropriateness for formulation. Particle 

size distribution (PSD) was also performed on the micronized material prior 

to incorporation in the pMDI systems using the Sympatec laser diffraction 

PSD analyser with HELOS attachment (R1 lens, 4 barg pressure). Each of 

the samples generated using the ACI method of deposition was added to the 

chamber of the FEI Quanta 400 SEM and evacuated. Images ranging from 

x40 to x15 k magnification were captured at a minimum of 3 sites for each 

sample using 20 kV energy under high vacuum conditions. Working distance 

and spot size were optimised for each image captured. 

2.6.2.2 Raman  

Raman spectra were acquired on the reference materials (budesonide and 

TRIMEB) by placing a small amount of the solid material onto an aluminium 

slide and bringing to focus under the 100 x objective (0.90 NA) of the 

Renishaw InVia Raman microscope (calibrated daily prior to use wrt 

wavenumber shift using internal silicon reference; manual adjustment to 

520.0 cm-1). Reference spectra were acquired at 785 nm laser excitation, 

with parameters chosen to obtain good quality spectra in a reasonable time-
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scale (10 second exposure, 3 averaged accumulations, ca. 1 mW applied 

laser power at sample). 

The ACI plates of interest were brought to focus under the 100 x objective 

(0.90 NA) of the Raman microscope. Point analysis was performed on 

selected deposited regions of the plates using the optimised conditions 

developed for the reference materials (10 second exposure, 3 averaged 

accumulations, ca. 1 mW applied laser power at sample). Analysis was 

performed at a minimum of 8 sample sites on plates 4, 5, 6 and 7 of the ACI. 
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2.6.2.3 HPLC and APSD 

Five actuations of the pMDI device were performed immediately after one 

another under the conditions specified (Section 2.6.2). The material was 

collected into HPLC mobile phase for each stage of the ACI including the 

throat (5 mL total volume). Injections were made on a Waters 2695 

Separation Module equipped with 2487 VWD detector installed with the 

method summarised in Table 2.6.2.3.1, and concentrations at each stage 

calculated by peak area using the external standard method vs. a calibration 

curve constructed from peak areas of reference solutions between 500 and 5 

µg/mL. 

Table 2.6.2.3.1 – HPLC conditions used to analyse ACI collected 

budesonide. 

Column:  Phenomenex C18 – 250 mm x 2.1 mm (5 µm) 

Mobile Phase: A – Water 

B – MeCN 

Isocratic 40% A : 60% B (0.2 mL/min) 

Temperature: 40°C 

Injection:  50 µL 

Detection:  UV at 240 nm  

MMAD and GSD were estimated using the method outlined in Ph.Eur[132] 

using Copley CITDAS software to construct log normal plots of the 

cumulative fraction of active substance vs. cut-off diameter. FPF was 



 71 
 

calculated as a total of the material < 5 µm i.e. stages 2 to 7 inclusive of the 

ACI. 

2.6.2.4 NMR 

A sample of each formulation was transferred from the pMDI canister directly 

to separate co-axial NMR inners by repeat actuation of the device positioned 

on top of the J Young cap. The tube was cooled throughout the process by 

submersion in liquid N2 held in a dewar to solidify the transferred material 

and hold until the transfer was complete (ca. 5 actuations) to the desired 

level within the tube. The preparations were allowed to warm to ambient 

temperature and equilibrated at 298 K by immersion in a temperature 

controlled water bath for a minimum of 24 hours. The co-axial inners were 

added to standard 5 mm NMR tubes as previously described, pre-filled with 

300 µL of reference solution (a solution of ca. 10 µg/mL CHCl3 in CD3CN 

prepared accurately and freshly before each analysis). The samples were 

immediately transferred to the JEOL 600 MHz NMR spectrometer pre-

equilibrated to 298 K and allowed 15 minutes to re-equilibrate tube solutions 

to 298 K within the probe. The tubes were locked and shimmed using PFGs 

and analysed using the appropriate solvent suppression methods previously 

established for each of the solvents (HFA134a or HFA134a / ethanol). Each 

sample preparation and acquisition was carried out in triplicate. 
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3 Analytical Method Development for In-Situ Measurement of 
HFAs 

	  

The following chapter describes the development work performed to 

establish an NMR based methodology for in-situ determination of solubility in 

HFA based propellants. The rationale has been made in Section 1.2.1. 

Method development was undertaken with the commonly used IPP 

budesonide, an ICS used in the treatment of asthma, and the model 

propellant HPFP. This chapter covers the key steps in method development 

(i) NMR spectral assignment (ii) development of co-axial tube configurations 

and (iii) developments to maximise sensitivity and minimise data acquisition 

time to determine the sparingly soluble analytes. Extension of the method to 

the quantitation of solutes in volatile propellants that are gaseous under 

standard temperature and pressure (HFA134a and HFA227) are also 

described. Validation by secondary techniques (chromatographic) and 

calibration of variable temperature systems are summarised, allowing the 

acquisition of data at sub-ambient and elevated temperatures.  
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3.1  NMR Method Development 

3.1.1  Spectral Assignment (HPFP and Budesonide) 

NMR spectra were obtained for HPFP and budesonide prepared in CDCl3. 

The 1H spectrum of HPFP shows there is a complex multiplet arising from the 

2H and 3H protons in the molecule, split into a complex pattern by the 

coupling with fluorines present in the structure (Figure 3.1.1.1). Work by 

Foris[134] observes the 1H NMR spectrum of HPFP to show severely 

overlapped CHF patterns. In these studies, a similar pattern was observed 

for HPFP in CDCl3 and comparable coupling constants were extracted from a 

first-order analysis of the peak (Table 3.1.1.1). 

Figure 3.1.1.1 – 1H NMR spectrum of HPFP in CDCl3. 
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Table 3.1.1.1 - Coupling Constant Data for 1H NMR HPFP. 

Chemical Shift (ppm) Spin-Spin Coupling  

5.1 

2J(H,F) = 46.1 Hz, 3J(CHCF) = 19.0 Hz, 3J(CHCF3) = 6.3 Hz, 
3J(CHCHa) = 5.2 Hz, 3J(CHCHb) = 2.9 Hz; Ha at 5.08 ppm, 2J(CHaF) 
= 46.8 Hz, 3J(CHaCF) = 23.5 Hz, 2J(CHaHb) = 11.5 Hz, 3J(CHaHF) = 
5.2 Hz, 4J(CHaCCF3) ≈ 0.7 Hz, Hb at 5.12 ppm 2J(CHbF) = 46.0 Hz, 
3J(CHbCF) = 24.7 Hz, 2J(CHbCHa) = 11.5 Hz, 3J(CHbCH) = 2.8 Hz, 
4J(CHb-CCF3) ≈ 0.9 Hz 

 

Figures 3.1.1.2 to 3.1.1.4 show standard 1H spectra of budesonide (full scale 

and spectral expansion in the low and high field regions). The spectrum is 

consistent with that described by Yang[135] and Thalen[136] and is assigned 

accordingly (Table 3.1.1.2). Correlation experiments including a 1H-1H COSY 

and 1H-13C HSQC (Figures 3.1.1.5 and 3.1.1.6), were included to show 

consistency with the couplings observed in the published spectra[135,136] and 

were used to aid in confirmation of these assignments.  

 

Figure 3.1.1.2 – 1H NMR spectrum of budesonide in CDCl3. 
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Figure 3.1.1.3 – 1H NMR spectrum of budesonide in CDCl3 (spectral 

expansion in the low field region). 

 

Figure 3.1.1.4 – 1H NMR spectrum of budesonide in CDCl3 (spectral 

expansion in the high field region). 
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Figure 3.1.1.5 – 1H-1H COSY NMR spectrum of budesonide in CDCl3 shown 

with X and Y projections taken from high resolution 1H spectrum (Figure 

3.1.1.2). 
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Figure 3.1.1.6 – 1H-13C HSQC NMR spectrum of budesonide in CDCl3 

shown with X and Y projections taken from high resolution 1H and 13C 

spectra. 
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Table 3.1.1.2 – NMR chemical shift assignments for budesonide in 

CDCl3.[135,136] 

Cx-H Chemical shift (ppm) Spin-Spin Coupling Data 
1  7.22   (dd, J=10.1, 2.9 Hz) 
2  6.27   (ddd, J=10.1, 4.8, 1.8 Hz) 
4  6.02   (dt) 
6  2.36   (dd, J=4.0, 13.1 Hz) 
7  1.16   (ddd, J=4.0, 12.0, 12.0 Hz) 
8  2.18   (dq, J=4.0, 11.0, 12.0 Hz) 
9  1.12   (dd, J=3.0, 4.5 Hz) 

11  4.49   (m) 
16  5.16   (dd J=5.0, 2.5 Hz) 
18  0.98   (s) 
19  1.43   (s) 

21  4.50   (R) (dd, J=20.2, 4.8 Hz), 4.25 (R) (dd, J=20.2, 4.8 Hz) 
 4.60   (S) (dd, J=20.2, 4.8 Hz), 4.20 (S) (dd, J=20.2, 4.8 Hz) 

22  4.55   (R) (t, J=4.2 Hz) 
 5.15   (S) (t, J=4.6 Hz) 

25  0.91   (t, J=7.3 Hz) 
Chemical shifts given relative to residual chloroform at 7.26 ppm. Multiplicity indicated with 
the abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt 
(doublet of triplets), m (multiplet).  

 

3.1.2  Co-axial NMR 

Most modern NMR spectroscopy is carried out in deuterated solvents 

allowing observation of the analyte resonances in the presence of the solvent 

in excess. For the experimentation reported here no deuterated analogues of 

the solvent were commercially available, presenting two practical problems 

for 1H NMR (i) absence of deuterium lock signal and (ii) dynamic range 

issues arising from intense proton signals from the solvent. 

To compensate for field drift, modern NMR spectrometers have a dedicated 

deuterium (2H) observe channel known as the lock. This allows for field drift 

over the period of time taken to acquire the spectrum, and minimises peak 

broadening effects associated with a drifting field (hence maximising peak 

height and resolution / sensitivity).[125] 
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However, as outlined in (i), for experimentation to take place in non-

deuterated solvent systems, the spectrometer needs to be operated 

‘unlocked’ or allow for incorporation of a deuterium signal into the tube set up 

used. 

Inclusion of a deuterated reference material into the prepared analyte 

solution would allow the locking procedure to take place in the conventional 

way. However, the inclusion of these solvents would inherently alter the 

solvent system used and invalidate any solubility measurements determined. 

A NMR tube setup commonly used to address this is the co-axial NMR tube 

set up (Figure 3.1.2.1). The apparatus allows the insertion of a smaller NMR 

tube (coaxial insert) within the standard tube allowing addition of a 

deuterated reference solution into the analytical solution separated by a glass 

capillary; the advantage being that the system can be locked in the 

conventional way by the spectrometer and, importantly, it allows the addition 

of an NMR active reference material for calibration and quantitation 

purposes. 
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Figure 3.1.2.1 – A typical coaxial NMR tube set up shown in isolation (upper) 

and assembled (lower) with addition of a deuterated solvent and standard 

material added to the inner capillary.[137] 

The tube set up was prepared as summarised (Section 2.2.3) with a 

saturated suspension of budesonide in HPFP in the sample capacity and 

CD3CN in the reference capacity. The resulting NMR spectrum (Figure 

3.1.2.2) shows evidence of the A-ring resonances of budesonide, however 

the spectrum is dominated by the HPFP proton resonances as expected. As 

a result, the budesonide resonances are too low in intensity to be used in a 

quantitative workup of the data; signal to noise (S:N) is estimated at ca. 2:1 

by ratio of peak height to the difference of maximum and minimum signals in 

a region of background well removed from any signals. 
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Figure 3.1.2.2 – 1H NMR spectrum of a saturated suspension of budesonide 

in HPFP acquired using a co-axial tube set-up containing a reference solution 

of CHCl3 in CD3CN. 

As highlighted (ii), it is most likely that dynamic range issues are the cause of 

the low intensity analyte signals in the presence of the intense HPFP 

resonances, and careful consideration of solvent suppression methodologies 

offers an ideal means to overcome this. 

Solvent suppression allows the reduction in intensity of the large signals 

present from any protonated solvent present in large excess. The techniques 

have been in use for many years, particularly for the suppression of the water 

resonance when analysing aqueous solutions.[138] This aids in matching of 

the dynamic range of the instrument allowing the enhancement of the small 

resonances of interest without the presence of the large solvent peak. 

Without suppression of the solvent proton signals, the receiver gain of the 
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spectrometer cannot be adjusted sufficiently to permit reliable detection of 

small resonances without causing an overflow in the analogue to digital 

converter. Analogue to digital converters in modern NMR spectrometers are 

commonly 16-bit which represent values in the range ±32767, hence the ratio 

between the largest and smallest detectable value, 32767 : 1 gives the 

dynamic range of the instrument. In reality, this means that if the largest 

signal in the spectrum is set to fill the digitiser, the smallest detectable signal 

has a value of 1.[125] Thus, any signal below 1 will not trigger the digitiser and 

will not be recorded. In this study, if the receiver gain was set to fill the 

digitiser with the HPFP signal, the small signals obtained for the analyte 

resonances are unlikely to be recorded.  

Several methods of solvent suppression including zero excitation, 

methodologies based on pulsed field gradients (PFGs) and presaturation 

(selective saturation) methods are utilised in modern NMR spectroscopy.[125] 

Zero excitation, as the name suggests, involves pulse sequences designed 

to avoid excitation of the solvent signals in the first instance, hence avoiding 

observation of the solvent resonance. PFG methods are similar in that they 

avoid producing observed solvent resonances by destruction of the net 

solvent magnetisation, thus ensuring that nothing of this remains observable 

immediately prior to acquisition. Pre-saturation methods involve the 

application of continuous, weak radio frequency irradiation at the solvent 

frequency prior to excitation and acquisition, rendering the solvent spins 

saturated and therefore unobservable. They are by far the most commonly 

applied and the easiest / most robust to control for the routine user of 

NMR.[125,139] They are simple to add to pre-existing standard NMR 



 83 
 

experiments and leave (non-exchangeable) resonances away from the pre-

saturated signal unaffected, hence their use in the development of methods 

in these studies.  

A presaturation method was established and used to suppress the signal 

from the HPFP protons.  The saturation was centered at 4.36 ppm chemical 

shift, and an attenuation (power) of 25 dB was applied. The acquired 

spectrum of the saturated budesonide in the coaxial tube set up is shown 

(Figure 3.1.2.3). 

 

Figure 3.1.2.3 – 1H NMR spectrum of a saturated suspension of budesonide 

in HPFP using presaturation solvent suppression methodology to suppress 

the HPFP signal. 

Clearly, the large multiplet has been significantly reduced in intensity. In 

order to optimise the presaturation power and avoid suppression of the 

adjacent budesonide signals, the peak areas of the three A-ring signals were 
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monitored over a succession of different experiments carried out with 

sequentially reduced attenuation (increasing dB signal applied by the 

spectrometer). The higher field signals are being affected by the suppression 

up to values of 50 dB, though the resonance at 6.5 ppm chemical shift 

appears unaffected above ca. 35 dB (Figure 3.1.2.4). Subsequent 

experimentation utilises solvent suppression parameters based on this 

investigation at 55 dB attenuation and 4.36 ppm chemical shift. A 

representative 1H NMR spectrum of a saturated suspension of budesonide in 

HPFP using these optimised conditions is shown (Figure 3.1.2.5). 

 

Figure 3.1.2.4 – Plot of peak area values of budesonide A-ring resonances 

vs. irradiation power of solvent suppression applied. 
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Figure 3.1.2.5 - 1H NMR spectrum of a saturated suspension of budesonide 

in HPFP using presaturation solvent suppression methodology at 55 dB to 

suppress the HPFP signal. 

Under comparable conditions, introduction of solvent suppression leads to a 

significant improvement in S:N ratios; for the 2048 scan experiment, the S:N 

of the H-C1 resonance was 9:1 and 24:1 respectively (Figure 3.1.2.6). With 

such improvement, quantitative measurements of the IPPs are now feasible 

in situ. 
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Figure 3.1.2.6 – Spectra of saturated budesonide in HPFP obtained with 

(lower) and without (upper) solvent suppression (55 dB) both using 2048 

scans. 

3.1.3  Method Optimisation (Maximising Signal to Noise) 

For the signal intensities to be increased sufficiently for reliable use in 

quantitative methods of analysis, further development of the methodology 

was required. Sensitivity in NMR experiments can be increased in a number 

of ways. S:N in NMR is conventionally given by Equation 3.1.3.1,[125] where N 

is the number of spins being observed, γe is the gyromagnetic ratio of the 

spin being excited, γd is the gyromagnetic ratio of the spin being detected, B0 

is the applied magnetic field and t is the acquisition time. 

H-C1 

S:N – 24:1 

H-C1 

S:N – 9:1 

Chemical shift (ppm)	  
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𝑆:𝑁 ∝   𝑁𝛾! 𝛾!!𝐵!!𝑡      Equation 3.1.3.1 

This offers two primary routes to improve S:N (i) increasing the acquisition 

times, t (i.e. the number of scans acquired) and (ii) increasing the field 

strength, B0, applied. In addition it is also possible to increase S:N ratios by 

using alternative probe technologies (e.g. cryoprobe, high sensitivity proton 

observe probes – a brief review of these are included in further work Section 

7.4). 

It is clear that an increase in field strength, B0, has a positive effect on the 

sensitivity of the experiment (following a ∛ relationship). It is therefore 

sensible to utilise the largest field available for experiments where sensitivity 

becomes problematic or needs to be maximised. All the quantitative 

experimentation carried out here has been executed on a 600 MHz magnet, 

which is the largest field instrument located at the University of Bradford 

(UoB) in order to maximise this effect. 

Increasing the acquisition times of the experiments carried out in the NMR 

spectrometer is a simple process. Signal averaging, i.e. the repeated 

acquisition and summation of the FID recorded leads to an overall increase in 

signal to noise. The signal adds coherently as the subsequent scans are 

added, whereas the noise tends to cancel as it can be positive or negative 

and adds according to 𝑁𝑆. Hence, over an extended number of scans the 

signal to noise improves according to the relationship 𝑁𝑆. If we consider the 

sensitivity increases available through acquisition times, a doubling of 

acquisition time (i.e. doubling scan number) will yield a S:N increase of 1.4, 

quadrupling the acquisition time yields a S:N increase of 2 etc. However, for 
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a practical method, acquisition times cannot be increased indefinitely; 

methods that can be practically applied to a number of samples in a time and 

cost effective manner are the goal of this activity. 

The absolute effect of acquisition times on the budesonide system in 

question was investigated formally by increasing the scan number of the 

experiment sequentially and obtaining S:N measurements on the three A-ring 

resonances. Experiments were performed with 256, 2048 and 14336 scans 

respectively yielding increasing S:N values conforming to the 𝑁𝑆 

relationship stated in Equation 3.1.3.1. The resultant S:N values calculated 

from the budesonide A-ring resonance at 6.5 ppm chemical shift are shown 

(Figure 3.1.3.1), confirming the 𝑁𝑆 relationship for this system. 
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Figure 3.1.3.1 – Experiments showing 𝑁𝑆 relationship between sensitivity 

(S:N) and scan number (acquisition time). 

For these studies, where optimal S/N and resolution were required, efforts 

were made to enhance experimentation through applying gradient shimming 

procedures (Section 2.3.1) rather than simply optimising z1 and z2 shims to 

maximise the deuterium lock signal in a conventional shimming approach. 

Additionally, NMR tubes matched to the appropriate field strength were used. 

These factors minimised peak broadening maximising peak height and hence 

the sensitivity of the experiment. 

14336 scans 

2048 scans 

256 scans 

S:N = 23:1 

S:N = 9:1 

S:N = 3:1 
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With the method operated under the developed conditions, LOQ values are 

estimated at ca. 15 µg/mL using the A-ring resonances of the budesonide 

molecule, with LOD values of ca. 8 µg/mL. These values are estimated using 

S:N ratios with a minimum of 10:1 and 3:1 respectively.[127] The LOQ / LOD 

levels are however strongly dependent on the type of resonance being 

monitored for quantitative purposes. For example, a single proton exhibiting 

no spin-spin coupling will produce a peak three times less intense than that 

of a methyl proton with no coupling. Further, any spin-spin coupling that is 

apparent will have a similar effect; a single proton with coupling producing a 

triplet will have a reduced signal intensity compared to that of a single proton 

with no coupling (singlet) as the same peak area is now split between three 

peaks of 1:2:1 intensity ratio i.e. half the overall peak height. The same is 

true of any resonance with increasing coupling (multiplicity) decreasing the 

sensitivity accordingly.  

3.1.4  Quantitative Method Development 

With the S:N improvements described in Section 3.1.3, a method capable of 

determining budesonide concentration in HPFP was developed in principle. 

The methodology was utilised to analyse a saturated suspension of 

budesonide at 298 K. Well defined signals observed for the A-ring protons of 

the budesonide molecule show S:N values ≥ 20:1 (Figure 3.1.4.1).  
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Figure 3.1.4.1 – 1H NMR spectrum of a saturated suspension of budesonide 

in HPFP acquired using the optimised methodology. 

Three additional resonances are apparent in the system (marked * in Figure 

3.1.4.1). These also appear in the blank spectrum and clearly arise from 

impurities in HPFP / CD3CN. The precise nature of these has not been 

determined but signal integration indicates the concentration is less than 100 

µg/mL. Their resolution from the A-ring resonances of budesonide ensures 

they do not interfere with the peak integration used in quantitative data 

processing. 
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Solutions of known budesonide concentration in HPFP were created to allow 

the system to be ‘calibrated’ for the determination of true quantitative values 

of saturated suspensions i.e. solubility. The calibration of the system was 

necessary to take account of the co-axial tube arrangement, given that 

different volumes of reference and sample solutions are presented to the 

instrument, and are in effect in different positions relative to the probe coils. It 

is sensible therefore to generate a calibration factor to take account of these 

fixed conditions and use in subsequent experiments obtained using the same 

experimental setup. 

Analysis of five separately prepared solutions of budesonide at known 

concentrations was performed using the developed acquisition parameters. 

Peak area values were obtained for the three A-ring resonances of 

budesonide and the singlet CHCl3 proton from the reference solution. The 

values obtained were used to calculate a quantitative value of budesonide 

concentration, which was directly compared to the known values allowing the 

calculation of a factor that could be used in subsequent experiments to 

determine unknown solubility values (Section 2.2.5). The peak areas 

obtained and the calculated factor are shown (Table 3.1.4.1), with an 

example calculation. The mean factor for the system was calculated to be 

0.316 ± 0.002, with a % coefficient of variation (% CV) value of 0.7 %. The 

results agree well over the concentration range investigated.  

  



 93 
 

Table 3.1.4.1 – Peak area values for the A-ring protons of budesonide and 

CHCl3 proton, with calculation of a system constant suitable for use in the 

calculation of unknown solubility values. 

 Peak Area     

Budesonide 
concentration 

(µg/mL)  

CHCl3 
IS* 

6.55 
ppm  

5.5 
ppm  

5.25 
ppm  Mean  

Normalised 
area 

(BUD/CHCl3)  

Raw 
result 

(µg/mL 
BUD)  

Factor 
(Conc. 
BUD / 
Raw 

result)  
63.4  24.87  18.32  18.21  18.21  18.24  0.73  199.04  0.318  
50.7  23.96  14.17  14.32  14.37  14.28  0.59  161.76  0.314  
40.5  22.77  10.92  10.88  10.71  10.83  0.47  129.11  0.314  
32.4  23.27  8.72  8.84  8.70  8.75  0.37  102.05  0.318  
25.9  8.83  2.69  2.74  2.63  2.68  0.30  82.54  0.315  

       Mean 0.316 
       s 0.002 
       % CV 0.659 

 

Use of the factor for calculation of the solubility of budesonide in HPFP from 

experimentation carried out on saturated suspensions of the system is 

summarised (Section 2.2.5). The value obtained for the solubility of 

budesonide in HPFP was 87.0 µg/mL. 

Accuracy of the methods was checked using saturated suspensions of 

budesonide in HPFP at ambient pressures, as determined by HPLC. The 

suspensions were prepared, equilibrated and filtered to remove residual 

solids. A two-fold dilution in HPFP was performed to ensure dissolution of 

any residual solids prior to the final (accurate) dilution step in HPLC mobile 

phase. Injections of the solutions were made onto the HPLC system 

according to the method specified (Section 2.2.5) alongside injections of 

reference standards of budesonide created at known concentrations in 

mobile phase. Peak area values for the budesonide peak eluting at retention 

time of ca. 6.5 minutes were obtained by integration and used to calculate 

* CHCl3 = 271.3 µg/mL 
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the amount of budesonide dissolved in the HPFP solution. Representative 

chromatograms for the reference material and the solutions in HPFP are 

shown as Figures 3.1.4.2 and 3.1.4.3. 

 

Figure 3.1.4.2 - Representative HPLC chromatograms showing replicate 

injections of budesonide reference standard. 

 

Figure 3.1.4.3 - Representative HPLC chromatograms showing replicate 

injections of HPFP prepared budesonide. 
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Quantitative solubility levels from the filtered saturated suspensions of 

budesonide in HPFP were calculated using a response factor based on the 

duplicate reference standards prepared as outlined (Section 2.2.5). A value 

of 86.8 µg/mL (± 0.32) was obtained, comparing favourably with those 

obtained from the NMR approach. 

3.1.5  Reverse Co-axial NMR 

A novel NMR approach for the determination of solubility in the model 

propellant HPFP has been developed. For the in-situ investigation of 

solubility at pressure of volatile propellants such as HFAs 134a and 227 used 

in commercial pMDI formulations, a novel approach to the experimental tube 

arrangements used was required. A standard NMR tube would not allow 

volatile propellants to be held at pressure in their liquid state, and transfer to 

the tubes would be problematic.  

NMR tubes exist for the study of samples at elevated and reduced pressures 

and are commercially available from several suppliers; their use being well 

documented for the monitoring, for example, of pressurised reactions in-situ 

as in studies by Jonas et al. and Foley.[140,141] A PTFE screw fitting at the 

head of the tube commonly known as a J Young assembly allows for the 

increasing or reducing of pressure of the tube and its contents thus allowing, 

for example, volatile liquids to be held in this state by maintenance of a 

vapour pressure.   
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An image of a typical pressurisable NMR tube is shown (Figure 3.1.5.1). 

 

 

Figure 3.1.5.1 – A typical pressurisable NMR tube assembly with PTFE 

screw fitting allowing reduction / increasing of pressure to the tube inner.[137] 

These NMR tube types work well for the analysis of volatile solvents allowing 

maintenance of vapour pressure, however incorporation of the coaxial insert 

through the screw head of the tube assembly would prove impossible, thus 

not allowing the locking and referencing procedures already discussed to be 

carried out. There appears to be no simple way of incorporating a reference 

material into such a tube setup whilst still retaining the physical barrier 

between the two solutions. 

In order to address the highlighted problems, a novel design of NMR tube 

was proposed; the co-axial arrangement previously operated was reversed, 

placing the sample solution into the inner capacity and the reference solution 

in the outer capacity. The co-axial insert could be equipped with a 

pressurisation mechanism sitting within and above that of the reference 

capacity that would remain at atmospheric pressure. A schematic 

representation (Figure 3.1.5.2) shows the proprietary tube assembly. 
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Figure 3.1.5.2 – The novel reversed co-axial tube arrangement allowing 

pressurisation of the inner volume (sample capacity) with an outer volume 

(reference capacity) remaining at atmospheric pressure.[137] 

Specialist manufacture of such a tube assembly was commissioned and was 

carried out by Wilmad labglass, NJ, USA. Two primary designs were 

manufactured, with stems chosen to fit within a standard 5 mm NMR tube 

incorporating a J Young pressure assembly. The sensitivity of the method 

would reduce compared to that of the previously utilised tube setup as the 

diameter of the sample capacity, hence the sample volume, would be 

reduced. The stems of the two were therefore chosen to maximise the 

sample capacity of the designs; if the standard co-axial insert had been used 

for the basis of the tube manufacture, a sample capacity of only 60 µL would 

have resulted. The submitted designs featured the stems from tubes 

designed as stem coaxial inserts for 8 and 10 mm NMR tubes, with 

capacities of 190 and 410 µL respectively.  

Testing of the two stem inserts manufactured demonstrated that the larger of 

the two inserts left only a very small reference capacity on the outside of the 

J Young Pressure 
Assembly 
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stem insert when inserted into a standard 5 mm NMR tube. From a practical 

operational point of view, this led issues in maintaining a reproducible lock 

signal in the spectrometer. The smaller of the two tube setups did not suffer 

from this problem and reproducible addition of accurate volumes of reference 

solution resulted in precise and easy manipulation. Several of these tubes 

were manufactured to allow routine operation of the developed method; one 

of the tubes is shown (Figure 3.1.5.3). 

 

 

 

Figure 3.1.5.3 – Pressurisable stem co-axial insert for use with a standard 5 

mm NMR tube. 

The reversal of the sample and reference capacities and the different 

volumes in each presented to the instrument was anticipated to lead to a 

different calibration factor applied when utilising the system to quantitatively 

determine solute solubility. A repeat of the exercise carried out on the 

standard co-axial set up was performed to calculate a new factor for the new 

arrangement. A series of reference solutions of budesonide in HPFP at 

known concentrations were prepared as summarised (Section 2.3.6) and 

prepared for analysis in the revised tube arrangement, with 190 µL in the 

sample capacity and 300 µL in the reference capacity. Table 3.1.5.1 shows a 

summary of the peak areas obtained and the calculated factor. The mean 

factor for the system was calculated to be 8.008 ± 0.08, with a % coefficient 

of variation (% CV) value of 1.0 %. The results agree well over the 
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concentration range investigated and this factor has been used in 

calculations using this method. 

It should be noted that reference solution of CHCl3 in CD3CN was reduced in 

concentration for this experimentation as i) the increased volume of the 

reference and ii) its position in the probe relative to the receiver coils leads to 

peak areas considerably greater than those of the analyte signals. It is 

desirable to have the peak area of the reference standard closely match the 

peak areas of the analyte, in a similar approach to internal standardisation. 

Table 3.1.5.1 – Summary of the peak areas obtained and the calculated 

system factor. 

 Peak Area     

Budesonide 
concentration 

(µg/mL)  

CHCl3 
IS  

6.55 
ppm  

5.5 
ppm  

5.25 
ppm  Mean  

Normalised 
area 

(BUD/CHCl3)  

Raw 
result 

(µg/mL 
BUD)  

Factor 
(Conc. 
BUD / 
Raw 

result)  
60.50 440 12.46 12.16 12.54 12.39 0.028 7.609 7.951 
48.40 510 11.43 11.28 11.13 11.28 0.022 5.978 8.096 
38.72 460 8.53 8.17 8.24 8.31 0.018 4.885 7.926 
30.98 410 5.82 5.85 5.82 5.83 0.014 3.844 8.059 

       Mean 8.008 
       S 0.082 
       % CV 1.028 

 

  

* CHCl3 = 270.8 µg/mL 
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3.1.6  ERETIC NMR  

A second referencing approach (summarised in Section 1.3.2) has been 

investigated as part of these studies. Electronic REference To access In-vivo 

Concentrations or ERETIC NMR methods offer the ability to perform 

quantitative NMR measurements without the need to incorporate a reference 

standard in the system analysed. Its use in quantitative NMR is limited, 

though work by Remaud et al.[128] and VanLockeren et al.[142] highlights the 

usefulness of the technique. The work reported to this point in these studies 

has involved the physical incorporation of a standard reference compound 

(CHCl3) into the experimental setup to allow quantitative calculations to be 

performed on the resultant data. ERETIC methods aim to avoid this by using 

the electronics of a free channel of the NMR spectrometer to incorporate a 

signal of known magnitude and position electronically into the spectrum; this 

can be subsequently used for quantitative purposes in much the same way 

as a signal from a reference compound can using peak integrations.  All 

modern spectrometers can generate shaped Rf pulses; an ERETIC pulse 

uses an exponential decay shape to incorporate a peak of Lorentzian shape 

which is detected simultaneously to the sample FID during acquisition. The 

rate of decay of the FID dictates the linewidth of the incorporated signal. The 

technique offers several advantages over the more conventional approaches 

to quantitative NMR including (i) once established, the method is easier and 

faster in its operation i.e. little or no standard preparation (ii) the method 

could be run in standard pressurisable NMR tubes for the volatile propellants 

studied here (as the ERETIC signal removes the need to incorporate a 

reference compound) and (iii) the ERETIC signal can be chosen to have 
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variable magnitude and to fall anywhere in the spectrum, away from 

interferences generated by the analytical resonances of interest or other 

contaminating signals in the spectra.[129,142,143,144] 

The potential for using ERETIC in this study was assessed. A pulse 

programme allowing the incorporation of ERETIC signals was generously 

provided by Dr. Peter Meadows, JEOL UK Ltd. The writing of these pulse 

sequences is considered outside the scope of this project, and JEOL kindly 

agreed to provide a pre-written sequence allowing the trial of its usefulness 

here. Assessment of a simple solution of CHCl3 in CD3CN (13.0 mg/mL) was 

performed in a standard 5mm NMR tube to calibrate the ERETIC pulse. The 

procedure is described in detail (Section 2.3.7) and is required to incorporate 

a correctly phased signal. Experiments were carried out with a 10.0 ppm 

chemical shift selected for the ERETIC signal away from interfering 

resonances and was repeated with a -1.0 ppm shift. Correctly phased 

ERETIC spectra of CHCl3 in CD3CN (13 mg/mL) with offsets of 10.0 and -1.0 

ppm chemical shift are shown (Figures 3.1.6.1 and 3.1.6.2). 
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 Figure 3.1.6.1 – 1H NMR spectrum of CHCl3 in CD3CN (13 mg/mL) acquired 

using correctly phased ERETIC experiment chosen to place the signal at 

10.0 ppm chemical shift.  
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Figure 3.1.6.2 – 1H NMR spectrum of CHCl3 in CD3CN (13 mg/mL) acquired 

using correctly phased ERETIC experiment chosen to place the signal at -1.0 

ppm chemical shift. 

The signal intensity incorporated using the ERETIC method is very low when 

compared to that of the CHCl3 signal at this concentration. This difference in 

magnitude will differ according to the final concentration of CHCl3 chosen to 

calibrate the system, however as stated it is also possible to control the 

magnitude of the ERETIC signal simply by choosing the power input (a 6 dB 

increase should bring about a doubling of the signal observed).[125] An 

overlay of 3 experiments performed using sequentially increasing power of 

the ERETIC signal is shown (Figure 3.1.6.3), giving full control over the 

magnitude of the signal detected. 
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Figure 3.1.6.3 – Overlaid 1H NMR spectra showing the effect of increasing 

power of the ERETIC signal incorporated into the experiment (black=1 dB, 

green=10 dB and red=20dB) showing the magnitude of the signal increasing 

with applied power. 

The final method modification applied to the system was incorporation of a 

pre-saturation solvent suppression protocol to address the dynamic range 
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budesonide in HPFP with the incorporation of an ERETIC signal at 9.0 ppm 

chemical shift, expanded in the low field region (Figure 3.1.6.5). 

 

Figure 3.1.6.4 – 1H NMR spectrum of CHCl3 in CD3CN incorporating an 

ERETIC signal at 9.0 ppm chemical shift (expanded in the region downfield 

of 7.0 ppm chemical shift). 
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Figure 3.1.6.5 - 1H NMR spectrum of saturated suspension of budesonide 

incorporating an ERETIC signal at 9.0 ppm chemical shift (expanded in the 

region downfield of 5.0 ppm chemical shift). 

Calculation of the solubility of budesonide in HPFP using this experimental 
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further development and investigation using ERETIC approaches was not 

undertaken in these studies, and the co-axial methodologies considered to 

this point were utilised in assessment of solubility by NMR. 

3.1.7  Temperature Calibration of NMR Probe 

The analysis of solubility at pressure has already been described and the 

benefits discussed. A further advantage offered by the newly developed NMR 

method is the ability to control temperature in-situ. Saturated suspensions 

can be formed within the NMR tube setup and allowed to equilibrate at a 

controlled temperature, both above and below ambient conditions as 

apparatus allows. The 600 MHz NMR used for the experimentation outlined 

in this study is equipped with a variable temperature probe controllable at 

temperatures above and below ambient with the aid of the FTS electronic 

temperature control unit supplying cooled dry air to the sample probe. The 

VT systems are however considered relatively inaccurate for absolute 

temperature control due to their lack of calibration.[125] It was imperative 

therefore to ensure accurate control of temperature to allow the 

determination of solubility values at accurately defined temperatures. 

One widely accepted approach utilised in NMR temperature calibration is to 

use an NMR parameter that has temperature dependence as a form of 

thermometer.[125,146] The use of several reference materials have been 

reported,[147-150] though methanol and ethylene glycol are the two most widely 

used for temperatures between 175 – 310 K and 300 – 400 K respectively. 

For the temperatures of interest in these studies, the chemical shift difference 

between the CH3 and OH protons in methanol allows the calibration 
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procedure to be performed as the OH protons shift relative to the static CH3 

resonance with changes in temperature. 

Equation 3.1.7.1 holds true for the temperatures in the range of the 

experimentation performed.[125] 

𝑇   𝐾 = 468.1− 108.9∆𝛿     Equation 3.1.7.1 

To carry out the temperature calibration, a solution of MeOH in MeOD was 

prepared and analysed as summarised in Section 2.2.8. The chemical shift 

differences between the OH and CH3 protons used in equation 3.1.7.1 and 

the true temperatures of the sample were calculated. Table 3.1.7.1 shows the 

selected and calculated values with Figure 3.1.7.1 showing a plot of true 

sample temperature vs. selected temperature. These data were used in all 

subsequent varied temperature (VT) studies of solute solubilities to ensure 

accurate temperature control of the experiments performed. 

Table 3.1.7.1 – Results of the temperature dependent chemical shift values 

of OH and CH3 resonances in MeOH. 

 Chemical shift, δ    
Selected T 

(K) OH CH3 Δδ T (K) T (°C) 

253 5.0819 3.32 1.7619 276.2 3.2 
263 5.0349 3.32 1.7149 281.3 8.3 
270 5.004 3.32 1.684 284.7 11.7 
278 4.9611 3.32 1.6411 289.4 16.4 
288 4.9227 3.32 1.6027 293.6 20.6 
293 4.8946 3.32 1.5746 296.6 23.6 
298 4.8694 3.32 1.5494 299.4 26.4 
305 4.8437 3.32 1.5237 302.2 29.2 
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Figure 3.1.7.1 – Plot of true sample temperature vs. selected temperature.  
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Table 3.1.8.1 – Budesonide solubility calculated using reversed co-axial 

NMR set up at 278, 283 and 298 K. 

Temp (K) 
Concentration (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 
298 90 90 88 89 1.1 1.3 
283 88 88 88 88 0.2 11.7 
278 88 82 87 86 3.6 4.2 

 

3.1.9  Cold Transfer of HFA134a / HFA227 and Associated 

Method Modifications 

The developed NMR method using the reverse co-axial setup has been 

shown to be a practical and reliable approach for the study of IPPs in volatile 

fluorinated solvents. The key to the versatility and novelty of the methodology 

however is the ease with which solvents can be studied in their liquid state. 

The two solvents of primary interest in the formulation of APIs for inhalation 

applications are HFAs 134a and 227 as discussed. Having boiling points of 

246.7 and 256.5 K respectively,[151] the solvents are gaseous at room 

temperature unless held under pressure for which the designed method is 

particularly suitable. A specific apparatus was designed and assembled to 

allow the gaseous solvents to be transferred to the pressurisable NMR tubes 

at room temperature. A schematic of the apparatus is shown (Figure 3.1.9.1) 

whereby liquid solvent from a pressurised cylinder (Section 2.1) was 

transferred through a coil cooled by immersion in solid CO2. The liquefied 

gas passes through a valve into a pressure vessel where it can be stored. 

Each time an NMR tube fill is required, the valve attached to the dip-leg of 

the storage vessel is opened and allows liquefied gas to flow through into the 
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NMR tube where it can be maintained in its liquid state by closure of the J 

Young valve. The transfer process can be aided by evacuation of the NMR 

tube prior to opening to the liquid storage vessel as necessary. A photograph 

of the apparatus is provided in Experimental section 2.2.10. 
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Pressure vessel filling 

 

 

 

 

 

 

 

 

 

 

 

NMR tube filling 

 

 

 

 

 

 

 

 

Figure 3.1.9.1 – Schematic representation of the cold transfer apparatus for 

filling NMR tubes with liquefied gases. 
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Blank solutions of HFAs 134a and 227 were examined in the reversed co-

axial tube set up. The solvents used are different molecular entities and 

therefore have a unique NMR response that requires, as with HPFP, solvent 

suppression to maximise the sensitivity of the method for the analyte 

resonances. The 1H spectra for HFAs 134a and 227 are shown (Figures 

3.1.9.2 and 3.1.9.3) with coupling data given in Tables 3.1.9.1 and 

3.1.9.2.[134] 

 

Figure 3.1.9.2 – 1H NMR spectrum of HFA134a obtained using the reverse 

co-axial setup. 

Table 3.1.9.1 – Coupling constant data for 1H NMR of HFA134a. 

Chemical Shift (ppm) Spin-Spin Coupling Data 
4.37 2J(H,F) = 45.7 Hz, 3J(CF3) = 8.3 Hz 
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Figure 3.1.9.3 – 1H NMR spectrum of HFA227 obtained using the reverse 

co-axial setup. 

Table 3.1.9.2 – Coupling constant data for 1H NMR of HFA227. 

Chemical Shift (ppm) Spin-Spin Coupling Data 
5.07 2J(CHF) = 43.7 Hz, 3J(CHCF3) = 5.4 Hz 
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For each solvent, three separate methods were developed to allow routine 

deployment at the three selected temperatures, giving a total of nine 

separate methods for deployment in quantitation of APIs in HPFP, HFA134a 

and HFA227 at 278, 283 and 298K. 

3.1.10 NMR Assignment of Inhaled Compounds of Interest 

A limited 1H spectral assignment was carried out on each of the APIs 

analysed to allow a reliable resonance to be determined in each case for use 

in the quantitative assay of solubility in the three propellant systems. Full 

spectral assignment was unnecessary as the primary requirement was to 

reliably identify specific signal(s) from each API that could be assigned. It is 

clearly of paramount importance however that the number of protons 

associated with the chosen resonances is correctly determined to avoid any 

error in the quantitative results obtained from the experiments. 1H spectra of 

each of the APIs analysed are shown as Figures 3.1.10.1 to 3.1.10.10 with 

spectral assignments.[152-163] Several factors in the selection of specific 

resonances to utilise in the quantitative experiments have to be considered; 

primarily the resonance or resonances have to occupy a chemical shift 

environment sufficiently free from interferences from the other signals in the 

spectrum e.g. the main solvent response (or proximity to the applied 

suppression), residual solvent signals from CD3CN and any other impurity 

signals observed in the blank solvent systems. They should also, where 

possible, be intense signals associated with the maximum number of protons 

with the lowest multiplicities possible, thus maximising the sensitivity of the 

experiment for each analyte. A good example here is the tertiary butyl (t-Bu) 
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signal in terbutaline and salbutamol samples being an intense, sharp singlet 

arising from the 9 protons of the functional group. 

 

Figure 3.1.10.1 – 1H NMR of beclomethasone dipropionate BP, BMD-N-004-

09. 
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Figure 3.1.10.2 - 1H NMR of beclomethasone base, BMD-N-006-09. 

 

Figure 3.1.10.3 – 1H NMR of terbutaline sulphate USP, TBS/105/07-08. 
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Figure 3.1.10.4 – 1H NMR of salbutamol base BP, SB/101/09-10. 

 

	  

Figure 3.1.10.5 – 1H NMR of salbutamol sulphate BP, SS/103/09-10. 
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Figure 3.1.10.6 – 1H NMR of mometasone fuorate USP, APL/72/C-09. 

 

Figure 3.1.10.7 – 1H NMR of salmeterol xinafoate Ph. Eur, SX-V/009/08. 
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Figure 3.1.10.8 – 1H NMR of ipratropium bromide BP, IPI-0109001. 

 

 

Figure 3.1.10.9 – 1H NMR of fluticasone propionate USP, 408901-FP. 
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Figure 3.1.10.10 – 1H NMR of formoterol fumarate, 019K4705. 

3.1.11  HPLC 
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and more recently Myrdal et al.[124] have developed a direct injection protocol 

using modified Rheodyne™ injection systems to introduce filtered sample 

from prepared canisters directly to the HPLC system. 

For each of the systems that gave a result below the LOD of the NMR 

approach, saturated suspensions were created in HPFP and equilibrated for 

> 24 hours at 298 K. Preparation of the solutions and HPLC methods 

deployed are summarised (Section 2.3.2). The calibration lines calculated for 

each analyte gave linear responses in all cases with correlation coefficients 

(r2) ≥ 0.99. These data are presented (Table 3.1.11.1) and were used to 

calculate solubility of each IPP studied in this manner. The results are 

presented in Chapter 4 (Section 4.1.1). 

Table 3.1.11.1 – Correlation data obtained for the calibration lines calculated 

from HPLC analysis of IPPs with solubility values undeterminable by NMR. 

Analyte Gradient, m Correlation coefficient (r2) 
Beclomethasone 961.8 0.9998 

Formoterol fumarate 2143.9 0.9950 
Ipratropium bromide 581.2 0.9996 

Salbutamol 146.8 0.9929 
Salbutamol sulphate 135.3 0.9990 
Salmeterol xinafoate 999.5 0.9980 
Terbutaline sulphate 143.3 0.9995 

 

3.1.12  NMR of Co-solvated Systems 

To allow the study of co-solvated solvent systems including ethanol, further 

development of the system was required. The previously developed method 

utilised a solvent suppression regime to improve dynamic range issues 

encountered with unsuppressed methods when analysing protonated 

solvents. Incorporation of ethanol into a HFA system complicates the setup 
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as there are now two further protonated signals to consider; the CH2 quartet 

and CH3 triplet resonances of ethanol. An unsuppressed 1H NMR spectrum 

of a budensonide saturated suspension in 10 % EtOH / 90 % HPFP system 

is shown, highlighting the additional ethanol resonances observed (Figure 

3.1.12.1). 

 

Figure 3.1.12.1 – 1H NMR spectrum of budesonide saturated suspension in 

10 % EtOH / 90 % HPFP. 

Though the solubility of budesonide and other IPPs in ethanol co-solvated 

systems is likely to be considerably higher,[124] the resonances are still very 

small in comparison to those of the protonated solvent system. A revised 

solvent suppression protocol was developed to attempt to reduce the 

intensity of the fluorine coupled multiplet previously observed for HPFP, the 

CH2 quartet and the CH3 triplet from the ethanol in concert. For this, a 

specific experiment was written using the pre-saturation previously utilised in 
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suppression of the HPFP multiplet, whilst concurrently supressing the two 

ethanol signals using the dante pre-saturation channels available on the 

JEOL ECA 600 NMR. A representative 1H NMR spectrum of a saturated 

suspension of budesonide in a 10 % EtOH / 90 % HPFP system with 

suppression applied to all solvent signals is shown (Figure 3.1.12.2) 

highlighting the S:N improvements observed when compared to that resulting 

from the method operated with suppression (Figure 3.1.12.1). 

 

Figure 3.1.12.2 - 1H NMR spectrum of a saturated suspension of budesonide 

in a 10 % EtOH / 90 % HPFP system with suppression applied to all signals; 

inset shows spectral expansion in the region of the budesonide A-ring 

resonances. 

A further modification was necessary in the methodology to account for the 

chemical shift values encountered for the base solvent resonance and the 

shifted EtOH resonances in the HFA134a base. These chemical shift values 
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were used in the methods (operated otherwise unchanged). It should be 

noted that the experimental work involved in preparing the ethanol doped 

HFA134a is considerably more complicated than that of HPFP based 

systems. The cold transfer methodologies employed to fill the reversed co-

axial NMR tube arrangement (Section 2.2.10) make addition of a liquid 

ethanol sample very difficult; addition before HFA134a proves unreliable to 

achieve an accurate volume as ethanol tends to be displaced on addition of 

the HFA134a, however addition of EtOH after HFA134a is made more 

complex as it is only the vapour pressure maintaining the liquid state, 

meaning removal of the J Young cap releases the contained HFA. The 

method ultimately employed was to fill HFA134a by cold transfer to the 

correct volume, freeze in liquid N2 and add ethanol to the desired 

concentration whilst frozen. On warming the HFA134a and ethanol are 

allowed to mix as liquids and equilibrate to form the desired saturated 

suspension. The modified experimental approaches were used to assess 

solubilities of IPPs under co-solvated systems (Sections 4.2.1.1 and 4.2.1.2). 

The work presented in this chapter demonstrates the successful 

development and validation of a qNMR approach to study solubility of solutes 

in HFA134a, HFA227 and HPFP propellants. Novel sample preparation 

methods have been developed to enable the study of volatile HFAs at 

elevated pressure in-situ, with co-axial external reference solutions. 

Development of the method using solvent suppression, increased field 

strength and extended acquisition times yielded LODs of ca. 1 µg/mL – a 

very sensitive NMR assay. Validation has been successfully undertaken with 

HPLC methods. NMR assignments have been carried out for 11 ICS, β2-
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agonist and antimuscarinic compounds currently prescribed in the treatment 

of asthma and COPD for use in subsequent quantitative experiments 

(Chapter 4). Full conclusions are presented in Chapter 7. 

  



 127 
 

4  Physical Chemistry of Inhaled Pharmaceutical Products in 
HFAs 

 

This chapter describes the work performed on IPPs as saturated solutions in 

the model propellant HPFP, and in volatile propellants HFA134a and 

HFA227, primarily using the NMR method developed and summarised in 

Chapter 3. The focus of the studies are in determining solubility for saturated 

suspensions of selected IPPs in the 3 propellants at ambient and sub-

ambient temperatures, and access to the thermodynamic data inherent in 

these measurements. From this basis, strategies for solubility enhancement 

are also considered. These are (i) use of a co-solvent (ethanol) and (ii) 

pharmaceutically acceptable excipients to form inclusion complexes 

(cyclodextrins). The values determined provide an insight in to the physical 

chemistry of the formulations under study and the data derived are of 

potential use in directing the pre-formulation strategies for these products. 

Structural insight from the NMR method is also considered in more detail 

here, and provides data on the molecular structure of the corticosteroid / 

cyclodextrin inclusion complexes formed in the model propellant HPFP.  
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4.1  Solubility Measurements 

4.1.1  Ambient (298 K) 

Determination of solubility has been performed for each of the 11 IPP 

compounds under study in HPFP, HFA134a and HFA227 at 298 K using the 

NMR approaches developed and validated (Chapter 3). Resonances have 

been chosen for quantitation of each compound to satisfy two primary criteria 

(i) chemical shift of the signal is located in a region free of interferences or 

proximity to interfering signals and (ii) to maximise the sensitivity of the 

approach as highlighted in section 3.1.3, with resonances of maximum 

intensity being selected for e.g. tertiary-butyl functional group on salbutamol 

molecule whilst still satisfying (i). Representative 1H NMR spectra are shown 

for the determinations completed for the compound budesonide in HPFP, 

HFA134a and HFA227 (Figure 4.1.1.1) highlighting the A-ring resonances 

and CHCl3 standardisation resonance used in the calculation (Section 2.2.6). 

The chemical shifts of the budesonide are clearly solvent dependent, and a 

subtle movement is noted in the three propellant systems. Assignments are 

still consistent with those made in Chapter 3. 
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Figure 4.1.1.1 – Representative 1H NMR spectra of budesonide in HPFP (a), 

HFA134a (b) and HFA227 (c) used in the quantitation of solute solubility at 

298 K (shown in the lowfield region highlighting the A-ring resonances of the 

solute and the CHCl3 reference). 

The quantitative data obtained are shown (Table 4.1.1.1) for triplicate 

determinations in HPFP, HFA134a and HFA227 for each of the IPPs 

analysed. Mean values and associated precision measurements are quoted 

in the form of population standard deviation (σ) and coefficient of variation (% 

CV). % CV values are ≤ 15% for systems showing solubility values > 30 

µg/mL, with increasing precision values for the samples that are approaching 

the LOQs of the method.  

For systems dropping below LOQ for the NMR methodologies, additional 

testing has been performed by HPLC for the solutions in HPFP as 
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summarised in Section 2.3.2 and these data are also displayed with 

associated mean values and precision measurements (Table 4.1.1.2). 

Precision values are in line with the expected increase for decreasing mean 

values which are themselves in good agreement with the data obtained using 

the NMR method in that they all fall below the expected LOD values for the 

NMR method as operated with the exception of salbutamol base and 

ipratropium bromide. The lack of a result offered by NMR in these two 

instances when the HPLC data suggest they should be above LOD is due to 

interferences in the high field region of the spectrum obscuring the tertiary-

butyl and iso-propyl groups. 

Table 4.1.1.1 – Results of IPP solubilities at 298 K in HPFP, HFA134a and 

HFA227 determined by NMR 

IPP Propellant 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 

Budesonide 
HPFP 90 90 88 89 1.1 1.3 

HFA134a 52 58 50 53 4.1 7.9 
HFA227 52 66 59 59 7.1 11.9 

Fluticasone 
propionate 

HPFP 21 25 21 22 2.0 10.5 
HFA134a 23 19 25 23 3.1 13.3 
HFA227 < 15 < 15 < 15 <15 - - 

Salbutamol 
base 

HPFP < 1 < 1 < 1 < 1 - - 
HFA134a 5 5 3 4 0.8 28.9 
HFA227 6 5 7 6 1.2 13.3 

Formoterol 
fumarate 

HPFP < 15 < 15 < 15 < 15 - - 
HFA134a < 15 < 15 < 15 < 15 - - 
HFA227 < 15 < 15 < 15 < 15 - - 

Salbutamol 
sulphate 

HPFP < 1 < 1 < 1 < 1 - - 
HFA134a < 1 < 1 < 1 < 1 - - 
HFA227 2 2 2 2 0.3 16.0 

Beclomethasone 
dipropionate 

HPFP 341 327 336 334 7.2 2.1 
HFA134a 167 156 166 162 5.7 3.7 
HFA227 112 146 115 125 18.6 15.0 

Beclomethasone 
HPFP < 15 < 15 < 15 < 15 - - 

HFA134a < 15 < 15 < 15 < 15 - - 
HFA227 < 15 < 15 < 15 < 15 - - 

Mometasone 
furoate 

HPFP 27 18 28 24 5.4 22.9 
HFA134a < 15 < 15 < 15 < 15 - - 
HFA227 < 15 < 15 < 15 < 15 - - 



 131 
 

Terbutaline 
sulphate 

HPFP < 1 < 1 < 1 < 1 - - 
HFA134a < 1 < 1 < 1 < 1 - - 
HFA227 < 1 < 1 < 1 < 1 - - 

Ipratropium 
bromide 

HPFP < 1 < 1 < 1 < 1 - - 
HFA134a < 1 < 1 < 1 < 1 - - 
HFA227 < 1 < 1 < 1 < 1 - - 

Salmeterol 
xinafoate 

HPFP < 15 < 15 < 15 < 15 - - 
HFA134a < 15 < 15 < 15 < 15 - - 
HFA227 < 15 < 15 < 15 < 15 - - 

 

Table 4.1.1.2 – Solubility values for IPPs in HPFP at 298 K as determined by 

HPLC. 

IPP 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 
Salbutamol base 1.35 1.42 1.37 1.38 0.04 2.90 

Formoterol fumarate 0.14 0.13 0.15 0.14 0.01 7.14 
Salbutamol sulphate 0.19 0.17 0.18 0.18 0.01 5.56 

Beclomethasone base 0.21 0.16 0.19 0.19 0.03 15.79 
Terbutaline sulphate 0.05 0.05 0.04 0.05 0.01 20.00 
Ipratropium bromide 2.00 2.10 2.00 2.03 0.06 2.96 
Salmeterol xinafoate 0.06 0.06 0.05 0.06 0.01 16.67 

 

A number of studies have been performed to relate solubility to solute 

properties in solutions of different compositions based on aqueous and non-

aqueous systems. These studies have observed correlations between the 

solubility (log molar fraction solubility, χ) and physico-chemical properties of 

the solutes such as melting point and polarity. Work performed by Dickinson 

et al.[164] reported similar studies with HFA based propellants, and concluded 

that no such correlations were discernable, specifically stating that there was 

no absolute relationship between logP and solubility, though there was a 

trend towards increasing solubility with lower logP values. Hoye et al.[165] 

have recently observed a more fundamental relationship. Their work on 

solubility in HFA134a used a range of compounds chosen to have a range of 

physico-chemical characteristics, and relates experimentally derived solubility 
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values accessed via remote analysis of filtered samples[166,124] to theoretical 

solubility values (ideal and regular solution theory models) and to material 

properties such as molecular weight, melting point, hydrogen bonding 

potential and polarity, with some successful approaches proposed. 

The values presented in this thesis however appear to be the first to be 

determined in-situ without the need for filtering and remote analytical work 

providing the advantages discussed previously (Section 1.3.1). They also 

present data that will aid in the understanding of formulation possibilities for 

these IPPs. A summary of physical properties of the IPPs under study is 

shown with the solubility measurement results (Table 4.1.1.3). These data 

show a broad correlation between solubility and compound type i.e. the ICS 

compounds (budesonide, beclomethasone dipropionate, fluticasone 

dipropionate and mometasone) are markedly more soluble in the three 

propellants than are the β2-agonists and muscarinic bronchodilators 

(salbutamol, formoterol fumarate, terbutaline, ipratropium and salmeterol 

xinafoate) with the exception of beclomethasone, which shows an 

anomalously low solubility under this conclusion. The data suggest that the 

fluorinated propellants HPFP, HFA134a and HFA227 show a degree of 

oleophilicity facilitating the marginal solubility for the corticosteroids; however 

the true solubilising potential remains very low. Interestingly, a broad 

correlation with solvent relative permittivity (dielectric constant, εr) is 

observed. While the scope of the data is narrow here, permittivity is 

commonly correlated to solvent polarity[167] and these follow the order HPFP 

> HFA134a > HFA227 with values of 15.1, 9.8 and 4.1 respectively[126] 
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(Section 1.3.1, Table 1.3.1.2), consistent with the observed solubility order for 

the ICS compounds. 

Table 4.1.1.3 – Solute solubility in HPFP shown alongside physical 

properties of the IPPs under study. 

IPP Solubility (µg/mL) LogP Rmm HPFP HFA134a HFA227 
Beclomethasone  0.2   2.439 409 
Beclomethasone 

dipropionate 334 162 125 4.073 521 

Budesonide 89 53 59 3.204 430 
Formoterol fumarate 0.1 - - 2.072 384 

Fluticasone propionate 22 23 - 2.029 501 
Ipratropium bromide 2 - - 0.21 412 
Mometasone furoate 24 - - 3.594 521 

Salbutamol base 1.4 4 6 0.692 239 
Salbutamol sulphate 0.2 - 2 - 288 
Salmeterol xinafoate 0.05 - - 3.714 603 
Terbutaline sulphate 0.05 - - 0.696 274 

LogP obtained from Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2012 ACD/Labs) via 

SciFinder Scholar  

It would be reasonable to expect a broad correlation between the solubility 

values of the IPP and logP values. LogP is defined as the log of the partition 

coefficient, P, between water and octanol[168,169] and is commonly taken as a 

measure of a compound’s hydrophobicity / hydrophilicity (polarity). These 

relationships have been used successfully in studies of other solvent systems 

as solubility predictors.[169] A plot of log solubility (logχ) vs. logP (Figure 

4.1.1.2) reveals a reasonable numerical correlation for the corticosteroid 

compounds in all three propellants HPFP, HFA134a and HFA227, though the 

latter two are based on limited data points, having correlation coefficients, r2, 

of > 0.89 in all cases. 
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Figure 4.1.1.2 – Plot of mean log mole fraction solubility (n=3, ± σ) vs. logP 

for corticosteroid compounds budesonide, beclomethasone dipropionate, 

mometasone and fluticasone dipropionate. 

Treatment of the data determined here in a manner based on the approaches 

taken by Hoye et al. [165] however, reveals little correlation. Ideal solubility 

models are used, whereby the crystal structure of a molecule is used to 

predict a value for mole fraction solubility. The greater the change in free 

energy the molecule has to overcome in dissociating from the crystal lattice, 

the less soluble the material will be, hence the solubility is governed by the 

free energy of melting. Their approach uses three assumptions (i) the van’t 

Hoff expression assuming heat capacity change at melting (ΔCp) is equal or 

near to zero (ii) the Hildebrand expression assumes this to be equal to the 

entropy change at melting (ΔSm) and (iii) Walden’s rule stating that rigid 

organic compounds, ΔSm can be assumed to be 56.5 J.K-1.mol-1. These 

assumptions combined simplify the ideal solubility factor to that shown in 

equation 4.1.1.1 at 298 K.[165] 
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𝑙𝑜𝑔𝜒!"#$% = −0.01 𝑇! − 298     Equation 4.1.1.1 

Ideal solubilities calculated in this way are shown (Table 4.1.1.4), and 

correlated to measured solubility in the plot shown as Figure 4.1.1.3. The 

calculations based on melting points taken from literature values yielded a 

set of ideal solubility data that showed no meaningful correlation to 

experimental values. Melting points of these materials are prone to be 

accompanied by decomposition e.g. budesonide,[172] and clearly such 

correlations are therefore not appropriate with these systems. 

Table 4.1.1.4 – Melting point data[170-172] and calculated ideal solubility values 

for each of the IPPs under study. 

Compound 
Melting 

Point, Tm  
(K) 

Tm – 298 logχideal 
Ideal 

solubility, 
χideal (x10-3) 

Beclomethasone 490[170] 192 -1.92 12.023 
Beclomethasone 

dipropionate 485[171] 187 -1.87 13.490 

Budesonide 493[172] 195 -1.95 11.220 
Formoterol fumarate 411[172] 113 -1.13 74.131 

Fluticasone propionate 545[172] 247 -2.47 3.388 
Ipratropium bromide 504[172] 206 -2.06 8.710 
Mometasone furoate 493[172] 195 -1.95 11.220 

Salbutamol base 430[172] 132 -1.32 47.863 
Salbutamol sulphate 475[172] 177 -1.77 16.982 
Salmeterol xinafoate 410[172] 112 -1.12 75.858 
Terbutaline sulphate 520[172] 222 -2.22 6.026 
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Figure 4.1.1.3 – Plot of calculated ideal solubility values (Equation 4.1.1.1) 

vs. observed solubility values experimentally determined. 

4.1.2  Temperature Variation (VT NMR) and van’t Hoff Plots 

The solubility of any crystalline solid is dependent on the energetics 

associated to the process; the Gibbs free energy change, ΔGsol, being the 

controlling factor. The less the energy change occurs during the process, the 

higher the value of solubility expected. ΔGsol is given by Equation 4.1.2.1, 

where ΔHsol is enthalpy change of solution, T is temperature (K) and ΔSsol is 

the entropy change associated. 

𝛥𝐺!"# = 𝛥𝐻!"# − 𝑇𝛥𝑆!"#      Equation 4.1.2.1 

One of the major advantages offered by the developed NMR approach to 

solubility determination is the ability to easily control the conditions at which 

the solubility values are assessed. The temperature at which the system is 

equilibrated and analysed will allow solubility values to be determined at 
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temperatures above and below ambient conditions offering (i) understanding 

of likely behaviours of IPPs in propellants over extended storage periods 

(stability) and (ii) insight into the physical chemistry of the solutions using 

van’t Hoff approaches to access ΔHsol values for the series available, hence 

calculation of ΔSsol. 

The van’t Hoff equation is frequently used to calculate thermodynamic 

properties of solutions at equilibrium,[174-177] as is the case with the saturated 

suspensions of solutes in a given solvent system. If the van’t Hoff equation is 

considered in the format of a linear plot (Equation 4.1.2.2) it can be seen that 

the magnitude of the gradient provides information on the energetics of the 

solubility process as change in heat of solution, ΔHsol, in the form 𝑦 = 𝑚𝑥 + 𝑐, 

where R is the universal gas constant (8.314 J.K-1
.mol-1) and T the 

temperature in degrees Kelvin. 

𝑙𝑛𝜒 = !!"!"#
!

× !
!
+ 𝑐      Equation 4.1.2.2 

The Gibbs free energy change for the solution and the entropy change can 

be estimated by consideration of equations 4.1.2.3 and 4.1.2.4.  

𝛥𝐺!"# = −𝑅𝑇𝑙𝑛𝜒      Equation 4.1.2.3 

𝛥𝑆!"# =
!"!"#!!"!"#

!
      Equation 4.1.2.4 

For the systems successfully analysed at 298 K, repeat analysis was 

performed at 283 and 278 K after re-equilibration, with quantitative data 

derived from the same resonances used in the previous work at 298 K. 

These data are shown (Tables 4.1.2.1 and 4.1.2.2) with estimates of 

precision (s) and mean values displayed in each case. 
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Table 4.1.2.1 – Results of solute solubilities at 283 K in HPFP, HFA134a and 

HFA227. 

IPP Propellant 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 

Budesonide 
HPFP 87.7 88.1 88.2 88 0.2 0.2 

HFA134a 48.4 52.7 54.0 48 5.6 11.7 
HFA227 55.0 54.3 51.5 54 1.9 3.5 

Fluticasone 
propionate 

HPFP 15.0 14.6 18.0 16 1.9 11.9 

HFA134a < 15  
(ca. 12) 

< 15  
(ca.10) 

< 15  
(ca. 3) 

< 15  
(ca.12) 1.5 13.1 

HFA227 Not analysed 

Salbutamol 
base 

HPFP Not analysed 
HFA134a < 1 < 1 < 1 < 1 - - 
HFA227 < 1 < 1 < 1 < 1 - - 

Salbutamol 
sulphate 

HPFP Not analysed HFA134a 
HFA227 < 1 < 1 < 1 < 1 -  

Beclomethasone 
dipropionate 

HPFP 163.7 145.4 139.3 150 12.6 8.4 
HFA134a 45.6 46.5 38.5 44 4.4 10.0 
HFA227 66.1 54.2 51.6 57 7.7 13.5 

Mometasone 
fuorate 

HPFP < 15 
(ca.13) 

< 15  
(ca.12) 

< 15  
(ca.12) 

< 15  
(ca.12) 0.6 4.7 

HFA134a Not analysed HFA227 
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Table 4.1.2.2 – Results of solute solubilities at 278 K in HPFP, HFA134a and 

HFA227. 

IPP Propellant 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 

Budesonide 
HPFP 88.1 81.6 87.3 86 3.6 4.2 

HFA134a 27.9 26.6 25.8 27 1.0 3.7 
HFA227 43.1 50.8 48.9 48 4.0 8.3 

Fluticasone 
propionate 

HPFP < 15  
(ca. 13) 15.9 17.9 16 2.4 15.0 

HFA134a < 15  
(ca. 7) 

< 15  
(ca. 8) 

< 15  
(ca. 6) 

< 15  
(ca. 8) 1.0 14.3 

HFA227 Not analysed  

Salbutamol 
base 

HPFP Not analysed 
HFA134a < 1 < 1 < 1 < 1 - - 
HFA227 < 1 < 1 < 1 < 1 - - 

Salbutamol 
sulphate 

HPFP Not analysed HFA134a 
HFA227 < 1 < 1 < 1 < 1 -  

Beclomethasone 
dipropionate 

HPFP 119.9 111.2 122.9 118 6.1 5.2 
HFA134a 33.8 29.1 30.7 31 2.4 7.7 
HFA227 58.6 47.8 53.8 53 5.4 10.2 

Mometasone 
fuorate 

HPFP < 15  
(ca. 8) 

< 15  
(ca.10) 

< 15  
(ca. 6) 

< 15  
(ca. 8) 2.0 25.0 

HFA134a Not analysed HFA227 
 

The summarised method of producing van’t Hoff plots of lnχ (mole fraction 

solubility) vs. reciprocal temperature are in accordance with recent 

publications by Eghrary et al.[174] and Manrique et al.[175] and show the 

equilibrium solubility is increased with increasing temperature. The data are 

shown (Tables 4.1.2.3 and 4.1.2.4) for an example corticosteroid compound, 

beclomethasone dipropionate, with the van’t Hoff plot (Figure 4.1.2.1) 

highlighting the linear trends associated (correlation coefficient, r2 ≥ 0.97) for 

determinations carried out in all three propellant systems. 
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Table 4.1.2.3 – Summary of values extracted from the van’t Hoff plots of 

BDP in the three propellant systems studied. 

Propellant Gradient 
(ΔHsol/R x10-3) Intercept, C Correlation 

coefficient (r2) 
ΔHsol 

(kJmol-1) 
HPFP -4.351 5.419 0.999 36.17 

HFA134a -6.953 12.720 0.997 57.81 
HFA227 -3.740 2.092 0.970 31.10 

 

Table 4.1.2.4 – Summary of thermodynamic properties calculated from the 

van’t Hoff plots for BDP in the three propellant systems studied. 

Propellant ΔHsol 

(kJmol-1) 
ΔGsol 

(kJmol-1) 
ΔS 

(J K-1 mol-1) 
HPFP 36.2 22.7 45.1 

HFA134a 57.8 26.1 106.3 
HFA227 31.1 25.9 17.6 

Values for ΔGsol and ΔS calculated at 298 K 

 

Figure 4.1.2.1 – Van’t Hoff plot of mean solubility (n=3, ± σ) vs. temperature 

for the compound beclomethasone dipropionate in HPFP, HFA134a and 

HFA227 over the temperature range 278 to 298 K.  

Van’t Hoff plots have been produced for each of the IPPs showing solubility 

levels within the limits of determination for the NMR methodology utilised 
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over the three temperatures under study. The values obtained for the 

compounds beclomethasone dipropionate, budesonide, mometasone and 

fluticasone provide an insight into the thermodynamics involved in the 

dissolution process (Table 4.1.2.5). The observed enthalpies of solution are 

endothermic in all cases and the Gibbs free energy change values show an 

inverse correlation to the solubility values determined for the compounds, as 

anticipated. Values obtained for ΔS provide information about the entropic vs. 

enthalpic control of the solubilisation processes occurring, and it appears that 

the materials tested are exhibiting entropic control, with relatively large 

entropy change values compared to enthalpy change.[178] The numerical data 

derived from these approaches are comparable with those obtained by 

Rousseau et al.[176] in their studies on sodium naprxoxen and Bustamante et 

al.[177] in their studies on paracetamol, nalidixic acid and acetanilidein 

solutions comprising increasing ratios of dioxane in water. More compellingly, 

studies by Yusuff et al.[179] show data for spironolactone, itself a 

corticosteroid compound, directly comparable to those obtained here (ΔH = 

26.5 kJ.mol-1, ΔG=33.7 kJ.mol-1 and ΔS = -24.4 J.K--1.mol-1), though it should 

be noted that these results were obtained in aqueous solution and 

comparisons should be used with caution. 
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Table 4.1.2.5 - Summary of thermodynamic properties calculated from the 

van’t Hoff plots for beclamethasone dipropionate, budesonide, mometasone 

and fluticasone in the three propellant systems studied. 

Compound Propellant ΔHsol 

(kJmol-1) 
ΔGsol 

(kJmol-1) 
ΔS 

(J K-1 mol-1) 

Beclomethasone 
dipropionate 

HPFP 36.2 22.7 45.1 
HFA134a 57.8 26.1 106.3 
HFA227 31.1 25.9 17.6 

Budesonide 
HPFP 1.0 25.5 -82.2 

HFA134a 19.2 28.3 -30.5 
HFA227 6.5 27.3 -70.0 

Mometasone 
fuorate 

HPFP 36.7 29.3 24.8 
HFA134a - - - 
HFA227 - - - 

Fluticasone 
HPFP 13.6 29.4 -53.1 

HFA134a 35.1 30.9 14.1 
HFA227 - - - 

 

This approach has also been extended to co-solvated systems and those 

using inclusion complexes formed with budesonide and cyclodextrin; both of 

which are summarised later in this Chapter (Sections 4.2.1 and 4.2.2). 

4.2  Strategies for Solubility Enhancement in HFAs  

The solubility work carried out here, supported by other studies using off line 

analytical methodologies (evaporation of volatiles and re-constitution[180] and 

direct injection HPLC approaches[100,122,123,124]) have shown the propellants 

used in pMDI systems after the Montreal Protocol in 1987 to be poor at 

solvating IPPs, and other chemical entities used as excipients, with typical 

solubility values in the low ppm (µg/mL) range. Several studies have 

addressed the solubility of IPPs in HFA based propellant systems, and work 

has been undertaken to study the application of co-solvent models for this 

purpose.[123,181,182] Ethanol, being miscible with HFAs, and in current use in 

commercial pMDI products (QVAR™; beclomethasone dipropionate and 
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Aerospan™; flunisolide) has been chosen for evaluation here. Hoye et al. 

have recently published a study[166] in which the solubility of various organic 

compounds have been assessed in HFA134a and HFA134a / ethanol 

systems, though these compounds do not focus on IPPs and are instead 

organic compounds of varied description chosen to have wide ranging 

physical properties. Their approach was to utilise HPLC with direct injection 

filtered systems.[181,183] This uses large quantities of the compounds in 

question and requires the preparation of pMDI canisters, which is both time 

consuming and expensive. The same systems can be prepared and 

evaluated using the developed NMR set up described, with creation of 

saturated suspensions of API in HFA134a doped with any chosen 

concentration of ethanol. The preparation and evaluation of the systems is 

rapid and efficient. 

A second and less well-studied approach is the use of complexation agents 

to improve the solubility of organic compounds in HFA based formulations. A 

great deal of work has been undertaken surrounding the use of complexation 

agents in drug delivery formulations to enhance the solubility of APIs, to 

control their stability characteristics and to increase their bioavailabilty.[148,184-

196] Of particular interest to this study are the use of cyclodextrin compounds 

to improve the solubility of IPPs in HFA propellants, and the use of the newly 

developed NMR methodology to assess their solubility enhancing 

characteristics and also aid in characterising any inclusion complexes formed 

in combination with other remotely operated analytical approaches. As 

discussed previously, the NMR methodology allows more detailed 

information to be derived from the systems under study; the chemical shift 
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and multiplicity of the NMR signals observed potentially offer significant 

information about the behaviour of the host / guest complexes formed in-situ. 

4.2.1  Co-solvent Models  

The use of co-solvents in aqueous based systems may be well understood, 

with the co-solvent altering the polarity of the aqueous system to shift 

towards the polarity of the solute in question. The incorporation of co-

solvents in HFA propellant systems to modify solubility of both drug and 

excipients used as stabilisers[126] has been utilised in several commercially 

available pharmaceutical products and is beginning to be discussed further in 

recent literature,[97,98] though their effect and action appears to be less well 

understood. For example, little work has been reported in the area of solvent 

interactions in pure HFA solvents, and no conclusions have been drawn as to 

whether molecules in the solvents undergo hydrogen bonding. Recent work 

by Conti et al.[197] has studied the effect of increasing the volume fraction of 

ethanol in HPFP on the solubility of alkyl, ether and ester functions using 

chemical force microscopy (an analogue of atomic force microscopy using 

modified tips) to determine the adhesion force of these moieties to HPFP with 

and without ethanol present. This was undertaken with a view to 

understanding the role of ethanol co-solvents in surfactant pMDIs such as 

those formulated with oleic acids (alkyl), polyethylene glycols (ether) and 

polylactic acids (ester) excipients. They determine experimentally that the 

addition of ethanol to the HPFP decreases the adhesion force of the moieties 

in order of ester > ether > alkyl hence predicting an increase in the solubility 

in the same order. They postulate that the interaction is in the ethanol’s alkyl 

chains orienting themselves to surround the alkyl containing solute, offering 
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the OH groupings to the HPFP solvent.  Cote et al.[198] have undertaken 

similar studies with HPFP and its fully fluorinated analogue perfluoropentane 

establishing miscibility parameters (lower critical solution temperatures) for 

the systems with polyethylene glycols and polyethylene oxides. It appears 

that limited work has been undertaken to examine the effects of ethanol 

addition to HFAs for compounds used specifically in inhaled formulations. 

The studies performed here have begun to provide an insight into these 

specific compounds, and used van’t Hoff approaches to ascertain 

thermodynamic characteristics of the budesonide system using approaches 

similar to those employed in the pure HFAs (Section 4.1.2). 

4.2.1.1 Solubility Measurements in HPFP / Ethanol 

The NMR method developed and discussed in this thesis allows the rapid 

study of HFA propellant systems co-solvated with ethanol in this way, though 

further development of the system was required for the analysis of systems 

incorporating ethanol (Section 2.5.1). The revised method was used to study 

systems of budesonide in HPFP (and HFA134a, Section 4.2.1.2) co-solvated 

with ethanol, and it is immediately apparent that the solubility increases 

markedly. The developed method was used to study budesonide in HPFP 

with increasing ratios of ethanol at 2.5, 5, 10, 15 and 20 % v/v. Gupta et 

al.[181] concluded that ethanol concentrations above 20% v/v have been 

shown to plateau in terms of solubility and concentrations even lower than 

this can have detrimental effect on the aerosolisation properties of the 

formulation. Smyth[113,116] also showed that the aerodynamic particle size 

fractions were detrimentally affected by larger volume fractions of ethanol 

with the reduction of vapor pressure brought about by the co-solvent 
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inclusion. The study performed here was therefore limited to preparations 

below this level (20 % v/v maximum). The tabulated data are displayed 

(Table 4.2.1.1.1) with a graphical representation of the budesonide solubility 

as a function of the ethanol co-solvent concentration shown as Figure 

4.2.1.1.1, demonstrating a linear relationship (correlation coefficient, r2 ≥ 0.99) 

between the budesonide solubility and ethanol concentration at the levels 

analysed. The effect is thought to be a result of the changing polarity of the 

solution, with increasing ethanol fractions shifting the polarity of solvent 

towards that of the solute. 

Table 4.2.1.1.1 – Solubility levels of budesonide in solutions of increasing 

volume ratio of ethanol in HPFP as determined by in-situ NMR. 

EtOH (% v/v) 
Budesonide solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 
0.0 90 90 88 89 1.1 1.3 
2.5 386 362 338 362 23.9 6.6 
5.0 1209 1127 1204 1180 46.1 3.9 

10.0 2106 2073 2123 2101 25.6 1.2 
15.0 3756 3617 3670 3681 69.9 1.9 
20.0 4559 4416 4435 4470 77.5 1.7 

 

  



 147 
 

 

Figure 4.2.1.1.1 – Mean budesonide solubility (n=3, ± σ) as a function of 

ethanol co-solvent concentration (% v/v) in HPFP. 

Further experiments were performed using VT NMR to study the temperature 

effects on solubility for the budesonide system in 10% v/v ethanol, accessing 

the associated thermodynamic data as with previous systems in pure HPFP 

(Section 4.1.2). Systems were analysed at five temperatures between 303 

and 278 K, with the van’t Hoff plot (Figure 4.2.1.1.2) showing the linear trend 

associated (correlation coefficient, r2 ≥ 0.95) with this system. These data are 

consistent with those observed in pure HPFP and in systems incorporating 

cyclodextrins as complexation agents. The thermodynamic data aid in the 

understanding of the interaction of budesonide in HPFP and inference may 

be extended to the other corticosteroid systems. Table 4.2.1.1.2 shows ΔHsol, 

ΔGsol and ΔSsol values calculated using the van’t Hoff approaches for 

budesonide in pure HPFP, with 10% v/v EtOH in HPFP and with 
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incorporation of TRIMEB as a complexation agent summarised later in this 

Chapter (Section 4.2.2). The data strongly suggest a shift in the 

thermodynamics of the systems; ΔG values show the previously observed 

and expected inverse relationship to solubility i.e. less free energy change 

associated with the dissolution process results in an elevated solubility value. 

However, the ΔH and ΔS values are key to understanding the solubilisation 

enhancement brought about by the CD inclusion and the EtOH co-solvent. 

Significant differences are observed in ΔH and ΔS values obtained, with both 

increasing. The difference between the ΔH and ΔS values decreases 

markedly with inclusion of CD in the formulation, and further still by addition 

of ethanol. This suggests that the systems are moving away from entropic 

control and towards enthalpic control[177,178] i.e. the entropy component is 

contributing less to the solubilising process. This suggests that the addition of 

TRIMEB to HPFP and to a greater extent addition of EtOH to HPFP 

increases the entropy of the solution meaning the solvent system is 

becoming less ordered, favouring solubility of budesonide in the solvent 

mixture. 
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Figure 4.2.1.1.2 – Van’t Hoff plot of solubility (n=3, ± σ) vs. temperature for 

budesonide in HPFP co-solvated with 10 % v/v ethanol over the temperature 

range 278 to 303 K. 

Table 4.2.1.1.2 – Thermodynamic data derived from van’t Hoff approaches 

for budesonide in pure HPFP, with TRIMEB inclusion and with 10 % v/v 

EtOH co-solvent. 

 ΔHsol (kJ.mol-1) ΔGsol (kJ.mol-1) ΔSsol (kJ.mol-1) 
HPFP 1.8 26.5 -80.0 

TRIMEB 8.4 21.8 -45.0 
HPFP / 10 % v/v 

EtOH 15.2 17.4 -7.3 

Values for Gsol and ΔS calculated at 298 K 

4.2.1.2 Solubility Measurements in HFA134a / Ethanol  

Measurements made in HFA134a / EtOH give data that can be used in the 

assessment of product formulation strategies for truly representative pMDI 

systems. The NMR method has been modified very slightly to supress 
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HFA134a proton signals in concert with ethanol resonances. A repositioning 

of the suppression chemical shift values to account for the difference in the 

HFA134a multiplet and the slight shift in the ethanol resonance positions in 

the different solvent are the only method parameters that need addressing, 

and the exercise can be repeated (though a modified sample preparation 

method has to be employed and is given in Chapter 3, Section 3.1.12). The 

results for the solubility of budesonide assessed in HFA134a co-solvated with 

2.5, 5, 10, 15 and 20 % v/v EtOH are shown (Table 4.2.1.2.1) with Figure 

4.2.1.2.1 displaying a plot of the solubility vs. EtOH concentration. As with 

HPFP model propellant the relationship is shown to be linear over the range 

of ethanol concentrations investigated (correlation coefficient, r2 ≥ 0.99), 

though the values are shown to be consistently lower than those determined 

in HPFP. These data and the ease and speed with which they were obtained 

using the developed NMR method should prove to be extremely useful for 

formulators looking to propose new pMDI formulations for budesonide, and 

show the speed and ease with which other compounds can be assessed in 

formulations doped with any concentration of ethanol or any other co-solvent 

of interest. The data are consistent with those observed by Hoye et al.[166] 

where they also observe a linear relationship between solute solubility and 

ethanol concentration for the compounds under investigation. 
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Table 4.2.1.2.1 – Solubility levels of budesonide in solutions of increasing 

volume ratio of ethanol in HFA134a as determined by in-situ NMR. 

EtOH (% v/v) 
Budesonide solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

(n=3) 
0.0 52 58 50 53 4.1 7.9 
2.5 285 271 277 278 7.4 2.7 
5.0 862 822 837 841 20.2 2.4 

10.0 1364 1372 1423 1386 31.8 2.3 
15.0 1943 1983 1913 1946 34.8 1.8 
20.0 2979 2958 2916 2951 32.0 1.1 

 

 

Figure 4.2.1.2.1 – Mean budesonide solubility (n=3, ± σ) as a function of 

ethanol co-solvent concentration (% v/v) in HFA134a. 
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4.2.1.3 Solubility Enhancement of IPPs in Ethanol Co-solvated 

HPFP 

Further to the study of budesonide in ethanol co-solvated HPFP and 

HFA134a systems, the IPPs investigated in HPFP, HFA134a and HFA227 

have been re-evaluated in HPFP co-solvated with 10 % ethanol. The model 

system is easy to work with and gives very rapid indicative data for the 

behaviour of the IPPs under study in formulations containing ethanol co-

solvents.  The data obtained are displayed in Table 4.2.1.3.1 shown 

alongside solubilities in pure HPFP for comparison (Section 4.1.1). The 

majority of the samples examined show an increase in solubility as may be 

expected with the addition of a polar solvent to the systems; three 

compounds (salbutamol sulphate, salmeterol xinafoate and terbutaline 

sulphate) show values less than LOD of the method, and so conclusion 

cannot be drawn here. Each of the ICS compounds has shown a 

considerable increase, with factors of up to 1200 times the solubility values of 

those determined in pure HPFP. The more polar compounds have shown a 

less dramatic effect, with salbutamol base and ipratropium bromide being the 

only compounds in this category to show a large step change in solubility 

value. The logP values of HPFP and EtOH are 3.84 and -0.19[166] 

respectively; therefore the addition of ethanol to the fluorinated compound 

increases the polarity of the solution (lowers logP). It may be expected that 

the increase in polarity would have a more dramatic effect on the compounds 

more polar in nature themselves i.e. the β2 agonists, though that is not what 

has been observed here. These data contradict those observed by Hoye et 

al.[166], though their studies were performed in ethanol co-solvated HFA134a, 
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itself more polar than HPFP with a logP value of 1.1.[166] It is suspected that 

the addition of ethanol to HFA134a has a more significant effect on the 

overall polarity of the matrix when compared to HPFP / ethanol mixtures, and 

this may account for the disparity in the data sets. Additionally, it may be 

indicative of the solubility enhancement being more complex than by 

controlling polarity alone and further study of fluorinated solvents such as 

those undertaken by Conti et al.[197] and Cote et al.[198] are required to better 

understand the interactions taking place.  

Table 4.2.1.3.1 – Solubility data for IPPs formulated in HPFP and 10 % 

ethanol doped HPFP as determined by reverse co-axial NMR and HPLC at 

298 K. 

IPP 
Concentration (µg/mL) Factor 

Increase HPFP 10 % EtOH / HPFP 
Beclomethasone 

dipropionate 334 6399 19 
Beclomethasone base 0.2 254 1270 

Budesonide 89 2100 24 
Fluticasone propionate 22 443 20 

Ipratropium bromide 2.0 250 125 
Mometasone fuorate 24 381 16 

Salbutamol base 1.4 961 686 
Salbutamol sulphate 0.2 < 15 - 
Salmeterol xinafoate 0.06  < 15 - 
Terbutaline sulphate 0.05 < 15 - 

 

4.2.2  Complexation 

Cyclodextrin (CD) molecules have been used for a considerable time in 

pharmaceutical preparations. The ability of CDs to solubilise and stabilise 

pharmaceutical compounds was first described in the 1950’s.[184] Their use in 

aqueous based formulations as solubility enhancers is well 

documented,[185,186] with β-CD being most widely used as host because its 
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cavity size is most suited to the inclusion of small molecule (pharmaceutical) 

guests.[179] It has however, the lowest aqueous solubility of the commonly 

available CDs (Table 4.2.2.1). This has been attributed to an increase in the 

intra-molecular hydrogen bonding detracting from the available solvation 

sites in the molecule and hence, aqueous solubility.[179] Derivatisation of any 

of the hydroxyl groups with aliphatic groups (producing, for example, 

methoxy or ethoxy substituents) dramatically increases aqueous solubility. 

The aqueous solubility of methylated β-CD increases with degree of 

methylation and reaches a maximum when 14 of the 21 available hydroxyl 

groups are substituted. Further methylation reduces the solubility, though the 

completely substituted (permethylated) version of the molecule still has a 

considerably higher solubility than that of the unsubstituted β-cyclodextrin.[195] 

Table 4.2.2.1 – Characteristics of the common cyclodextrin molecules. 

 α β γ δ 
No. glucopyranose units 6 7 8 9 

Molecular weight 972 1135 1297 1459 
Central cavity diameter (Å) 4.7-5.3 6.0-6.5 7.5-8.3 10.3-11.2 

Aqueous solubility (% w/v @ 25°C) 14.5 1.85 23.2 8.19 
 

The molecular structures of β-CD and heptakis-(2,3,6-tri-o-methyl)-β-

cyclodextrin (TRIMEB) are shown in Figure 4.2.2.1. The two β-CD 

compounds were chosen for further study due to the cavity size; it being 

extensively used in solubilisation studies with pharmaceutical molecules. As 

the β-CD is to be utilised in fluorinated solvent systems as opposed to 

aqueous based media, the unsubstittuted form was investigated alongside 

the permethylated version of the molecule, TRIMEB, to maximise the 

possibility of solubility enhancement. 
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Figure 4.2.2.1 – Molecular structures of β-CD and TRIMEB showing the 

addition of methyl groupings on the TRIMEB molecule. 

For each of the systems analysed at 298 K, solubility data for the individual 

CDs and the complexed budesonide / TRIMEB samples in each of the 

fluorinated solvent systems were calculated. Note that the budesonide / β-CD 

system was not analysed as a complex in light of the low β-CD solubility in 

pure form. The data obtained in these experiments is summarised (Tables 

4.2.2.2 and 4.2.2.3) quoted with a mean value and associated precision 

estimate (σ and % CV). 

Table 4.2.2.2 – Results of CD solubilities at 298 K in HPFP, HFA134a and 

HFA227. 

Compound Propellant 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

β-CD 
HPFP < 15 < 15 < 15 < 15 -  

HFA134a < 15 < 15 < 15 < 15 -  
HFA227 < 15 < 15 < 15 < 15 -  

TRIMEB 
HPFP 3700 3800 3900 3800 0.1 2.6 

HFA134a 3100 3300 3800 3400 0.4 10.6 
HFA227 4500 4000 4600 4500 0.1 1.3 
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Table 4.2.2.3 – Results of budesonide  / TRIMEB solubilities from the mixed 

solutions at 298 K in HPFP, HFA134a and HFA227. 

Compound Propellant 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

TRIMEB 
HPFP 2900 2500 2600 2700 0.2 7.8 

HFA134a 1300 1000 1000 1100 0.2 15.7 
HFA227 2500 2500 2300 2400 0.1 4.7 

Budesonide 
HPFP 333.9 439.1 414.2 395.7 55.0 13.9 

HFA134a 130.5 130.8 126.2 129.2 2.6 2.0 
HFA227 627.8 849.9 853.9 777.2 129.4 16.6 

 

It is clear that TRIMEB has a significant solubility in the fluorinated solvent 

systems employed in these studies, having values between 1 and 3 mg/mL 

compared to values of ca. 10 – 100 µg/mL for the IPP molecules. It follows 

that any complexation occurring with budesonide and TRIMEB in solution 

should have a dramatic effect on the solubility in association. Results for the 

β-CD suggest that the solubility of this compound is low in all three solvent 

systems, and the structural differences between the two sugars would 

account for the differing solubility. The TRIMEB has the addition of three 

methoxy functional groups on the ring (per monomer) which appear to be 

interacting with the fluorinated solvents and increasing solubility as is 

observed in aqueous systems[179] and highlighted earlier in this section.  

The solubilities of budesonide in the systems including TRIMEB have shown 

significantly increased solubility in HPFP, HFA134a and HFA227, with 

increases of x4.5, x2.5 and x13.2 respectively showing the largest increase in 

HFA227. The increasing solubility seen over the replicates in HFA227 and 

the resultant increase in precision values observed also suggest the systems 

may take a significant time to reach equilibrium; itself indicative of complex 
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formation. It is notable that the budesonide solubility increase appears at the 

expense of TRIMEB solubility i.e. the TRIMEB solubility is retarded providing 

further evidence that a complex is formed between the two compounds, 

where the carrier compound controls the process.[179]  

Further experiments were performed on the solutions of budesonide, 

TRIMEB and the 50:50 mix in HPFP, to allow the physical chemistry of the 

inclusion complex to be studied further by incorporating further data points in 

the van’t Hoff plots (308 and 288 K) for the budesonide and generating new 

data series for the TRIMEB and the mix. The van’t Hoff plots are shown as 

Figure 4.2.2.2, with the additional data points resulting in minor numerical 

changes to ΔH, ΔG and ΔS values calculated for budesonide (Table 4.2.2.5) 

by slightly altered slope values obtained over the extended data range 

(compared to data shown in Section 4.1.2). Data for TRIMEB and both 

components of the mix are also shown. 

  



 158 
 

 

Figure 4.2.2.2 – Van’t Hoff plot of mean solubility (n=3, ± σ) vs. temperature 

for the compounds budesonide, TRIMEB, and the mix (budesonide / 

TRIMEB) in HPFP over the temperature range 278 to 308 K. 

Table 4.2.2.4 – Summary of values extracted from the van’t Hoff plots of 

budesonide, TRIMEB and the mix. 

Compound Gradient 
(ΔHsol/R x10-3) 

Intercept, 
c 

Correlation 
coefficient (r2) 

ΔHsol 

(kJmol-1) 
Budesonide -0.216 -9.56 0.85 1.8 

TRIMEB -2.693 1.37 0.97 22.3 
Budesonide (mix) -1.004 -5.41 0.90 8.4 

TRIMEB (mix) -2.713 0.97 0.99 22.6 
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Table 4.2.2.5 – Summary of thermodynamic properties calculated from the 

van’t Hoff plots for budesonide, TRIMEB and the mix. 

Compound ΔHsol
 

(kJmol-1) 
ΔGsol

 

(kJmol-1) 
ΔSsol 

(J K-1 mol-1) 
Budesonide 1.8 25.5 -79.6 

TRIMEB 22.3 19.2 10.67 
Budesonide (mix) 8.4 21.8 -45.2 

TRIMEB (mix) 22.6 20.1 8.4 
Values for Gsol and ΔS calculated at 298 K 

These thermodynamic data aid in understanding the solubility changes 

observed in complexed form. Although they exclude any contribution from 

molecular interactions between similar molecules in solution,[179] the 

thermodynamic calculations aid in interpreting the solubility observations 

made. Budesonide exhibits a larger ΔS value and a lower ΔG value in its 

complexed form when compared with the values obtained for the free 

compound and in contrast, a decrease in ΔS for TRIMEB is observed hence 

an increase in the solubility of budesonide is apparent. 

Further to the numerical data for solubility values derived from the NMR 

approach, the method allows structural data inherent in NMR data to be 

interrogated. If we compare NMR spectra of budesonide, TRIMEB and 

budesonide / TRIMEB complexes, it is apparent that there are significant 

differences in the chemical shift and multiplicity values showing structural 

changes within the systems. Stacked NMR spectra of budesonide and 

budesonide / TRIMEB complex are shown with a spectral expansion in the 

lowfield range showing the A-ring resonances (Figure 4.2.2.3). The spectra 

have been referenced (δ) to the CHCl3 incorporated for quantitation, and it is 

immediately apparent that there are significant shifts in the resonance 

frequencies for the A-ring protons of the budesonide molecule downfield, 
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consistent with observations made when compounds are successfully 

complexed by Castiglione et al.[187] and Marangoci et al.[188] in their studies 

using TRIMEB and unsubstituted β-CD respectively. More minor frequency 

changes are observed for the chemical shift values of TRIMEB in isolation 

and when complexed with budesonide (Figure 4.2.2.4), where the ring 

protons show only subtle shifts in δ, particularly those of the C6-H, C5-H and 

C3-H protons at 3.26, 3.17 and 2.90 ppm respectively. These observations 

are consistent with Marangoci et al.[188] who conclude that these protons are 

on the inner cavity of the TRIMEB, and are providing the primary interaction 

in the complex, leaving the outer protons and those on the methyl 

functionalities largely unaffected. 

 

Figure 4.2.2.3 – 1H NMR spectra of budesonide (a) and budesonide / 

TRIMEB complex (b) in HPFP expanded in the high field region showing 

budesonide A-ring chemical shift and multiplicity changes. 

(a) 

(b) 
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Figure 4.2.2.4 – 1H NMR spectra of TRIMEB (blue) and budesonide / 

TRIMEB complex (red) in HPFP expanded in the region showing CD 

chemical shift changes. 

The effect seen in HPFP is also observed in HFA134a and HFA227. Spectral 

overlays of budesonide and budesonide / TRIMEB expanded in the low field 

region show similar chemical shift and multiplicity changes in the A-ring 

protons of budesonide (Figures 4.2.2.5 and 4.2.2.6). The data observed in all 

three propellant systems would suggest that inclusion complexes are 

occurring; the solubility is increased by large factors, particularly in HFA227, 

and the movements in chemical shift values indicate there is an interaction 

between the budesonide and the TRIMEB molecule, particularly in the A-ring 

region of the steroidal backbone. 
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Figure 4.2.2.5 – 1H NMR spectra of budesonide (a) and budesonide / 

TRIMEB complex (b) in HFA134a expanded in the high field region showing 

budesonide A-ring chemical shift and multiplicity changes. 

  

(a) 

(b) 
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Figure 4.2.2.6 – 1H NMR spectra of budesonide (a) and budesonide / 

TRIMEB complex (b) in HFA227 expanded in the high field region showing 

budesonide A-ring chemical shift and multiplicity changes. 

Further systematic study was undertaken with controlled molar ratios of 

budesonide : TRIMEB in an attempt to characterise and increase our 

understanding of the dynamic inclusion systems. Preparation of physical 

mixtures of the substances at 0.5:1, 1:1 and 2:1 mole ratio were dissolved in 

HPFP doped with ethanol as outlined in experimental section 2.4.4. Crystals 

were harvested and investigated further using FTIR and Raman 

spectroscopy. Vibrational spectroscopy highlights some subtle differences 

between the isolated complexes that are consistent with the data obtained in 

the in-situ NMR measurements. Wavenumber shifts are observed in the 

complexed material produced from solution, particularly around the 

budesonide A-ring. Previous work by Ali et al.[200] has made the following 

Raman assignments in the A-ring (i) 1602 cm-1, ν(C=C), ring (ii) 1626 cm-1, 

(a) 

(b) 
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ν(C=C), ring (iii) 1655 cm-1, ν(C=C), quinone and (iv) 1712 cm-1, ν(C=O), 

quinone. These bands show significant changes in the material produced in 

the complexation experiments when compared to those of pure budesonide. 

Particularly apparent, are the shift of the intense band at 1655 cm-1 moving to 

a higher wavenumber (1661 cm-1) and the significant reduction in the band at 

1626 cm-1. There is also a marked shift and band shape difference in the 

ν(C=O) quinone function, thought to be a result of hydrogen bond 

interactions with the TRIMEB, and the bands are also all significantly 

broadened. These band differences are shown in the overlaid Raman spectra 

of budesonide and TRIMEB references shown with the 1:1 complex material 

produced from solution (Figures 4.2.2.7 and 4.2.2.8).  

 

Figure 4.2.2.7 – Raman spectra of pure budesonide (a), pure TRIMEB (b) 

and 1:1 complex (c) material produced from solution in the region 200 – 1800 

cm-1. 

  

(a) 

(b) 

(c) 
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Figure 4.2.2.8 –Raman spectra of pure budesonide (a), pure TRIMEB (b) 

and 1:1 complex material (c) produced from solution in the spectral region 

1500 – 1800 cm-1 showing shifts in the A-ring bands. 

FTIR data obtained on the same materials shows shifts in the same bands as 

the Raman data (Figures 4.2.2.9 and 4.2.2.10). 

  

(a) 

(b) 

(c) 
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Figure 4.2.2.9 – FTIR spectra of pure budesonide (a), pure TRIMEB (b) and 

1:1 complex material (c) produced from solution in the spectral region 700 – 

2000 cm-1. 

 

Figure 4.2.2.10 – FTIR spectra of pure budesonide (a), pure TRIMEB (b) and 

1:1 complex material (c) produced from solution in the spectral region 1500 – 

1800 cm-1.The data observed in-situ using the NMR methodology and by 

remote spectroscopic means post crystallisation approaches are consistent 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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with materials forming complexes. The spectral data in all cases highlight 

marked differences in the A-ring region of the budesonide molecule, 

suggesting that complexes formed with the TRIMEB are involving this region 

of the molecule. These observations are consistent with those made by 

Glomot et al.[201] and Nikai et al.,[202] in which observations of spectroscopic 

carbonyl shifts are made in inclusion complexes with cyclodextrins and 

steroid molecules. A study by Bandi et al.[38] has also shown carbonyl shifts 

in FTIR measurements made on budesonide : hydroxypropyl-β-cyclodextrin 

complexes derived from supercritical fluid processing that are consistent with 

those observed and reported here. These data suggest that the inclusion 

complexes formed are consistent with the steroidal ‘backbone’ of the 

budesonide molecule interacting with the cavity of TRIMEB.  
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The studies presented in this chapter have utilised the qNMR method 

developed (Chapter 3) to establish the solubility of IPPs in HFAs for the first 

time. These are below 100 µg/mL, with the exception of the ICS BDP. The 

ICS compounds consistently show higher solubility levels than the β2-agonist 

and antimuscarinic bronchodilators, though the capacity of the HFAs for 

solubilising these compounds remains very low in absolute terms. VT-NMR 

has allowed access to thermodynamic behaviours of the systems through 

van’t Hoff approaches. The solvation processes show the anticipated 

reduction in Gibb’s free energy change with increasing solubility, and suggest 

entropic over enthalpic control. Solubility enhancements brought about by 

inclusion of ethanol as a co-solvent show a linear relationship for the ICS 

budesonide in the model propellant HPFP and in HFA134a with 

concentration. Derivatised and underivatised β-cyclodextrin solubility in the 

propellants has been assessed; TRIMEB showing significant solubility and 

underivatised being sparingly soluble. TRIMEB has also been shown to 

significantly increase the solubility of budesonide in the HFAs under study 

and spectroscopic techniques have been successfully used to evidence the 

formation of host : guest inclusion complexes. Full conclusions are presented 

in Chapter 7. 
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5  Solid State Characterisation of IPPs Post Deposition 

 

This chapter describes the development approaches for the investigation of 

the solid state of materials deposited from pMDI formulations. Previous 

chapters in these studies have primarily focussed on the development of 

methodologies to provide an insight into the behaviour of IPPs in solutions / 

suspensions in HFAs used in pMDI formulations. However, of equal 

importance are the properties of the materials after actuation of the pMDI 

device and as they deposit on the surface. Whilst the assessment of 

aerodynamic parameters such as mass median aerodynamic diameter 

(MMAD), geometric standard deviation (GSD) and fine particle dose / fraction 

(FPD/FPF) on pMDI products is commonplace,[203,204] few approaches are 

developed to probe the material properties in terms of their physical form and 

their particle morphology, size and distribution at deposition. In the following 

sections, several new approaches are developed for the study of the 

deposited materials and highlight the insight these give in combination with 

modern analytical approaches.  

5.1  Methods for Aerodynamic Particle Size Distribution (APSD) 

Dynamic Light Scattering (DLS) and Laser Diffraction (LD) are common 

methods for the assessment of particle size in suspensions and powders, 

and their application to aerosols has become more commonplace as 

attachments for study of doses emitted from nebulisers, DPIs and pMDIs 

have become available.[205,206]  However, impaction and impingement 

apparatus for measurement of aerodynamic particle size (APSD) are widely 

accepted in the pharmaceutics arena and are necessary in the regulation of 
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inhaled products.[132] These broadly use the principles of inertial impaction to 

segregate particles of different aerodynamic particle size.[76] Most commonly, 

the apparatus comprise a series of stages, with jets (nozzles) of specific 

diameter through which air is drawn by vacuum pumping, underneath which 

sits a collection plate for each stage. The particles are introduced at the top 

of the apparatus by actuation of the inhalation device and are segregated 

onto the series of plates by means of whether the particle impacts on the 

stage or is retained in the airflow and travels further through the system 

(gravitational and electrical effects are assumed negligible). The 

aerodynamic particle size, and hence its inertia, dictate which particular stage 

it will be deposited on. This is an important distinction as the density is 

included in the measurement i.e. mass and velocity are important 

(momentum), unlike with more conventional particle sizing approaches such 

as DLS and LD.[84] The impaction measurement and calculation of APSD is 

however based on the assumptions that (i) the particles are spherical and of 

unit density and (ii) there is no particle bounce.[207] Figure 5.1.1 shows a 

schematic diagram highlighting the principles of inertial impaction under 

which these apparatus operate. Impactor and impinger systems offer the 

opportunity to interrogate particulate fraction in the context of lung deposition. 

They will be used as appropriate as the basis for fractionating solid deposits 

for subsequent microscopic and macroscopic interrogation. It will, therefore, 

be useful in the context of these studies to briefly describe the configuration 

of the apparatus; important in discussing the application and limitations of 

applying these for the study of deposited materials. 
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Figure 5.1.1 – Schematic representation of the mode of action of inertial 

impaction apparatus.[212] 

These types of apparatus have been widely utilised over several decades[213] 

to characterise inhaled products and form the basis for the Pharmacopoeial 

(USP and PhEur)[132] assessment of aerodynamic particle size from pMDI 

and DPI devices. Additionaly, as well as the more recently developed 

aqueous droplet inhalers (ADIs), they also form the basis for tests on 

nebulisers and nasal devices with minor adaptations. The related impinger 

apparatus use the same physical principles of inertial impaction, though are 

termed differently as they collect the impacted particles on a liquid surface as 

opposed to solid collection plates. The measurements are of critical 

importance to pharmaceutical product development, forming the basis for the 



 172 
 

in-vitro testing performed on inhaled products to ascertain the viable dose 

likely to reach the inner airways of the lung and have a therapeutic effect. In 

their simplest form, an impaction or impingement device will separate the 

dose into two fractions; respirable and non-respirable. Such fractions are 

normally defined as those which deposit in the inner airways, and those 

which deposit in the oropharynx and are ingested. Additionally, such 

classification can be further separated into sub-fractions of defined 

aerodynamic particle size, particularly useful in estimating the propensity for 

intra-thoracic deposition.[76] 

Both types of apparatus are used by convention (and following 

Pharmacopoeial methods) in conjunction with quantitative remote analysis. 

This is usually based on chromatographic methods HPLC / GC, and gives 

the amount of API deposited on each stage. These quantitative levels of API 

then allow the subsequent calculation of aerodynamic properties such as fine 

particle dose (FDP), fine particle fraction (FPF) and mass median 

aerodynamic diameter (MMAD) / geometric standard deviation (GSD) after 

further data manipulation.[76] Whilst also considered here, of particular 

interest to these in-situ characterisations are the utilisation of impactors and 

impingers to fractionate inhaled materials into stages by respirable and non-

respirable portions (and by more discrete portions as appropriate) for 

isolation and microscopic / solid form studies. This approach requires 

modifications to be made to the impingement apparatus to collect solid 

material before it is entrained in the liquid of the receiver. By contrast, 

impaction devices can be operated as per Pharmacopoeial methods with little 

modification. Five specific types of impinger / impactor are listed in the US 
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and European Pharmacopoeia (i) Twin Stage Glass Impinger (TSI) (ii) Multi-

Stage Liquid Impinger (MSLI) (iii) Marple Miller Impactor (MMI) (iv) Anderson 

Cascade Impactor (ACI) and (v) Next Generation Impactor (NGI). Only three 

are shared between the two and are summarised in more detail in the 

following sections 5.1.1 to 5.1.3. 

5.1.1  Twin Stage Impinger (TSI) 

The TSI is the simplest form of inhalation assessment and was developed 

originally at Glaxo SmithKline’s laboratories in Ware, UK. It has, to a large 

extent, been superseded by the use of ACI and NGIs as it is generally 

accepted that the apparatus should have a minimum of 5 stages to provide 

adequate size distribution results. However, it still has a useful role in initial 

quality assessment because of the speed and ease of use. The simple 

arrangement of glassware (Shown in Section 2.5.4, Figure 2.5.4.1) separates 

the non-respirable portion by deposition in the throat (sections B and C) and 

upper impingement chamber (section D), with a particle cut-off of 6.4 µm 

when operated at a flow of 60.0 L/min.[76] The respirable fraction of the test 

substance, i.e. that of < 6.4 µm, is passed through to the second stage of the 

apparatus and is collected by liquid impingement in the solution contained in 

the final flask (section G). 

5.1.2  Anderson Cascade Impactor 

The ACI has previously been considered to be the most commonly used of 

the impaction devices within the pharmaceutical sector, though is perhaps 

becoming superceeded by the NGI (5.1.3). The ACI fulfils the requirement for 

an impaction device to have a minimum of 5 collection stages. The fully 
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assembled ACI has a total of 8 stages to collect deposited material. The 

apparatus allows the product from pMDI or DPI devices to be separated into 

respirable and non-respirable fractions by the principles of inertial impaction. 

The respirable fraction is divided into 8 particle cut-off levels (a primary 

advantage over the TSI). The particle size cut-offs are given in Table 5.1.2.1. 

These cover the size ranges of importance in pulmonary deposition (0.1 to 10 

µm)[205] when operated as stated in Ph.Eur methodology[132] at 28.3 L/min. 

Table 5.1.2.1 – Particle size cut-offs of the ACI when operated at 28.3 L/min 

as outlined in the Ph.Eur[132] 

Stage Particle Size / µm 
0 > 9.0 
1 5.8 
2 4.7 
3 3.3 
4 2.1 
5 1.1 
6 0.7 
7 0.4 

 

The stages are arranged in a vertical orientation in an ACI, with the stream of 

airbourne particles passing down the system. Particles with sufficient inertia 

will impact on the stage and be retained there, whilst those with insufficient 

inertia (i.e. the smaller particles) will remain in the airflow and pass through to 

the next stages of the system. A schematic is shown as Figure 5.1.2.1. 

Several drawbacks to the use of the ACI have been described. Particle 

bounce and re-entrainment into the airflow have been noted, particularly with 

the use of DPI devices, while overloading of the impaction stages and inter-

stage losses have also been identified.[76,205]  
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Figure 5.1.2.1 – Schematic diagram of an Anderson Cascade Impaction 

apparatus.[206] 

5.1.3  Next Generation Impactor 

The NGI device was developed from 1997 by a consortium of several large 

pharmaceutical companies.[76] The apparatus was launched in 2000 and was 

adopted by both the USP and PhEur in 2005. The apparatus works on the 

principles of inertial impaction as with other devices, however the horizontal 

orientation of the airstream flowing in a saw-tooth path is unique. The NGI 

comprises 7 stages and a micro-orifice collector (MOC), with 5 of the stages 

Device 
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having cut-off diameters between 0.5 and 5 µm. The apparatus has been 

developed to allow use over a larger flow range than other devices without 

the need for further modification, and will allow experimentation between 30 

and 100 L/min with cut-off diameters between 0.24 and 11.7 µm,[132] with 

nebulisation experimentation at 15 L/min being possible with an additional 

calibration step. At a flow rate of 60 L/min when operated in accordance with 

Ph.Eur methodology[132] the NGI gives fractionation as presented in Table 

5.1.3.1. 

Table 5.1.3.1 - Particle size cut-offs of the NGI when operated at 60.0 L/min 

as outlined in the Ph.Eur.[132] 

Stage Particle Size / µm 
1 8.06 
2 4.46 
3 2.82 
4 1.66 
5 0.94 
6 0.55 
7 0.34 

 

The NGI stages are in the form of removable cups, aiding greatly in 

dissolution of the contents into a solvent for remote chromatographic 

analysis. Automated sample workup systems are now available from specific 

apparatus manufacturers.[76] The final stage of the NGI (the MOC) has a 

nominal 4032 hole (70 µm diameter) configuration, and is capable of 

removing in excess of 80% of 0.14 µm particles when operated at a flow rate 

of 60 L/min.[132] This removes the need for a filter stage for most applications. 

A schematic diagram of an NGI is shown (Figure 5.1.3.1). 
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Figure 5.1.3.1 – Schematic diagram of a Next Generation Impactor 

apparatus.[76] 

5.2  Method Development for Solid Form Investigations 

5.2.1  Aerodynamic Particle Size Distribution (APSD) 

Use of the summarised impaction / impingement systems (section 5.1) for the 

characterisation of FPF / FPD (and MMAD / GSD) has become the 

pharmaceutical industry standard and is incorporated in the USP and Ph.Eur. 

The latter states “This test [preparation for inhalation] is used to determine 

the fine particle characteristics of the aerosol clouds generated by 

preparations for inhalation. Unless otherwise justified and authorised, one of 

the following apparatus and test procedures is used (i) Twin Stage Impinger 
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(ii) Multi Stage Liquid Impinger (iii) Anderson Cascade Impactor or (iv) Next 

Generation Impactor.”[132] 

Experimental methods are outlined in each case for the assessment of 

aerodynamic particle size (though not MSLI in the USP) from nebulisers, 

pMDIs and DPIs separately, and are not transposed verbatim in this text. For 

each apparatus, a calculation method is given to calculate reliably the 

aerodynamic properties of the test item. The method specified for 

determination using an ACI type apparatus is shown below, and is 

transposed directly:[132] 

“From the analysis of the solutions, calculate the mass of active substance 

deposited on each stage per discharge and the mass of active substance per 

discharge deposited in the induction port, mouthpiece adaptor and when 

used, the pre-separator.  

Starting at the final collection site (filter), derive a table of cumulative mass 

vs. cut-off diameter of the respective stage (Table 5.2.1.1). Calculate by 

interpolation the mass of the active substance less than 5 µm. This is the 

Fine Particle Dose (FPD). 

If necessary, and where appropriate (e.g. where there is a log-normal 

distribution), plot the cumulative fraction of active substance vs. cut-off 

diameter on log probability paper, and use this plot to determine values for 

the Mass Median Aerodynamic Diameter (MMAD) and Geometric Standard 

Deviation (GSD) as appropriate. Appropriate computational methods may be 

used” 
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Table 5.2.1.1 – Calculations for apparatus D (ACI) used at a flow rate of 28.3 

L/min. 

Cut-off diameter (µm) Mass of API deposited 
per discharge 

Cumulative 
mass of API 

deposited per 
discharge 

Cumulative 
fraction of API (%) 

d7 = 0.4 mass from stage 8, m8 c7 = m8 f7 = (c7/c) x 100 
d6 = 0.7 mass from stage 7, m7 c6 = c7 + m7 f6 = (c6/c) x 100 
d5 = 1.1 mass from stage 6, m6 c5 = c6 + m6 f5 = (c5/c) x 100 
d4 = 2.1 mass from stage 5, m5 c4 = c5 + m5 f4 = (c4/c) x 100 
d3 = 3.3 mass from stage 4, m4 c3 = c4 + m4 f3 = (c3/c) x 100 
d2 = 4.7 mass from stage 3, m3 c2 = c3 + m3 f2 = (c2/c) x 100 
d1 = 5.8 mass from stage 2, m2 c1 = c2 + m2 f1 = (c1/c) x 100 
d0 = 9.0 mass from stage 1, m1 c0 = c1 + m1 f0 = (c0/c) x 100 

 mass from stage 0, m0 c = c0 + m0 100 
 

5.2.2 Method Development for Microscopic Assessment of 

Particle Form, Morphology and Distribution Using Raman 

Spectroscopy 

Raman spectroscopy has proved itself to be an invaluable tool in the 

investigation of materials as wide ranging as specialty chemical and 

polymers,[212] artworks,[213,214] illicit materials such as drugs of abuse and 

contraband ivories[215,216] and its frequent use in the investigation of biological 

and archaeological materials.[217-220] The technique has also been heavily 

utilised in the investigation of pharmaceutical materials, including molecular 

and form identification.[221,222] Modern instrumentation has seen Raman 

spectrometers coupled to confocal light microscopes allowing acquisition of 

Raman spectra from highly specific points on (and sub) sample surfaces, as 

well as offering the user the ability to obtain multiple spectra across a sample 

to generate a two dimensional hyperspectral arrays. These spectral arrays 

can be processed to produce false colour representations over the recorded 

area and provide an excellent visual means by which to display distributions 
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of compounds, as well as distributions of differing physical forms and other 

subtle sample inhomogeneities only discernable through spectroscopy. 

Treatment of diseases of the lung such as asthma and COPD utilise the 

locally acting IPPs delivered via pMDIs (and other devices) to control 

symptoms. In cases where treatment with ICS such as budesonide, BDP etc. 

does not fully control the symptoms, the administration of SABAs, LABAs or 

LAMAs in addition is recommended.[57] A more detailed review of the 

applicability of these combination products is given (Section 1.1), though 

clinical trials have shown that addition of LABAs is more beneficial than 

simply increasing the dose of the steroid.[130] Other studies confirm that 

delivery with combination therapies i.e. co-formulated in the same device, 

have a greater therapeutic effect than doses delivered sequentially with 

separate devices,[130] and there is evidence that their co-administration is 

synergistic through the effect of each one on the receptor for the other.[223-225] 

For this effect to be observed, it is thought that the co-administration is vital, 

as inhalation through sequentially administered doses reduces the likelihood 

of drug being delivered to the same site.[225] Recent work by Adi et al.[226] has 

extended dual therapies to investigated combination therapies containing 

three IPPs co-formulating an ICS, a LAMA and a LABA (budesonide, 

ipratropium bromide and formoterol fumarate), using only impaction methods 

with HPLC to investigate the depositions and aerodynamic properties. They 

conclude that the three entities are deposited in a fixed 1:1:1 ratio, and 

contrast these findings to Symbicort® (AstraZeneca) where the quantitative 

ratios vary by stage. They interpret these findings as indicative of deposition 

as separate entities. The following sections present method development 
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activities undertaken to establish a micro-Raman  (µ-Raman) based 

approach to assess particles deposited in-vitro using impactors.  

Controlled depositions can be undertaken with any of the impaction 

apparatus discussed previously (Section 5.1). These studies are based on 

the subsequent µ-Raman investigation on the deposited materials from 

stages chosen to represent particle size cut-offs of interest. Raman data can 

provide qualitative information on the deposited material in terms of particle 

morphology, deposition profiles, and molecular information including 

functional groups and solid form, distinguishing polymorph differences[227,228]  

and amorphous materials.[229] Most importantly in this context however, using 

assemblages of spectra recorded over a defined area, information relating to 

patterns of depositions can be derived from false colour ‘maps’. These can 

be analysed with relevant image processing software to provide semi- or 

even fully-quantitative data based on the relative intensities of signals and 

the frequency of occurrence. 

Importantly, Raman mapping analysis has been applied recently to a 

commercially available combination therapy, Seretide® (GSK) to investigate 

the deposition of particulates of the different APIs, potentially demonstrating 

some deposition ‘cooperatively’ for combination delivery to the same 

microscopic site.[230] These studies aim to develop similar µ-Raman methods 

using Symbicort® (AstraZeneca) and Seretide® (GSK) in their different 

formulation dose ratios to assess the applicability of the approach to assess 

distribution in-vitro and the ability to confirm sites of co-deposition. 
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5.2.2.1 Seretide® and Symbicort® Raw Material Analysis 

The Seretide® product is based on combined formulation of fluticasone 

propionate and salmeterol xinafoate. These are co-formulated at three 

separate dosage levels; 25 µg fluticasone and either 50, 125 or 250 µg 

salmeterol per dose. The products are formulated in HFA134a as 

suspensions and are marketed as pMDIs. Symbicort® formulations are 

available in pMDI form whereby budesonide and formoterol fumarate 

dihydrate are co-formulated at two separate dosage levels; 4.5 µg formoterol 

and either 80 and 160 µg budesonide per dose in HFA227. 

To obtain reference spectra, each of the API materials was analysed by 

Raman spectroscopy using 785 nm high powered diode laser for excitation. 

The samples were exposed to ca. 1 mW at the site of analysis for 10 

seconds, with 5 averaged accumulations acquired in each case. Data are 

consistent with previously reported spectral assignments[227,231,232] and are 

not reproduced here. Spectra for individual components were analysed for 

interferences i.e. areas in the spectra where peaks overlap, obscuring one 

another. This analysis also directs the ‘static’ scan recorded during rapid 

mapping acquisitions. This scanning mode describes a reduced spectral 

window (i.e. the wavenumber spectral width recorded at each scan), 

essentially projecting an image from the spectrograph across the CCD 

detector without shifting the diffraction grating, hence a considerably reduced 

scan time important for rapid data acquisition. The reference spectra for the 4 

components are presented (Figures 5.2.2.1.1 to 5.2.2.1.4), and spectral 

overlays (Figures 5.2.2.1.5 and 5.2.2.1.6) show envelopes chosen for hyper-
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spectral array acquisition for the Seretide® and Symbicort® depositions 

containing unique spectral features for the relevant APIs.  

Fluticasone propionate and salmeterol xinafoate (Seretide®) are 

distinguished spectrally with the intense band at 1662 cm-1 [v(C=C), quinone] 

in fluticasone and the four closely sited bands from 1340 to 1470 cm-1 [v(CH), 

v(CH2), v(CH3)] of salmeterol being particularly characteristic. Budesonide 

and formoterol fumarate (Symbicort®) having bands at 1654, 1610 and 1305 

cm-1 [v(C=O), v(C-C-CH3) and v(CH3] in formoterol and 1656 cm-1 [v(C=C), 

quinone] in budesonide allowing adequate differentiation. 

 

Figure 5.2.2.1.1 – Raman spectrum of fluticasone propionate acquired using 

785 nm excitation with ca. 1 mW laser power at sample, 10 second exposure 

and 5 averaged accumulations expanded in the region 300 to 1700 cm-1. 
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Figure 5.2.2.1.2 – Raman spectrum of salmeterol xinafoate acquired using 

785 nm excitation with ca. 1 mW laser power at sample, 10 second exposure 

and 5 averaged accumulations expanded in the region 300 to 1700 cm-1. 

 

Figure 5.2.2.1.3 – Raman spectrum of budesonide acquired using 785 nm 

excitation with ca. 1 mW laser power at sample, 10 second exposure and 5 

averaged accumulations expanded in the region 300 to 1800 cm-1. 
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Figure 5.2.2.1.4 – Raman spectrum of formoterol fumarate acquired using 

785 nm excitation with ca. 1 mW laser power at sample, 10 second exposure 

and 5 averaged accumulations expanded in the region 300 to 1800 cm-1. 

 

Figure 5.2.2.2.5 – Raman spectra of fluticasone (black) and salmeterol (red) 

shown in the spectral region between 1290 and 1810 cm-1 showing key 

spectral features used for the component matching processing of the maps. 
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Figure 5.2.2.2.6 – Raman spectra of budesonide (black) and formoterol (red) 

shown in the spectral region between 1190 and 1710 cm-1 showing key 

spectral features used for the component matching processing of the maps. 

5.2.2.2 Raman Analysis of Deposited Seretide® and Symbicort® 

Materials 

Depositions were performed using an Anderson Cascade Impactor to 

fractionate the particulates into discrete particle size fractions as discussed in 

detail in Section 5.1. The ACI was setup and operated in accordance to the 

Pharmacopoeial method at 28.3 L/min flow giving particle cut-off values of 

between 2.1 and 3.3 µm on plate 4, considered to be representative of the 

central airways[233] where delivery of ICS and β2 agonist compounds to sites 

where glucocorticoid and β2 receptors are present is considered useful.[14] 

Addition of microscope cover slips to the plates of the ACI was performed to 

allow the depositions to be conveniently removed for analysis by µ-Raman. 

One single actuation was performed after eleven ‘dummy’ actuations. 

Photographs of the depositions on plate 4 from Symbicort® 80/4.5 are shown 

with a representative white light image taken using the µ-Raman (x 50 

objective, 0.75 NA) (Figure 5.2.2.2.1). Point analyses on discrete particles 
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over the spectral range 100 to 2500 cm-1 shows high background signals 

(Figure 5.2.2.2.2). Analysis in regions where no particulate depositions are 

visible produces similar Raman spectra and the background signal is 

attributed to glass from the substrate. 

	   	  

 

Figure 5.2.2.2.1 – Photograph of the depositions from Symbicort® 80/4.5 on 

glass cover slip positioned on Plate 4 of the ACI. 
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Figure 5.2.2.2.2– Raman spectra acquired on particulate depositions from 

Symbicort® 80/4.5 and regions of no visible deposition on glass cover slip 

positioned on Plate 4 of the ACI. 

The glass coverslips were replaced with aluminium plates to avoid the 

background interferences and the depositions were repeated. Aluminium 

plates of less than 1 mm thickness were chosen to minimise the geometry 

changes in the ACI and hence changes in impaction behaviour. Point Raman 

analyses acquired in region of particulate deposits over the spectral range 

100 to 2500 cm-1 shows minimum interfering background signals in the 

regions of interest, with only two intense broad bands below 500 cm-1 visible. 
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Figure 5.2.2.2.3 shows multiple spectra acquired on particulate deposits and 

in regions of aluminium background. 

 

Figure 5.2.2.2.3- Raman spectra acquired on particulate depositions from 

Symbicort® 80/4.5 and regions of no visible deposition on aluminium plate 

positioned on Plate 4 of the ACI (x50 objective). 

The point spectra presented to this point have been recorded using the x50 

objective lens of the microscope. Sampling volume, or ‘spot-size’ of the laser 

on the sample is reduced using higher magnification objectives of higher 

numerical aperture, NA. With lenses of high NA, the spot size is reduced 

adhering to Equation 5.2.2.2.1.[234] 

𝐿𝑎𝑠𝑒𝑟  𝑠𝑝𝑜𝑡  𝑠𝑖𝑧𝑒 =    !.!!!
!!

     Equation 5.2.2.2.1 

It follows that use of the largest objective available with the highest NA value 

will provide data with the highest spatial resolution. A modification to equation 
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5.2.2.2.1 yields the theoretical diffraction limited spatial resolution of an 

optical microscope (Equation 5.2.2.2.2):[234] 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =    !.!"!
!!

     Equation 5.2.2.2.2 

Use of the equations gives spot sizes of 1.064  and 1.276 µm, with 

theoretical spatial resolutions of 0.532 and 0.638 µm for the x100 and x50 

lenses used on the Renishaw InVia µ-Raman having NA values of 0.90 and 

0.75 respectively. Lower wavelength excitation also has a dramatic effect in 

reducing the spatial resolution of the system, however the 785 nm is the only 

laser to have a linefocused geometry allowing faster mapping to be 

performed and dictates the use of this setup. It follows that acquisition using 

the x100 objective will maximise spatial resolution available. This is an 

essential parameter to consider as the purpose of the experimentation is to 

assess the potential for co-deposition for the particulates anticipated to be 

between 2.1 and 3.3 µm in size. Point acquisition of particulates from the 

Seretide® 50 deposition on the aluminium substrate and regions of no 

deposited material were performed using the x100 objective lens (Figure 

5.2.2.2.4).  
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Figure 5.2.2.2.4- Raman spectra acquired on particulate depositions from 

Symbicort® 80/4.5 and regions of no visible deposition on aluminium plate 

positioned on Plate 4 of the ACI (x100 objective). 

The spectra recorded show signals consistent with the components of the 

pMDI formulation, budesonide and formoterol fumarate, and the instrument 

set up is providing adequate spatial resolution, returning spectra consistent 

with only the background signal in regions selected away from any visible 

deposits.  

Importantly, the µ-Raman approach needs to be assessed to establish 

whether it can discerne components present in the deposits and whether it 

can identify deposits of individual, adjacent and co-deposited materials. 

Deposits from the Seretide® preparation were performed using the ACI 

according to the Pharmacopoeial method at 28.3 L/min. One actuation was 

performed after 11 ‘dummy’ actuations. The aluminium plates were removed 
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for analysis by µ-Raman using the x100 objective lens as described 

previously. Point analyses at specific deposit (particulate) sites show spectra 

consistent with both components (fluticasone propionate and salmeterol 

xinafoate) in the formulation, and of mixed spectra showing the presence of 

both components. Figure 5.2.2.2.5 shows spectra recorded on four isolated 

particulate depositions alongside the references, clearly showing spectra 

consistent with fluticasone and in one instance (red) a spectrum showing 

clear features of both compounds concomitantly. 

 

Figure 5.2.2.2.5- Raman spectra acquired on particulate depositions from 

Seretide® 50 on aluminium plate positioned on Plate 4 of the ACI (x100 

objective) showing features (marked *) in spectrum (red) corresponding to 

fluticasone and salmeterol. 
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5.2.2.3 Hyper-spectral Arrays (Raman Maps) of Deposited 

Seretide® and Symbicort® Materials 

The previous section has presented the development exercises undertaken 

to ensure the components of the Seretide® and Symbicort® formulations can 

be discerned spectrally from one another, and to optimise the spatial 

resolution obtainable using objective lenses of maximum NA. Hyper spectral 

arrays were recorded over small regions of the previously deposited 

Seretide® 50 sample to assess the success of a final ‘mapping’ approach 

using a 785 nm high-powered diode laser to excite the sample. Processing of 

the arrays recorded was performed using a direct classical least squares 

(DCLS) component matching algorithm available in the Renishaw Windows 

interface for Raman Environment (WiRE v. 3.2). Previously acquired 

reference spectra (Section 5.2.2.1) were used in the component matching 

approach. Figure 5.2.2.3.1 shows a hyper-spectral array acquired over a 

region of ca. 15 x 15 µm superimposed on the white light image, processed 

using DCLS for fluticasone (left) and salmeterol (right) separately. Also 

shown are Raman spectra from positive matches for each, showing excellent 

correlation in each case. 
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Figure 5.2.2.3.1 – Hyper-spectral arrays acquired over 15 x 15 µm region 

from plate 4 of a Sertide® 50 deposition, processed using direct classical 

least squares component matching for fluticasone (left) and salmeterol 

(right). Also shown are spectra obtained from regions of positive match for 

both compounds. 

The conditions used in the acquisition of hyper-spectral arrays over the 15 x 

15 µm area equate to extremely long acquisition times (> 12 hours) and their 

deployment on deposited samples over larger regions of statistical relevance 

was prohibitive. The conditions developed were deployed on an equivalent 

instrument (Renishaw InVia) equipped with proprietary fast mapping 

technologies, StreamLine™ (Renishaw, Wotton-under-Edge, UK). Traditional 

Raman acquisition operates in a sequential manner, in turn opening the 

detector shutter, collecting the scattered light, closing the shutter, reading the 
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data and finally moving the sample. By contrast, the StreamLine™ approach 

opens the shutter at the start of the experiment, and operates sample 

movement, light collection and data readout in parallel throughout, before 

closing the shutter at the end of the experiment. This results in significant 

time-savings, with up to 4000 individual spectra being recorded in 1 

minute.[230] For Seretide® depositions hyper-spectral arrays were recorded 

with static scans centred at 1550 cm-1 recording data in the spectral region 

between 1290 to 1810 cm-1. Similarly, Symbicort® hyper-spectral arrays 

were recorded with static scans centred at 1450 cm-1 recording data in the 

spectral region between 1190 to 1710 cm-1. The spectral arrays recorded 

were processed using DCLS component matching in both instances using 

reference spectra of fluticasone / salmeterol (Seretide®) and budesonide / 

formoterol (Symbicort®) as previously. Figures 5.2.2.3.2 to 5.2.2.3.6 show 

the false colour representations of the arrays recorded for the products 

analysed, clearly showing successful differentiation of the two components 

present in each case (fluticasone & budesonide shown in red, salmeterol & 

formoterol in green). 
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Figure 5.2.2.3.2 – White light image and Raman map of Seretide® Evohaler 

50 (ACI plate 4) processed using DCLS component matching for fluticasone 

(red) and salmeterol (green). 

 

  

Figure 5.2.2.3.3 – Raman map of Seretide® Evohaler 125 (ACI plate 4) 

processed using DCLS component matching for fluticasone (red) and 

salmeterol (green).  
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Figure 5.2.2.3.4 – White light image and Raman map of Seretide® Evohaler 

250 (ACI plate 4) processed using DCLS component matching for fluticasone 

(red) and salmeterol (green). 

  	   

Figure 5.2.2.3.5 – White light image and Raman map of Symbicort® 80/4.5 

(ACI plate 4) processed using DCLS component matching for formoterol 

(green) and budesonide (red).  
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Figure 5.2.2.3.6 – White light image and Raman map of Symbicort® 160/4.5 

(ACI plate 4) processed using DCLS component matching for formoterol 

(green) and budesonide (red). 

As the concentration of the ICS fluticasone relative to the LABA compound 

salmeterol is increased though the 50, 125 and 250 products, there is a clear 

correlation to the abundance of fluticasone deposited. It appears to deposit 

as discrete particulates and in clusters / agglomerates. The salmeterol 

deposits are visible in isolated positions in the processed images, and show 

evidence for association to the fluticasone particulates in a number of 

instances, leading to the conclusion that the deposits from Seretide® pMDI 

devices do show instances of co-deposition in-vitro. These findings 

corroborate those from similar studies by Theophilus et al.[230] who observe 

co-depositions using similar approaches and conclude synergistic interaction 

between drugs from co-formulated pMDI products. The methods applied to 

depositions from triple therapies such as those undertaken by Adi et al.[226] 

would be very interesting and potentially substantiate their claims that the 

particles (budesonide, ipratropium and formoterol) are associated and 

deposit in exactly equal proportions in in-vitro testing. Data processing using 
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the DCLS (and other model) approaches should also be considered. The 

false colour images are produced using a threshold that can be adjusted to 

essentially switch on / off the response in a binary fashion. i.e. if a different 

threshold value is chosen, pixels representing fluticasone, for example, can 

be switched on or off. It is important to consider this in terms of conclusions 

drawn on co-deposition. If false colour representations on the processed map 

are contiguous for particles of fluticasone and salmeterol at a particular 

threshold level they may be considered co-deposited. If this threshold level is 

shifted (lowered) to the point whereby the particles are no longer contiguous 

this conclusion changes. It is important to remember that the data can be 

manipulated to some degree and it must be processed at fixed threshold 

levels to avoid any subjectivity in the interpretation of results. 

The results for the Symbicort® systems provide less conclusive evidence. 

Although the components present in the formulation (budesonide and 

formoterol) give strong Raman spectra that show clear spectral differences, 

the data recorded on the deposited materials are considerably less intense. 

Examination of the white light images of the deposits shows differences when 

compared to those of the Seretide® depositions. Symbicort® deposits 

appear circular as opposed to displaying crystalline like morphologies as in 

the Seretide® depositions. The images are suggestive of an amorphous 

form, though without further evidence from other analytical approaches this is 

a difficult conclusion to substantiate. 
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5.2.3 Methods for Bulk Assessment 

The previous section in this chapter has discussed microscopic approaches 

for the assessment of deposited materials from aerosolisation devices and 

Chapters 3 and 4 summarise the work performed to develop an NMR method 

suitable of assessing the bulk properties of solutions in-situ (solubility and 

complex characterisation). A further consideration are the bulk properties of 

the deposited materials and are part of the method developments associated 

with these studies. In collaboration with colleagues at King’s College London 

(KCL), the following sections describe novel approaches for the capture of 

these materials and their study to interrogate the solid state properties. 

Twin Stage Impingers (TSIs) (summarised in Section 5.1.1) are one of the 

simplest apparatus for in-vitro deposition of inhaler devices including pMDIs. 

Their design is such that material of respirable particle size finds its way 

through to the lower (second) stage of the apparatus, with material larger 

than respirable size depositing out in the upper (first) stages. This separation 

mechanism allows the quantitation of respirable portions of pMDI deposits to 

be calculated by remote analysis of the individual stages by chromatographic 

approaches such as HPLC. The work undertaken here has implemented a 

modification to the apparatus to allow collection of the respirable fraction from 

the second stage of the apparatus onto a solid substrate mounted 

underneath the stage 2 exit nozzle. This allows analysis on the solid 

materials deposited, and has formed the basis for a study of the solid form of 

the inhaled corticosteroid beclomethasone dipropionate (BDP) pMDI 

products QVAR® and Synasthmax® (Chiesi, Italy). This has incorporated 
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thermal, microscopy and epithelial cell diffusion studies[133] and a detailed 

description of the PXRD study is described here. 

QVAR® and Synasthmax® differ in the amount of ethanol co-solvent 

contained in the formulation (8 and 10% respectively) and the inclusion of 

glycerol as an excipient (0 and 1.3% respectively). Both are solution 

formulations, i.e. those whereby the BDP is fully dissolved rather than 

existing as a suspension as with many pMDI preparations.[133] This is of great 

importance as the solid particles formed after actuation of the device do so 

very quickly as the volatile propellant evaporates. This means (i) the particles 

cannot be studied in-situ and (ii) the material formed on actuation could differ 

greatly in its physical form from the crystalline material used in their 

preparation.  

5.2.3.1 PXRD  

As part of the platform of method development studies for analysis of solid 

deposits after actuation, PXRD was used to demonstrate bulk analysis from 

materials deposited using a modified twin stage impinger. PXRD has long 

been utilised in the study of crystalline form, and to demonstrate crystalinity 

vs. amorphous form. To trial its applicability to materials directly delivered 

from pMDIs, a study was undertaken with two commercial BDP pMDIs; 

QVAR® and Synasthmax® (Chiesi, Italy). The TSI exit nozzle was modified 

to allow the capture of material onto solid substrates as summarised in 

experimental section (2.5.4). Deposition onto Mylar sheets was performed 

(160 actuations over 10 – 12 minutes) and the samples prepared as 

summarised on PXRD holders and sealed underneath additional Mylar. 
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Blank Mylar preparations and reference BDP were also prepared in the same 

way to eliminate interferences and obtain reference diffraction patterns. The 

Mylar substrate appears to be suitable for collection of the BDP formulations, 

showing no interfering peaks in the collected pattern. The patterns generated 

on the reference show the material to be crystalline in nature, with 

characteristic peaks at 10, 12, 15, 19 and 23° (2θ). Three distinct forms of 

BDP have been structurally characterised (i) an anhydrate form[236] (CCDC : 

WOYPAB) (ii) a monohydrate form[237] (CCDC : BCLMSN) and (iii) three 

clathrate forms based on the same isomorphic channel structure [BDP: 

EtOH[238] (CCDC : INECOT), BDP:EtOAc[239] (CCDC : VORSEB) and 

BDP:EtOH:CH2F4
[240] (CCDC : VATMOT)] These structures were used to 

simulate PXRD patterns . In the case of the clathrates, the isostructural 

nature of the channel solvate gives essentially identical PXRDs. For 

assignment purposes, the ethanol solvate (INECOT) was used, alongside the 

anhydrate (WOYPAB) and hydrate (BCLMSN) forms. The reference material 

shows a PXRD pattern consistent with that generated from WOYPAB and 

suggests it is the anhydrate form of BDP. Figure 5.2.3.1.1 shows the 

diffraction patterns obtained for the blank and reference preparations, with 

the simulated PXRD pattern shown for BDP anhydrate (WOYPAB). 
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Figure 5.2.3.1.1 – Diffraction patterns obtained for blank Mylar (grey) and 

reference preparation (black) shown with reference pattern positions for the 

simulated PXRD pattern for BDP anhydrate (WOYPAB).[236] 

The PXRD patterns generated on the deposited QVAR® product show 

material that appears to have a degree of crystallinity on initial deposition, 

though the peaks in the diffraction pattern recorded are very low intensity. 

The peak positions of the recorded data differ from those observed in the 

reference pattern, with the most intense occurrences at 8, 11 and 13° (2θ), 

suggesting that the crystal form of the material differs. Comparison to the 

previously summarised simulated PXRD patterns show an excellent 

correlation to the hydrated form (BCLMSN).[237] The peak intensity continues 

to increase in the patterns recorded over a 250 minute period, and it appears 

that the BDP is recrystallising to the hydrate over time. Figure 5.2.3.1.2 
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shows the initially recorded pattern and time-lapse patterns alongside the 

crystalline reference material and simulated PXRD pattern for the hydrate 

form of BDP. 

 

Figure 5.2.3.1.2 – PXRD patterns over a 250 minute period (grey) of the 

emitted dose of QVAR® 100 pMDI device (160 actuations) collected in the 

modified second stage of the Copley TSI apparatus shown with reference 

BDP (black) and simulated pattern positions for BDP hydrate [blue 

(BCLMSN)].[237] 

Data recorded on the Synasthmax® preparation showed no peaks on 

collection of the initial pattern, suggesting the material collected was largely 

amorphous in nature. However, as with the QVAR® preparation, peaks in the 

patterns recorded over an extended period on the collected sample started to 

increase in intensity, and were consistent with those observed in the QVAR® 

2-Theta - Scale

3 10 20 30 40 50

T=60 minutes 

T=0 minutes 

T=90 minutes 

T=120 minutes 

T=150 minutes 

T=180 minutes 

T=220 minutes 

T=250 minutes 

T=30 minutes 



 205 
 

material at 8, 11 and 13° (2θ) suggesting recrystallisation to BDP hydrate in 

the same manner. Figure 5.2.3.1.3 shows the initially recorded pattern and 

those recorded at 30 minute intervals. The simulated PXRD pattern of BDP 

hydrate (BCLMSN) is also shown. 

  

  

Figure 5.2.3.1.4 – PXRD patterns over a 430 minute period (grey) of the 

emitted dose of Synasthmax® 100 pMDI device (160 actuations) collected in 

the modified second stage of the Copley TSI apparatus shown with reference 

BDP (black) and simulated pattern positions for BDP hydrate [blue 

(BCLMSN)].[237] 

5.2.3.2 Thermal Analysis 

Thermal data were recorded for the two deposited formulations, and for the 

BDP reference compound at KCL, and these provide useful comparison to 

the PXRD data. The deposition method developed shows itself to be 
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successful in depositing sufficient material for study by thermal techniques, 

and allows significant differences between the two formulations to be 

observed. Data have been recorded for QVAR® and Synathsmax®, along 

with a crystalline BDP reference and blank foil substrate used in the 

collection of material (available in the published data).[133] The reference 

material, displays two primary endotherms corresponding to volatile loss 

(water) at ca. 100°C, confirmed by TGA, and the melting transition at 

212.7°C. No recrystalisation exotherm or glass transition were noted, 

suggesting the material was crystalline in nature, consistent with the data 

observed in the X-ray studies (Section 5.2.3.1).  

The thermograms recorded for the deposited formulations show clear 

differences between the materials, and compared to the reference 

compound. QVAR® shows a behaviour similar to the reference material, 

having an endotherm at ca. 100°C and a second at 207.5°C. The latter is 

thought to be a melt transition, however differs significantly from that 

observed in the reference material. No evidence of recrystallisation / glass 

transition were apparent; it is therefore proposed that the material has 

deposited with a different crystal form than that of the reference. These 

proposals are further evidenced by the data observed in the PXRD studies 

(Section 5.2.3.1), with peaks observed on material deposited initially 

confirming crystalinity, and their different positions (2θ) suggesting the 

hydrated form by matching to patterns generated from published 

structures.[237] The Synasthmax® formulation showed no evidence of 

crystalline BDP, with no melt endotherm observable in the data. A small 

transition at 175.8°C corresponded with a significant (80%) weight loss in the 
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TGA suggesting the material is decomposing at this temperature. PXRD data 

shows no peaks on initial deposition suggesting an amorphous form, 

consistent with the recorded thermal data.  

It should be noted that the thermal analysis was conducted at KCL and is 

reproduced here with reference to the joint publication.[133] Other analysis on 

the deposited materials was carried out at KCL including aerodynamic 

particle sizing by ACI, electron microscopy to provide a visual analysis of the 

deposited particle’s morphology and surface properties (porosity, 

smoothness) and absorptive drug transfer quantitation using diffusion 

through epithelial cell layers.  

Importantly, the deposition technique developed has been shown to be 

suitable for the capture of materials for remote analysis by PXRD, SEM, 

thermal analysis (DSC, TGA and TGA–MS for solvate identity) and 

potentially extended to spectroscopic techniques such as Raman and FTIR. 

The modified capture method outlined operated in conjunction with the 

analytical techniques presented aids greatly in the characterisation of the 

solid forms emitted, and provides a powerful means by which to study 

emitted particles from both solution and suspension pMDIs, as well as those 

emitted from other inhalation devices such as DPI, nebuliser and nasal 

sprays. 

The work presented in this chapter has established analytical approaches to 

assess the solid form of material deposited on actuation of pMDI devices. 

Raman methods have been developed and operated to assess the 

deposition profiles of commercially available ICS / β2-agonist pMDI 
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formulations, and provides clear evidence of co-deposition of both types of 

drug in Seretide® and Symbicort® formulations. Similarly, analysis of 

formulations of BDP in HFA134a / ethanol using modified TSI depositions 

has provided an insight into solids deposited in terms of their morphology and 

form, with clear evidence differentiating amorphous materials (Synasthmax®) 

from crystalline forms (QVAR®). Full conclusions are presented in Chapter 7. 
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6  Investigation of Solution and Solid State Properties of 

Novel Budesonide pMDI Prototypes	  

This chapter describes the preparation and assessment of several concept 

pMDI prototypes of budesonide, a corticosteroid compound used in 

commercially available inhaled preparations, and used extensively 

throughout the studies described in this thesis.  

The formulation of budesonide in these prototypes uses approaches to 

increase its solubility through (i) the addition of ethanol (as a co-solvent) to 

HFA134a and (ii) the use of TRIMEB, a derivatised cyclodextrin compound 

(Sections 4.2.1 and 4.2.2 respectively). pMDI canisters were prepared using 

micronized budesonide, and selected molar ratio preparations of budesonide 

and TRIMEB in both HFA134a and HFA134a / EtOH (10 % v/v).  

6.1  Preparation of pMDI Canisters 

API formulations in HFAs are generally formulated as suspensions of 

respirably sized particles[84] and are based on micronised preparations of the 

drug of the correct particle size for delivery to the lung. These can be 

prepared with or without excipients. Actuation of the pMDI device delivers a 

pre-determined dose of the suspended solids ready for the user to inhale. 

However, the stability of these preparations can be seriously affected by 

several physical processes described in Section 1.2.4. With the exception of 

the corticosteroid beclomethasone dipropionate, compounds used in these 

studies have been shown to have solubility values in the low µg/mL range in 

HFA134a and are therefore vulnerable to mechanisms of destabilisation of 

suspension (Section 4.1.1).  
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Therefore, there are several potential benefits for formulating the IPP as a 

solution. These include homogeneity and the respective control of 

administered dose, as well as increased stability by avoiding sedimentation, 

agglomeration and creaming effects observed on the suspended particulates 

or changing particle size through Ostwald ripening.[84] The behaviour of a 

solution based formulation is likely to be different from a suspension on 

actuation. The rapid evaporation of propellant, forming solid particles in-situ, 

potentially affects the solid form of material produced and the aerodynamic 

behaviour (particle size distribution) of the particulates. It has been noted 

(Section 1.2.3), that the smaller particle sizes resulting from solution based 

pMDIs is potentially of most benefit to ICS compounds, where delivery to the 

lower airways for the topical treatment of inflammation is required. Smaller 

particle size for SABA, LABA, SAMA and LAMA compounds is potentially 

less desirable, where delivery to the upper respiratory tract is required to 

ensure interaction with β-receptors and smooth muscle. However, the 

potential for solution pMDIs of budesonide, an ICS, is clear and trial 

preparations have been formulated into pMDI prototype canisters as 

described; (i) budesonide in HFA134a as a control; (ii) budesonide in 

HFA134a / ethanol (10% v/v), (iii) budesonide / TRIMEB (1:1 mole ratio) in 

HFA134a and; (iv) budesonide / TRIMEB (1:1 mole ratio) in HFA134a / 

ethanol (10 % v/v). 

For the study, a batch of budesonide was micronised with a laboratory scale 

jetmill (Section 2.6.1) and the resulting particulates were assessed using 

SEM and laser diffraction PSD analysis. This confirmed the material had a 

particle size distribution in the respirable range, and based on these 
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measurements and observations, the material was deemed acceptable for 

use in the production of the test pMDI devices. The PSD (Figure 6.1.1) has 

the mean undersize cumulative dimension, X90, value of 2.93 µm (± 0.04, 

n=3). SEM photomicrographs (Figure 6.1.2) confirm the particulates as either 

discrete or agglomerates with edge length dimensions of less than 5 µm. It is 

notable that the particulates are faceted, consistent with retention of largely 

crystalline characteristics. 

 

Figure 6.1.1 – Representative Laser Diffraction PSD and X90, X50 and X10 

values for the micronised budesonide used in the preparation of the pMDI 

devices. 

The material was formulated into pMDI canisters at the University of Bath as 

the four preparations described above and formed the basis of the 

subsequent analytical study.  
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Figure 6.1.2 – SEM photomicrographs at x2 k (a), x5 k (b), x10 k (c) and x 15 

k (d) of the micronised budesonide used in the preparation of the pMDI 

devices showing the micronised particulates of less than 5 µm dimensions 

and therefore suitable for formulation as suspended solids in HFA for pMDI 

delivery. 

6.2  Studies of Products in Solution by 1H NMR 

The NMR methods developed in these studies have been deployed on the 

prepared budesonide formulations. The studies were undertaken to confirm 

the formulation concentrations in the canisters and provide comparison with 

theoretical models described in Chapter 4. Actuation of the canisters and 

transfer into the reversed co-axial NMR tubes provided an initial visual 

(a) 

(d) (c) 

(b) 
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examination of the contents of the pMDI canister. It was immediately 

apparent that the budesonide in pure HFA134a formulation was a 

suspension, with white material observed in suspension in the transferred 

liquid. Budesonide in HFA134a / ethanol (10 % v/v) also showed signs of 

suspended solids in the liquid propellant, though these were significantly 

fewer than in pure HFA134a, in line with increased solubility determined in 

this medium (Sections 4.1.1 and 4.2.1.2). Budesonide / TRIMEB in pure 

HFA134a also showed some solid components within the transferred liquid, 

and signs of deposited solids were identified on the wall of the NMR tube, 

again consistent with the previously determined solubility for this system. In 

contrast, budesonide / TRIMEB in HFA134a / ethanol (10% v/v) showed no 

evidence of suspended material present in the liquid transferred, indicating 

this system is a solution, whilst each of the others was a suspension. With 

these samples, quantitative solubility data were obtained from the NMR 

spectra acquired (Table 6.2.1). The data show the increased solubility of 

budesonide and TRIMEB when ethanol is added to the systems as a co-

solvent. The solubility values determined for (i) budesonide in HFA134a (ii) 

budesonide in HFA134a/EtOH and (iii) budesonide / TRIMEB in HFA134a 

are consistent with those previously evaluated as part of the solubility studies 

in the model systems (Chapter 4, Sections 4.1.1, 4.2.1.2 and 4.2.2 

respectively), and show no significant changes to the systems on pMDI 

preparation. Importantly, the solubility of budesonide / TRIMEB in 

HFA134a/EtOH has not been evaluated previously and this system shows a 

major increase in the solubilisation of budesonide hence this is the only 

solution at the concentrations prepared in the pMDIs. 
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Table 6.2.1 – Results of solubility measurements calculated from triplicate 

NMR experiments carried out on the prepared formulations. 

Formulation 
Solubility (µg/mL) 

σ % CV 
1 2 3 Mean 

HFA134a 56 61 52 56 3.7 6.5 
HFA134a/EtOH  1401 1489 1523 1471 51.4 3.5 
HFA134a + TRIMEB 143 132 139 138 4.5 3.3 
HFA134a/EtOH + TRIMEB 3012 2856 2946 2938 63.9 2.2 
 

6.3 Evaluation of Solid Depositions from Anderson Cascade 

Impactor Studies 

6.3.1 Aerodynamic Particle Size Distribution 

Impaction experiments were performed on the pMDI formulations prepared 

using an ACI operated as highlighted in the Ph.Eur[132] (Section 2.6.2) for 

bulk assessment by HPLC from washes of each impactor plate (Section 

2.6.2.1). These measurements indicate the particle size distribution through 

aerodynamic properties of the pMDI formulation produced. These can, 

therefore, provide critical information about potential sites of deposition of 

these products in the lung. The quantities of budesonide deposited at each 

stage of the ACI were obtained for each preparation (Figure 6.3.1.1). 

Importantly, the profiles obtained are significantly different and are worthy of 

detailed consideration. Broadly, two profiles are apparent, that appear to be 

primarily dependent on the composition of the solvent in the preparation (i) 

budesonide and budesonide / TRIMEB in HFA13a show maximum deposition 

on stage 4 of the ACI, corresponding to maximum deposition in the central 

airways[228]
 (ii) budesonide and budesonide / TRIMEB in HFA / ethanol show 

maximum deposition at stage 7 and stage 6 respectively. The aerodynamic 
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properties of the products, MMAD, GSD and FPF (material < 5 µm) are given 

in Table 6.3.1.1. The results show that the MMAD reduces significantly when 

ethanol is incorporated as a co-solvent. This is consistent with increased 

solubility in the co-solvated system. The mechanism for particle formation in 

these largely solubilised systems is likely to involve rapid evaporation of 

propellant containing the API. The aerodynamic behaviour of these 

solubilised systems is likely to be complex, possibly initially dependent on the 

dimensions of the solution droplet, reducing as the solvent evaporates 

before, ultimately, relating to the dimensions of the solid particulate. 

No analysis of this type has been undertaken with solubilised budesonide, 

but these observations are somewhat similar to those described by Williams 

III et al.[182] observing that the MMAD of betamethasone valerate was lower in 

an ethanol co-solvated HFA134a system than those of triamcinolone 

acetonide formulated as suspensions in HFA134a alone. In contrast, Gupta 

et al.[181] noted increased deposition of beclomethasone dipropionate with 

increasing ethanol co-solvent concentration in the nine pMDI formulations 

they studied at differing ethanol concentrations, but found the MMAD was 

largely unaltered with changing ethanol concentrations. The solubility of BDP 

is considerably higher than that of budesonide in HFA134a, and it is therefore 

conceivable that ethanol has less influence on the solubility in these systems 

than for the budesonide systems under consideration here.  

The formulation containing budesonide in HFA134a / ethanol with TRIMEB 

incorporated appears to have the lowest MMAD of all the preparations, with 

significantly increased FPF values suggesting an increased propensity for 

lung deposition and reduced losses in the throat of the ACI setup. This is 
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consistent with the observations made with the SEM / Raman (Section 6.3.2 

and 6.3.3) where it might be concluded that the formulation forms host / 

guest complexes and exists as a solution; the rapid evaporation of solvent 

yields relatively homogenous solid spheroids giving reduced aerodynamic 

particle size distributions. 

 

Figure 6.3.1.1 – Aerodynamic particle parameters for budesonide 

formulations prepared with (i) HFA134a (ii) HFA134a/EtOH (iii) 

HFA134a+TRIMEB and (iv) HFA134a/EtOH+TRIMEB. 
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Table 6.3.1.1 – MMAD and GSD values calculated for the four formulations 

prepared in (i) HFA134a (ii) HFA134a/EtOH (iii) HFA134a+TRIMEB and (iv) 

HFA134a/EtOH+TRIMEB. 

Formulation MMAD (µm) GSD (µm) FPF (%) 
HFA134a 2.1 1.5 67 
HFA134a/EtOH 1.0 2.4 61 
HFA134a + TRIMEB 2.6 1.7 60 
HFA134a/EtOH + TRIMEB 0.9 1.4 77 
 

6.3.2  Particle Morphology and Size Distribution by SEM 

Impaction experiments were performed on the pMDI formulations prepared 

using an ACI operated as highlighted in the Ph.Eur[132] (Section 2.6.2) for 

microscopic study. The plates of the ACI were removed and analysed by 

SEM and Raman microscopy to establish the form of material deposited, 

particularly to assess the distribution of the budesonide and TRIMEB in the 

particulates deposited. Plates 1 to 7 were evaluated, with plate 4 presented 

here as representative of the types of particulate observed and considered to 

be representative of the central airways.[233] Plate 7 is also presented for the 

preparations of budesonide / TRIMEB in HFA134a and budesonide / 

TRIMEB in HFA134a/EtOH as these show significant deposition on this 

stage. SEM has provided valuable visual information on the materials 

deposited. Photomicrographs of material deposited on stage 4 of the ACI 

show a marked difference in the materials deposited from the separate 

formulations prepared. It is noticeable that two types of particle appear to be 

present as (i) crystallites (either isolated or agglomerated) with clear facets 

and sharp edges and faces or (ii) spheroids with relatively smooth surfaces 

(Figure 6.3.2.1). Crystallites were observed in the images of budesonide in 
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HFA134a, budesonide in HFA134a / ethanol and budesonide / TRIMEB in 

HFA134a deposits. Spheroids were observed in budesonide / TRIMEB in 

HFA134a and budesonide / TRIMEB in HFA134a / ethanol. The presence of 

crystallites is consistent with observations of solid suspensions and in 

concentrations determined in NMR studies. Particle sizes are comparable 

with one another (≤ 3 µm) in all the photomicrographs studied – this is clearly 

a function of the fractionation of the ACI deposition. 

Both samples prepared with TRIMEB show the spheroid particulates (ca. 2 

µm diameter). This morphology is likely to correspond with amorphous solids 

formed by rapid evaporation of propellant during flight.[121] 

These spheroids are present alongside crystalline material in deposits from 

pure HFA134a, but, significantly, are the only particulate morphology 

obtained form HFA134a / ethanol. The increased solubility in this co-solvated 

system produces a solution and this appears to be the origin of this 

homogeneity of form. Interestingly, the spheroids may be host-guest 

complexes as observed in previous work (Section 4.2.2). In order to 

characterise the particulates, a µ-Raman study was undertaken (Section 

6.3.3). 
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(a) 
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Figure 6.3.2.1 – SEM photomicrographs of material deposited (ACI plate 4) 

from (a) budesonide in HFA134a, (b) budesonide in HFA134a / ethanol (10% 

v/v), (c) budesonide / TRIMEB in HFA134a and (d) budesonide / TRIMEB in 

HFA134a / ethanol (10% v/v) at magnifications between x5 and x20 k 

(specified in the data bar). 

Photomicrographs recorded on deposits from stage 7 of the ACI are shown 

for the preparations of budesonide / TRIMEB in HFA134a and budesonide / 

TRIMEB in HFA134a/EtOH (Figure 6.3.2.2). These clearly show the 

increased particle numbers in line with aerodynamic profiles and in each 

case the deposition is exclusively spheroid particulates. Interestingly, the 

(c) 

(d) 
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preparation of budesonide / TRIMEB in HFA134a now shows no evidence of 

crystallites as with the observations made on stage 4 of the same deposition 

experiment. This is attributed to the crystallite size and their removal in the 

earlier stages of the ACI. The budesonide reaching stage 7 must be 

associated to the spheroids and is likely to be present as host / guest 

complex. 

	  

	  

	  

Fig 6.3.2.2 - SEM photomicrographs of material deposited (ACI plate 7) from 

(a) budesonide / TRIMEB in HFA134a and (b) budesonide / TRIMEB in 

HFA134a / ethanol (10% v/v) at magnifications between x4 and x10 k 

(specified in the data bar). 

(a) 

(b) 
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6.3.3  Raman Microscopy 

For each of the formulations prepared, Raman spectra were obtained at 

several sample sites on stages 4 to 7 of the ACI depositions. Comparison of 

the spectra collected against the reference spectra of budesonide and 

TRIMEB show some interesting features. The materials deposited from 

HFA134a and HFA134a / ethanol (i.e. without inclusion of TRIMEB) show 

spectra that correspond well with budesonide (Figure 6.3.3.1). The spectra 

show relatively sharp bands indicating that the particulates deposited are 

crystalline budesonide consistent with the inferences made from SEM 

analysis. 

 

Figure 6.3.3.1 – Representative Raman spectra in the region 1800 and 500 

cm-1 for six budesonide particles deposited on ACI stage 4 from (i) 

budesonide in HFA134a (blue spectra, left image) and (ii) budesonide in 

HFA134a / ethanol (10 % v/v) (black spectra, right image) formulation 

compared to pure budesonide (red). 
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The spectra acquired for spheroid particulates in the TRIMEB based 

formulations show Raman features that are consistent with depositions of the 

host / guest complexes. The spectra of the spheroid forms are consistent 

with those obtained in the investigation of host / guest complexes of 

budesonide / TRIMEB (Section 4.2.2). All the spectra recorded (> 30 in total) 

show (i) bands consistent with both TRIMEB and budesonide in each 

spectrum recorded and (ii) shifts of key signals consistent with those of the 

host / guest complex e.g. v(C=C) quninone band shifted to 1661 cm-1 in the 

complex from 1656 cm-1 in pure budesonide. The relatively broad bands of 

the spheroid deposits may indicate largely amorphous deposits. A summary 

of peak widths at half height are presented in Table 6.3.3.1 for the v(C=C) 

quinone band in the crystalline budesonide and when observed in the host / 

guest complex demonstrating the peak broadening effect. This is consistent 

with the spheroid morphology, devoid of the facets expected in crystalline 

systems. The features are shown in Figures 6.3.3.2 and 6.3.3.3. These data 

strongly indicate that the spheroid particulates formed from the formulations 

including TRIMEB in HFA134a / ethanol are indeed host / guest solid 

complexes deposited as amorphous spheroids. 
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Figure 6.3.3.2 – Representative Raman spectra in the region 1800 and 800 

cm-1 for five spheroid particles deposited on ACI stage 6 from budesonide / 

TRIMEB in HFA134a / 10% v/v formulation compared to (i) pure budesonide 

(red) and (ii) TRIMEB (blue) spectra.  

 

Figure 6.3.3.3 – Representative Raman spectra in the region 1800 and 1500 

cm-1 for five spheroid particles deposited on ACI stage 6 from budesonide / 

TRIMEB in HFA134a / 10% v/v formulation compared to (i) pure budesonide 

(red) and (ii) TRIMEB (blue) spectra. 
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Table 6.3.3.1 – Mean peak width (PW1/2) of v(C=C) band of budesonide 

calculated from crystalline material and observed in replicate spectra of host / 

guest complex (n=5) shown in Figure 6.3.3.3. 

 Peak Centre (cm-1) PW1/2 (cm-1) 
Crystalline Reference 1656 10 
Host/Guest Complex 1661 19 

 

The formulation prepared using TRIMEB in pure HFA134a shows both 

crystallite and spheroid particles. The µ-Raman study of these materials was 

consistent with the three products (i) crystallites of budesonide (ii) spheroids 

of budesonide / TRIMEB complex and (iii) spheroids of pure TRIMEB. The 

broadening of the Raman spectra and the spheroid morphology are again 

consistent with deposition of products in amorphous form through 

evaporation of solvent. The presence of TRIMEB from solution and 

budesonide from suspension is not surprising, as not all the budesonide has 

been dissolved in this solvent system leaving ‘unreacted’ TRIMEB from the 

1:1 preparation. Representative Raman spectra acquired on stage 6 of the 

ACI, corresponding to host / guest, pure budesonide and pure TRIMEB are 

given in Figure 6.3.3.3.   
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Figure 6.3.3.4 – Representative Raman spectra in the region 1800 to 800 

cm-1 acquired on ACI stage 6 from pure HFA134a formulation showing 

instances of pure (i) budesonide (red) (ii) pure TRIMEB (blue) and (iii) host / 

guest complex (black). 

6.4  Discussion 

Consideration of the NMR, SEM, Raman and APSD data collected for the 

four formulations in concert leads to a number of discussion points that can 

be considered in terms of the solid form of the materials deposited and their 

aerodynamic properties. 

The addition of solubilising agents to the preparations of budesonide has a 

significant effect on the behaviour in solution and hence their solid form on 

deposition. A summary is presented for each of the preparations (i) 

budesonide in pure HFA134a shows very low solubility, with SEM 

photomicrographs and Raman showing crystalline budesonide (ii) 

incorporation of ethanol to the system markedly increases solubility. SEM 

and Raman studies are again consistent with budesonide crystallites (iii) 

Addition of TRIMEB to the formulation in HFA134a (and in absence of an 

Raman Shift (cm-1) 
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ethanol co-solvent) increases budesonide solubility. SEM shows both 

spheroid and crystallite deposits. Raman shows budesonide crystallites and 

spheroid particles as budesonide / TRIMEB complex and residual TRIMEB; 

(iv) the final preparation incorporating both TRIMEB and ethanol co-solvent 

shows complete dissolution of API. SEM data indicates the deposited 

spheroids may be amorphous in nature, while Raman data shows these to be 

host / guest complexes. The spectral broadening is consistent with 

amorphous deposits.  

Consideration of the aerodynamic characteristics of the prototype 

formulations reveals some interesting data and suggests that the enhanced 

solubilisation resulting from the addition of ethanol and / or TRIMEB to the 

formulations is having a significant effect on the aerodynamic characteristics. 

Trends in MMAD, GSD and FPF are summarised in Section 6.4.1 to 6.4.3. 

6.4.1  Mass Median Aerodynamic Diameter 

HFA134a preparations show an increase from 2.1 to 2.6 µm on addition of 

TRIMEB to the formulation, associated to the increased deposition on the 

early stages (1 and 2) of the ACI for the formulations of budesonide and 

TRIMEB compared to budesonide alone.  

The preparations including ethanol have significantly reduced MMAD values 

of 1.0 and 0.9 for the formulations of budesonide and budesonide / TRIMEB 

respectively. The reduction in MMAD values when compared with those of 

the preparation in pure HFA134a are attributed to the increased solubility of 

budesonide. Particles formed from solution as the volatile propellant 

evaporates rapidly after actuation of the pMDI being controlled by the droplet 
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size of the aerosol and not restricted by the pre-formed crystallites as with 

the suspensions in pure HFA134a. It is notable that the maximum deposition 

from the preparation of budesonide and TRIMEB is earlier (stage 6) than that 

of budesonide (stage 7) showing a greater number of larger particles. This is 

the opposite observation than might be drawn from direct comparison of 

MMAD values. 

6.4.2  Geometric Standard Deviation 

GSD values are only strictly meaningful for log-normal distributions of data, 

with a values of 1.0 showing ideal, < 1.22 homogeneous and > 1.22 

heterogeneous distributions.[241] Budesonide prepared in HFA134a / ethanol 

(10 % v/v) has a GSD value (2.4) significantly higher than the three other 

preparations under study, which are broadly similar (1.4, 1.5 and 1.7). This 

value corresponds to the unusual bimodal distribution observed with 

increased deposition on stages 1 and 2.   

6.4.3  Fine Particle Fraction 

The fine particle fractions calculated as the total material less than 5 µm  

(ACI stages 2 to 7) show values in two groups (i) ca. 60 % for preparations of 

budesonide in HFA134a / ethanol (10 % v/v) and budesonide / TRIMEB in 

HA134a and (ii) ca. 70 % for preparations of budesonide in HFA134a and 

budesonide / TRIMEB in HFA134a / ethanol (10 % v/v). These data are 

consistent with the observation that larger material is present in the 

preparation in (i) with significant depositions on stages 2 and 3 of the ACI. 

Those in (ii) show smaller population on stages 2 and 3. 
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In summary, the behaviour of these systems can be described in terms of 

facilitated Ostwald ripening (shown schematically in Figure 6.4.3.1), 

increasing the rate of transfer from smaller to larger particles.[242] 

Suspensions in media with enhanced solubility will more quickly move to a 

larger particle size. The solution concentration of API in these systems will 

clearly be higher, leading to solid (amorphous spheroids) depositing from 

actuated droplets giving an overall mixed particulate system. The fully 

solubilised system leads to spheroid deposition exclusively. 

 

Figure 6.4.3.1 – Schematic illustration of the facilitation of Ostwald ripening 

processes by the inclusion of solubilising agents TRIMEB / ethanol 

(represented by an ellipse) in the pMDI preparations of budesonide. 

  

+" +"
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In summary, prototype pMDI formulations of the ICS budesonide in HFA134a 

have been produced with ethanol as a co-solvent and the derivatised 

cyclodextrin TRIMEB. In-situ measurements with in-house NMR methods at 

pressure have shown the formulations to differ in solubility as anticipated. 

The formulation with ethanol and TRIMEB gave complete solubilisation of the 

API i.e. a solution based preparation. Impactor experiments have revealed 

some interesting behaviour, with suspension preparations showing crystalline 

deposits of budesonide. Amorphous deposits of TRIMEB, or amorphous 

deposits of budesonide : TRIMEB as host : guest complexes were 

established with consistent spheroid particle morphologies identified in SEM 

and spectroscopic evidence of complexation by µ-Raman. APSD 

measurements have shown markedly different MMAD and GSD profiles for 

the pMDI formulations. Particle size distributions are consistent with 

increased particle sizes for formulations where the API is in suspension (i.e. 

not fully dissolved) in a more solubilizing medium i.e. with addition of ethanol 

or TRIMEB. Such observations are consistent with facilitated Ostwald 

ripening, accelerating the growth of crystalline particulates in the suspension. 

Detailed conclusions are presented in Chapter 7. 
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7  Conclusions and Further work 

7.1  Solution Approaches 

The work presented in this thesis has provided a novel means by which to 

study IPPs in HFAs in-situ and at pressure using a quantitative NMR based 

methodology – a system representative of pMDI systems used extensively 

worldwide for the delivery of therapeutics to the lung. The method has been 

developed and validated, and has been shown to be accurate and precise 

with a limit of determination of ca. 1 µg/mL (ppm). These approaches have 

allowed the study of solubility in HPFP, HFA134a and HFA227 along with 

those co-solvated with ethanol and including cyclodextrin complexation 

agents. The method has also allowed access to thermodynamic data using 

VT methods and van’t Hoff based approaches. 

The studies have shown that the HFAs under study have poor absolute 

solubilising properties for selected β2-agonist, antimuscarinic bronchodilators 

and corticosteroid compounds used in inhaled therapies, though the latter 

show higher solubilities than β2-agonist and antimuscarinic bronchodilators. 

All compounds show equilibrium solubility values < 100 µg/mL (ppm), with 

the exception of the widely used corticosteroid molecule beclomethasone 

dipropionate which has previously been shown to have a significantly higher 

solubility than that of other corticosteroid molecules used in the same type of 

treatments.[84] The solubility data derived using the NMR approach show a 

strong correlation to the compound’s polarity (logP) in the case of the 

corticosteroids, though the relationship appears less applicable to the β2 

agonists. The data do not however show a strong correlation to the material’s 
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other physico-chemical characteristics such as melting point (hence ideal 

solubility) in contradiction of the data presented by Hoye et al.[165] who 

highlight a relationship between experimentally determined solubility and 

ideal solubility for the compounds in their studies (not specifically IPPs).  

HPFP, a compound shown to be useful as a model propellant for studies of 

this type[126] is shown to be a better solvent in terms of solubilising IPPs, 

having greater solubility values for all the compounds under study compared 

to HFAs 134a and 227. This is a factor consistent with observations made by 

Hoye et al.[165] and one that should be considered if using HPFP to predict 

properties of formulations in HFAs 134a and 227. The solubility trend of 

HPFP > HFA134a > HFA227 also shows correlation to the solvent’s dielectric 

constant values for the ICS compounds; potentially useful for formulators 

looking to investigate solubility of IPPs in these solutes. 

VT studies and van’t Hoff approaches have accessed thermodynamic data 

for the solutions formed in HFAs. The solubilisation process has been shown 

to be endothermic in nature, with positive enthalpy changes noted for all IPPs 

studied in HPFP, HFA134a and HFA227. As anticipated, the systems show 

an inverse correlation of solubility to Gibbs free energy change i.e. less 

energy is required to go from a solid to a solution, meaning increased 

solubility. The systems studied also tend to show a large difference in the 

entropy change associated to the process compared to the enthalpy change 

i.e. ΔSsol values differ significantly from ΔHsol, suggesting that the 

solubilisation process in HFAs is largely under entropic control.[177,178] 

Interestingly, the VT studies performed with cyclodextrin incorporated as a 

complexation agent and those with ethanol co-solvated systems show a 
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significant increase in entropy change values compared to the change in 

enthalpy increase observed. It appears that the addition of these entities has 

modified the solvent properties of the HFA, and the processes are shifting 

further towards enthalpic control. 

The studies performed in HPFP co-solvated with ethanol show an increase in 

solubility for the IPPs under study, with a general trend towards larger 

increase factors being observed for the corticosteroid compounds compared 

to β2-agonists and antimuscarinic bronchodilators. Further studies of the 

corticosteroid compound budesonide in HPFP and HFA134a co-solvated with 

ethanol at multiple concentrations between 0 and 20% v/v have shown a 

linear relationship between ethanol concentration and solubility. These 

observations are in line with those made by Hoye et al.[166] using similar 

solvent systems (not IPP compounds), though are different to those made by 

Yalkowsky et al.[173] who noted log-linear relationships in co-solvated ethanol 

/ water systems. 

The methylated cyclodextrin compound TRIMEB (heptakis-(2,3,6-tri-o-

methyl)-β-cyclodextrin) has been shown to have a significant solubility in 

HPFP, HFA134a and HFA227 ranging from 3.4 to 4.5 mg/mL, with HFA227 

showing the greatest solubilising properties for this compound. Notably, non-

methylated β-cyclodextrin showed very low solubility in all three HFAs, being 

< 15 µg/mL in each case. Evidence of complexation was observed for the 

corticosteroid compound budesonide when formulated with TRIMEB in 

HPFP, HFA134a and HFA227, with solubility values being increased by x4.5, 

x2.5 and x13.2 respectively for budesonide. A concomitant retardation of the 

TRIMEB solubility was observed suggesting that a host / guest complex is 
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formed, where the host compound controls the process.[175] Structural 

information from the NMR measurements has provided evidence of 

complexation in the form of shifts in δ (chemical shift) values of the 

budesonide and TRIMEB resonances. These data are an inherent advantage 

of the NMR approach to the studies and are further corroborated by 

observations made using vibrational spectroscopy to analyse materials 

crystallised from HPFP. Wavenumber shifts are noted in the Raman and 

FTIR spectra of materials crystallised from HPFP in the presence of TRIMEB 

compared to those of pure reference materials, particularly in the bands 

associated to the quinone function (A-ring) of budesonide, suggesting an 

interaction is taking place with the TRIMEB in this area of the molecule. 

VT NMR studies on budesonide / TRIMEB in HPFP shows data consistent 

with that observed in ethanol co-solvated systems. The entropy change 

values increase and become closer in magnitude to those of the enthalpy 

change, which also increase. This suggests that the system is moving 

towards enthalpic control in the same way as the ethanol / HPFP systems. 

7.2  Solid State Approaches 

The solid state work presented in this thesis has established methods to 

access information on solid state materials deposited after actuation of pMDI 

devices using analytical approaches used in combination with modified 

impaction and impingement devices.  Raman approaches have been used to 

interrogate budesonide / formoterol fumarate and fluticasone propionate / 

salmeterol xinafoate combination therapies in the form of Symbicort® and 

Seretide® pMDIs from AstraZeneca and GlaxoSmithKline respectively. The 
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technique has been shown to spectroscopically distinguish the two IPPs used 

from one another in each preparation, and has been successfully deployed to 

capture two-dimensional hyper-spectral arrays on material deposited on the 

plates of an Anderson Cascade Impactor. The data clearly demonstrate that 

the material shows instances of co-deposition, where particles of both 

compounds are deposited adjacent to or on top of one another. These data 

are particularly useful as it is claimed that there is a significant therapeutic 

benefit over therapies administered separately.[223-225] The technique has the 

potential for further development to investigate more than two components, 

such as IPPs in formulations containing triple therapies of inhaled 

corticosteroids, β2-agonists and antimuscarinic bronchodilators such as those 

recently formulated by Adi et al.[226] 

A novel adaptation to the Twin Stage Impinger (TSI) apparatus used in 

deposition experiments has been used successfully in the investigation of 

material properties after actuation and deposition of pMDI devices. Two 

commercially available formulations of the corticosteroid beclomethasone 

dipropionate have been investigated using this modified apparatus in 

combination with powder X-ray diffraction (PXRD), thermal techniques 

including Differential Scanning Calorimetry (DSC) and Thermo Gravimetric 

Analysis (TGA) and Scanning Electron Microscopy. The PXRD data recorded 

as part of these studies was performed after capture of respirably sized 

material (on stage 2 of the TSI) on Mylar® using a modified TSI apparatus. 

The results highlight a clear difference between the two formulations; 

QVAR® material deposits with a degree of crystalinity, with evidence of low 

intensity peaks in the diffraction patterns recorded. Furthermore, the pattern 
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suggests a different crystal form compared to that of the reference 

beclomethasone dipropionate material, with peaks at different 2θ values. 

Simulated PXRD patterns generated from previously published crystal 

structures of BDP and its solvates, confirm this is the monohydrate form,[237] 

with the reference material used being an anhydrate.[236] The Synasthmax® 

formulation however was shown to be largely amorphous in nature on initial 

deposition with no observable peaks in the diffraction pattern recorded. Time-

lapse experiments showed the material from this preparation began to 

recrystallise over time, with peaks in the diffraction pattern growing over a 

period of ca. 6 hours. The 2θ values of the peaks appearing after 

recrystallisation were consistent with those observed in the QVAR material 

after deposition and the simulated PXRD pattern, showing both products 

recrystallise to the monohydrate form of BDP. These observations are 

consistent with those from the thermal analyses and the SEM imaging carried 

out at King’s College London on the same preparations. 

7.3  Novel Budesonide pMDI Prototypes 

Production of prototype pMDI formulations of the inhaled corticosteroid 

compound budesonide have been successfully performed using crystalline 

material micronised to a mean cumulative undersize dimension, X90, of 2.9 

µm to produce formulations of (i) budesonide in HFA134a (ii) budesonide in 

HFA134a / EtOH (10 % v/v) (iii) budesonide / TRIMEB in HFA134a and (iv) 

budesonide / TRIMEB in HFA134a / EtOH (10 % v/v). The developed NMR 

method has been used to ascertain the solubility of budesonide in these 

media, and show increases consistent with those determined in previous 

studies on model systems (Sections 4.11, 4.2.1.2 and 4.2.2) for (i), (ii) and 
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(iii). Importantly, the solubility of the preparation including EtOH and TRIMEB 

shows a major increase in solubility, and is the only formulation to achieve 

total solubility at the concentrations prepared. Anderson Cascade Impaction 

(ACI) experiments have been performed on the pMDI preparations to deposit 

solid material and have allowed assessment of aerodynamic particle size 

distribution (APSD) and solid form characterisation using SEM and µ-Raman 

spectroscopy. 

The particles deposited from budesonide in HFA134a and budesonide in 

HFA134a / EtOH (10 % v/v) appear crystalline, with SEM clearly showing 

facets and edges to the deposits. µ-Raman produces spectra consistent with 

those of crystalline budesonide references. Deposits from the preparations of 

(i) budesonide / TRIMEB in HFA134a and (ii) budesonide / TRIMEB in 

HFA134a / EtOH (10 % v/v) show different form and morphology. Deposits 

from (ii) appear exclusively as spheroids and have Raman spectra consistent 

with amorphous host / guest complexes of budesonide / TRIMEB, displaying 

broadened bands and indicative peak shifts observed previously in the 

characterisation of these complexes. The homogeneity of the deposits is 

attributed to the increased (total) solubility of the materials in this preparation. 

Deposits from (i) show a mix of spheroids and crystallites consistent with the 

partial solubility of this formulation. 

APSD measurements have revealed some interesting data, with two broad 

profiles apparent; (i) budesonide and budesonide / TRIMEB in HFA134a 

show maximum deposition on stage 4 of the ACI, whilst (ii) budesonide and 

budesonide / TRIMEB in HFA134a / EtOH (10 % v/v) show maximum 

deposition on the later stages (7 and 6 respectively), with a significantly 
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reduced mass median aerodynamic diameter (MMAD) on addition of EtOH. 

These observations are consistent with those made by Williams III et al.[182] 

who also noted decreased MMAD with EtOH addition to pMDI formulations of 

betamethasone valerate. The decrease is attributed to increased solubility 

and rapid evaporation of the propellant. The lowest MMAD observed in these 

studies is from the solution formulation of budesonide / TRIMEB in HFA134a 

/ EtOH (10 % v/v), consistent with this hypothesis. It is also noteworthy that 

the preparation of budesonide / TRIMEB in HFA134a has the highest MMAD, 

and that it is greater than that of budesonide in HFA134a alone. This is 

potentially explained by the increase in solubility observed on addition of 

TRIMEB, facilitating the Ostwald ripening phenomenon and increasing the 

rate of production of larger particles at the expense of smaller ones. This is 

consistent with the MMAD increase and the ‘fronting’ observed in the APSD 

profile, showing increased deposition on the early stages (1, 2 and 3) and 

causing a bimodal distribution.  
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7.4  Further Work 

The work completed to date warrants extension in a number of different 

directions.  

The methods developed form a sound basis by which to study pMDI 

formulations in-situ and after actuation / deposition. To provide further insight 

into materials showing solubility levels below those of the currently operated 

NMR method, means by which to increase the sensitivity further should be 

investigated. Use of higher field instruments offer obvious sensitivity gains as 

discussed in the main text (Chapter 3, Section 3.1.3) and accessing higher 

field instruments of up to 1 GHz now available at certain laboratories would 

be beneficial. Perhaps more readily available and cost effective would be to 

investigate the benefits of alternative probe technologies that exist for the 

sole purpose of maximising sensitivity in the NMR experiment. Cryoprobes 

are of particular interest in that they exhibit vastly reduced noise levels in the 

data recorded due to the cryogenic cooling of the radio frequency electronics 

in the probe assemblies, hence increased signal : noise. They are, however, 

cost prohibitive for many laboratories. Other, less expensive, probe designs 

can also offer significant sensitivity enhancements for specific experiments. It 

is commonplace for a general use probe to be optimised for sensitivity of the 

X-nuclei, i.e. have the inner coil of the probe utilised for low-sensitivity 13C, 

15N experiments and the outer coil tuned for 1H work where the sensitivity is 

inherently higher.[125] For specific experiments however, it is possible to use 

probes designed to optimise, for example, 1H sensitivity by reversal of this 

setup, or having dedicated probes optimised for 1 nucleus only. These 
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probes tend to be less common as systems are generally purchased to allow 

a broad series of experiments to take place with maximum efficiency.  

The in-situ nature of the developed NMR method lends itself extremely well 

to the study of material behaviour in solution, as shown in the studies of host 

/ guest complexes (Section 4.2.2). NMR has been used previously in the 

study of complexation to good effect and the setup summarised in this thesis 

would allow similar studies to be carried out in HFAs. More extensive host / 

guest characterisation could be completed using approaches similar to those 

summarised by Pîrnāu et al.[195] and Zouvelekis et al.[243], where host / guest 

stoichiometry was calculated by NMR monitoring of chemical shift values 

during titrations to sequentially increase the host (cyclodextrin) 

concentrations. Furthermore, other cyclodextrins could easily be screened for 

solubility in HFA propellants by the NMR approaches summarised. Solubility 

of differently derivatised CDs could be assessed as has often been 

performed in aqueous and other solvent systems.[244,245] 

Further consideration should be given to the excipients used in the solubility 

enhancement of budesonide in the final chapter of this thesis. The co-solvent 

ethanol and the derivatised cyclodextrin TRIMEB have been shown to 

enhance solubility of the corticosteroid compound budesonide and control the 

deposited solids after actuation. Facilitated Ostwald ripening has been shown 

to occur in preparations with solubility increases of suspension preparations, 

but a true solution pMDI of budesonide has been prepared using ethanol / 

TRIMEB in combination, producing small particulate amorphous host / guest 

solids on deposition. The investigation of other compounds, particularly 

poorly soluble entities, would warrant investigation in pMDI formulations 
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prepared using these approaches. The lung has long been of interest in the 

systemic delivery of small molecules and peptides[1,4] and the use of the 

NMR method and deposition monitoring approaches reported would allow the 

solubility and formulation characteristics of multiple APIs to be screened.   
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