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Abstract 13 

BACKGROUND: There is considerable interest in blood-tissue distribution of agrochemicals 14 

and a number of workers have developed experimental methods for in vitro distribution. These 15 

methods involve the determination of saline-blood and saline-tissue partitions; not only are they 16 

indirect, but they do not yield the required in vivo distribution. 17 

RESULTS: We set out equations for gas-tissue and blood-tissue distribution, for partition from 18 

water into skin and for permeation from water through human skin. Together with Abraham 19 

descriptors for the agrochemicals, these equations can be used to predict values for all these 20 



 2 

processes. Our predictions compare favourably to experimental in vivo blood-tissue distribution 1 

where available. The predictions require no more than simple arithmetic.   2 

CONCLUSIONS: The present method represents a much easier and much more economic 3 

method of estimation of blood-tissue partitions than does the method that uses saline-blood and 4 

saline tissue partitions. It has the additional advantages that it yields the required in vivo 5 

partitions, and is easily extended to the prediction of partition of agrochemicals from water into 6 

skin, and permeation from water through skin   7 
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1 INTRODUCTION 14 

The method of gas-liquid chromatographic (GLC) headspace analysis is a well established  15 

procedure for the determination of thermodynamic properties of compounds 
1, 2

. A compound is 16 

equilibrated between the gas phase and a condensed phase, and the concentration of the 17 

compound in the gas phase (the headspace) and the condensed phase determined by analytical 18 

GLC. The ratio of the two concentrations then gives the gas-condensed phase partition 19 

mailto:m.h.abraham@ucl.ac.uk


 3 

coefficient, Ks. If the units of concentration in both phases are the same, say mol dm 
-3

, then Ks is 1 

dimensionless.       2 

Ks  = conc of compound in condensed phase (mol dm 
-3

) / conc. of compound in the gas phase 3 

(mol dm 
-3

)                                                                                                                                  (1) 4 

The GLC headspace method has been used regularly 
3-6 

to obtain in vitro gas-blood and gas-5 

tissue partition coefficients for volatile organic compounds, VOCs. These are defined as organic 6 

compounds with boiling points below around 260
o
C. Since it is rather impractical to determine 7 

the concentration of a compound in a biological tissue by GLC, a procedure particularly 8 

developed by Gargas et al. 
5
 has been used. A fixed amount of the compound is added to an 9 

empty vial and a vial containing the tissue. The headspace concentrations are determined by 10 

GLC and the concentration in the tissue obtained by difference.  Meulenberg and Vijverberg 
7 

11 

list numerous gas-tissue partition coefficients that have been determined in this way. Once Ks has 12 

been found for blood (Kblo) and a tissue (Ktis) for a given compound, then the corresponding 13 

blood-tissue partition coefficient, Ptis can be obtained from eq (2); Ctis and Cblo are the 14 

equilibrium concentrations in tissue and blood. 15 

Ptis   =   Ktis / Kblo   =   Ctis / Cblo                                                                               (2) 16 

      One limiting factor in the GLC headspace method is the volatility of the compound. If a 17 

compound is too involatile, it may not be possible to obtain an accurate determination of the 18 

headspace concentration. In order to circumvent this difficulty, Jepson et al.
 8 

devised a novel 19 

method in which the tissue was equilibrated with saline, and saline-tissue partition coefficients 20 
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were obtained from the concentration of the compound in the equilibrated saline and tissue. In 1 

Table 1 are the average values reported by Jepson et al.
  8 

for a number of compounds. 2 

                                                    Table 1 here 3 

      Artola-Garicano et al. 
9
 modified the method of Jepson by determining the compound 4 

concentrations using solid-phase microextraction. They reported log P values as from water to 5 

tissue, although their experimental description refers to an unspecified concentration of saline, 6 

rather than water. Their results were comparable to those of Jepson et al. 
8
 as shown in Table 2. 7 

Artola-Garicano et al. 
9
 also calculated blood-tissue partitions using Eq 2, see Table 2, not only 8 

from their own results but also from the results of Jepson et al.,
 8

 although the latter did not 9 

actually calculate any blood-tissue partition coefficients.   10 

                                                           Table 2 here 11 

In view of the importance of tissue distribution of compounds of environmental use, it is not 12 

surprising that these have been obtained for a number of agrochemicals by Tremblay et al. 
10

 13 

who used the solid-phase microextraction method. In Table 3 are given Tremblay et al.’s values 14 

of blood to tissue partition coefficients, as log Ptiss. Note that Table 3 of Tremblay et al. 
10

 is 15 

headed “tissue to blood”, but the given values in their Table are blood to tissue as defined 16 

through eq (2). 
11 

17 

                                                    Table 3 here  18 

Murphy et al. 
12

 used a variant of the method of Jepson et al. 
8
 and equilibrated tissues and blood 19 

against propylene carbonate rather than against saline. Their results for estradiol and 2,3,7,8-20 



 5 

tetrachloro-p-dioxin, TCPD, are in Table 4. The method developed by Jepson et al. 
8
 is quite 1 

general and is not limited to VOCs. Indeed, the compounds studied by Tremblay et al. 
10

 2 

included nonvolatile herbicides, insecticides and fungicides. It is very important to note that the 3 

procedure developed by Gargas et al., 
5
 by Jepson et al. 

8
 and by Tremblay et al. 

10
 yields values 4 

of Ktiss and Ptiss that are in vitro values. Thus all the values in Tables 1-4 are in vitro and not in 5 

vivo values 6 

                                                      Table 4 here 7 

        We have previously used gas-blood and gas-tissue partitions to obtain equations for in vitro 8 

partition between isolated blood and tissue, and data from studies on rats to obtain equations for 9 

in vivo partitions. It seemed of interest to compare predictions from our in vitro and in vivo 10 

equations with the in vitro results set out in Tables 1-4. This is one of the aims of the present 11 

work. Although we had equations for blood-brain, 
13-16

 blood-muscle, 
17

 blood-fat, 
18 

blood-liver 12 

19 
blood-lung, 

20
 and blood-skin partitions, 

21
 we had no equations for blood-kidney and blood-13 

heart partitions. We then collected both in vivo and in vitro data to derive the appropriate 14 

equations. We also had equations for human skin permeation and partition, that are of 15 

environmental interest, 
22, 23

 and equations for gas-olive oil and saline-olive oil that are needed 16 

for comparison, 
24 

as well as equations for gas-water.
 25

 Our final aim is to set out equations that 17 

can be used to calculate and to predict blood-tissue and water-skin partition coefficients and 18 

permeation from water through skin for agrochemicals.  19 

 20 

 21 



 6 

2  METHODS 1 

Our method makes use of the two linear free energy relationships, LFERS, 
26, 27

 eqns. (3) and 2 

(4).  3 

 4 

Log P = c + eE + sS + aA + bB + vV                                                                            (3) 5 

Log K = c + eE + sS + aA + bB + lL                                                                             (4) 6 

Eqn. (3) is used when the dependent variable is a water-phase (or a saline-phase) partition 7 

coefficient, as log P, for a series of solutes in a given system. Eqn. (4) is used when the 8 

dependent variable is gas to phase partition, as log K .                                                                                 9 

      The independent variables in eqns. (3) and (4) are the Abraham solute descriptors as follows.
 

10 

26, 27
 E is the solute excess molar refractivity in units of (cm

3 
mol

-1 
)/10, S is the solute dipolarity 11 

/ polarizability, A 
 
and B  are the overall or summation hydrogen bond acidity and basicity, and V 12 

is the McGowan characteristic volume in units of (cm
3 

mol
 -1

)/100. L is the gas-hexadecane 13 

partition coefficient at 298 K. The solute descriptors are obtained from a variety of experimental 14 

data, including water-solvent partition coefficients, solubilities in organic solvents, and 15 

chromatographic data, as detailed by us previously.
27, 28

 Clarke and Mallon 
29

 have given a 16 

detailed description our entire method, including the determination of the Abraham solute 17 

descriptors. The coefficients in eqns. (3) and (4) are obtained by multiple linear regression 18 

analysis, and serve to characterize the system under consideration. These coefficients are listed 19 

in Table 5 for in vitro partition from gas to tissue and from blood (plasma) to tissue for volatile 20 

organic compounds in rats and humans, for in vivo partition from blood to tissue in rats for 21 

drugs, and for in vitro partition from water to skin in humans for drugs. In addition we include an 22 

important equation for in vitro permeation of compounds from water through human skin. We 23 



 7 

note that all our equations refer to passive partition from blood to tissue, and as far as possible 1 

we have excluded compounds that exhibit active transport, including efflux mechanisms. Recent 2 

studies on in vivo partition have tended to use high performance liquid chromatography or gas 3 

liquid chromatography coupled to mass spectroscopic detection as the method of analysis, This 4 

procedure can detect the presence of metabolites and enables values of tissue distribution to be 5 

obtained for the parent compound. We include in Table 5 two equations for the important gas-6 

water partition coefficient, Kw, as log Kw.  One equation is cast in terms of eqn. (3) and the other 7 

equation in terms of eqn. (4). Water is the only solvent for which a satisfactory equation in terms 8 

of eqn. (3) can be obtained. 9 

        The in-vivo equations are constructed from data on known experimental blood-tissue 10 

partitions of drugs in rats. The experimental log P values for a given tissue are then correlated 11 

against the descriptors shown in eqn. (3) to yield equations with log P as the dependent variable, 12 

the various descriptors as the independent variables, and the coefficients as given in Table 5. 13 

This procedure has been described previously. 
14-21 

Once the coefficients
 
for a given blood-tissue 14 

system are known (Table 5), they can be combined with the descriptors for a given compound to 15 

yield a prediction of the particular blood-tissue partition.
  
      16 

                                                      Table 5 here 17 

       Tissues for which we did not have equations for gas-tissue and blood-tissue are kidney and 18 

heart, and so we have used data on in vitro gas to tissue and gas to blood partitions for VOCs and 19 

in vivo blood to tissue data for drugs to obtain eqns (5) - (7) for kidney. Here and elsewhere N is 20 

the number of observations, ie solutes, SD is the regression standard deviation, R is the 21 

correlation coefficient and F is the F-statistic. The corresponding equations for heart are eqns. (8) 22 



 8 

– (10). These equations, and those listed in Table 5, are quite general and include neutral (that is 1 

unionized) acids and bases. Indeed, the equations for log P for drugs include an extra descriptor, 2 

Ic, for carboxylic acids. The in vitro data that we used was taken from the literature 
3-7, 30-36

 as 3 

was the in vivo data. 
37-60 

4 

Log Kkidney (VOCs) = -1.005 + 0.489 E + 0.774 S + 3.000 A + 2.719 B + 0.497 L        (5) 5 

N = 70, SD = 0.252, R
2
 = 0.955, F = 273.5 6 

 7 

 Log Pkidney (VOCs) = -0.155 + 0.193 E – 0.462 S -0.922 A + 0.232 B + 0.750 V          (6) 8 

N = 70, SD = 0.218, R
2
 = 0.593, F = 18.6 9 

 10 

Log Pkidney (Drugs) = 0.494 - 0.067 E – 0.426 S - 0.367 A + 0.232 B + 0.410 V -0.481 Ic               11 

N = 110, SD = 0.460, R
2
 = 0.474, F = 15.5, PSD = 0.488                                               (7) 12 

 13 

Log Pkidney (Drugs)  = 0.485 - 0.071 E - 0.391 S - 0.309 A + 0.186 B + 0.414 V - 0.513 Ic 14 

N = 124, SD = 0.448 R
2
 = 0.462, F = 16.9, PSD = 0.474    15 

PRESS = 26.53,   Q
2
 = 0.399,    16 

 17 

 18 

               19 

Log Kheart (VOCs) = -1.199 + 0.185 E + 0.596 S + 2.951 A + 2.450 B + 0.589 L          (8) 20 



 9 

N = 31, SD = 0.159, R
2
 = 0.981, F = 264.3 1 

                       2 

Log Pheart (VOCs) = -0.458 + 0.041 E - 0.045 S  - 0.881 A - 0.224 B + 0.948 V           (9) 3 

N = 31, SD = 0.194,  R
2
  = 0.719, F = 12.8 4 

 5 

Log Pheart (Drugs) = 0.132 -0.039 E - 0.394 S  -  0.376 A + 0.009 B + 0.527 V  - 0.572 Ic 6 

N = 89, SD = 0.453, R
2
 = 0.512, F = 14.3, PSD = 0.556                                             (10) 7 

Log Pheart (Drugs) = 0.194 - 0.067 E - 0.313 S - 0.334 A + 0.025 BS + 0.449 V - 0.526 Ic 8 

N = 107, SD  = 0.404,   R
2
 = 0.496, F = 16.4, PSD = 0.479  9 

PRESS = 22.9626   R-Sq(pred) = 29.15%  10 

 11 

 12 

 13 

 14 

 15 

In eqn. (5) to eqn. (10) the statistical fits are always better for processes involving the in vitro 16 

transfer of VOCs than for processes involving in vivo transfer of drugs. This reflects the relative 17 

ease of making in vitro measurements as compared to the difficulty of the in vivo measurements. 18 



 10 

         Abraham and Martins 
22

 set out an equation for the partition of 45 varied solutes between 1 

water and human stratum corneum, SC. We have updated the equation using more recent 2 

descriptors based on additional experimental data, as eqn. (11), and include the coefficients in 3 

Table 5. We can also combine the log PSC  values with log Kw values for partition from the gas 4 

phase to water to obtain log KSC  values for partition from the gas phase to (water saturated) SC. 5 

The corresponding equation is given as eqn. (12).  6 

Log PSC (Drugs/VOCs) = 0.523 + 0.101 E - 0.076 S  -  0.022 A – 1.951 B + 1.652 V  7 

N = 45, SD = 0.221, R
2
  = 0.909, F = 77.7                                                                     (11) 8 

Log KSC (Drugs/VOCs) = -0.254 + 0.311 E + 2.230 S + 3.705 A + 2.925 B + 0.243 L           9 

N = 45,  SD = 0.201,  R
2
  = 0.999, F = 11842.9                                                             (12) 10 

 11 

Liu et al.  
23

 have developed an equation for permeation of solutes from water through human 12 

skin, as log Kp with Kp in cm s
-1

, that refers not only to neutral species but to ionic species as 13 

well, eqn. (13). The latter include cationic species such as protonated amines for which a new 14 

descriptor J
+

 is needed, and anionic species such as carboxylate anions for which a new 15 

descriptor J
-
 is needed. The importance of eqn. (13) is that it enables permeation through skin to 16 

be estimated as a function of the aqueous pH. The coefficients in Table 5 are those for 17 

permeation of neutral species. 18 

Log Kp =  -5.420 - 0.102 E -0.457 S -0.324 A – 2.680 B + 2.066 V – 1.938  J
+

 + 2.548 J
-
 (13) 19 
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 1 

3 RESULTS 2 

Before attempting to assess the results shown in Tables 1-4 obtained by the saline partition 3 

procedure, it is of some importance to check the in vitro equations in Table 5 for gas-tissue and 4 

blood-tissue partitions using data obtained by the original method, 
3-7

 as developed by Gargas. 
5
 5 

Mahle et al. 
61

 determined gas-tissue partition coefficients for six VOCs in blood, liver, kidney, 6 

fat, muscle and brain making a total of 36 log Ktiss values. We compared the 36 values for adult 7 

male rats with values calculated using the equations in Table 5 and found an average error 8 

(observed – calculated) AE = 0.08, an average absolute error AAE = 0.15, a root mean square 9 

error RMSE = 0.19 and a standard deviation SD = 0.19 log units. The various log K values for 10 

tissues and blood yield 30 log Ptiss values. Comparison with calculated values from the equations 11 

in Table 5 yield AE = 0.00, AAE = 0.11, RMSE = 0.14 and SD = 0.14 log units, so that our 12 

equations for in vitro partition of VOCs do, indeed, reproduce the observed quantities.   13 

     Although in vitro blood-tissue partition coefficients are useful, it is the in vivo partition 14 

coefficients that are of the most importance. Very few such data are available to test our LFER 15 

equations, but Crowell et al. 
62

 give in vivo partition coefficients for triadimefon and triadimenol, 16 

obtained from a pharmacokinetic analysis using rats. Observed and predicted log Ptiss values are 17 

in Table 6, the latter from the equations given in Table 5 and the compound descriptors listed in 18 

Table 7. 19 

                                                         Table 6 here 20 



 12 

     For the eight sets of observed and predicted log Ptiss values in Table 6, AE = -0.14, AAE = 1 

0.20, RMSE = 0.26 and SD = 0.27 log units. Given that there will be an associated error in the 2 

observed log Ptiss values, the small AE of -0.14 log units, and the total SD error of 0.27 log units, 3 

suggests that the in vivo equations in Table 5 do yield reasonable predictions of in vivo blood-4 

tissue partitions.   5 

       Whether or not the in vitro partitions obtained from saline-blood and saline-tissue partitions 6 

are equivalent to in vivo blood-tissue partitions cannot be determined directly, because there are 7 

no experimental in vivo blood-tissue partitions for comparison. However, we know that our 8 

LFER equations, Table 5, provide reasonable predictions of in vivo blood-tissue partitions for 9 

triadimefon and triadimenol, see Table 6. Therefore, a comparison of our predictions of in vivo 10 

blood-tissue partitions with the in vitro partitions obtained from saline-blood and saline-tissue 11 

partitions will provide  an estimate, albeit an indirect one, of the possible equivalence of in vitro 12 

partitions with in vivo partitions.. 13 

       For the nine in vitro blood-tissue partition coefficients listed in Table 2 for lindane, 14 

parathion and paraoxon, and the eight blood-tissue partition coefficients listed in Table 4 for 15 

estradiol and TCPD, we find for the total seventeen partition coefficients that AE = 0.15 16 

(observed - predicted), AAE = 0.31, RMSE = 0.39 and SD = 0.40 as between our predicted and 17 

the observed in vitro partitions. In Table 3 are values of in vitro log Ptiss values for 47 systems. 18 

We can predict all these 47 log Ptiss values and a comparison between our predicted and the 19 

observed in vitro partitions yields AE = -0.31 (observed - predicted), AAE = 0.39, RMSE = 0.47 20 

and SD = 0.48 log units.  21 



 13 

       Thus our predicted log Ptiss values relate to observed  in vivo log Ptiss values with AE = -0.11 1 

and SD = 0.23, whereas they relate to the two sets of observed in vitro partitions with AE = 0.15 2 

and SD = 0.40 or AE = -0.31 and SD = 0.48 log units. Our predicted values are much closer to 3 

the observed in vivo log Ptiss values than they are to the observed in vitro partitions obtained by 4 

the saline-tissue method. It should be noted that the in vitro blood-tissue partition coefficients in 5 

Tables 1-3 are derived from saline-blood and saline-tissue partition coefficients, and represent 6 

partitions between two components, blood and a tissue, that are not actually in contact with each 7 

other, whereas a true in vivo partition is between blood and the tissue in contact. Similar 8 

comments apply to the results of Murphy et al.
12

 who used propylene carbonate instead of saline, 9 

Table 4. 10 

        Since our calculational procedure yields good predictions of the required in vivo log Ptiss in 11 

the case of triadimefon and triadimenol, we suggest that it is an easier and cheaper method of 12 

estimating blood-tissue partitions than the saline-tissue method, particularly as the latter only 13 

leads to in vitro values. The calculational procedure has additional advantages in that predictions 14 

for other systems can also be carried out. Graham et al. 
60

 have examined a number of methods 15 

of calculating tissue partitions and have suggested that in-silico methods can accurately predict 16 

in vivo partitions. Our findings are in agreement with this suggestion. More recent methods have 17 

considered tissues as compartments of water, lipid and protein and have set out equations for 18 

transfer into the various compartments. The resulting equations, however, become very 19 

complicated. 
63, 64

  20 

      We give in Table 7 the required descriptors for the compounds we have discussed, and in 21 

Table 8 are the predictions we can make. As part of our analysis to obtain descriptors for 22 



 14 

compounds, we automatically calculate the gas-water partition coefficient Kw defined through an 1 

analogous equation to eqn. (1); this is also given in Table 7. Kw is an extremely difficult 2 

physicochemical property to measure experimentally, and so a calculation of log Kw could be 3 

very useful. The coefficients in equations for log Kw are given in Table 5.   4 

                                                   Table 7 here  5 

                                                   Table 8 here 6 

       One restriction to application of our method is that the descriptors in eqn. (3) and eqn. (4) 7 

need to be obtained from various experimental data, as set out previously. 
26-29

  In the absence of 8 

any ‘experimental’ descriptors, it is possible to use the ACD software ‘Absolv’ 
65

 
 
to calculate 9 

descriptors just from structure. These descriptors are given in Table 7 for triadimefon and for 10 

triadimenol, and the corresponding predictions of log Ptiss are in Table 8. The Absolv 11 

descriptors, calculated just from structure, lead to good predictions of the log Ptiss values, as 12 

shown in Table 6. The use of the Absolv calculated descriptors greatly extends our method – all 13 

that is needed to obtain descriptors and then to make predictions as in Table 8 is the structure of 14 

an agrochemical. There is one important advantage of using Absolv calculated descriptors, and 15 

that is that predictions can be made just from structure before a candidate agrochemical has even 16 

been synthesised. Of course, use of estimated descriptors will increase the error of any predicted 17 

value, but their use still provides an important prediction from structure.            18 

       We note, above, that in the construction of equations for in vivo blood-tissue partition, we 19 

excluded, as far as possible, compounds that partition by an active mechanism. Thus all our 20 

predictions will refer to passive partition. As an aside, we mention that if a prediction of a given 21 



 15 

blood-tissue partition and an experimental value for the partition are considerably different, this 1 

may indicate some form of active partition. Indeed, predictions of passive partition can help to 2 

establish whether a particular compound undergoes partition by a passive process or by an active 3 

mechanism.      4 

 5 

4 CONCLUSION 6 

      We have shown that it is possible to calculate blood-tissue partition coefficients for 7 

agrochemicals, as log Ptiss, using the LFERs, eqn. (1) and eqn. (2). The calculated log Ptiss values 8 

are in good agreement with experimental in vivo values, and we suggest the calculation of blood-9 

tissue partition coefficients by our LFER method represents an easy and economic method of 10 

estimation of in vivo log Ptiss values. 11 

       In addition to the predictions already given in Table 8, once the descriptors in eqn. (1) and 12 

eqn. (2) have been obtained for a given agrochemical, it is also possible to predict values for 13 

numerous other processes. These include partition coefficients from water and the gas phase to a 14 

very large number of organic solvents 
28

 and from water and the gas phase to room temperature 15 

ionic liquids. 
66 

Clarke and Mallon 
29 

have listed Abraham descriptors for a number of 16 

agrochemicals; these descriptors can be combined with the equation coefficients given in Table 5 17 

to obtain values for the various processes by simple arithmetic.    18 

 19 
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Table 1.  Saline-tissue partition coefficients, in vitro, as determined by Jepson et al.
 8

 3 

                     Saline-tissue partition coefficients, as log Ptiss .
 8

 

Compound Blood Fat Muscle Liver Skin Olive oil 

Lindane 2.01 3.99 2.21 2.63 2.30 4.01 

Parathion 1.74 3.74 2.15 2.46 2.23 n/a 

Paraoxon 0.35 1.36 0.91 1.17 n/a 1.38 

Trichloroacetic acid 0.41 -0.10 0.59 
a
 0.45

 a
 n/a n/a 

Dichloroacetic acid 0.08 -0.07 0.47
 a

 n/a n/a n/a 

Tetrachloroethene 1.87 3.38 1.73 1.98 n/a n/a 

 
a
 Concentration dependent 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 2. Saline-tissue and blood-tissue partition coefficients, in vitro,  3 

from  Artola-Garicano et al. 
9
                                                                                                    4 

 Saline-tissue partition coefficients, as log Ptiss. 
9
 

Compound Blood Fat Muscle Liver 

Lindane 1.75 3.84 2.19 2.41 

Parathion 1.73 3.53 2.15 2.34 

Paraoxon 0.44 1.49 0.65 1.01 

 Blood-tissue partition coefficients, as log Ptiss  
a
 

Lindane  1.98/2.09 0.20/0.44 0.62/0.66 

Parathion  2.00/1.80 0.41/0.42 0.72/0.61 

Paraoxon  1.01/1.05 0.56/0.21 0.82/0.57 

a
 Values given from ref 8 and ref 9. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 3. Blood-tissue partition coefficients, in vitro, from Tremblay et al. 
10 

Some values were 3 

not determined 
10 

and are denoted as n/d 4 

 Blood-tissue partition coefficients, as log Ptiss 
10

 

Compound Liver Brain Kidney Muscle 

Pymetrozine -0.35 -0.14 -0.14 n/a 

Thiamethoxam -0.17 -0.11 -0.01 -0.51 

Mesotrione -0.04 -0.18 -0.08 -0.44 

Pirimicarb -0.03  n/d  0.30  0.11 

Thiabendazole -0.05 -0.05 -0.13  0.00 

Atrazine -0.16 -0.15 n/d n/d 

Cyproconazole  0.58  0.28  0.18 -0.06 

Ametryn  0.30  0.04  n/d -0.04 

Molinate  0.18  0.11  0.42 -0.31 

Paclobutrazol  0.63  0.32  0.04 -0.11 

Propiconazole I 
a
  0.58  0.58  0.40 -0.04 

Propiconazole II
 a

  0.63  0.54  0.38   0.00 

Cyprodinil  0.58  0.64  0.32   0.52 

a
 These are two stereoisomers, ref 10. 5 

 6 

 7 

 8 

 9 
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 3 

Table 4. Partition coefficients in vitro, as log Ptiss, from saline to tissue for estradiol and 2,3,7,8-4 

tetrachlorodibenzo-p-dioxin (TCPD).
12 

 5 

                      Blood-tissue             Saline-phase 

Compound Fat Liver Brain Kidney Muscle Saline-fat Saline-olive oil 

Estradiol -0.23 0.56 0.29   0.53 0.00 

TCPD  2.27 0.66 0.84 0.52 0.65 2.97 3.96 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 5. Coefficients in equations for in vivo partitions into rat tissue and in vitro partitions for 1 

VOCs into human or rat tissue 2 

System S 
a
 c e s a b v l Ic 

b
 

Blood-brain/in vivo 
16

 D  0.547  0.221 -0.604 -0.641 -0.681 0.635  -1.216 

Blood-muscle/in vivo 
17

 D  0.082 -0.059 0.010 -0.248  0.028 0.110  -1.022 

Blood-liver/in vivo 
19

 D  0.292  0.000 -0.296 -0.334  0.181 0.337  -0.597 

Blood-lung/in vivo 
20

 D  0.269  0.000 -0.523 -0.723  0.000 0.720  -0.988 

Blood-kidney/ in vivo 
c
 D  0.494  -0.067 -0.426 -0.367 

 

 0.232 0.410  -0.481 

Blood-heart/ in vivo
 c

 D  0.132 -0.039 -0.394 -0.376 

 

 0.009 0.527  -0.572 

Blood-skin/in vivo 
21

 D -0.105 -0.117 0.034 0.000 -0.681 0.756  -0.816 

Blood-fat/in vivo  
18

 D  0.077  0.249 -0.215 -0.902 -1.523 1.234  -1.013 

Skin permeation 
23, d

 DV -5.420 -0.102 -0.457 -0.324 -2.608 2.066   

Water-skin partition 
22

 DV  0.523  0.101 -0.076 -0.022 -1.951 1.652   

Blood-brain/in vitro 
14

  V -0.057  0.017 -0.563 -0.323 -0.335 0.731   

Blood-muscle/in vitro 
17

 V -0.185 -0.209 -0.593 -0.081 -0.168 0.741   

Blood-liver/in vitro 
19

 V -0.095  0.000 -0.366 -0.357 -0.180 0.730   

Blood-lung/in vitro 
20

 V -0.143  0.000  0.000  0.000 -0.383 0.308   

Blood-kidney/in vitro 
c
 V -0.155  0.193 -0.462 -0.922  0.232 0.750   

Blood-heart/in vitro
 c

 V  0.047  0.041 -0.045  0.083 -0.224 0.948   

Blood-fat/in vitro 
18

 V  0.474  0.016 -0.005 -1.577 -2.246 1.560   

Saline-olive oil  
24

 V  0.019  0.556 -0.980 -1.938 -4.640 4.223   

Gas-blood/in vitro 
14

 V -1.062  0.460  1.067  3.777  2.558  0.375  

Gas-brain/in vitro 
14

 V -0.987  0.263  0.411  3.358  2.025  0.591  

Gas-muscle/in vitro 
17

 V -1.039  0.207  0.723  3.242  2.469  0.463  

Gas-liver/in vitro 
19

 V -0.943  0.000  0.836  2.836  2.081  0.564  

Gas-lung/in vitro 
20

 V -1.250  0.639  1.038  3.661  3.043  0.420  

Gas-kidney/in vitro 
c
 V -1.005  0.489  0.774  3.000  2.719  0.497  

Gas-heart/ in vitro
 c

 V -1.199  0.185  0.596  2.951  2.450  0.589  
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Gas-fat/in vitro 
18

 V -0.052  0.051  0.728  1.783  0.332  0.743  

Gas-olive oil 
24

 V -0.188 -0.095  0.851  1.468  0.000  0.873  

Gas-skin 
21

 DV -0.254  0.311  2.230  3.705  2.925  0.243  

Gas-water 
25, e

 DV -0.994 0.577 2.549 3.813 4.841 -0.869 0.000  

Gas-water
  25, e

 DV -1.271 0.822 2.743 3.904 4.814 0.000 -0.213  

a
 D drugs in rats; V VOCs in humans. 

b
 Ic is an indicator variable for carboxylic acids. 

c
 This 1 

work 
d
 The equation is for in vitro permeation, log Kp in cm  s

-1
, for a wide variety of 2 

compounds, see text.. 
e
 The gas-water partition coefficient, as log Kw, at 25

o
C. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 6. Observed and predicted in vivo blood-tissue partition coefficients, as log Ptiss 3 

  Blood-tissue, log Ptiss 

Compound  Liver Brain Kidney Fat 

Triadimefon, in vivo Obs 0.41 0.23 0.21 0.99 

 Pred 0.71 0.35 0.79 0.87 

 Pred 
a
 0.62 0.59 0.77 0.90 

Triadimenol, in vivo Obs 0.84 0.18 0.44 0.46 

 Pred 0.71 0.30 0.81 0.65 

 Pred
 a

 0.61 0.18 0.66 0.71 

 
a
 Using  Absolv calculated descriptors, see later.  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 7. Descriptors for the compounds studied 1 

Compound E S A B V L log Kw 

Lindane 1.45 0.91 0.00 0.68 1.5798 7.467 4.10 

Parathion 1.44 0.93 0.00 1.04 1.9984 8.590 5.55 

Paraoxon 1.11 1.72 0.00 1.20 1.8936 8.730 8.24 

Pymetrozine 1.63 1.87 0.16 1.54 1.6001 8.550 11.40 

Thiamethoxam 1.76 1.57 0.00 1.84 1.8076 9.092 11.38 

Mesotrione 1.82 3.15 0.00 1.80 2.2372 12.140 14.90 

Pirimicarb 1.18 1.33 0.00 1.34 1.8945 8.475 7.95 

Thiabendazole 2.22 1.90 0.35 0.64 1.3967 8.762 8.35 

Atrazine 1.22 1.29 0.17 1.01 1.6196 7.783 7.10 

Cyproconazole 1.93 1.60 0.32 1.40 2.1618 10.730 10.37 

Ametryn 1.47 1.23 0.19 1.02 1.8016 8.500 7.12 

Molinate 0.88 1.09 0.00 0.70 1.5471 6.578 4.36 

Paclobutrazol 1.53 1.39 0.21 1.46 2.2704 10.455 9.39 

Propiconazole I 2.06 2.53 0.00 1.10 2.3429 12.300 10.00 

Propiconazole II 2.06 2.53 0.00 1.10 2.3429 12.300 10.00 

Cyprodinil 2.06 0.97 0.07 0.92 1.7968 9.097 5.84 

Estradiol 1.80 1.77 0.86 1.10 2.1988 11.100 11.31 

TCPD 2.05 1.69 0.00 0.00 1.8226 9.755 2.95 

Triadimefon 1.68 1.79 0.00 1.24 2.1452 10.630 8.72 

Triadimefon 
a
 1.75 2.21 0.00 1.14 2.1452 10.080  
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Triadimenol 1.60 1.58 0.26 1.28 2.1882 10.510 9.28 

Triadimenol  
a
 1.78 1.91 0.23 1.24 2.1882 10.200  

 
a
 Calculated descriptors from structure using Absolv, ref. 32.  1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 



 32 

Table 8. Predictions for blood-tissue distribution and for water-skin distribution as log P, and for 1 

permeation from water through skin as log Kp (cm s
-1

) 2 

                                     Blood to tissue, log P   

Compound Brain Muscle Liver Lung Kidney Heart Skin Fat Water-

skin 
a
 

Skin 

perm 

Lindane 0.86 0.20 0.68 0.93 0.81 0.56 0.49 1.16 1.88 -4.54 

Parathion 0.86 0.26 0.88 1.22 1.06 0.77 0.56 1.12 1.87 -4.65 

Paraoxon 0.14 0.28 0.64 0.73 0.74 0.42 0.44 0.49 1.29 -5.62 

Pymetrozine -0.36 0.18 0.50 0.33 0.54 0.13 -0.07 -0.43 0.18 -7.31 

Thiamethoxam -0.12 0.24 0.77 0.75 0.88 0.41 -0.14 -0.39 -0.02 -7.51 

Mesotrione -0.76 0.30 0.44 0.23 0.37 0.02 0.25 -0.13 0.65 -7.25 

Pirimicarb 0.29 0.27 0.78 0.94 0.94 0.57 0.32 0.38 1.06 -5.83 

Thiabendazole 0.12 0.05 0.20 0.03 0.13 -0.09 0.32 0.65 1.65 -5.46 

Atrazine 0.27 0.19 0.58 0.64 0.70 0.37 0.33 0.41 1.25 -5.55 

Cyproconazole 0.22 0.18 0.69 0.76 0.78 0.46 0.4 0.46 1.43 -5.74 

Ametryn 0.46 0.19 0.66 0.79 0.78 0.48 0.43 0.68 1.56 -5.21 

Molinate 0.59 0.23 0.62 0.81 0.77 0.49 0.52 0.9 1.72 -4.69 

Paclobutrazol 0.36 0.24 0.84 1.02 0.99 0.66 0.48 0.55 1.47 -5.5 

Propiconazole I 0.21 0.27 0.53 0.63 0.49 0.30 0.76 1.26 2.26 -4.89 

Propiconazole II 0.21 0.27 0.53 0.63 0.49 0.30 0.76 1.26 2.26 -4.89 

Cyprodinil 0.89 0.18 0.75 1.00 0.87 0.60 0.42 1.13 1.83 -4.85 

Estradiol -0.03 0.05 0.42 0.30 0.46 0.21 0.66 0.41 2.04 -5.10 
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TCPD 1.14 0.18 0.41 0.70 0.38 0.35 1.09 2.47 3.61 -2.64 

Triadimefon 0.35 0.27 0.71 0.88 0.79 0.50 0.54 0.87 1.68 -5.30 

Triadimefon 
b
 0.59 0.23 0.62 0.81 0.77 0.49 0.52 0.90 1.72 -4.69 

Triadimenol 0.30 0.21 0.71 0.83 0.81 0.51 0.54 0.65 1.68 -5.30 

Triadimenol
 b

 0.18 0.21 0.61 0.68 0.66 0.39 0.56 0.71 1.75 -5.35 

a
 Eqn. (11).

 b
 Using the Absolv calculated descriptors in Table 7. 1 
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