# The University of Bradford Institutional Repository 

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Access to the published online version may require a subscription.

Link to publisher's version: $h t t p: / / d x . d o i . o r g / 10.1016 / j . c h e m o s p h e r e .2014 .06 .037$
Citation: Abraham MH, Gola JMR, Ibrahim A et al. (2015) A simple method for estimating in vitro air-tissue and in vivo blood-tissue partition coefficients. Chemosphere. 120: 188-191.

Copyright statement: © 2014 Elsevier. Reproduced in accordance with the publisher's selfarchiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

A simple method for estimating in vitro air-tissue and in vivo blood-tissue partition coefficients.

Michael H. Abraham, ${ }^{*}$ Joelle M. R. Gola, ${ }^{\text {a }}$ Adam Ibrahim, ${ }^{\text {a }}$ William E Acree, Jr., ${ }^{\mathrm{b}}$ and Xiangli Liu ${ }^{c}$<br>${ }^{\text {a }}$ Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK<br>${ }^{\mathrm{b}}$ Department of Chemistry, 1155 Union Circle Drive \#305070, University of North Texas, Denton, TX 76203-5017, USA<br>${ }^{c}$ School of Pharmacy, University of Bradford, Bradford, BD7 1DP, UK<br>* Corresponding author. E-mail address ucca16a@ucl.ac.uk (M. H. Abraham)


#### Abstract

A simple method is reported for the estimation of in vivo air-tissue partition coefficients of VOCs and of in vitro blood-tissue partition coefficients for volatile organic compounds and other compounds. Linear free energy relationships for tissues such as brain, muscle, liver, lung, kidney, heart, skin and fat are available and once the Abraham descriptors are known for a compound, no more than simple arithmetic is required to estimate air-tissue and blood-tissue partitions.


Keywords: Air-tissue partition, blood-tissue partition, Abraham descriptors, volatile organic compounds

## 1. Introduction

Air-tissue and blood-tissue partition coefficients are of considerable environmental importance. They enable the fate of pollutants in the body to be established, and are a pre-requisite of any pharmacokinetic (PBPK) analysis. The PBPK models themselves are used to assess the risk from exposure to chemicals.

A method for the prediction of in vivo air-tissue partition coefficients for volatile organic compounds, VOCs, has been proposed (Endo et al., 2013) based on the key equation

$$
\begin{align*}
& K_{\text {tissue/w }}=f_{\text {lipid }} K_{\text {lipid } / w}+f_{\text {membrane }} K_{\text {membrane/w }}+f_{\text {albumin }} K_{\text {albumin } / w} \\
& +f_{\text {protein }} K_{\text {protein } / w}+f_{w} \tag{1}
\end{align*}
$$

In eq $1, f_{\text {lipid }}, f_{\text {membrane }}, f_{\text {albumin }}, f_{\text {protein }}$ and $f_{w}$ are the volume fractions of storage lipid, phospholipid membrane, serum albumin and other proteins in a given biological tissue, $K$ tissuew is the water to tissue partition coefficient for the given biological tissue, and $K_{\text {lipid/w }}, K_{\text {membrane/w }}, K_{\text {albumin/w }}$ and $K_{\text {protein/w }}$, are water to phase partition coefficients. These four partition coefficients can be predicted for VOCs through a series of LFERs based on the Abraham equation (Abraham, 1993; Abraham and Acree, 2013a, 2013b; Abraham et al., 2004, 2007, 2010, 2014) eq 2, with the equation coefficients shown in Table 1. The symbol $K$ has been used (Endo et al., 2013) for the water-phase partition coefficient, but the usual symbol is $P$.
$\log K(P)=c+e E+s S+a A+b B+\nu V$

In order to convert the values of $K_{\text {tissue/w }}$ found using eq 1 to the required values of the air to tissue partition coefficient, $K_{\text {tissue/air }}$, the air-to-water partition coefficient, $K_{w / a i r}$, was then calculated through eq 3 (Endo et al., 2013) using the coefficients in Table 1.

$$
\begin{equation*}
K_{\text {tissue/air }}=K_{\text {tissue/w }} / K_{w / a i r} \tag{3}
\end{equation*}
$$

Table 1.
Coefficients in the LFER, eq 2, at $37^{\circ} \mathrm{C}$

| Process | $c$ | $e$ | $s$ | $a$ | $b$ | $v$ | Ref |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| water - lipid | -0.07 | 0.70 | -1.08 | -1.72 | -4.14 | 4.11 | a |
| water-membrane | 0.29 | 0.74 | -0.72 | 0.11 | -3.63 | 3.30 | a |
| water-albumin | 0.29 | 0.36 | -0.26 | 0.37 | -3.23 | 2.82 | a |
| water-protein | -0.65 | 0.51 | -0.51 | 0.26 | -2.98 | 3.01 | a |
| air-water | -1.06 | 0.59 | 2.57 | 3.59 | 4.24 | -0.97 | b |

${ }^{\mathrm{a}}$ (Endo et al., 2013). ${ }^{\text {b }}$ (Abraham et al., 2007)

Although the above method yields reasonable predictions of $K_{\text {tissue/air }}$ values, there are a number of difficulties with the method. First of all, eq 1 has no physicochemical basis at all. The idea that partition into a composite phase can be obtained by simply adding up contributions through eq 1 is completely contrary to all known conventional theories of solution. Indeed, if eq 1 was in any way valid, there would be no need for any complicated theories of solution at all. Furthermore, eq 1 is contrary to known experimental data for partition from water into composite phases. A great deal of work on solubility in water-ethanol phases (equivalent to partition from water to water-ethanol mixtures) has been carried out (Li and Yalkowsky, 1992; Millard et al., 2002; Machatha et al. 2004) and the situation is much more complicated than indicated by eq 1. For the two-component phase water-ethanol, eq. 1 (we use $P$ instead of $K$ ) leads to
$P_{\text {EtOH/w/mixture }}=f_{E t O H} * P_{E t O H}+f_{w}$
Then since $f_{E t O H}+f_{w}=1$
$P_{\text {EtOH/w/mixture }}=1.00+f_{E t O H} *\left[P_{E t O H}-1\right]$

That is, according to eq 1 , the partition coefficient of a compound into water-ethanol mixtures is a linear function of the volume fraction ethanol, $f_{\text {EtOH }}$. The partition coefficient of an unionized compound from water into any phase is given by the ratio of solubilities, $S$, in mol dm ${ }^{-3}$, so that for water-ethanol mixtures,
$P_{\text {EtOH/w/mixture }}=S_{\text {EtOH/w/mixture }} / S_{w}$

Then the solubility of an unionized compound into water-ethanol mixtures must also be a linear function of $f_{E t O H}$. On the contrary, the recent equation of Yalkowsky is eq 8 , where $a, b$ and $c$ are constants (Machatha et al., 2004)
$\log S_{E t O H / w / m i x t u r e}=\log S_{w}+a^{*} f_{E t O H} /\left(1+b^{*} f_{E t O H}+c\left[f_{E t O H}\right]^{2}\right)$

Plots of the solubility of salicylic acid and caffeine are also quite contrary to eq 1. (Williams and Amidon, 1988) It is not just drugs or complicated molecules that do not obey eq 1. In Fig 1 and Fig 2 we give partition coefficients for methane and ethane from water to water-ethanol mixtures against the volume fraction ethanol using literature data (Yaacobi and Ben-Naim, 1973). The predicted values are shown by the straight line. Quite clearly eq 1 is not valid for these very simple VOCs.

An equivalent equation to eq 8 follows from eq 1 for partition into any twocomponent phase, where the partition coefficient of a solute must be linear in volume fraction of one of the components. Such a linear form would not be mathematically capable of describing solute partitioning in water-to-binary solvent systems exhibiting either a maximum or minimum in the partition coefficient versus volume fraction curve. Partition coefficients of phenol from water to a number of nonaqueous binary mixtures (two-component phases) have been determined (Korenman, 1973). None of the data conform to eq 1, as shown in Fig 3 where the binary mixture is nonanol-nitrobenzene. This system does show a maximum in the observed partition coefficient near a volume fraction composition of nonanol of 0.60 . Hence the compartmental eq 1 does not hold for a variety of systems including partition from water into aqueous mixtures and partition from water into nonaqueous mixtures, with solutes as varied as methane, ethane, phenol, salicylic acid and caffeine. There appears to be no reason at all why eq 1 should hold for partition from water into biological tissues.

## 2. Methods and Results

Our method is very much simpler than that used before (Endo et al., 2013) and is based on the two LFERs eq 2 and eq 9 (Abraham, 1993; Abraham and Acree, 2013a, 2013b; Abraham et al., 2004, 2007, 2010, 2014).

$$
\begin{equation*}
\log P=c+e E+s S+a A+b B+v V \tag{2}
\end{equation*}
$$

$\log K=c+e E+s S+a A+b B+l L$

The descriptors in eq 2 and eq $9, E, S, A, B, V$ and $L$ are properties of solutes as follows. $E$ is the solute excess molar refractivity in units of $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) / 10, S$ is the solute dipolarity / polarizability, $A$ and $B$ are the overall or summation hydrogen bond acidity and basicity, and $V$ is the McGowan characteristic volume in units of $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) / 100$. $L$ is the gas-hexadecane partition coefficient at $25^{\circ} \mathrm{C}$. The solute descriptors are obtained from a variety of experimental data, including water-solvent partition coefficients, solubilities in organic solvents, and chromatographic data, as detailed by us previously (Abraham, 1993; Abraham and Acree, 2013a, 2013b; Abraham et al., 2004, 2007, 2010, 2014). Detailed accounts of our entire method are available (Clarke and Mallon, 2013; Poooe et al., 2013) including the determination of the Abraham solute descriptors (Clarke and Mallon, 2013). The coefficients in eq. 2 and eq 9 are obtained by multiple linear regression. Thus once the descriptors in eq 2 and eq 9 have been determined for a given compound, partition coefficients in condensed phases can be predicted through eq 2 and air-phase partition coefficients can be predicted through through eq 9 . The coefficients required for condensed phase partitions in biological systems are in Table 1 and Table 2.

The important in vivo blood-tissue partitions can simply be predicted through eq 2 , using the equation coefficients listed in Table 2 for drugs and other molecules (Abraham et al., 2014) as we have recently shown for artemisinin and some of its derivatives (Abraham et al., 2013a) and for a number of agrochemicals (Abraham et al., 2014). Quite recently an extensive list of blood-tissue partition coefficients has been reported (Yun et al., 2014) and we have used this extra data to update our equations for blood-kidney and
blood-heart that were reported earlier (Abraham et al., 2014). The revised coefficients are in Table 2 and now refer to 125 drugs (blood-kidney) and 107 drugs (blood-heart).

Of course, water-solvent partitions can also be predicted for a very large number of partitions for which we have the required coefficients (Abraham et al., 2010, 2013a, 2013b, 2014). The in vitro partition coefficients for VOCs can be predicted from eq 9 using the necessary descriptors and the coefficients given in Table 3.

## Table 2.

Coefficients in the LFER eq 2 for in vivo processes, as $\log P$, at $37^{\circ} \mathrm{C}^{\text {a }}$

| Process | $c$ | $e$ | $s$ | $a$ | $b$ | $v$ | $I c^{b}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Blood-brain | 0.547 | 0.221 | -0.604 | -0.641 | -0.681 | 0.635 | -1.216 |
| Blood-muscle | 0.082 | -0.059 | 0.010 | -0.248 | 0.028 | 0.110 | -1.022 |
| Blood-liver | 0.292 | 0.000 | -0.296 | -0.334 | 0.181 | 0.337 | -0.597 |
| Blood-lung | 0.269 | 0.000 | -0.523 | -0.723 | 0.000 | 0.720 | -0.988 |
| Blood-kidney | 0.487 | -0.072 | -0.390 | -0.310 | 0.188 | 0.412 | -0.513 |
| Blood-heart $^{\text {Blood-skin }}$ | 0.195 | -0.063 | -0.311 | -0.322 | 0.017 | 0.448 | -0.575 |
| Blood-fat | -0.105 | -0.117 | 0.034 | 0.000 | -0.681 | 0.756 | -0.816 |
| Water-skin $^{\text {Water-wet octanol }}{ }^{\mathrm{c}}$ | 0.077 | 0.249 | -0.215 | -0.902 | -1.523 | 1.234 | -1.013 |
| Water-dry octanol $^{\mathrm{c}}$ | 0.523 | 0.101 | -0.076 | -0.022 | -1.951 | 1.652 |  |
| Skin permeation $^{\mathrm{d}}$ | -5.034 | 0.562 | -1.054 | 0.034 | -3.460 | 3.814 |  |

${ }^{a}$ (Abraham and Acree, 2013a; Abraham et al., 2014). ${ }^{b}$ An indicator variable for carboxylic acids. ${ }^{\mathrm{c}}$ Water-solvent partitions at $25^{\circ} \mathrm{C}{ }^{\mathrm{d}}$ In vitro permeation with $\log K p$ in cm s ${ }^{-1}$,

Table 3.
Coefficients in the LFER eq 9 for in vitro processes, as $\log K$, at $37^{\circ} \mathrm{C}$, and for some physicochemical processes at $25^{\circ} \mathrm{C}^{\text {a }}$

| Process | $c$ | $e$ | $s$ | $a$ | $b$ | $l$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| air-blood | -1.062 | 0.460 | 1.067 | 3.777 | 2.558 | 0.375 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| air-brain | -0.987 | 0.263 | 0.411 | 3.358 | 2.025 | 0.591 |
| air-muscle | -1.039 | 0.207 | 0.723 | 3.242 | 2.469 | 0.463 |
| air-liver | -0.943 | 0.000 | 0.836 | 2.836 | 2.081 | 0.564 |
| air-lung | -1.250 | 0.639 | 1.038 | 3.661 | 3.043 | 0.420 |
| air-kidney | -1.005 | 0.489 | 0.774 | 3.000 | 2.719 | 0.497 |
| air-heart | -1.199 | 0.185 | 0.596 | 2.951 | 2.450 | 0.589 |
| air-fat (lipid) | -0.052 | 0.051 | 0.728 | 1.783 | 0.332 | 0.743 |
| air-olive oil | -0.188 | -0.095 | 0.851 | 1.468 | 0.000 | 0.873 |
| air-skin | -0.254 | 0.311 | 2.230 | 3.705 | 2.925 | 0.243 |
| air-wet octanol $^{\text {b }}$ | -0.198 | 0.002 | 0.709 | 3.519 | 1.429 | 0.858 |
| air-dry octanol $^{\text {b }}$ | -0.147 | -0.214 | 0.561 | 3.507 | 0.749 | 0.943 |

${ }^{a}$ (Abraham and Acree, 2013a; Abraham et al., 2014). ${ }^{\mathrm{b}}$ Air solvent partitions at $25^{\circ} \mathrm{C}$

In order to apply eq 1 to a 'new' compound for which no air-tissue partition coefficients are available, the water-tissue LFERs given in Table 1 were used to obtain the four water-tissue distributions in eq 1 , and then knowing the $f$-values for other tissues, the water-tissue distributions for these other tissues were calculated (Endo et al., 2013).. Finally, the LFER for air-water was used convert the water-tissue values to air-tissue. All this requires a knowledge of the Abraham descriptors for the 'new' compound. But if these descriptors for the 'new' compound are known, they can be used in the equations listed in Table 3 to give the air-tissue values straight away through the LFER, eq 9 ((Abraham, 1993; Abraham and Acree, 2013a, 2013b; Abraham et al., 2004, 2007, 2010, 2014).There is no need at all to use eq 1 and no need to use the air-water LFER for any conversion. An additional advantage of using the LFER, eq 9, is that it can be used to predict $\log K$ values not only from air to biological phases, but from air to a very large number of solvents; coefficients in eq 9 are known for some 90 wet or dry solvents (Abraham and Acree, 2013b). The complicated method (Endo et al., 2013) yields predictions of air-tissue partitions that cannot be better than our very simple method, and there seems little point in using such a method.

It has been claimed (Endo et al., 2013) that the tissue specific LFERs, Tables 2 and 3, cannot be used to deal with composite materials if the studied chemicals (solutes) cover a wide range of size and polarity. This is completely incorrect. Partition from water
to wet octanol involves partition into a composite material (wet octanol contains about 0.27 mol fraction water) and our LFER has been used for the water-wet octanol system, not only by us, but by Endo et al. themselves (Endo et al., 2013). Our LFER model has been used (Qian and Poole, 2007) to describe the Folch partitioning (chloroform-methanol-water partitioning system; 8:4:3 v/v) of 86 different organic solutes. The Folch system is often employed in the extraction of neutral lipids from animal tissues (Folch et al., 1957). Gas-to-liquid partition coefficients of a series of diverse organic solutes on chromatographic stationary phases coated with binary mixtures of two ionic liquids (a composite material) have been correlated in terms of our LFER model eq 9 (Baltazar et al., 2008). Our recent analysis of retention of solutes on cerasome (a composite material) includes compounds as large as digitoxin ( $V=5.694$ ) and anions and cations with extraordinary large polarities such as the ketoprofen anion with $S=5.49$ and $B=3.39$, and the $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMeH}^{+}$cation with $S=2.64$ and $A=1.47$ (Zhang et al., 2011). Quite contrary to the previous claim (Endo et al., 2013), our LFERs have been shown to apply to all kinds of composite materials with almost no restriction as to the kind or type of chemical. This is one great advantage of the LFERs, eq 2 and eq 9 .

In conclusion, use of the LFERs based on eq 9 together with the coefficients listed in Table 3 is a very simple method of predicting in vivo air-tissue partition coefficients for any compound for which the Abraham descriptors are available. LFERs based on eq 2 can be used to estimate blood-tissue partitions, partitions between water and numerous organic solvents (Abraham et al., 2010), permeation from water through human skin (Zhang et al., 2012) and the solubility of gases and vapors in water from 273 to 573 K (Abraham and Acree, 2012). Eq 2 and eq 9 have been used to set up equations for the sorption of compounds from air to soil and from water to soil (Poole and Poole, 1999) and later workers have also used eq 2 for the water to soil sorption (Nguyen et al., 2005). These equations refer to rather high concentrations of solute, and so equations were set out based on the LFER eq 2 for sorption from water to a number of specific soils at solute concentrations that were nearer environmental significance (Endo et al., 2009) and it is these LFERs that are recommended.

Application of the LFERs, eq 2 and eq 9, requires a knowledge of the descriptors for compounds. Although there is an extensive data base of compound descriptors (Absolv,
version 5.0, 2013), there may be no determined descriptors for a given compound. In this case, descriptors can be calculated using the ACD 'Absolv' software (Absolv, version 5.0, 2013). For compounds that have not even been synthesized and for which estimates of air-phase and condensed phase partition coefficients are required, for example for candidate anesthetics or candidate drugs or candidate agrochemicals, descriptors can again be calculated using the ACD 'Absolv’ software (Absolv, version 5.0, 2013).


Figure 1. Plot of the water to solvent partition coefficient, $P$, for methane, against volume fraction ethanol in water-ethanol mixtures. • Experimental values; ----- calculated values through eq 1 .


Figure 2. Plot of the water to solvent partition coefficient, $P$, for ethane, against volume fraction ethanol in water-ethanol mixtures. • Experimental values; ----- calculated values through eq 1.


Figure 3. Plot of the water to solvent partition coefficient, $P$, for phenol, against volume fraction nonanol in nonanol-nitrobenzene mixtures. - Experimental values; ----calculated values through eq 1.

## References

Abraham, M. H. 1993. Scales of hydrogen bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Revs. 22, 73-83.

Abraham, M. H., Acree, W. E. Jr. 2012. The hydrogen bond properties of water from 273 K to 573 K ; equations for the prediction of gas-water partition coefficients, Phys. Chem. Chem. Phys. 14, 7433-7440.

Abraham, M. H., Acree, W. E. Jr. 2013a. Descriptors for artemisinin and its derivatives; estimation of physicochemical and biochemical data. Eur. Chem. Bull. 2, 1027-1037. Abraham, M. H., Acree, W. E. Jr. 2013b. Descriptors for the prediction of partition coefficients and solubilities of organophosphorous compounds. Sep. Sci. Technol.

48, 884-897.
Abraham, M. H., Ibrahim, A., Zissimos, A. M. 2004. The determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A. 1037, 29-47.
Abraham, M. H., Ibrahim, A., Acree, W. E. Jr., 2007. Partition of compounds from gas to water and from gas to physiological saline at 310 K ; linear free energy relationships, Fluid Phase Equilib. 251, 93-109.
Abraham, M. H., Smith, R. E., Luchtefeld, R., Boorem, A. J., Luo, R., Acree, W. E. Jr. 2010. Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500-1515.

Abraham, M. H., Gola, J. M. R., Ibrahim, A., Acree, W. E. Jr., Liu, X. 2014. prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals. Pest. Man. Sci. Early view. DOI:10.1002/ps. 3658
Absolv, version 5.0. 2013. Advanced Chemistry Development, 110 Yonge Street, $14^{\text {th }}$ Floor, Toronto, Ontario, M5C 1T4, Canada.

Baltazar, Q. Q., Leininger, S. K., Anderson, J. L. 2008. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 1182, 119-127.

Clarke, E. D., Mallon, L. J. 2012. in Modern Methods in Crop Protection Research, ed by Jeschke, P., Kramer, W., Schirmer, L., Witschel, M. Wiley-VCH Verlag GmbH \&Co, 273-279.

Endo, S., Grathwohl, P., Harerlein, S. B., Schmidt, T. C. 2009. LFERs for soil organic carbon-water distribution coefficients, KOC, at environmentally relevant sorbate concentrations, Environ. Sci. Technol. 41, 3094-3100.

Endo, S., Brown, T. N., Goss, K.-U., 2013. General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships. Environ. Sci. Technol. 47, 6630-6639.
Folch, J., Lees, M., Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 497-509.
Korenman, Ya. I. 1973 Extraction of phenol by mixed solvents. Russian J. Phys. Chem. 47, 1684-1686.

Li, A., Yalkowsky, S.H. 1994. Solubility of solutes in ethanol/water mixtures. J. Pharm.

Sci. 83, 1735-1739.
Machatha, S. G., Bustamante, P., Yalkowsky, S. H. 2004. Deviation from linearity of drug solubiity in ethanol/water mixtures. Int. J. Pharmaceutics 283, 83-88.
Millard, J. W., Alvarez-Núňez, F. A., Yalkowxky S. H. 2002. Solubilization by cosolvents. Establishing useful constants for the log-linear model Int. J. Pharmaceutics 245, 153-166.

Nguyen, T. H., Goss, K.-U., Ball, W. P. 2005. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic material in soils and sediments, Environ. Sci. Technol. 39, 913-924.

Poole, S. K., Poole, C. F. 1999. Chromatographic models for the sorption of neutral organic compounds by soil from water and air. J. Chromatogr. A. 843, 381-400.

Poole, C. F., Ariyasena, T. C., Lenca, N. 2013. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 1317, 85-104.
Qian, J., Poole, C. F. 2007. Distribution model for Folch partitions. J. Sep. Sci. 30, 2326-2331

Williams, N. A., Amidon, G. L. 1988. The estimation of solubility in binary solvents: application of the reduced 3-suffix solubility equation to ethanol-water mixtures. Pharm. Res. 1988, 5, 193-195.

Yaacobi, M., Ben-Naim, A. 1973. Hydrophobic interactions in water-ethanol mixtures. J. Soln. Chem. 2, 425-443.

Yun, Y. E., Cotton, C. A., Edginton,A. N. 2014. Development of a decision tree to classify the most accuratetissue-specific tissue to plasma partition coefficient algorithm for a given compound. J. Pharmacokinet. Pharmacodyn. DOI 10.1007/s10928-013-9342-0

Zhang, K., Chen, M., Scriba, G. K. E., Abraham, M. H., Fahr, A., Lui, X. 2011. Linear free energy analysis of retention factors in cerasome electrokinetic chromatography intended for predicting skin permeation. J. Pharm. Sci. 100, 3105-3113.

Zhang, K., Chen, M., Scriba, G. K. E., Abraham, M. H., Fahr, A., Lui, X. 2012. Human skin permeation of neutral species and ionic species: extended linear free-energy
relationship analysis, J. Pharm. Sci. 101, 2034-2044.

| Compounds in the gas phase |  |
| :---: | :---: |
| Partition $\downarrow$ E, S, A, B, L descriptors |  |
| brain, muscle, liver, lung, kidney, heart, fat |  |
| Partition $\uparrow$ E, S, A, B, V descriptors |  |
| Compounds in blood |  |

