
The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Access to the

published online version may require a subscription.

Link to publisher’s version: http://dx.doi.org/10.1007/978-981-10-0557-2_110

Citation: Aziz H and Ridley M (2016) Adaptive Polling for Responsive Web Applications. Lecture

Notes in Electrical Engineering. 376: 1157-1167.

Copyright statement: © 2016 Springer Verlag. Full-text reproduced in accordance with the

publisher’s self-archiving policy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153514122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-981-10-0557-2_110

Adaptive Polling for Responsive Web Applications

Hatem Aziz, Mick Ridley

Computer Science Department, University of Bradford
Bradford, BD7 1DP, UK

H.M.Aziz@student.bradford.ac.uk,
 M.J.Ridley@Bradford.ac.uk

Abstract. The web environment has been developing remarkably, and much work has been done
towards improving web based notification systems, where servers act smartly by notifying and feeding
clients with subscribed data. In this paper we have reviewed some of the problems with current
solutions to real-time updates of multi user web applications; we introduce a new concept “adaptive
polling” based on one AJAX technique “Polling” to reduce the high volume of redundant server
connections with reasonable latency, we demonstrated a prototype implementation of the new
concept which is then evaluated against the existing one; the positive results clearly indicated more
efficiency in terms of client-server bandwidth.

Keywords: Real-time updates, AJAX, Bandwidth, Web applications.

1 Introduction

The internet has become the nerve of modern life in many different aspects, especially after the high
spread of using small computers, tablets and smart phones. This was the result of the continuing
development in Web environment to produce Web technologies that aim to enhance the interactivity
and efficiency of Web applications, thus popular web applications and social networks such as Facebook
and Twitter have become part of hundreds of millions of users’ life; these applications are based on real
time web techniques that can fulfil the need for fast response to specific updates with wise data
loading and server contacts, so users can communicate interactively, and be notified with new data
matching their interests. AJAX, which can be easily implemented using a variety of tools and languages
[3] is one of these techniques that is widely used nowadays benefiting from its ability to work as a real
time web technology along with its variant Reverse AJAX [4] it can provide the functionality for what is
called RIA: Rich Internet Applications; web applications that have the appearance and functionality of
desktop ones.[5]

AJAX in terms of providing real time communications between the client and server has several
techniques designed to fulfil that concept such as Polling, Piggyback and Comet; each of them has
some advantages and drawbacks. The focus here will be on improving the Polling technique with more
consideration to ‘less data transfers’ from the perspective of efficiency. We are motivated by finding a
good alternative solution to suit different situations where there are multiuser updates and especially
when updates occur at no regular intervals of time as exemplified by e.g. auctions, hotel booking web
sites, etc. Although another technology nowadays has gained a considerable attention in terms of real
time web communication, which is known as Web Sockets; a bidirectional communication technology
introduced in HTML5, where both the client and the server can initiate a data transfer at any time[6],
but one of its drawbacks that it can be blocked in some browsers for security issues[7].
In this paper we introduce the main AJAX techniques in Section 2. Outline the principles and prototype
implementation of our new approach in Section 3 and report comparative results in Section 4 and
Conclusions and future directions in Section 5.

User Interface

AJAX engine

Server

JavaScript calls
XMLHttpRequest

object

Se

2.1 AJAX

The AJAX approach is about transferring data between the server and client in the background. That
means; the browser does not need to wait until a complete new page is received. The page can be
refreshed on the basic of a small amount of data that can be shown within a DOM element. This is the
main concept of AJAX, and the web applications that employ this approach are described as
‘Asynchronous’[3]. Fig.1 shows how AJAX works.

2.2 AJAX Tools

AJAX combines a number of technologies that work together in an integrated manner to produce asynchronous and interactive
web applications. The main primary technologies are listed below [8]

- Standards-based presentation using XHTML and CSS.
- Data interchange and manipulation using JSON or XML and XSLT.
- Dynamic display and interaction using the Document Object Model; the DOM is a platform and language

independent interface designed to provide high interactivity with an HTML document, by allowing access and update to the
content of that document dynamically. The DOM works effectively with JavaScript to produce interactive web applications
[9]. In addition, DOM can be subject to differences between browsers, therefore effective AJAX needs to deal with these
differences when using a DOM model in order to obtain the same results on different browsers.

- Asynchronous server communication using XMLHttpRequest (XHR); the XHR object [10] is considered as
the core of AJAX. It sends data to a web server in HTTP/HTTPS format and receives the server response as XML, JSON,
HTML or plain text. The main feature of XHR is invoking the server with a request, and receiving the response in the
background of a web page without the need to reload the page; this process is achieved by initializing a HTTP request to the
server via send() method , and obtaining the returned information (if exists) via a response method such as responsXML()
[10].

- JavaScript to bind everything together.

2.3 Reverse AJAX

The main target of Reverse AJAX is how to make the server act with more responsiveness, by pushing information to the client
once it is available, without the client actually making a request to the server[4]. By default, AJAX requests can only be initiated

Fig.1. AJAX operation [2]

2 AJAX Framework

ServerBrowser

AJAX request #1

Response (no data)

AJAX request #2

Response (no data)

AJAX request #3

Response (with data)

Event 1

Event 1
Tim

eline

from the client to the server[1]. This limitation or problem can be resolved by using reverse AJAX techniques to provide
responsive communication between the server and client. These techniques mainly known as Polling, Piggyback and Comet, with
their different implementation, raise the issue of simplicity and efficiency; Comet needs specific features in the server, and is
complicated in terms of implementation, but features having very low latency: there is no need to wait for the next time the
browser connects, Polling in contrast is simple to implement, and should ensure low latency, however it can easily overload a
server[11], whereas Piggyback can have very high latency but low overhead connections to the server[1]. Therefore we focused
on the possibility of improving one of these techniques to produce a good alternative that can suit some cases with fair latency and
reasonable resource consumption in terms of server connections, and we found out that Polling has the potential to be enhanced
by considering the frequency of updates on the server.

How Polling works?

In this technique the browser can be set to contact the server at regular and frequent intervals (for example: every second) to
check whether an update is available to be sent back to the browser[1]. In this case the client’s web page is designed to either
show updates about a particular subject e.g. Stock Market of some country, or based on the user’s interest of what information
should be shown; for instance following someone on Twitter. The later one can be achieved by implementing the Publisher-
Subscriber design pattern [12]; where users determine which updates to be notified about at a central
server or those made by other users.
Polling can be implemented using the JavaScript function setInterval() [13] to set a fixed time as frequency when contacting the
server checking for updates. The advantage of this technique is that it is easy to implement, and does not require any
special features on the server side; it also works in all browsers. Its disadvantage however, is the
overhead of bandwidth, and redundant connections, therefore it’s rarely employed. Fig.2 shows the client-
server Polling communication.

3 Adaptive Polling

The principle of adaptive Polling is controlling the interval time of contacting the server to be flexible
and changeable on demand; depending on how frequent updates there are, which means: the time can
be increased or decreased due to server response. As mentioned before; Polling has a significant
drawback which is the high number of requests (at fixed frequent times) to the server with the
potential of returning no data at most periods of connection time. On the other hand, increasing the
Polling interval will cause a delay in retrieving updates from the server. We therefore worked on
producing a good alternative to Polling by enhancing its performance, and making it more efficient and

Fig.2. Polling communication [1]

Request (1)

Response (2)

Interval time to be reduced if didn’t reach the minimum limit

Request (2)

Response (1)

Interval time to be increased if didn’t reach the maximum limit

Request (2)

Client Server

Yes

Check if new data returned

No

Set interval time

intelligent in terms of reducing the number of redundant requests to the server. This improvement is
achieved by controlling the interval time of client-server contacts; depending on the frequency of real
update at the server.

3.1 Adaptive Polling Prototype

The mechanism of Polling technique of AJAX is based on fixed interval time to send requests to the
server and receive replies, either with update or no data returned. Whereas, in Adaptive Polling, the
interval time will not be fixed; but adaptive to the server response, this may include the consideration
of time to a deadline as for an auction or plane ticket pricing; that means the interval time will be
reduced when approaching the time deadline. In this prototype, when the request returns no data from
the server, the interval time will be increased until it reaches a maximum, which can be user
application set, and if the server responds with an update, the interval time will be decreased until it
reaches a minimum which again can be set. In this case, the efficiency of communicating with the
server can be improved. Fig.3 illustrates the mechanism of Adaptive Polling (the new technique).

The Listing.1 shows a simple algorithm to clarify the main processes of Adaptive Polling, which then
implemented by JavaScript and PHP.

Set the maximum interval Max_int
Set the minimum interval Min_int
Set the interval time Interval
Repeat
{
 Delay(Interval)

 Results = Call the function Check_for_update()
 If Results = true then

Fig.3. Adaptive Polling prototype

 Call the function ChangeInterval(true)
 Else
 Call the function ChangeInterval(false)
} while(true)

3.2 Implementing Adaptive Polling

This implementation is based on the prototype demonstrated in Fig.3; it aims to build a simple multi
user web interface representing the work mechanism of the improved Polling. Fig.4 displays a simple
chat webpage, where any member can add comments to the chat room; also it shows the current
interval time in milliseconds, and the number of times contacting the server for potential updates.
These requests are made in different frequencies; depending on the user action, that can be made by
adding comments to the chat room. Therefore, when any participant makes changes to the database,
the Polling interval time will be decreased, but each time the server responds with no new data, the
interval time will be increased until it reaches the maximum limit of interval time.

We used JavaScript and XML for best support, libraries and examples, but solutions could be
implemented other ways. We are looking to identify generic architectural models for web applications
that feature multiuser change/update. Listing.2 shows the main JavaScript function responsible for
calling the PHP script at the server to check for new updates, and Listing.3 shows the interval change
Function, whose job is to increase or decrease the interval time in response to the server update.

 function loadXMLDoc()
 {
 var xmlhttp;
 if (window.XMLHttpRequest)
 xmlhttp=new XMLHttpRequest();
 else
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 xmlhttp.onreadystatechange=function()
 {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 {
 counter1 += 1;
 document.getElementById("myDiv2").innerHTML= counter1;
 if(xmlhttp.responseText != "")
 if(counter1 < 2)

 resultText = xmlhttp.responseText;
 else
 {

 resultText += xmlhttp.responseText;

Listing.1. Adaptive Polling Algorithm

Fig.4. Adaptive Polling implementation

 document.getElementById("myDiv").innerHTML=
 resultText;

 changeInterval(false);
 }
 else
 changeInterval(true);
 }
 }
 document.getElementById("myDiv3").innerHTML=intervalTime;
 xmlhttp.open("GET","myscript.php?ct="+counter1 ,true);
 xmlhttp.send();
 }

 function changeInterval(flag)
 {
 if (!flag)
 {
 if (intervalTime > minInterval)
 {
 intervalTime -= intervalValue;
 clearInterval(si);
 si = setInterval(function(){ loadXMLDoc();},intervalTime);
 }
 }
 else
 {
 if (intervalTime < maxInterval)
 {
 intervalTime += intervalValue;
 clearInterval(si);
 si = setInterval(function(){ loadXMLDoc();},intervalTime);
 }
 }
 }

4 Adaptive Polling Vs Polling

We implemented a simple simulation webpage to compare the performance of the two techniques in
order to illustrate the improvements in Adaptive Polling over Polling. This simulation allows multiple
users to participate in a chat room and see their comments in both forms; Adaptive Polling and normal
Polling, where they can notice the difference between them regarding the frequent server connection
and the update delay. A simple test was carried out by a group of research students, and the results are
shown in Fig.5 and Fig.6.

Listing.2. Check-for-updates function

Listing.3. Change-interval function

According to the results of the test; we found out that Adaptive Polling only needed 1/6 of the contacts
compared to Polling in contacting the server, where Adaptive Polling sent about 78 requests searching
for updates, Polling needed about 475 contacts to the server. Therefore there was a significant amount
of redundant connections made by Polling comparing to Adaptive Polling which is more efficient from
this point of view.

Fig.5. Adaptive Polling simulation

Fig.6. Polling simulation

0

100

200

300

400

500

600

Times of contacting the server

Adaptive Polling Polling

Comments

Number of attempts

Fig.7 illustrates the frequency of communication in between both techniques. In terms of latency;
Adaptive Polling has more delay than normal Polling as shown in Fig.8. However, in many times they
share the same response time for update, which is a positive point when considering the low number of
times connecting the server.

0

0

0

0

0

0

0

0

0

The delay of update

Adaptive Polling Polling

Comments

Delay per seconds

5 Conclusion

The most popular web applications in the last decade are real time based, that have the ability to notify users with any updates
(often from database) in their areas of interest, therefore a variety of tools and technologies have been introduced to serve such
features; AJAX is one of the widely used technologies in many popular websites, and Facebook is one example. This loose name
‘AJAX’ combines different languages and tools that can work together according to the concept of AJAX, but in the same time,
not all AJAX techniques are suitable for all cases; it varies depending on the ease of implementation, efficiency and accuracy. So
that has encouraged us to combine the simplicity and efficiency in one technique as an alternative solution to the others.

Therefore, our focus is on manipulating and extending one AJAX implemented technique, Polling, to eliminate the high
bandwidth and loss of resources, and the idea was to deal with dynamic interval time based on server response, producing a
modified technique that we call ‘Adaptive Polling’ and the results were positive after comparing the two techniques, as the

Fig.7. Server communication frequency

Fig.8. Time delay of retrieving updates

redundant connections remarkably reduced with reasonable latency; which suggests it is a good alternative that can be implanted
in some cases especially when updates occur in no regular interval manner.

In addition to the positive results of our new concept; further improvements can be achieved by considering different cases when
the time interval can be changed in response to a deadline event such as the closure of an auction. Also the real time updates may
be led by the user activity at the client side of a website e.g. how fast the user enters data through to no activity or the browser
being out of focus.

References

[1] M. Carbou. Reverse Ajax. IBM. Available: http://www.ibm.com/developerworks/library/wa-reverseajax1/
[2] X. Wang, "AJAX technology applications in the network test system," in Electrical and Control Engineering (ICECE),

2011 International Conference on, 2011, pp. 1954-1956.
[3] S. Holzner, Ajax bible. Indianapolis, Ind.: Wiley Pub., 2007.
[4] D. Crane, P. McCarthy, and S. Tiwari, Comet and Reverse Ajax the next-generation Ajax 2.0. Berkeley, CA. New York,

N.Y.: Apress . 2008.
[5] R. Kay. Rich Internet Applications. Computerworld. Available:

http://www.computerworld.com/article/2551058/networking/rich-internet-applications.html
[6] Z. Kessin, Programming HTML5 applications. Beijing ; Farnham: O'Reilly, 2012.
[7] Websockets. F-List Wiki. Available: https://wiki.f-list.net/Websockets
[8] R. Larsen. An introduction to Ajax. IBM. Available: http://www.ibm.com/developerworks/library/wa-aj-ajaxhistory/
[9] P. L. Hégaret. Document Object Model. W3C. Available: http://www.w3.org/DOM/
[10] XMLHttpRequest. WHATWQ. Available: https://xhr.spec.whatwg.org/
[11] K. Zyp. Easing into Comet. cometdaily.Available: http://cometdaily.com/2007/12/05/easing-into-comet/
[12] E. Gamma, Design patterns : elements of reusable object-oriented software. Reading, Mass. ; Wokingham: Addison-

Wesley, 1995.
[13] J. Pollock, JavaScript : a beginner's guide, 3rd ed. New York: McGraw Hill, 2010.

