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Abstract 

A multi-element constitutive model for a lactide-based shape memory polymer has been developed 
that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 

and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring 
elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these 
parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields 
at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff 
response on unloading by a small strain decrement. This would create an unrealistically high stress 
on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an 
Eyring process operating via a flow rule that introduces strain hardening after yield. When this 
process is incorporated into a second parallel Maxwell arm, there results a model that fully 

represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is 
required for valid predictions. 
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Introduction 

Shape memory polymers have received considerable attention in recent years since their 

introduction in the 1980s. The materials and the range of applications have been reviewed by Ratna 

and Karger-Kocsis [1]. A shape memory polymer is created by inducing molecular chain orientation 

into a material; the orientation is frozen in, and may be released at a later time in response to a 

physical trigger, usually an increase in temperature, at which point the material reverts to its shape 

before orientation. These materials are finding increasing application in medical areas, where they 

have a number of advantages over devices made from shape memory metals. These include their 

ability to be triggered or activated at relatively low temperatures; their biocompatibility; the 

possibility of being bioresorbable, so that once their purpose has been fulfilled they do not need to 

be surgically removed; and the potential for dual use as drug delivery systems. Lendlein and Behl [2] 

have reviewed the area. Recent examples of applications have been in stents [3-6] and in a tissue 

engineering scaffold [7]. 

The material of this paper consists of a bioresorbable polymer compounded with calcium carbonate 

(CaCO3) powder. CaCO3 has been shown to be effective in improving thermal stability when mixed 

with PLA [8]. Also significant in the present context is its effect in controlling the rate of polymer 

degradation, as demonstrated when compounded with biodegradable polyurethane shape memory 
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biopolymers [9] to produce materials for which the rate of hydrolytic degradation depends on the 

filler level. This gives potential for control of the rate of resorption of an implanted device. 

Typically a shape memory device will be triggered to undergo shape change by attaining a specific 

reversion temperature, which will be related to the temperature at which the molecular orientation 

was originally imposed. For implant materials, there is clearly an upper limit to the reversion 

temperature, depending on the specific application, so that significant tissue damage is avoided. This 

issue has been discussed by Gall et al. [10] who report two broad approaches: the development of 

materials with reversion temperatures around 37°C, so that the body’s internal energy triggers the 

device and no external heat source is necessary; and higher reversion temperatures, for which 

external energy is required. In the latter case, in which local heating may be applied in bursts to 

minimise exposure to high temperatures, there are advantages over the former approach in that it 

makes available implant devices that are both mechanically stiffer and lack the need for low 

temperature storage. Which of the two approaches is adopted is a design decision. Gall et al. 

developed biomedical shape memory polymers with a glass transition temperature of 65°C, and 

reversion temperatures of the same order. Recently work has been undertaken to extend the range 

of devices that shape memory polymers can be used with by using the shape memory polymer as a 

part of a fixation device [11-13]. When considering materials for a fixation device such as an 

intramedullary nail, then materials with a Tg above 50°C are preferable since current devices are 

entirely metallic and do not require temperature control that is any more demanding than an air 

conditioned room (which is especially useful within the operating theatre), and thus adoption by 

surgeons would potentially be faster. These devices are also designed for use in areas of the body 

which are less sensitive to damage by elevated temperature, and thus temperatures in the range of 

60°C can be tolerated for short periods of time. This issue should be viewed in the context of the 

routine use of PMMA bone cements in hip and knee replacement surgery, in which temperatures in 

the cement may be in excess of 70°C on polymerisation [14]. 

Once an implant has been installed and activated, it is desirable that the development with time of 

the recovered shape and forces acting on it be predictable at the design stage. As pointed out by 

Nguyen et al. [15], this requires numerical modelling, which itself requires a validated constitutive 

equation, the subject of this paper. A validated numerical model of a device will also predict the 

duration of time at which it needs to be held at the triggering temperature, to assist in the design 

issue discussed above. While the shape memory process in polymers is associated with temperature 

change, an understanding of isothermal behaviour is a prerequisite for developing an appropriate 

constitutive model. Recovery phenomena can be observed isothermally, and their understanding 

provides a key for the modelling of shape recovery. They can be accessed via stress dip tests. These 

exploit the observation that, when a polymer specimen is strained in tension and then partially 

unloaded to a constant lower strain, the stress, which remains tensile, may subsequently increase, 

or recover, with time. Since the total strain energy can only decrease, stress recovery is explicable by 

there being a component of the total stress that is compressive. When modelling the material using 

mechanical (e.g. spring-and-dashpot) networks, this can be represented by including at least two 

parallel arms, so that one arm is in tension while the other one is in compression. Whenever stress 

recovery is observed, it is thus implied that the representation must include two or more parallel 

arms. 
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Depending on the level of strain unloading, on its completion the stress may relax, (for small levels 

of unloading), recover (at higher levels) or, at an intermediate level, remain initially constant. The 

stress level in this last case was a subject of major importance in a classic study by Fotheringham and 

Cherry [16] of linear polyethylene, in which partial unloading was carried out in a series of stress dip 

tests and these three responses were studied. The responses were interpreted in spring-and-

dashpot terms as a model consisting of two parallel arms, one arm being associated with an internal 

or recovery stress and the other with an Eyring process. The response of constant recovery stress 

was associated with there being zero stress in the Eyring arm; the recovery stress was then equated 

with the total applied stress, and its dependence on strain and strain rate analysed, leading to a 

quantitative understanding of the material model. 

Strain or shape recovery is a closely related phenomenon, and is of particular significance for shape 

memory polymers. When subject to zero total stress, a two-arm model in which one arm is in 

tension with elastic stored energy will contract, with consequent compression of the other arm. If 

the other arm has viscous properties, the unloading process will take time to reach equilibrium - the 

recovery time - and this quantity is of interest for the development of shape memory materials. 

Recently Bonner et al. [17] reported a simple method for predicting the recovery time for a shape 

memory polymer intended for medical applications. The method was based on the use of such a 

two-arm model, which took the form of a linear viscoelastic Kelvin-Voigt model. Transient stress dip 

tests, in which specimens were drawn up to a ratio of 4 and then unloaded by a small strain, were 

carried out in tension at temperatures in the range 55 - 75°C. These tests provided data to predict 

the recovery time of the drawn specimens, reheated to temperatures close to the drawing 

temperatures, under creep conditions. Successful predictions of the recovery time were made using 

this model and procedure. 

While the success of the work described above on both stress and shape recovery has shown the 

utility of the Kelvin-Voigt representation, it is important to note that in both cases the modelling was 

initiated from a state of stress and strain corresponding to that at the start of the stress dip. While 

the model parameters derived are fit for the purpose of predicting the subsequent behaviour, they 

are not necessarily valid more generally. It is likely that that, if the same model were loaded from an 

initial state of zero stress and strain up to the strain just preceding the stress dip, the stress would 

not correspond to that observed. This is similar to the situation we describe below, where a single-

arm model, with parameters that have been fitted using a stress relaxation test, yields before the 

stress reaches that observed in stress relaxation (Figure 4). If we are to implement the findings that 

arise from stress dip experiments, for instance by incorporating them in a finite element analysis, 

then we need a constitutive model that is valid from the initial state of zero stress and strain. Such a 

model is the subject of this paper. 

In this programme of research on a shape memory polymer, we have made use of parallel arm 

models that incorporate Eyring processes and hyperelastic networks, which are implemented 

numerically. The models comprise either two or three parallel arms, depending on temperature. 

Both stress relaxation tests and stress dip experiments are used to derive parameter values. In the 

stress dip experiments, unlike Fotheringham and Cherry, we do not seek the unloading level that 

results in constant stress; rather, we consider it sufficient to use the model's numerical 

implementation to predict the behaviour resulting from both small and large strain dips. The analysis 
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of Guiu and Pratt [18] is generalised to large strains and used to analyse stress relaxation curves and 

derive Eyring parameters. In order for a single model to be capable of modelling both loading and 

stress dip behaviour, it is found that the observed very high stiffness of response in unloading could 

only be made compatible with the stress levels during loading by a strain dependent Eyring process; 

this is achieved by the application of an appropriate flow rule that depends on the material's 

evolving anisotropy. The use of step dip tests has thus led to an important advance in the 

understanding of this material. 

Materials and methods 

Materials  
The material is a Poly(DL-lactide-co-glycolide) containing 65% Poly-DL-Lactide and 35% polyglycolic 
acid, the same material as used in the study of Bonner et al. [17]. Its proposed biomedical 
applications are outlined in a series of patents [11-13]. It has a glass transition temperature of 

around 55°C. The molecular weight of the as received polymer was between 25,000 and 30,000 and 
varied since the polymer is a medical grade material produced in small batches. The polymer was 
compounded with 35wt% CaCO3 on a ThermoFisher twin screw extruder. This melt processing step 
did cause some reduction in molecular weight, which was not quantified on a regular basis due to 
cost considerations. The CaCO3 was added for two reasons. Firstly it acts as a buffer during 
degradation of the polymer in the body, helping to maintain a more neutral Ph than would occur 
with the pure polymer. Secondly it acts to modify the degradation rate of the polymer, making it a 
more usable material. Its effect on mechanical properties was not one of the motivations of this 
study, though on the basis of previous work on PLA/ CaCO3 composites [8], there could be some 
small increase in the tensile strength and modulus due to the presence of this micro-sized filler. 

Stress relaxation 

These tests were performed using an Instron 5545 at the temperatures 60, 65 and 70°C. Specimens 
of length 75 mm were stretched at a constant true strain rate of 0.0167 s-1 to a maximum extension 
ratio of 4.0, and then held at constant strain for 2,500s while monitoring the stress decay. 
 
Stress dip tests 

The stress dip tests were carried out at the three test temperatures 60, 65 and 70°C using a 
Messphysik 20-10 tensile testing machine. Extension ratios of 4.0 were applied at a constant true 
strain rate of 0.0167 s-1 to fibre specimens of initial length 75 mm. On reaching the maximum 

extension they were immediately unloaded at a speed of 0.5 m min-1 to give a strain drop ∆λ of 
either 0.05 or 0.1, and then held at constant strain so that any stress recovery could be monitored. 
 
Loading and stress relaxation analysis 

To model the stress relaxation results and to provide the first steps towards a general constitutive 
model, we consider an Eyring process in series with a neo-Hookean elastic element. This latter 
element, also known as a Gaussian spring, is often associated with rubber elasticity and entropic 
stress; however, its functional form is fundamental to large deformation theory and is not unique to 
rubber elasticity, and in the modelling presented here we do not necessarily assume the stress 
arising from it to be entropic. This two element model, illustrated in Figure 1(a), provides a large 
deformation analogue of the Guiu-Pratt analysis of stress relaxation curves [18]. The use of this 
analysis will enable some of the Eyring parameters to be evaluated. 
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Figure 1. Development of parallel-arm constitutive models. The arrows indicate that the Eyring 

processes are acting in conjunction with the flow rule of equation (11), which includes strain-induced 

anisotropy. One-, two- and three-arm models are shown respectively in (a), (b) and (c). 

 

The Eyring process was originally proposed by Halsey et al. [19]. In the form used here hydrostatic 

and shear effects are separated [20-23] to give the expression 

   = α σ τ   
   

ɺ
pp s

oct

v v
e exp sinh

kT kT
 (1) 

relating the plastic strain rate ɺpe  to a stress tensor with octahedral shear stress τoct  and mean value 

σ . α is a constant pre-exponential factor and vp and vs are the pressure and shear activation 

volumes respectively, with k Boltzmann’s constant and T the absolute temperature. In the following 

analysis for uniaxial conditions the principal directions of stress and strain remain coincident and 

along the global 1-2-3 axis set. For principal stresses 1 2,  σ σ  and 3σ  the mean stress is given by 

( )1 2 3 3σ = σ + σ + σ /  (2) 

and the octahedral shear stress is 

( )τ = σ −σ + σ −σ + σ −σ
1/22 2 2

oct 1 2 2 3 3 1

1
( ) ( ) ( )

3
 (3). 

We apply uniaxial conditions for stretching along the 1 direction and write σ = σ1  and λ = λp p
1 . We 

introduce λ as the total extension ratio along 1 and 
e
λ as the elastic extension ratio in the neo-

Hookean element characterised by the constant G. In the Appendix, we show that for uniaxial 

conditions the Maxwell model of Figure 1 (a) is characterised by 

( )
λ σ    = +α σ σ   
λ    λ + λ

ɺ ɺ p s

e 2 e

v v
2 exp /3 sinh 2 /3

kT kTG 2( ) 1/
 (4). 
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Also in the Appendix we show that for stress relaxation this can be approximated by 

( )
σ α  + σ = 

 λ + λ

ɺ

e 2 e

v
exp 0

kT2G 2( ) 1/
 (5) 

where 

( )= +p sv v 2v /3  (6). 

v is of the same order as the shear activation volume vs, and arises from the analysis of one-

dimensional behaviour, sometimes being loosely referred to as “the activation volume”. 

Equation (5) is satisfied by a Guiu-Pratt type solution of the form 

σ −σ = + −0 0

kT
(t ) (t) ln(1 (t t )/c)

v
  (7) 

where t > t0 with t0 a fixed time, often equated to t0 = 0 at the start of the stress relaxation. c is given 

by 

( )
 = − σ 
 α λ + λ

0e 2 e

kT 2 v
c exp (t )

kTvG 2( ) 1/
 

 (8). 

In the following applications, equation (7) is fitted to stress relaxation curves to estimate V and α, 

and stresses during loading are calculated using a time-stepping numerical implementation of 

equation (4). 

Loading and stress relaxation: results and initial analysis 

Loading and stress relaxation data are shown for 60, 65 and 70°C are shown in Figure 2 where each 

result is an average of three experiments. We first make use of the stress relaxation curves to 

estimate Eyring parameters. Equation (6) is fitted to them using a nonlinear least squares procedure. 

The fitted curves are shown in Figures 3(a) – 3(c), where in 
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Figure 2. Loading and stress relaxation at 60, 65 and 70°C. 

 

 

Figure 3(a) Stress relaxation at 60°C fitted with Guiu-Pratt equation. Mean square error 0.22 MPa2. 
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Figure 3(b) Stress relaxation at 65°C fitted with Guiu-Pratt equation. Mean square error 0.30 MPa2. 

 

Figure 3(c) Stress relaxation at 70°C fitted with Guiu-Pratt equation. Mean square error 0.72 MPa2. 

each case the whole of the relaxation curve is fitted, with time t0 in equation (7) taken as the start of 

the stress relaxation process and assigned the value t0 = 0. At 60 and 65°C the fits are excellent, 

whereas at 70°C the fit is poor. This suggests that at this temperature the model of a single Eyring 

process is inadequate. However, we still make use of the fitting procedure by using non-zero values 

of t0, in order to identify a time interval (t > t0) where a single process is dominant. This we have 

done for the 70°C case using t0 = 200s, as shown in Figure 3(d). This leaves open the option of adding 

a second parallel arm, with parameters such that its effect is to give improved predictions for times 

less than t0 while contributing negligibly at times greater than t0. This is shown to be a useful 

approach below, when the more general model that includes loading history is considered. 
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Figure 3(d) Stress relaxation at 70°C fitted with Guiu-Pratt equation from t0 = 200s. Mean square 

error 0.01 MPa2. 

The values of the fitting parameters of equation (18) are given in Table 1. 

Table 1 Equation (6) fitting parameters 

Temperature / °C t0 / s v / nm3 c / s 

60 0 1.29 0.053 

65 0 1.21 0.27 

70 0 1.89 0.22 

70 200 3.79 39.1 

 

The present Guiu-Pratt analysis is based on a Maxwell-type series model as shown in Figure 1(a) for 

which the total strain is constant. The additional assumption is that the initial state of stress and 

strain pertaining at t = t0 is attainable. This assumption can be investigated by implementing 

numerically the model of equation (4), which is of the same Maxwell arrangement but subject to a 

general strain history, and applying the strain history used experimentally in the stress relaxation 

experiments. The experimental strain histories consist of a ramp followed by a period of constant 

strain as described in ‘Materials and methods’ above. To apply equation (4) we require the values of 

a number of material parameters that we derive using the results in Table 1; at 70°C we take the 

values fitted when t0 = 200s. 

Firstly we obtain values of vp and vs from the fitted values of v. We have done this using equation (6) 

and the relation vp = 0.1 vs. This latter assumption is reasonably consistent with findings for a range 

of polymers, both semicrystalline and amorphous. Examples of values derived for vp/vs are 0.05 -
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0.072 [24] and 0.075 [25] for polycarbonate; 0.15 for polypropylene [26]; 0.13 for ultra-high 

molecular weight polyethylene [27]. The consequences of varying vp/vs between 0.05 and 0.15 have 

been explored numerically and found to be slight. As a specific example, the three-arm model 

described below with material parameters given in Table 3 for 65°C, was loaded in tension at a strain 

rate of 0.0167 s-1, up to an extension ratio of 4.0. Varying the value of vp with fixed vs gave a 

maximum increase in stress of 4%, occurring at the maximum strain, when vp/vs was decreased from 

0.1 to 0.05. Similarly, increasing vp/vs from 0.1 to 0.15 gave a decrease in stress of 4% at the 

maximum strain. We conclude that the models are sufficiently insensitive to this ratio to justify the  

Table 2. Parameters for equation (15) 

Temperature/ °C vp / nm3 vs / nm3 α / s-1 G / MPa λe 

60 0.256 2.56 7.54 × 10-7 3.25 2.72 

65 0.243 2.43 3.50× 10-5 2.49 1.97 

70 0.748 7.48 1.3× 10-5 1.61 1.70 

 

use of the fixed value of 0.1. 

Since there is no sign of yielding during loading, we assume that there is no plastic strain on 

completion of loading, so that λ = λe . Then the neo-Hookean coefficient G is consistent with the 

stress σmax  at the end of loading with λ =e 4.0 . Having obtained the G value at each temperature, 

the values of α are related to the fitted values of c via equation (8). However, equation (8) includes 

λe, which, as noted in the Appendix, will be varying during stress relaxation and so different in value 

from that assumed at the beginning. We have fitted the values of α to give good prediction of stress 

at the end of the stress relaxation, and calculated the implied λe from equation (8); this is assumed 

to be constant according to the analysis above. The full set of parameter values for this Maxwell-like 

model is given in Table 2. The results at 70°C are from the t0 = 200s results in Table 1. 

The values in Tables 1 and 2 show that the activation volumes depend on temperature. It has been 

known for some time [28] that activation volume correlates only loosely with the size of molecular 

features, and may represent a sequence of co-operative mechanisms [16]. There is therefore no 

physical argument that would preclude temperature dependence, and it has been observed 

experimentally in a number of instances, for example by Strutz et al. [29]. 

Using the values of Table 2, stresses have been calculated using equation (4) for loading and stress 

relaxation at the three temperatures. The results are compared with observation in Figure 4. In all 

cases yield occurs in the model stress at values lower than the observed stress maxima. The 

assumption in our implementation of the Guiu-Pratt analysis, that the initial stress and strain is 

attainable by a single-arm model, is thus shown to be incorrect. However, for stress relaxation at 

sufficiently long times, the agreement between observation and model is good. This suggests that 

the stress relaxation fits have produced Eyring parameters for a process that is dominant at these 
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longer times, and that additional processes are required for the short time behaviour. This will be 

discussed below while taking into consideration the data obtained from stress dip tests, as will be 

the early yield at ~ 2 MPa discernible at 160°C in Figure 4(b). It should also be noted that the 

rationale for calculating G – that the initial stress is attained and there is no yielding – is not 

applicable to the model, and so the values of G for this process are as yet not defined. 

Figure 4(a) Single Eyring process model predictions and experiment at the three test temperatures. 
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Figure 4(b) Early part of the graph of 4(a). 

 

Stress dip results and implications 

The strain histories applied in the stress dip tests are shown in Figure 5, for both small (5% strain, i.e. 

∆λ = 0.05) and large (10% strain, i.e. ∆λ = 01.) strain decrements. Corresponding stresses are shown 

below for the three temperatures in Figures 7 – 9, alongside the model predictions to be developed 

in following sections. 
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Figure 5. Strain history for stress dip tests: (a) small dip (∆λ = 0.05); (b) ∆λ = 0.1. 

 

One of the most significant aspects of these tests is the material stiffness associated with the 

unloading step. Taking the 60°C result with 5% strain dip, we observe a stress drop of 18 MPa. In the 

time taken for the stress dip (0.6s), the stress relaxation result shows that the stress relaxes by 

approximately 9 MPa in that time, so we must associate a stress drop of 18 – 9 = 9 MPa with the dip 

in strain. The stiffness is thus 180
∆σ

≈
∆λ

 MPa . To explore the implications of this, suppose it is 

associated with a neo-Hookean mechanism in which for uniaxial loading the stress is given by 

( )2 1σ = λ − λG / . (9) 

Then, by differentiation the coefficient G is defined in terms of the stiffness as 

( )22 1
∂σ

= λ + λ
∂λ

G / /  (10). 

We have already identified an Eyring process from the stress relaxation tests, and established that it 

does not attain the observed stresses. We require an additional parallel component to model the 

stress dip behaviour. If we were to associate a neo-Hookean element with this role, the value of the 

coefficient G from equation (10) gives the stress in equation (9) as ∼ 360 MPa at λ = 4, several times 

greater than the total observed. To exhibit recovery behaviour, the parallel component needs to be 

viscoelastic, but this calculation shows that the elastic part of the strain associated with it must be 

very much smaller than the total. This is consistent with the parallel component comprising a stiff 

elastic element in series with an Eyring process, where it is essential for the Eyring process to have 
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yielded at an early stage during loading to avoid unrealistically high stress. On this basis we can 

associate the rate of stress increase as the maximum stress is approached with the plastic 

mechanism, and the steeper slope on fast unloading with the elastic mechanism in series with the 

plastic mechanism. For this component to function as observed, the plastic mechanism is prevented 

by its own hardening from yielding during the strain dip; the yield stress must be higher at large 

strain than at small strain to allow the observed dip in stress to take place, since the yield stress on 

loading is observed to be of the order of 2 MPa at 60°C and negligible at higher temperatures. 

In this model, the plastic mechanism – the Eyring process – is the main source of strain hardening 

during loading. This is a major departure from the models, beginning with that of Haward and 

Thackray [28], in which entropic networks are the sole source of strain hardening. Such networks 

have featured in polymer constitutive models pursued by many workers subsequently, some of 

whom have applied the entropic network concept to polymers in their glassy state (for example Smit 

et al. [30]). This latter course of action, while in some cases producing effective constitutive models, 

is not justified physically as the entropic chain is by assumption free to assume a wide range of 

configurations that are not available in the confined glassy state. This issue has been addressed by 

Mahajan and Basu [31], who, on the basis of molecular simulations of glassy polymer, observed that 

the glassy and rubbery responses were energetically dissimilar, and concluded that the similarity in 

stress - strain behaviour between glassy and rubbery systems was not based in physics. Recent work 

on simulations of glassy polymers has reinforced this view; Hoy and Robbins [32] concluded that, in 

polymer glasses, strain hardening occurs as a result of an increasing rate of plastic rearrangements 

that accompanies chain orientation. Macroscopically, this would manifest itself as an increasing 

dependence of stress on strain rate as orientation increases. Such an effect has been observed by 

Senden et al. [33], who suggested that it could be modelled by an Eyring activation volume that 

decreases with strain, in line with similar earlier interpretations [34-36]. However, this approach is 

only adequate as a model for uniaxial behaviour, as a decrease in activation volume will affect the 

rate dependence for stretching in all directions, including perpendicularly to the orientation 

direction. Recognising this, Sweeney et al. [37], who observed an increase in the rate dependence of 

stress while working on ultra-high molecular weight polyethylene (UHMWPE) in tension, used an 

Eyring process operating via a flow rule with strain dependent anisotropy. This had the effect of 

increasing the yield stress along the direction of tensile stretching, leading to a strain-hardening 

behaviour that was compatible with experimental observations. The same flow rule was also 

successful in predicting the stress levels along different axes for large multiaxial deformations of 

both UHMWPE in compression [38] and polypropylene in tension [39]. We shall apply this concept, 

using a Maxwell-type component consisting of a neo-Hookean element in series with the hardening 

Eyring process as a parallel arm of the constitutive model. 

 

Constitutive modelling 

The following two findings broadly summarise the results so far: 

i. Stress relaxation experiments reveal long-term behaviour that can be modelled using an 

Eyring process. 
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ii. Stress dip tests reveal extreme degrees of strain stiffening, that cannot be represented by an 

entropic elastic process. As this stiffening can only occur in the direction of straining, a 

degree of strain induced anisotropy is implied. 

For (i), we have produced an analysis above that uses Guiu-Pratt fitting to help arrive at the material 

parameters. For (ii), we propose to use an Eyring process as in (i), but one that operates via a flow 

rule which produces both the strain hardening and the anisotropy; the associated analysis is set out 

below. By combining together the two types of mechanism associated with (i) and (ii) as components 

in parallel arms, we shall produce a comprehensive constitutive model that gives a good 

representation in both the long and short terms. The use of two or more parallel arms gives the 

potential for tension and compression to coexist, so that the system will also be capable of 

modelling recovery as in Bonner et al. [17]. 

Following recent developments [37, 38], we adapt the Hill flow rule [40] such that the Hill 

coefficients become functions of the total strain. The functions take the form, in principal directions, 

of the principal extension ratios raised to a power m. In the present case the principal directions 

remain fixed and coincide with the axes of orthotropy, and we may write for principal directions 1, 2 

and 3: 

λ
 = λ σ −σ + λ σ −σ τ λ

λ
 = λ σ −σ + λ σ −σ τ λ

λ
 = λ σ −σ + λ σ −σ τ λ

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

p
p m m1

3 1 2 2 1 3p
1

p
p m m2

1 2 3 3 2 1p
2

p
p m m3

2 3 1 1 3 2p
3

e ( ) ( ) ( ) ( ) /3

e ( ) ( ) ( ) ( ) /3

e ( ) ( ) ( ) ( ) /3

 (11) 

where peɺ  is again the scalar plastic strain rate as in equation (1) that results from the Eyring process 

= α σ τɺ
p

p se exp(V )sinh(V )  (12).
 

 

In both equations (11) and (12) τ is the driving stress that differs from the octahedral shear stress of 

equation (1). The required definition of peɺ (see Appendix) is maintained provided that 
 

{ }
{ }
{ }

2
m m

3 1 2 2 1 3

2
m m

1 2 3 3 2 1

2
m m

2 3 1 1 3 2

( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

3 3

( ) ( ) ( ) ( )

 λ σ −σ + λ σ −σ
 
 τ = + λ σ −σ + λ σ −σ 
 
+ λ σ −σ + λ σ −σ  

 (13). 

 

When m = 0, equations (11) revert to the Levy-Mises flow rule and τ reverts to the octahedral shear 
stress. Otherwise, equations (12) and (13) show that in general the three principal stresses will 
influence the plastic strain rate to different extents that depend on the level of anisotropy. 
We now construct a Maxwell type model similar to that embodied in equations (A12) – (A15) in the 
Appendix and shown in Figure 1 (a) above. Adopting uniaxial conditions, equations (A12) – (A14) still 
apply and equation (4) is replaced with the analogue 
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( )
− λ σ  = + α σ λ σ   

λ    λ + λ

ɺ ɺ p m / 2s

e 2 e

v v
2 exp / 3 sinh 2 / 3

kT kTG 2( ) 1 /
 (14).

 

 
It is clear that, for tensile stretching and m > 0, the model is strain hardening since the stress, 
operating via the sinh term, has less influence on the total strain rate as the deformation proceeds. 
The form of the argument in the sinh function has an effect similar to a strain dependent activation 
volume. We should note that, in a constitutive model in which the activation volume were a direct 
function of strain, the level of strain would affect strain hardening equally in all directions and would 
be unrealistic. By assigning the strain dependence to the flow rule, we ensure that the strain 
hardening is only influenced for straining along the direction of orientation. The equation (14) is 
solved numerically in a way similar to that used to solve (4). 
 
From the analysis of stress relaxation we have identified an Eyring process which does not provide 
sufficient stress at early times. This suggests a strategy of adding a second parallel arm to correct for 
this. From the stress dip tests we have also seen the need for a very stiff process. It is possible that 
the second arm and the stiff process are one and the same, in which case the two-arm model of 
Figure 1(b) would be sufficient. In general, however, we require a constitutive model consisting of 

three parallel neo-Hookean/Eyring arms, all subject to the same extension ratio λ, as shown in 
Figure 1(c). Labelling the arms a, b and c, each arm is represented by a copy of equation (14): 
 

( )

( )

( )

−

−

−

σλ    = + α σ λ σ   
λ    λ + λ

σλ    = + α σ λ σ   
λ    λ + λ

σλ  
= + α σ λ 

λ  λ + λ

ɺ ɺ

ɺ ɺ

ɺ ɺ

a

b

c

pa m /2a sa
a a ae 2 e

a a a

pb m /2b sb
b b be 2 e

b b b

pc m /2c sc
c ce 2 e

c c c

v v
2 exp /3 sinh 2 /3

kT kTG 2( ) 1/

v v
2 exp /3 sinh 2 /3

kT kTG 2( ) 1/

v v
2 exp /3 sinh 2

kT kTG 2( ) 1/

 σ 
 c /3

 (15).

 

 

The total stress σ is given by the sum of the stresses in the three arms: 
 

a b c
σ = σ +σ + σ         (16). 

 
We identify arm a with the long term process associated with the stress relaxation behaviour and 
the Eyring parameters summarized in Table 2 above. The proportion of the total stress predicted by 
this arm can be gauged by observing the 'modelled' curves of Figure 4. The arm b is associated with 
the stiff strain-hardening process that accounts for a large proportion of the stress during loading 
and the recovery behaviour. At two of the three temperatures, the fit of the model is improved by 
introducing the third arm c. The elastic stiffness Gb is initially estimated from the magnitude of the 
stress dip. The Eyring parameters for the b arm are fitted to ensure an appropriate time scale for the 
stress recovery process, and the strain hardening exponent mb is fitted to give the observed shape of 
the stress-strain curve during loading. In Figures 1(b) and 1(c), the strain-induced anisotropy 

associated with 0
b

m =  is denoted by the arrowed dashpots. For the a and c processes, the 

conventional flow rule is retained with 0
a c

m m= = . Ga and the c arm parameters are adjusted by 

trial and error to give improvements in the overall representation of the small and large stress dip 
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experiments and the stress relaxation experiments. The values of the parameters derived in this way 
are summarized in Table 3, and the associated predictions compared with observation in Figures 6 
and 7 for the stress dip tests and in Figure 8 for the stress relaxation tests. 
 
Table 3 Model parameters 

Temperature 

°C 

Arm vp 

nm3 
vs 

nm3 
α 
s-1 

G 
MPa 

m 

60 a 0.256 2.56 7.54 × 10-7 2.5 0 

b 0.368 3.68 2.4 × 10-2 450 4.25 

65 a 0.243 2.43 3.5 × 10-5 1.72 0 

b 0.420 4.20 2.4 × 10-2 270 3.5 

c 0.140 1.40 1.2× 10-3 0.6 0 

70 a 0.748 7.48 1.3× 10-5 0.8 0 

b 1.23 12.3 5.0× 10-2 130 5.0 

c 0.237 2.37 1.2× 10-3 0.8 0 

 

 
Fig 6 Stress response to small strain dip experiments compared with model predictions. 
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Fig 7 Stress response to large dip experiments compared with model predictions. 
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Fig 8(a) Stress responses in stress relaxation experiments compared with model predictions. 

 
Fig 8(b) Early part of the graph 8(a). 
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In all cases the model represents loading, stress relaxation and stress recovery at a useful level. The 

model successfully predicts the distinct levels of stress recovery at low and high strain dips. At 60°C, 
only two arms - a and b - are necessary, with no significant improvements possible by the addition of 
a third process. At this temperature, the initial yielding at very low strains predicted for the b 
process appears to be consistent with the observed stress, whereas at higher temperatures the 
predicted initial yield is too small to be detected in the experiments reported here. At all three 
temperatures, the stiff b arm yields at a small strain, so that the elastic strain reaches only around 
1% for the total extension ratio of 4.0. This process strain hardens during loading, and accounts for 
20-30% of the total stress. 
 
From Table 3, it can be seen that the shear and pressure activation volumes vs and vp for arms a and 

b change little between 60 and 65°C, but undergo large changes between 65 and 70°C, consistent 
with a glass transition temperature in that range. Activation volumes for polymers of the order of a 
few nm3 as seen here are observed for a range of polymers (see for example Haward and Thackray 
[28]), being considerably greater than the molecular features that they are associated with. 
Increases in activation volume with temperature have been observed by other workers (see for 
example Seguela et al. [41]). 
 
Conclusions 

 
A multi-element constitutive model for a shape memory polymer has been successfully developed to 
represent loading to large tensile deformations, stress relaxation and stress recovery. The model 
consists of parallel Maxwell arms each comprising neo-Hookean springs and Eyring dashpots. 
 
Guiu-Pratt analysis of the stress relaxation curves is a useful means of deriving Eyring parameters. 
When these parameters are set to define the Eyring process in a single Maxwell arm, the resulting 
model (Figure 1(a)) yields at a stress lower than that attained during loading, but gives good 
predictions for longer times. This highlights the need for one or more additional parallel arms to 
provide a realistic initial response. 
 
Stress dip tests show a very stiff response on unloading. This phenomenon is modelled by 
introducing an essential basic component in the form of an Eyring process that operates via a flow 
rule that introduces strain-induced anisotropy. For this process, the dependence of stress on strain 
rate in the stretching direction increases in strength as the strain increases. As a result, the process 
shows strain hardening after yield, and when included in series with a neo-Hookean spring it forms a 
single-arm strain hardening model. In this Maxwell type model the strain hardening is driven by the 
extension of the Eyring process. Hence, we have a source for strain-hardening behaviour that is not 
attributable to entropic elasticity, a feature consistent with the polymer behaviour predicted by 
molecular dynamics simulation. Also, with this process the yield stress is higher at higher strain, so 
that it can yield at a low strain and, after the imposition of a large strain, then be unloaded through a 
stress decrement greater than the initial yield. This enables the very stiff mechanism observed when 
unloading through a small strain dip to be modelled with a single process. 
 
To accommodate both the long term response in stress relaxation and the stiff response during 
stress dips, a two-arm model is necessary (see Figure 1(b)). If the stiff mechanism in arm b of this 
model also provides the stress required for the initial response, then the two-armed model of 1(b) is 

sufficient; this is the case at 60°C. At the other temperatures, a third arm becomes necessary, 
resulting in the model of Figure 1(c). 
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The level of understanding achieved will allow the development of accurate finite element analyses 

of shape memory components. This will enable the evaluation of a number of factors useful to the 

design process. These factors include the evolution during recovery of the component shape; the 

boundary forces generated at the interface of the component with the surrounding tissue; the 

recovery time; and the required duration of heating during the thermal triggering process. 
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Appendix: Analysis of single Maxwell arrangement for uniaxial stretching 

 

For the Maxwell model of Figure 1(a), the plastic strain rate ɺpe  in the Eyring process is given by 

 

   = α σ τ   
   

ɺ
pp s

oct

v v
e exp sinh

kT kT  (A1) 

for a stress tensor with octahedral shear stress τoct  and mean value σ . α is a constant pre-

exponential factor and vp and vs are the pressure and shear activation volumes vp and vs respectively, 

with k Boltzmann’s constant and T the absolute temperature. In the following analysis for uniaxial 

conditions the principal directions of stress and strain remain coincident and along the global 1-2-3 

axis set. For principal stresses 1 2,  σ σ  and 3σ  the mean stress is given by 

( )1 2 3 3σ = σ +σ + σ /  (A2) 

and the octahedral shear stress is 

( )τ = σ −σ + σ −σ + σ −σ
1/22 2 2

oct 1 2 2 3 3 1

1
( ) ( ) ( )

3
 (A3). 

The plastic strain rate tensor Lp, given in terms of principal plastic extension ratios λ λ λp p p
1 2 3,   and  

and their rates λ λ λɺ ɺ ɺp p p
1 2 3,   and  is given by 

=  
λ 
 λ
 
 λ
 λ 
 λ
  λ 

ɺ

ɺ

ɺ

p
1
p
1

p
2
p
2

p
3
p
3

0 0

0 0

0 0

pL  (A4) 

and the scalar plastic strain rate in equation (A1) is then 

=ɺp p p1
e

3
L : L  (A5). 
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Since the plastic strains are assumed to be incompressible, for uniaxial stretching along 1, 

( )−λ = λ = λ
1/2p p p

2 3 1  (A6) 

and 

λλ λ
= = −

λ λ λ

ɺɺ ɺpp p
32 1

p p p
2 3 12

 (A7). 

Also, 

σ = σ =2 3 0  (A8). 

Now, writing σ = σ1  and λ = λp p
1  and using equations (A2) – (A7), equation (A1) becomes 

λ    = α σ σ   
λ    

ɺ p
p s

p

v v
2 exp /3 sinh 2 /3

kT kT
 (A9). 

To obtain a Guiu-Pratt relation we make the assumption that the argument in the sinh function is 

large so that ≃sinh(x) exp(x)/2 . Then for σ > 0 equation (A9) becomes 

λ α  = σ 
λ  

ɺ p

p

v
exp

kT2
 (A10) 

where 

( )= +p sv v 2v /3  (A11). 

For uniaxial conditions along the 1 axis with elastic extension ratio λe , the stress along the 1 axis for 

the incompressible neo-Hookean model is given by 

( )σ = λ − λe 2 eG ( ) 1/  (A12). 

where G is a material constant. For the series model with a total extension ratio λ, 

λ = λ λe p  (A13) 

and 

λ λ λ
= +

λ λ λ

ɺ ɺ ɺe p

e p
 (A14). 

Using the time derivative of equation (A12) and equation (A9) for positive strain rate, equation (A14) 

becomes 
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( )
λ σ    = +α σ σ   
λ    λ + λ

ɺ ɺ p s

e 2 e

v v
2 exp /3 sinh 2 /3

kT kTG 2( ) 1/
 (A15) 

with a simplified version using equation (10) 

( )
λ σ α  = + σ 
λ  λ + λ

ɺ ɺ

e 2 e

v
exp

kT2G 2( ) 1/
  (A16). 

For stress relaxation, λ =ɺ 0 in (A16) gives the differential equation 

( )
σ α  + σ = 

 λ + λ

ɺ

e 2 e

v
exp 0

kT2G 2( ) 1/
  (A17). 

A Guiu-Pratt type solution of equation (A17) is possible only if it is assumed that the factor 

( )λ + λe 2 e2( ) 1/  is constant. This is approximately true for slowly changing stress. We shall use the 

solution to estimate Eyring parameters, taking due regard of this limitation. Under this condition the 

solution for the stress at time t constant strain is given by 

σ −σ = + −0 0

kT
(t ) (t) ln(1 (t t )/c)

v
  (A18) 

where t > t0 with t0 a fixed time, often equated to t0 = 0 at the start of the stress relaxation. c is given 

by 

( )
 = − σ 
 α λ + λ

0e 2 e

kT 2 v
c exp (t )

kTvG 2( ) 1/
 

 (A19). 

For the  applications in this paper, equation (A18) is fitted to stress relaxation curves to estimate V 

and α, and stresses during loading are calculated by a time-stepping numerical implementation of 

equation (A15) in which derivatives are replaced by forward differences. In this procedure, stress σ is 

substituted by an expression in λ and λp using equations (A12) and (A13) and the resulting equation 

(A15) solved for λp. 

 


