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Abstract 

Circulating tumour cells (CTCs) have significant diagnostic potential as they can reflect both the 

presence and recurrence of a wide range of cancers. However, this potential continues to be limited 

by the lack of robust and accessible isolation technologies. An alternative to isolation might be their 

direct detection amongst other peripheral blood cells, although this would require markers that 

allow them to be distinguished from an exceptionally high background signal. This review assesses 

the potential role of HOX genes, a family of homeodomain containing transcription factors with key 

roles in both embryonic development and oncogenesis, as unique and possibly disease specific 

markers of CTCs. 
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Introduction 

Circulating tumour cells (CTCs) have been identified for a wide range of cancers types, although 

notable examples include breast [1], prostate [2], colorectal [3], and lung cancer [4]. In addition to 

providing a mechanistic explanation for widespread disease dissemination, they also represent a 

potential biomarker for diagnosis and prognosis. Hence, for example in breast cancer the presence 

of CTCs is an independent prognostic factor for both progression-free survival and overall survival, 

and a cut-off of 5 CTCs / 7.5 ml has been used to identify patients with a good or poor prognosis [5]. 

In addition, the persistence of CTCs after adjuvant therapy for breast cancer is significantly 

associated with a shorter disease-free survival. 

 

Although CTCs are a potentially useful biomarker, an intrinsic difficulty of this approach is their 

rarity, and their identification requires a combination of enrichment and detection strategies. The 

latter is based on technologies that can distinguish CTCs from blood cells based on their physical 

(e.g. size, density, electrical charge and deformability), and biological properties (e.g. cell surface 

protein expression and viability). Ficol gradients are one of the simplest and earliest methods used 

to separate CTCs, but other available methods include the use of dielectrophoretic technology to 

exploit differences in the biophysical properties of CTCs and blood cells [6], and label-free chips that 

separate CTCs based on their size [7]. Most techniques used to enrich CTCs are based on the 

expression of distinct cell surface markers that can be immunologically detected. The most 

commonly exploited cell surface marker is the epithelial cell adhesion molecule (EpCam), which is 

central to a range of antigen-capture based techniques such as CellSearch® and CTC-CHIP [8, 9]. 

However, there are no uniformly expressed CTC markers, and EpCam itself is not present on all CTCs, 

most notable because it is down regulated during the epithelial-to-mesenchymal transition, a 

process that is central to metastatic change [10].  
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An alternative to CTC isolation could be the identification of gene expression patterns that are not 

present in blood cells. This would inevitably be complicated by the vast excess of RNA from white 

blood cells in any preparation made from whole blood. However, sensitive detection methods for 

identifying a small number of transcripts, for example quantitative PCR (qPCR), could allow CTCs to 

be identified, as well as potentially the cancer from which they originated, if specific patterns of 

gene expression could be established that are not presented by white blood cells. One particularly 

strong candidate in this respect is the HOX gene family. 

 

HOX genes 

The HOX genes are a family of homedomain-containing transcription factors that have a crucial role 

in the patterning of the early embryo, as well as some more limited functions in adult physiology. 

There are 39 HOX genes in the human genome present in 4 separate genomic clusters, named A-D, 

which arose from a series of duplication events prior to the emergence of mammals [11]. Unusually, 

genes within each cluster share enhancer regions, leading to a closely coordinated pattern of 

expression during development and a close relationship between the position of each HOX gene in 

the cluster and its temporal and spatial expression. Thus, for example, the 3’ most member of the 

HOXB cluster, HOXB1, is expressed earlier and more anteriorly than one of the most 5’ members, 

HOXB9 [12]. HOX proteins have relatively limited specificity for DNA, binding to a 4 base pair 

sequence. Their binding specificity and hence target gene activation (or in some cases repression) is 

greatly enhanced by their interaction with specific co-factors such as PBX and MEIS proteins [13, 14].  

 

During early development, HOX gene products help to define the identity of the tissues in which 

they are expressed, principally along the anterior to posterior axis. These tissues include the nervous 

system posterior to the midbrain, the gut, and the limbs [11]. In addition, some adult cells continue 
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to express HOX genes and in these cells HOX expression is necessary to maintain cellular identity, 

and in some cases is also needed for continued cell proliferation and survival. One of the best 

characterized examples is the hematopoietic stem cell and its differentiated progeny. HOXB4 is 

required for the continued proliferation of hematopoietic stem cells, and once their daughter cells 

subsequently begin to differentiate through the long cascade of hematopoietic progenitor cell types 

they express different HOX genes in nested patterns, with the mature lymphocytes expressing quite 

distinct patterns of HOX genes compared to the parental stem cells [15]. 

 

HOX genes in cancer 

In addition to their function in the embryo and in some normal adult cells, the HOX genes also have a 

key function in malignancy. This has been reviewed extensively elsewhere, but in brief, the HOX 

genes are frequently dysregulated in almost all of the solid and haematological malignancies in 

which they have been studied [16]. A number of them have been shown to function as oncogenes, 

including HOXA9, the forced expression of which in normal mouse bone marrow cells leads to acute 

myeloid leukaemia within 3 months [17]. Many other HOX genes have been shown to have a pro-

oncogenic role in terms of supporting tumour growth. HOX proteins can promote cell proliferation 

and survival through interaction with the PBX co-factor, and the disruption of HOX/PBX dimer 

formation using the HXR9 peptide has been shown to trigger apoptosis in a wide range of solid 

malignancies both in vitro and in vivo [18-23]. Furthermore, HOX expression has been shown to 

promote a number of aggressive tumour characteristics, including invasion and migration [24], DNA 

repair [25], and the induction of angiogenesis [26]. Consequently, the tumour expression of a 

number of HOX genes has been shown to be related to the survival of cancer patients [27]. 
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Despite a number of excellent reviews on this subject, the HOX expression profiles of different 

cancer types generally remains unclear as it is difficult to directly compare the information in studies 

that have used different techniques to assess HOX expression, and some studies have given 

conflicting results. This review attempts to establish a broad overview of HOX expression in different 

solid malignancies by only including data on the over- or under-expression of HOX genes based on at 

least 2 different techniques (e.g. QPCR and immunohistochemistry), and which has been 

demonstrated in 2 different studies. The findings of this review for head and neck [24, 28-36], 

oesophageal [37, 38], gastric [39, 40], colorectal [41], pancreatic [42], hepatic [41], lung [43-46], 

breast [47], bladder [48, 49], renal [23], prostate [50, 51], and ovarian cancer [52-54] are 

summarized in Fig 1 and Table 1. It is striking that different tumour types show very different 

patterns of HOX expression. For example, gastric tumours tend to show very little HOX gene over-

expression, whilst hepatic tumours exhibit a vastly dysregulated network of HOX genes. It also seems 

clear that different tumour types have radically different HOX gene expression patterns, with the 

notable exception of bladder and prostate tumours (Fig 1). These distinct, tumour-specific 

expression profiles make HOX genes potential markers of CTCs. 

 

HOX genes as CTC markers 

 

As discussed above, CTCs generally make up only a very small proportion blood cells. After excluding 

red blood cells, the majority of remaining cells are lymphocytes and monocytes. Both have 

previously been shown to express HOX genes, and indeed the expression of all 39 HOX genes has 

been studied in different lymphocyte and monocyte populations [55]. This revealed that monocytes, 

T-lymphocytes and B-lymphocytes expressed distinct but also overlapping sets of HOX genes, and 

also that HOX gene expression changed considerably upon activation of the cell types. In contrast, 

very little is known of HOX expression in other myeloid lineages, although previous studies have 
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suggested that HOX genes are generally down-regulated in mature blood cells [56]. In the context of 

possible CTC markers, these data are potentially very useful as they also reveal that a number of 

HOX genes are not expressed in normal lymphocytes or monocytes (Table 2). Despite the reduced 

number of HOX genes available for possible CTC identification, all tumour types appear to present 

with a distinct pattern of non-lymphocytic/monocytic HOX expression, except for bladder and 

prostate tumours (Fig 2). Based on these findings, it seems possible that HOX expression profiles 

could act as a “fingerprint” of specific tumour types, potentially allowing CTC detection without CTC 

isolation. For example, hepatic CTCs might be distinguished by their very high level of HOX 

dysregulation, whilst gastric CTCs appear to be characterized by high levels of HOXA13 expression in 

the absence of other HOX genes. Ovarian and pancreatic cancer is likewise distinguishable by the 

predominant expression of genes from the HOXB cluster, although the former expresses more 

posterior (5’) HOX genes than the latter. It should be noted that the data presented in this review 

are inevitably incomplete with respect to the expression of HOX genes in both cancer and normal 

blood cells. However, it is becoming apparent that there is high degree of differential HOX 

expression between mature blood cells and CTCs, pointing towards a nucleic acid based 

methodology for distinguishing between these cell types. 
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Table 1: HOX gene expression in cancer – stages and comparators 

HOX genes Cancer Disease stage Comparator Reference 

HOXB9 Head and 

neck 

 Immortalized 

normal oral 

keratinocytes, 

normal oral mucosa 

[24] 

HOXA1 Head and 

neck 

 Normal oral 

mucosa 

[28] 

HOXB7 Head and 

neck 

I, II, III, IV Normal oral 

mucosa 

[29] 

HOXD10 Head and 

neck 

Primary, metastatic Immortalized 

normal oral 

keratinocytes, 

normal oral mucosa 

[30] 

HOXB5 Head and 

neck 

N0, N+ Normal oral 

mucosa 

[31] 

HOXA10 Head and 

neck 

I, II, III, IV Normal oral tissue [32] 

HOXD10 Head and 

neck 

 Immortalized 

normal oral 

keratinocytes, 

normal oral mucosa 

[33] 

HOXC5 Head and 

neck 

 Rat normal oral 

tissue 

[34] 

HOXC6 Head and  Normal tissue [35] 
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neck 

HOXA10, A13, B7, C4, 

C8, D9, D10, D13 

Oesophageal 

cancer 

IIa, IIb, III Normal oral 

mucosa 

[37] 

HOXD9 Oesophageal 

cancer 

 None [38] 

HOXA13 Gastric cancer All T stages, metastasis Normal mucosa [39] 

HOXC6 Gastric cancer  Normal mucosa [40] 

HOXA9, B3, B8, B9 Colorectal 

cancer 

pT1, pT2, pT3, pT4 Normal colorectal 

mucosa 

[41] 

HOXA3, A5, A6, A7, 

A9, A10, A11, A13, B1, 

B6, B7, B8, B9, B13, 

C5, C6, C8, C9, C10, 

C11, C12, C13, D1, D3, 

D4, D8, D9, D10 

Hepatic 

cancer 

pI, pII, pIII, pIVa Normal liver tissue 

adjacent to the 

tumour 

[41] 

HOXB2, B5, B6, B7 Pancreatic 

cancer 

Pre-malignant 

pancreatic 

intraepithelial 

neoplasia, 

adenocarcinoma 

Normal tissue [42] 

HOXA1, A5, A10, C6 Non-small cell 

lung cancer 

pTNM: 

pT2(N0/1/2)M0 

pStage: IB/IIB/IIIA 

Normal tissue [43] 

HOXB9 Lung cancer All clinical stages and 

TNM categories 

Normal tissue [46] 
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assessed 

HOXA1 Small cell lung 

cancer 

Extensive and limited 

disease 

Normal lung alveoli 

epithelium 

[45] 

HOXA6, A13, B2, B4, 

B5, B6, B7, B8, B9, C5, 

C9, C13, D1, D8 

Breast cancer  Non-malignant 

tissue 

[47] 

HOXB13 Bladder 

cancer 

Muscle invasion Non-invasive 

disease 

[49] 

HOXC4, C5, C6, C11 Bladder 

cancer 

 Normal 

uroepithelium 

[48] 

HOXB13 Prostate 

cancer 

 Normal prostate 

tissue 

[50] 

HOXC4, C5, C6, C8 Prostate 

cancer 

Primary tumours, 

metastatic disease 

Normal prostate 

epithelium, benign 

hypertrophy 

[51] 

HOXA10 Ovarian 

cancer 

 Normal ovarian 

tissue 

[52] 

HOXB7, B13 Ovarian 

cancer 

 Normal ovarian 

tissue 

[53] 

HOXB8 Ovarian 

cancer 

Histological stages: 

high, low 

FIGO stages: IIIc, IV 

Normal ovarian 

tissue 

[54] 

HOXA5, A9, B5, C9, D8, 

D9, D10 

Renal cancer  Normal adjacent 

tissue 

[23] 
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Table 2: HOX genes not expressed in normal lymphocytes or monocytes 

 

HOXA HOXB HOXC HOXD 

HOXA1 HOXB1 HOXC5 HOXD4 

HOXA7 HOXB2 HOXC9 HOXD13 

HOXA9 HOXB3 HOXC10  

HOXA11 HOXB5 HOXC11  

HOXA13 HOXB6   

 HOXB7   

 HOXB8   

 HOXB9   

 HOXB13   

 

Figure 1: Summary of HOX gene expression in different solid malignancies. 

Figure 2: Summary of HOX genes expressed in different solid malignancies that are not expressed in 

normal lymphocytes or monocytes. 
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