
The University of Bradford Institutional
Repository

http://dx.doi.org/10.1016/j.sbspro.2013.10.762

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/153513934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.sbspro.2013.10.762
https://creativecommons.org/licenses/by-nc-nd/4.0/

 Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

1877-0428 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and/or peer-review under responsibility of Professor Dr Mohd. Zaidi Omar, Associate Professor Dr Ruhizan Mohammad Yasin,
Dr Roszilah Hamid, Dr Norngainy Mohd. Tawil, Associate Professor Dr Wan Kamal Mujani, Associate Professor Dr Effandi Zakaria.
doi: 10.1016/j.sbspro.2013.10.762

ScienceDirect

6th International Forum on Engineering Education (IFEE 2012)

Teaching Creative Digital Hardware Design
Norhayati Binti Mohd Zainee a,*, James M Noras b

a Faculty of Engineering and IT, INTI International University, Putra Nilai, Malaysia
b School of Enginerring Design and Technology, University of Bradford, Richmond Road, Bradford BD7 1DP, UK

Abstract

Engineering undergraduates not only need to learn facts, but also how to be creative in the open-ended situations they will
encounter in their professional careers. Our final year Honours module gives students a grounding in digital systems design,
mainly using VLSI for design entry and simulation. The second half of our module is a design exercise, which has
straightforward aspects, but which allows motivated students to undertake progressively open-ended investigations. Our
educational framework is guided by recommendations of professional bodies promoting excellence and encouragement of
creativity in engineering development.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of Mohd Zaidi Omar, Ruhizan Mohammad Yasin, Roszilah Hamid,
Norngainy Mohd. Tawil, Kamaruzaman Yusoff, Mohamad Sattar Rasul

Keywords: Digital electronics; design; VHDL; university education; competence; creativity;

1. Introduction

Since January 2005, students have been studying and graduating from an Honours BEng course in Electrical
and Electronic Engineering run jointly by INTI and the University of Bradford (UoB), at the campus which is
now the home of INTI International University (IIU). Originating in Bradford, this course has been accredited by
the IEE and now the IET continuously for over 40 years, and the recommendations of the Quality Assurance
Agency for Higher Education are used to define and control the standards, methods and outcomes of the modules
studied [1].

In IIU, the same principles are used to ensure that the required professional level of graduates is achieved, in
particular a systematic understanding of key aspects of their field of study, including

apply the methods and techniques that they have

* Corresponding author. Tel.: +06-7982000-2502
 E-mail address: norhayati.mzainee@newinti.edu.my

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and/or peer-review under responsibility of Professor Dr Mohd. Zaidi Omar, Associate Professor Dr Ruhizan Mohammad Yasin,
Dr Roszilah Hamid, Dr Norngainy Mohd. Tawil, Associate Professor Dr Wan Kamal Mujani, Associate Professor Dr Effandi Zakaria.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

465 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

learned to review, consolidate, extend and apply their knowledge and understanding, and to initiate and carry out
[1].

These two outcomes might be described respectively as the possession of knowledge, and the ability to apply
that knowledge, so that students can not only pass examinations, but can use subject-specific knowledge in a
creative and original way. These aspects are emphasised by the Engineering benchmark statement [2], which says

have strategies for being creative, innovative and overcoming difficulties by employing their
knowledge in UK-SPEC of the Engineering Council [3] which includes as part of

apply appropriate theoretical and practical
methods to the analysis sign solutions, and evaluate

The degree programme is designed as a whole to equip graduates with knowledge and skills, and to prepare

them to continue to update and improve their professional abilities and understanding. This paper briefly sets out
how, as part of the digital electronics strand of the course, students are encouraged to achieve these outcomes in
the context of learning the VHDL design system and how to apply it.

 In the next section we review the digital provision of the course, in particular the module dealing with VHDL:
this is the VHSIC Hardware Description Language, where VHSIC means Very-High-Speed Integrated Circuit,
which is in widespread use as a design and simulation tool, accepted as an industry standard [4]

Then we discuss how students master the twin requirements, as set out above, of acquiring knowledge of
VHDL and then of demonstrating their ability to use it. Finally we explain our assessment strategy and draw
some brief conclusions.

2. University-level digital electronics modules

In recognition of the central position nowadays of digital electronics in its many aspects, the BEng course
contains several modules which focus on aspects of digital technology. The most significant are shown in table 1.

Table 1. Modules with Significant Digital Electronics Content

Stage or Year Module Title Credits

1 Robotics 20
2 Digital Electronics Fundamentals* 10
2 Digital Electronics Design* 10
2 Embedded Systems 10
2 Group Design Project 20
3 Digital Signal Processing 10
3 Project 30
3 Digital Design Using HDL* 10

These 8 modules, together with another 24, make up the 360 credit programme. While some relate to

microprocessors or digital applications, those marked with an asterisk provide the main exposure to digital
electronics at the gate level, including theory, laboratory and simulation work with discrete gates and
programmable chips in the form of FPGAs.

The first courses cover gate-level aspects and computer hardware, with Boolean logic, state machine design
and general treatments of technologies such as TTL and CMOS. Simulation classes cover the Altera Hardware
Design Language (AHDL) used with Quartus software for design capture [5], and various PIC microcontrollers
are used in robotics and general interfacing. Project work allows students to explore more open-ended
applications of these technologies, but generally in the first two years, work is relatively pre-defined, with limited
scope for design exploration and creativity.

The stage 3 individual project, required by the IET for accrediting purposes, needs 300 hours of individual
work at Honours level, permitting original work at that level, and allowing students to demonstrate their potential
as innovators and designers. Also in the final year, students can learn other languages for digital design capture

466 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

and for design simulation, validation and implementation. AHDL, Xilinx and Verilog are discussed, but the main
work, described next, is on VHDL and its applications.

3. Learning VHDL and how to use it

The third year course, Digital Design Using HDL, has the main aims of first getting the students familiar with
the syntax of VHDL through demonstrations and laboratory tasks, clearly defined to introduce the methods of
circuit description and simulation, which we describe here. Secondly we present the students with their first
serious exposure to digital design using VHDL, synthesis, testing and performance evaluation, as explained in the
next section. These cover the twin aspects of the Engineering standards mentioned above.

3.1. Learning the syntax of VHDL Entities and Architectures

VHDL files are composed of Entity-Architecture pairs. The Entity is analogous to a symbol for the design,
holding all of the external connections of a logic block. The Architecture describes the connectivity, function and
implementation of the design.

An example of an entity declaration is given below:

entity fulladder is
port (X: in bit; Y: in bit; Cin: in bit; Cout: out bit; Sum: out bit);

end fulladder;

VHDL allows the creation of multiple architectures for each entity. This feature is useful for simulation and
for project team environments in which high-level designs of the system interfaces and lower-level architectural
descriptions are produced by different engineers, or when designers want to experiment with different methods.

A simple architecture may contain declarations (for example signals, components, local functions and
constants) followed by statements which descr as illustrated by the
following example:
 architecture concurrent of fulladder is
 begin
 Sum <= X xor Y xor Cin;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

 end concurrent;

3.2. Basics of circuit construction with VHDL

The students complete 10 lab experiments before starting on their project work, whereby they learn the basics
of VHDL coding step by step, writing code and simulating to check design correctness. The students start with
simple gates, then combine these to form logic circuits such as multiplexers, adders, decoders and comparators.

Next the students move on to the basic sequential blocks, flip-flops and latches, using these to build and test
registers and counters.

4. Student design tasks

The task for the design project must have the potential to stretch each student, but must not require extensive
background study. It must therefore have fairly straightforward aspects, but be reasonably complex, and must be
open-ended, such as evaluation of different hardware implementations and of performance measured by
maximum clock speed and data throughput.

467 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

One category of application that meets these criteria is the implementation of cryptographic algorithms. There
are many of these, and a good detailed source of several dozens of these is provided by Schneier [6-7]). We find
that algorithms with the Feistel structure, described below, are particularly easy to understand, but set appropriate
and varied challenges for implementation.

4.1. Feistel systems in general

Many ciphering algorithms use a particular structure, called a Feistel structure. The nature of this structure is
that a block of data to be encrypted is divided into a left and a right half, for example say 32 bits each. We
provide a brief tutorial example.

4.1.1. A 2-round Feistel cipher

Suppose (L0,R0) is the message to be encrypted. and (L2,R2) is the resulting ciphertext. The following
pseudo-code explains the routine. Here the sym -wise XOR operation.

Table 2. The Feistel structure for encryption

Stage Pseudo-code Description

first round of encryption L1 = R0 After the first round R0 is unaffected, but we rename it L1.
 R1 = L0 ^ f1(R0) R1 is the encrypted version of L0, which is generated using a function f1 of R0..
second round of encryption L2 = R1 1, but we call it L2.
 R2 = L1 ^ f2(R1) R2 is the encrypted version of L1, using a function of R1.

After these two rounds, L0 and R0 have been encrypted into L2 and R2. Each round alters half of the bits,

producing a new Ln = Rn-1, and a new Rn = Ln-1 ^ fn(Rn-1). The functions f can be very complicated, and generally
involve a key or keys. However, this kind of ciphering, with a Feistel structure, is easy to reverse. To see this,
just consider the 2-round cipher again:

Table 3. The Feistel structure for decryption

Stage Pseudo-code

first round of decryption L1 = R2 ^ f2(L2)
= L1 ^ f2(R1) ^ f2(L2)
= L1 ^ f2(R1) ^ f2(R1)
= L1

 R1 = L2
second round of decryption L0 = R1 ^ f1(L1)

= L0 ^ f1(R0) ^ f1(L1)
= L0 ^ f1(R0) ^ f1(R0)
= L0

 R0 = L1

The key concept is that something ^ anything ^ anything = something wo XOR operations just

cancel each other out. The important thing about the Feistel cipher is that each stage only alters half of the data,
so reversing the process is straightforward, however complicated the function f. Figure 1 shows the algorithmic
structure.

468 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

Fig. 1. Structure of a Feistel algorithm for encryption[8]

4.2. The TEA algorithm in particular

The TEA algorithm uses simple operations (addition and exclusive or) to make a potentially very fast design
[9]. Its structure is easy to grasp, and requires no advanced knowledge, so is highly suitable for the design
exercise for our module. Wikipedia gives a useful presentation [10]. The following section gives the C code for
the encryption of data.

4.3. C code

 This routine encodes with keys k[0] k[3], data in v[0] and v[1].

void code(long* v, long* k) {
unsigned long y = v[0], z = v[1], sum = 0, /* set up */
 delta = 0x9E3779B9, /* a key schedule constant */
 n=32;
while (n-->0) { /* basic cycle start */
 sum += delta;
 y += ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);
 z += ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);
 } /* end cycle */
v[0] = y; v[1] = z;}

469 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

4.3.1. Decode routine

Decoding uses a similar structure with differently ordered keys. Also, the variable to be initialised
to what it was at the end of the ciphering algorithm. That is, if there were 32 rounds, sum would become 32*
delta, or delta<<5, as 32 = 25. Subsequently sum is decremented by delta each round.

4.4. MATLAB

In order for the students to generate test data, they are provided with MATLAB code. The code for one round
of ciphering is shown below:

function [y, z] = tea_en_round (y, z, sum, k0, k1, k2, k3, nbitz); % one round of TEA
part1_1 = mod(bitshift(z,4),2^nbitz);
part1 = mod((part1_1 + k0),2^nbitz); % use k[0]
part2 = mod((z + sum),2^nbitz);
part3_1 = mod(bitshift(z,-5),2^nbitz);
part3 = mod((part3_1 + k1),2^nbitz); % use k[1]
combine = bitxor(part1, bitxor(part2, part3));
y = mod((y + combine), 2^nbitz); % end of first half of round
part1_1 = mod(bitshift(y,4),2^nbitz);
part1 = mod((part1_1 + k2),2^nbitz); % use k[2]
part2 = mod((y + sum),2^nbitz);
part3_1 = mod(bitshift(y,-5),2^nbitz);
part3 = mod((part3_1 + k3),2^nbitz); % use k[3]
combine = bitxor(part1, bitxor(part2, part3));
z = mod((z + combine), 2^nbitz); % completes round of ciphering
end;

In using this code, the binary (or hexadecimal) data need to be converted to and from decimal in the calling

routine. We used the MATLAB functions hex2dec and dec2hex: the code of the calling routine is not included
here because of its length (some 30 lines) but is available from the authors.

In Figure 2, y is the input at the top left, and z is fed in from the right, which, after processing by the various
operations and keys, is added to y. After the cross-over, the now modified y is fed in from the right, the result
added to z, unmodified up to that point.

470 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

Fig. 2. Structure of the TEA algorithm [Tiny_Encryption_Algorithm, 2012][10]

5. Objectives, attainment and assessment

The coursework task is to design hardware in VHDL which will execute the TEA algorithm both for
encryption and decryption.

It would be possible for students to implement the C-code more or less directly, but they are encouraged to do
this only as a check of their primary design, which should rather be built up from components, each synthesised
and thoroughly tested for functional and timing accuracy before being used in a bottom-up design structure

There will be several stages for the design:

 to produce the elements that will be used in the design, for the various operations required (e.g. shifting,

adding, xoring).
 to produce the design to carry out a single round of encryption or decryption, for word lengths of 4, 8 and

16 bits.
 to produce a design that will carry out multiple rounds of encryption and decryption.

The checking at each stage is essential: no one would use a design that had not been proved to be correct, so

failure to give good evidence of checking will result in a poor mark for the part or parts of the design concerned.
The task is specified so that students who show basic competence and succeed in implementing designs that

are correct in their building blocks, and which can demonstrate ciphering and deciphering for at least one cycle,
can, with a good report, pass the exercise.

However, students are encouraged to extend their work in various ways:

 to parameterise the size of data and keys
 to insert registers to make the design capable of pipelining with consequent investigations of the effects

on propagation delays, clock speeds and throughput.

471 Norhayati Binti Mohd Zainee and James M Noras / Procedia - Social and Behavioral Sciences 102 (2013) 464 – 471

 to investigate the use of gate-level modelling, for example using full-adders (or other elements) in
comparison with using the built-

 to implement multiple rounds of encr

and potential of VHDL modelling and circuit design methods to be shown, so that motivated students can extend
their skills and knowledge, with the bonus of being able to earn very high marks.

6. Conclusions

We have outlined a scheme for teaching students both basic and advanced aspects of VHDL and its
applications, in a way that gives students a clearly delineated introduction to the topic, and then allows them
freedom to explore design aspects in an open-ended way. Thus we bolster their knowledge and understanding,
while letting them explore innovation in a well-supported environment, preparing them for future challenges.

References

[1]The UK Quality Code for Higher Education. A brief guide. http://www.qaa.ac.uk/Publications/Information And Guidance/Pages/quality-
code-brief-guide.aspx, 2012.

[2] Subject benchmark statement. Engineering. http://www.qaa.ac.uk/Publications/InformationAndGuidance/Pages/Subject-benchmark-
statement-Engineering-.aspx, 2010.
[3]UK-SPEC. The UK Standard for Professional Engineering Competence (UK
SPEC).http://www.engc.org.uk/ecukdocuments/internet/document%20library/UK-SPEC.pdf, 2011

[4] EDA Industry Working Groups. http://www.vhdl.org/, 2012
[5] Altera Corporation. http://www.altera.com/, 2012
[6] Schneier, Bruce. Applied Cryptography. (2nd ed.) .Bruce Schneier, John Wiley & Sons, 1996
[7] Schneier, Bruce. Applied Cryptography Source Code. http://www.schneier.com/book-applied-source.html, 2012.
[8]Kak, A. Block Ciphers and the Data Encryption Standard. https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture3.pdf.

2012.
[9] Wheeler, David J.; Needham, Roger M. TEA, a tiny encryption algorithm. Lecture Notes in Computer Science (Leuven, Belgium:

Fast Software Encryption: Second International Workshop) 1008: 363 366. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.281.
1994.

[10] Tiny_Encryption_Algorithm. http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm, 2012

