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ABSTRACT: 

Steel-concrete composite structures are commonly used in buildings and bridges because it takes 

advantage of tensile strength of steel and compressive strength of concrete. The two components are 

often secured by shear connectors such as headed studs to prevent slippage and to maintain 

composite action. In spite of its popularity, very little research was conducted on steel-concrete 

composites particularly on headed stud shear connectors in regards to its post-fire behaviour. This 

research investigates the post-fire behaviour of innovative shear connectors for composite steel and 

concrete. Three type of connectors were investigated. They are conventional headed stud shear 

connectors, Blind Bolt 1 and Blind Bolt 2 blind bolts. Push-out test experimental studies were 

conducted to look at the behaviour and failure modes for each connector. Eighteen push tests were 

conducted according to Eurocode 4. The push test specimens were tested under ambient 

temperatures and post fire condition of 200˚C, 400˚C and 600˚C. The results in ambient temperature 

are used to derive the residual strength of shear connectors after exposing to fire. Findings from this 

research will provide fundamental background in designing steel-concrete composites where there 

is danger of fire exposure. 

 

  



 

1. INTRODUCTION 

Steel-concrete composite beam/slab construction is common practice in bridges and multi-storey 

buildings due to the combination of compressive strength of concrete and tensile strength of steel 

(Heidarpour & Bradford 2010). The two components are often secured by shear connectors that 

greatly influence its strength and ductility (Mirza & Uy 2009). Despite its popularity in these type 

of constructions, composite members are still a subject of continuous development (Rodrigues & 

Laím 2011). One of the areas of interest in the development of composite structures is the shear 

connectors that bond concrete and steel (Rodrigues & Laím 2011). Interests in these developments 

are however limited due to the high cost in setting up in a laboratory environment (Ellobody & 

Young 2006). Even though the costs of these experiments are monumental, researchers still manage 

to set up experiments with good results such as conducted by Wang et al. (2013) and Alderighi and 

Salvatore (2009) in multi-level framed buildings.  

 

A review of literature shows that research on steel-concrete composite structures has focused 

behaviour of push-out tests at ambient temperature and at elevated temperature. Push-out tests of 

composite structures at ambient temperature showed that their strength and ductility were often 

influenced by their material properties (Galjaard & Walraven 2001) (Ellobody & Young 2006). 

Galjaard and Walraven (2001) conducted push out tests for five different shear connectors: headed 

studs, continuous perfobondstrip, oscillating perfobondstrip, waveform strip and T-connector. 

Similarly, Baran and Topkaya (2012) conducted an experimental study on another type of shear 

connector: channel type shear connector or C-channel. The tests aim was to determine the strength 

of different sizes of C-channel as shear connector in steel-concrete composite structure (Baran & 

Topkaya 2012). 

 



Push-out tests on steel-concrete composite structures utilising headed studs were also conducted at 

elevated temperatures by Zhao et al (2008), Mirza and Uy (2009), Anderson (2011), Wang (2012) 

and Imagawa et al (2012) among others. Push-out tests on steel-concrete composite structures 

utilising continuous perfobond strip (Rodrigues and Laím 2011) and T, T-block and T-perfobond 

(Rodrigues and Laím 2014) have also been conducted at elevated temperatures. 

 

This paper focuses on the behaviour of steel-concrete composite structures using innovative shear 

connectors under post fire. Post-fire behaviour of steel-concrete composite structures is investigated 

with a focus on failure in push tests made up of three types of shear connectors; headed studs, Blind 

Bolt 1 and Blind Bolt 2. Eighteen push-out tests were carried out. The push-out tests were carried 

out at ambient temperature and post fire condition of 200oC, 400oC and 600oC. The results at 

ambient temperature are used to determine the residual strength of steel-concrete composite 

structures after exposure to fire. 

 

 

2. EXPERIMENTAL STUDY 

2.1.Experimental set-up and specimen 

The test specimens were based on the Eurocode 4 standard and were fabricated in a similar manner 

as outlined in the standard. However, due to the size limitation of the furnace, all specimens were 

modified to fit in the furnace. The steel section adopted was a 200PFC and two 200PFC configured 

as shown in Figure 1. The width of the slabs for the specimens were also been downsized from 

600mm specified by the Eurocode 4 to 400mm. The only exception is the reinforcing bars where all 

the bars were upsized to N12 (12mm diameter) instead of 10mm diameter specified in Eurocode 4. 

The spacing and size of the shear connectors were kept the same to the Eurocode 4 dimensions. 

Specimens using headed studs is shown in Figure 1(a). Specimens using Blind Bolt 1 and 2 bolts as 

shear connectors were also used and are shown in Figure 1(b) and 1(c) respectively. 



 

 

 
 

(a) Specimen using headed stud shear 
connector 

 

 
(b) Specimen using Blind Bolt 1 

 

 
(c) Specimen using Blind Bolt 2 

 
 

Figure 1. Push out test specimens using (a) headed stud shear connectors, (b) Blind Bolt 1 and (c) 
Blind Bolt 2 
 

Push out tests of specimens using headed studs, Blind Bolt 1 and Blind Bolt 2 as shear connectors 

were carried out for specimens at ambient temperature and post fire condition of 200oC, 400oC and 

600oC. The push out test followed the Eurocode 4 testing protocol although some ambient tests 

were also tested without the application of 25 cycles for comparison. 



 

Following the Eurocode 4 push out test protocol, the load was applied in increments up to 40% of 

the expected failure load and then cycled 25 times between 5% and 40% of the expected failure 

load. The application of 25 loading cycles between 5% and 40% of the estimated failure load gives 

a response that is close to elastic but enables the specimen to settle and therefore stabilize for the 

loading to failure thereafter. Subsequent incremental loads were then applied to prevent the failure 

of the specimens in less than 15 minutes. In order to prevent the specimens from failing in less than 

15 minutes, a loading rate of 0.01 mm/s was used. The loading rate of 0.01 mm/s ensures that the 

specimen will simulate a static loading condition.  Part of the requirement for Eurocode 4 push test 

is to determine the relative slip between the steel and concrete continuously during loading. In order 

to achieve this requirement, linear variable displacement transducers (LVDT) were attached to the 

steel and the concrete (see Figure 2). Data of slip versus load was recorded and the failure modes 

noted. The data and failure modes at ambient temperature serve as the baseline for comparison with 

post-fire test specimens. The collection of data was ceased when the load dropped to 20% of the 

maximum load.  

 

The preheating of all specimens subjected to post-fire analysis followed the ISO834 standard fire 

curve in obtaining the desired temperature. Prior to the preheating of the specimens, a 40% preload 

was applied to all the post-fire specimens to reflect the specimens service loading. A total of two 

specimens were heated at each temperature regime (200°C, 400°C, and 600°C) for every type of 

shear connector. In order to achieve the desired temperature, a temperature controlled furnace was 

used. The furnace uses three gas burners in heating the specimens with two on one side and one at 

the other. When the heating reached the desired temperature, heating was continued for 1 hour of 

soaking time before the furnace was switched off. 

 



 
 

Figure 2. Push out test set up for ambient and post fire test specimens 
 

The cooling process used in this experiment was the natural air cooling – leaving the specimen 

overnight to reach ambient temperature. The cooling method has an effect on residual compressive 

strength of concrete. Compressive strength loss is generally higher for rapid cooling or quenching 

using water compared to relatively slow cooling in air. Rapid cooling generally causes the 

development of detrimental micro-cracking as a result of temperature differentials between the 

outer and inner layers of concrete (Balendran et al 2001). The push out test procedure used to 

determine the residual strength of post fire specimens was the same as that for specimens tested at 

ambient temperature. 

 

2.2.Material and Geometric Properties 

Three types of shear connectors were used in this investigation; the headed studs, Blind Bolt 1 and 

Blind Bolt 2.  The headed studs used have a diameter of 19mm, length of 100mm and ultimate 

tensile strength of 410MPa, while the Blind Bolt 1 used have a diameter of 20mm, length of 100mm 

and ultimate tensile strength of 390MPa. On the other hand, the Blind Bolt 2 bolts used have a 

diameter of 20mm, length of 100mm and ultimate tensile strength of 830MPa. 

 



The 200PFC sections used in this investigation had flange width of 200mm, flange thickness of 

12mm, web thickness of 6mm, yield strength of 300MPa and ultimate tensile strength of 440MPa. 

For fire protection, a hypercoating paint was used to provide a 2hr fire protection. The hypercoating 

paint was applied to all exposed steel section of the specimen after the removal of the formwork. In 

this experimental investigation, the time for the removal of formwork was 21 days after the concrete 

was cast. 

 

The concrete used in the concrete slab had a 28day compressive strength of 30MPa and Young’s 

Modulus of 36690MPa. The reinforcing bars used in the concrete slabs had a diameter of 12mm and 

yield strength of 500MPa. 

 

 

3. RESULTS AND DISCUSSION 

The three types of push out test specimens using headed studs, Blind Bolt 1 and Blind Bolt 2 were 

tested at ambient temperature and at post fire condition of 200oC, 400oC and 600oC. For each type 

of specimen, the specimens tested at ambient temperature were also tested by applying either 25 

cycles as per EC4 testing protocol while others were tested without cyclic loading for comparison. 

 

3.1.Behaviour of headed stud shear connector 

Figure 3 shows the load-slip relationship for the headed stud shear connector specimens tested at 

ambient temperature under 25 and no cycles. Despite the cycle loading, headed studs that were 

tested under 25 cycles showed greater slip and loading capacity compared to the specimen that was 

tested with no cycle loading. However, both specimens experienced a sudden drop in load capacity 

due to concrete failure. The weaker compressive strength of concrete leading to concrete failure was 

the primary factor in the sudden drop of the load as shown in Figure 3. 

 



 
 

Figure 3. Load –Slip relationship for headed stud shear connector specimens at ambient temperature 
 

Failure modes of headed stud specimens at ambient temperature were mainly dominated by the 

concrete failure – splitting of the concrete slab as shown in Figure 4. This type of failure occurred 

because of the weaker compressive strength of concrete and therefore no yielding of the shear 

connector was observed. The specimens tested under 25 and no cycles showed similar failure 

modes, Figure 4. 

 

 

(a) Specimen loaded to 25 Cycles 

 

(b) Specimen with no cycles 

 
Figure 4. Failure mode of headed stud shear connector specimens at ambient temperature 
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The post fire push out tests, for headed stud shear connector specimens were also carried out. Figure 

5 shows the load versus slip graphs of the headed stud specimens at post fire condition of 200oC, 

400oC and 600oC. A sudden drop in load is more evident in post-fire conditions of 200 and 400°C. 

Despite the low rigidity at the start of testing, the test at 200oC showed greater ductility and 

maximum load compared to the tests at 400oC and 600oC. 

 

Headed shear studs post-fire 200, 400, and 600°C specimens all showed a similar type of failure 

mode as shown in Figure 6. All the post fire headed stud specimens failed through splitting of the 

concrete slab or concrete failure. The spalling of concrete after exposure to high temperature had a 

significant impact on the strength of concrete making the slab the weakest part of the steel-concrete 

composite specimens. After heating, the steel sections did not show any signs of deformation except 

the minor expansion of the fire protection coating. Minor cracks on the concrete slab were observed 

on most of the post fire headed stud specimens as part of the thermal damage caused by the fire. A 

separation between steel and concrete slab was also observed on some of the specimens prior to the 

testing. 

 

 
Figure 5. Load –Slip relationship for headed stud shear connector specimens post fire 
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Figure 6. Failure mode of headed stud shear connector specimens post fire 
 
 

3.2.Behaviour of Blind Bolt 1 

Figure 7 shows the results of load versus slip for the Blind Bolt 1 specimens tested at ambient 

temperature under 25 cycles and no cycles respectively. As illustrated in Figure 7, the difference 

between two testing conditions was very minimal. 

 

The push-out tests conducted for the Blind Bolt 1 specimens tested at ambient temperature failed 

through concrete failure as shown in Figure 8. The Blind Bolt 1 specimens showed a different 

concrete failure mode to the headed stud and Blind Bolt 2 specimens. Instead of splitting the 

concrete slab in half, the specimen failed by pulling out a portion of concrete closer to the steel 

section, see Figure 8. The possible cause of this type of failure mode may be due to the geometric 

arrangement at the end of the Blind bolt 1. The sleeve that secures the grip into the steel section of 

the Blind Bolt 1 forms petals which can create stress concentrations in the surrounding concrete. 



 

 

 
 

Figure 7. Load –Slip relationship for Blind Bolt 1 
 
 

 

(a) Specimen loaded to 25 Cycles 

 

(b) Specimen with no cycles 

 
 

Figure 8. Failure mode of Blind Bolt 1 specimens at ambient temperature 
 

The post fire push out tests for Blind Bolt 1 specimens was also carried out. Figure 9 shows the load 

versus slip of the Blind Bolt 1 specimen push out tests at post fire condition of 200oC, 400oC and 

600oC. The Blind Bolt 1 specimens that were tested tend to reach the ultimate capacity followed by 
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a drop in load before another increasing trend in loading before final failure. The ductility shown by 

all the specimens that were tested, is similar to the strain hardening phenomenon of steel. The post-

fire 200°C and 400oC specimens showed greater ductility compared to specimen at post-fire 

condition of 600oC, see Figure 9.  

 

The failure mode of Blind Bolt 1 specimens at post-fire conditions was due to concrete failure. 

However, all Blind Bolt 1 specimens tested at post-fire conditions of 200, 400, and 600°C failed 

due to the splitting of the concrete slab. This was unlike the concrete failure of the Blind Bolt 1 

specimens at ambient temperature which tended to be localized at the position of a Blind Bolt 1. In 

general, the failure modes for the post fire Blind Bolt 1 specimens were mainly due to concrete 

failure and separation between the steel and the concrete as shown in Figure 10. 

 

 

 
 

Figure 9. Load –Slip relationship for Blind Bolt 1 specimens post fire 
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Figure 10. Failure mode of Blind Bolt 1 connector specimens post fire 
 

 

3.3.Behaviour of Blind Bolt 2 

Figure 11 shows the load-slip relationship for the Blind Bolt 2 specimens tested at ambient 

temperature under 25 and no cycles. The specimen subjected to 25 cycles showed more stability and 

achieved a greater load and slip before failure. 

 

Figure 12 shows the typical failure of the Blind Bolt 2 specimens tested at ambient temperature with 

25 and no cycles. As illustrated in Figure 12 failure modes were mainly dominated by the concrete 

failure. The Blind Bolt 2 specimen subjected to 25 cycles showed yielding of the reinforcement bars 

which occurred when the splitting of the slab crossed the bars. This type of failure led to the higher 

maximum slip compared to the specimen tested without cycling. 

 



 
 

Figure 11. Load –Slip relationship for Blind Bolt 2 
 
 

 

(a) Specimen loaded to 25 Cycles 

 

(b) Specimen with no cycles 

 
Figure 12. Failure mode of Blind Bolt 2 specimens at ambient temperature 

 
 

The push out tests for Blind Bolt 2 specimens was also carried out at post fire conditions of 200oC, 

400oC and 600oC. Figure 13 shows the load versus slip of the Blind Bolt 2 specimens tested at post 
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fire conditions. The Blind Bolt 2 specimens tested showed a drop in load followed by a gradual 

increase in loading before a sudden drop in load. The loading capacity behaviour was similar to the 

strain hardening of a steel material in a tensile test. The ductility of the Blind Bolt 2 specimens was 

more evident at the post-fire condition of 200°C compared to post-fire conditions of 400 and 600°C. 

 

The failure modes for all the Blind Bolt 2 specimens tested at post fire conditions of 200, 400, and 

600°C were all concrete failures, see Figure 14. Furthermore, minor separation of steel and concrete 

was observed for post-fire 400° and 600°C before the test was conducted. The separation between 

the steel and concrete prior to the test was caused by the thermal expansion of the steel and the 

concrete which in turn resulted in a reduction in load capacity. 

 

 

 
 

Figure 13. Load –Slip relationship for Blind Bolt 2 specimens post fire 
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Figure 14. Failure mode of Blind Bolt 2 connector specimens post fire 
 

3.4.Comparison of Results at Ambient Temperature 

Standards such as Eurocode 4, AISC (2005) and the Australian Standard AS2327.1-2003 can be 

used to predict strength of the shear connectors. 

The failure load of a shear connector based on Eurocode 4 can be predicted using the lesser of 

Equations 1 and 2 as follows: 

   𝐹𝐿 = �0.29𝛼𝑑2�𝑓𝑐𝑘𝐸𝑐�      (1) 

   𝐹𝐿 = �0.8𝑓𝑢
𝜋𝑑2

4
 �      (2) 

where,  
α = modification factor, 0.2(h/d + 1) < 1.0,  

d = diameter of shear connector (mm) 

h = 100mm 

fck = concrete cylinder compressive strength (MPa) 

Ec = static elastic modulus of concrete 

fu = ultimate tensile strength of the shear connector 



FL = failure load (N). 

 

Equations 3 and 4 are used by the American Institute of Steel Construction, AISC (2005) to 

estimate the failure load of shear connectors. The lesser value of Equations 3 and 4 are used to 

predict the failure load of shear connector. 

   𝐹𝐿 =  𝐴𝑠𝑓𝑢      (3) 

   𝐹𝐿 = 0.5𝐴𝑠�𝑓𝑐𝑘𝐸𝑐      (4) 

where,  
FL - failure Load (N) 

As = shank cross sectional area of the shear connector (mm2),  

fu = ultimate tensile strength of the shear connector (MPa) 

fck = compressive strength of concrete (MPa) 

Ec = elastic modulus of concrete (MPa)  

 

Equations 5 and 6 are used by the Australian Standard AS2327.1-2003 (SAL 2003) to estimate the 

failure load of the shear connectors. The lesser value of Equations 5 and 6 are used to predict the 

failure load of shear connector. 

 

   𝐹𝐿 = 0.63𝑑2𝑓𝑢      (5) 

   𝐹𝐿 = 0.31𝑑2�𝑓𝑐𝑘𝐸𝑐      (6) 

where,  

FL - failure Load (N) 

d – shank diameter of the shear connector (mm),  

fu = ultimate tensile strength of the shear connector (MPa) 

fck = compressive strength of concrete (MPa) 

Ec = elastic modulus of concrete (MPa) 

 



Table 1 shows the experimental failure loads as well as the predicted failure loads based on 

different standards for the push out tests at ambient temperature. Table 2 shows the ratios of the 

average test load to predicted failure loads for push out test specimens using different shear 

connectors at ambient temperature. 

 

From Tables 1 and 2, AISC (2005) significantly overestimated the failure capacity of all the shear 

connectors in the push out test specimens, as shown by the average ratio of test failure load to 

predicted failure load in Table 2. Eurocode 4 and the Australian standard were comparatively better 

in predicting the failure capacity of the different shear connectors.  

 

Based on the materials properties, the American standard, AISC (2005), Australian Standard (SAL 

2003) and Eurocode 4 see Table 1, predicted failure of the headed studs and Blind Bolt 1 to be 

dominated by the shear connector failure (i.e. Equation 2, 3 and 5 had the lesser value). The 

predicted failure mode for the headed studs and Blind Bolt 1 by the standards contradicts the failure 

mode observed in the specimens. Most of the specimens tested failed by concrete failure – splitting 

of the section of concrete around the shear connector and through the specimen.  

 

Based on theoretical analysis of Eurocode 4, AISC (2005) and AS2327.1-2003, all three standards 

correctly predicted the failure mode of Blind Bolt 2 specimens as concrete failure. Despite the 

correctly predicted failure mode, the standards predicted failure loads are considerably different to 

the experimental test failure loads.  

 

Based on the analysis of the predictions by the three different standards (Eurocode 4, AISC 2005, 

and AS2327.1-2003), Eurocode 4 followed by the Australian Standard can be considered to be 

reasonable in predicting the shear capacity of all the specimens tested at ambient temperature (see 



Table 2). From the result of this analysis Eurocode 4 can be considered to be a more reliable basis 

for determining the residual strength in post-fire analysis.  

 

 

Table 1. Test and Predicted Failure Loads for push out test specimens using different shear 
connectors. 

 
Shear 
Connectors 

Test 25 Cyc. 
(kN) 

Test No Cyc. 
(kN) 

EC4 
(kN) 

AISC 2005 
(kN) 

SAL 2003 
(kN) 

Headed Stud 778 688 744# 930# 746# 
Blind Bolt 1 601 626 784# 980# 786# 
Blind Bolt 2 712 629 974 1318 1040 
# - Shear connector failure predicted by standard 
 - Concrete crushing predicted by standard 
 
 

Table 2. Ratios of Average Test to Predicted Failure Loads for push out test specimens using 
different shear connectors. 

 
Shear Connectors Average Test 

Load/EC4 
Predicted Load 

Average Test 
Load/AISC 
Predicted Load 

Average Test 
Load/SAL 
Predicted Load 

Headed Stud 0.99 0.79 0.98 
Blind Bolt 1 0.78 0.63 0.78 
Blind Bolt 2 0.69 0.51 0.64 
Mean Ratio 0.82 0.64 0.80 
 
 

3.5.Comparison of Results at Post Fire 

Table 3 shows the summary of test results for headed stud specimens. Table 3 shows the test failure 

loads, average test failure loads and residual strength for the headed studs specimens tested at 

ambient temperature and post-fire conditions of 200, 400 and 600°C. The residual strength, defined 

as the ratio of the average failure load for post-fire specimens to average failure load for ambient 

temperature specimens indicated that 25, 43, and 60% loss in load capacity were reached for post-

fire conditions of 200, 400, and 600°C respectively. 

 

 



 

Table 3. Comparison of Headed studs test results for ambient and post-fire. 
 

Temperature(°C) Test Failure 
Load (kN) 

Average Test Failure Load 
(kN) 

Residual  
Strength 

Ambient 25 Cycles 809 
750 1.00 

Ambient No Cycles 691 
Post-fire 200 - 01 561 

561 0.75 
Post-fire 200 - 02  
Post-fire 400 - 01 389 

426 0.57 
Post-fire 400 - 02 463 
Post-fire 600 - 01 314 

297 0.40 
Post-fire 600 - 02 280 
 

 

Table 4 shows the test results for Blind Bolt 2 specimens tested at ambient and post-fire. From 

Table 4, the residual strengths for the Blind Bolt 2 had dropped on average by 33, 56, and 63% for 

post-fire conditions of 200, 400, and 600° Celsius respectively. 

 

The summary of the loading capacity of Blind Bolt 1 specimens ambient and at post-fire condition 

of 200, 400, and 600°C is shown in Table 5. From Table 5, the ambient temperature loading 

capacity was the baseline for all post-fire analysis. For the post-fire condition of 200°C, a 33% drop 

in loading capacity was observed; similar to the result obtained from the Blind Bolt 2 (see Table 4). 

For Blind Bolt 1 bolt specimens at post-fire conditions of 400 and 600° Celsius, the load capacities 

dropped by 57 and 66% respectively. 

 

 

 

 

 

 



 

Table 4. Comparison of Blind Bolt 2 test results for ambient and post-fire. 
 

Temperature (°C) Test Failure Load 
(kN) 

Average Test Failure 
Load 
(kN) 

Residual  
Strength 

Ambient 25 Cycles 765 
710 1.00 

Ambient No Cycles 654 
Post-fire 200 - 01 464 

478 0.67 
Post-fire 200 - 02 491 
Post-fire 400 - 01 265 

311 0.44 
Post-fire 400 - 02 357 
Post-fire 600 - 01 298 

265 0.37 
Post-fire 600 - 02 232 
 
 

Table 5. Comparison of Blind Bolt 1 test results for ambient and post-fire. 
 

Temperature (°C) Test Failure Load 
(kN) 

Average Test Failure 
Load 
(kN) 

Residual  
Strength 

Ambient 25 Cycles 597 
611 1.00 

Ambient No Cycles 625 

Post-fire 200 - 01 474 
407 0.67 

Post-fire 200 - 02 340 

Post-fire 400 - 01 278 
261 0.43 

Post-fire 400 - 02 244 

Post-fire 600 - 01 191 
208 0.34 

Post-fire 600 - 02 224 

 
 

4. CONCLUSIONS 

The behaviour of headed studs, Blind Bolt 1 and Blind Bolt 2 as shear connectors at both ambient 

temperature and post-fire condition were tested using the push-out test specimens. Additionally, the 

experimentally determined test failure loads were compared to the theoretically predicted failure 

loads using the Eurocode 4, AISC (2005) and AS2327.1-2003 method of analysis. The results of the 

experimental tests showed that all specimens were dominated by the concrete failure of the slab at 



both ambient temperature and at post-fire. The following observations were made based on the 

experimental tests and comparison with predictions from the current standards: 

1. The experimental test failure loads of headed studs and Blind Bolt 2 specimens, at 

ambient temperature, were of the same magnitude. Blind Bolt 1 specimens, however, 

showed less failure capacity due to the stress concentrations around the casing of the 

bolts. 

2. Headed studs performed well compared to Blind Bolt 1 and 2 at ambient temperature 

and all post-fire target temperatures. On the other hand, Blind Bolt 2 performed better 

than Blind Bolt 1 at ambient temperature and all post-fire target temperatures. 

3. The residual strength of the headed studs in all post-fire target temperatures was better 

compared to the Blind Bolt 1 and 2. When compared to the failure loads at ambient 

temperature, the residual strength of Blind Bolt 1 and Blind Bolt 2 are comparable at all 

post fire target temperatures.  

4. Following exposure to various degrees of temperatures, all the specimens exhibited 

minor structural damage, with slight separation of the steel and concrete evident and 

minor spalling. However, thermal damage to the specimen causes the concrete to 

become brittle. As a consequence, a sudden drop in load was observed for all specimens 

at post-fire. 

5. For the 30MPa strength of concrete used for all specimens, the eight shear connectors 

per specimen had greater shear strength compared to concrete. Therefore, no shear 

connector yield failure was observed at both ambient temperature and at post-fire.  
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