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Abstract
Antiretroviral treatment (ART) and oral pre-exposure prophylaxis (PrEP) have recently
been used efficiently in management of HIV infection. Pre-exposure prophylaxis
consists in the use of an antiretroviral medication to prevent the acquisition of HIV
infection by uninfected individuals. We propose a new model for the transmission of
HIV/AIDS including ART and PrEP. Our model can be used to test the effects of ART
and of the uptake of PrEP in a given population, as we demonstrate through
simulations. The model can also be used to estimate future projections of HIV
prevalence. We prove global stability of the disease-free equilibrium. We also prove
global stability of the endemic equilibrium for the most general case of the model, i.e.,
which allows for PrEP individuals to default. We include insightful simulations based
on recently published South-African data.
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1 Introduction
The HIV/AIDS epidemic continues to be among the most devastating diseases in human
history despite the new scientific advances and serious public health interventions. Ac-
cording to UNAIDS data [1], there has been a significant decline and stabilization in the
number of new HIV infections since 2012, but Sub-Saharan Africa is still severely affected
and more precisely in this region of the world women comprise more than half of all people
living with HIV. In particular, in 2016, South Africa had an estimated 7.03 million of people
living with HIV [2], and an incidence rate of up to 4 per 100 women-years [3, 4]. The most
significant advance in medical management of HIV infection includes two recommenda-
tions [5]. First of all, antiretroviral therapy (ART) should be initiated in everyone living
with HIV at any CD4 cell count. The HIV treatment reduces viral load to levels below the
limits of detection of the most sensitive clinical assays, resulting in a significant reconstitu-
tion of the immune system [6]. The Global AIDS Update 2016 of the Joint United Nations
Programme on HIV/AIDS, reports that the global coverage of ART therapy reached ap-
proximately 46% at the end of 2015. The gains in treatment are largely responsible for a
26% decline in AIDS-related deaths globally since 2010, from an estimated 1.5 million in
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2010, to 1.1 million in 2015. Despite this significant achievement, globally there has been
2 million new infections reported in 2015 [7]. Secondly, the use of daily oral pre-exposure
prophylaxis (PrEP) is recommended as a prevention choice for people at high risk of HIV
infection. Substantial gaps remain in understanding the trade-offs between costs and ben-
efits of choosing alternative HIV prevention strategies, such as the initiation of PrEP by
high-risk uninfected individuals [8]. Following WHO, making PrEP drugs available for
safe, effective prevention outside the clinical trial setting is the current challenge. How-
ever, it is important to recall and highlight that PrEP is not for everyone: only people who
are HIV-negative and at very high risk for HIV infection should take PrEP [9]. In 2015,
the Medicines Control Council of South Africa issued a full regulatory approval of PrEP,
and the country became the first in Sub-Saharan Africa to include PrEP in its national
HIV programme. Globally, female sex workers (FSWs) are 13.5 times more likely to be liv-
ing with HIV than women in the general population [10]. There are many countries with
regulatory approval for PrEP. The European Medicines Agency has also granted market
authorization for PrEP to be marketed across the European Union’s 28 countries [11].

Mathematical models of the population dynamics of infectious diseases are useful in
making forward projections in order to help the public health sector to plan optimally.
There is a large literature on mathematical models for communicable diseases. In partic-
ular, HIV models that account for the use of PrEP are featured in [12–14]. In [12] for in-
stance, a mathematical model for HIV/AIDS transmission has been proposed, along with a
control problem in which the objective was to determine the PrEP strategy that minimizes
the number of individuals with pre-AIDS HIV infection, balanced against the costs asso-
ciated with PrEP. The paper by Mukandavire et al. [13] compares the impact of increasing
condom use or HIV PrEP use among sex workers. The authors found that condom pro-
motion interventions should remain the mainstay HIV prevention strategy for FSWs, with
PrEP only being implemented once condom interventions have been maximized or to fill
prevention gaps where condoms cannot be used. In [14], the authors develop a model of
HIV risk and compare HIV-risk estimates before and after the introduction of PrEP to
determine the maximum tolerated reductions in condom use with regular partners and
clients for HIV risk not to change. With a case study of FSWs in South Africa, in [14] it
is found that PrEP is likely to be of benefit in reducing HIV risk, even if reductions in
condom use do occur. The current paper presents also a significant contribution in this
regard. Our aim in this paper is to demonstrate the extent to which PrEP can possibly re-
duce the prevalence of the HIV in a large population such as South Africa, in the presence
of treatment. We introduce a model with two stages of infection and we assume that sus-
ceptible individuals have access to PrEP to prevent themselves from HIV. Such individuals
become exposed to HIV once they stop taking oral PrEP. The model allows for individu-
als in the asymptomatic phase to move back to the asymptomatic phase after successful
treatment.

The remainder of this paper is set up as follows. In Section 2 we present the model.
We calculate the basic reproduction number and prove existence of positive solutions.
Section 3 covers both global stability of the disease-free and endemic equilibrium. In Sec-
tion 4 we provide numerical simulations to illustrate our theoretical results and the utility
of the model. In Section 5 we offer some concluding remarks.
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2 The model
2.1 Model description
We consider a population with homogeneous mixing of individuals, of size N(t) at time t.
The total size N(t) is assumed to be sufficiently large in order to approximate the popula-
tion as a continuum of points. These are general assumption for modeling with ordinary
differential equations; see for instance [15] of Anderson and May. For this model, the pop-
ulation is subdivided into the classes of susceptibles S(t), the asymptomatic phase I1(t) of
HIV, the symptomatic phase I2(t), the AIDS patients A(t) and the individuals under PrEP
E(t), so that

N(t) = S(t) + I1(t) + I2(t) + A(t) + E(t).

The functions S(t), I1(t), I2(t), A(t) and E(t) are assumed to be continuous.
We introduce the following parameters that appear in the model equations:

μ birth and mortality rates by natural causes,
K the size of the total population when disease-free,
c the average number of sexual contacts of one individual with others, per unit time,
β1 the probability of disease transmission in the asymptomatic phase,
β2 the probability of disease transmission in the symptomatic phase,
φ the proportion of susceptible individuals under PrEP,
θ the proportion of susceptible individuals who default PrEP,
k1 progression rate from I1 to I2,
k2 progression rate from the symptomatic phase I2 to A,
α the rate of transfer from I2 to I1 due to ARV treatment,
δ disease induced mortality rate.

Our model is then constructed by considering the appropriate in-flow and out-flow rates
of each compartment together with parameters in the list above.

dS
dt

= μK – c(β1I1 + β2I2)S – (μ + φ)S + θE,

dI1

dt
= c(β1I1 + β2I2)S – (μ + k1)I1 + αI2,

dI2

dt
= k1I1 – (μ + k2 + α)I2,

dA
dt

= k2I2 – (μ + δ)A,

dE
dt

= φS – (μ + θ )E;

S(0) = S0 > 0, I1(0) = I1,0 > 0, I2(0) = I2,0 > 0,

A(0) = A0 > 0, E(0) = E0 > 0.

(2.1)

The model system (2.1) permits a disease-free equilibrium �0 = ( (μ+θ )K
(μ+φ+θ ) , 0, 0, 0, φK

(μ+φ+θ ) )
and an endemic equilibrium �∗ = (S∗, I∗

1 , I∗
2 , A∗, E∗) with the coordinates

S∗ =
μK(μ + θ )

(μ + θ )(λ + μ) + μφ
,
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I∗
1 =

λ(μ + k2 + α)μK(μ + θ )
[(μ + k2)(μ + k1) + μα][(μ + θ )(λ + μ) + μφ]

,

I∗
2 =

k1λμK(μ + θ )
[(μ + k2)(μ + k1) + μα][(μ + θ )(λ + μ) + μφ]

,

A∗ =
k1k2λμK(μ + θ )

[(μ + k2)(μ + k1) + μα][(μ + θ )(λ + μ) + μφ]
,

E∗ =
μKφ

(μ + θ )(λ + μ) + μφ
,

where

λ = c
(
β1I∗

1 + β2I∗
2
)
.

Following the method expounded in [16] the basic reproduction number of the model is
calculated as

R0 =
c(μ + θ )K(β1(μ + k2 + α) + β2k1)

(μ + φ + θ )((μ + k1)(μ + k2) + αμ)
.

2.2 Feasible solutions
Let us introduce the set 	,

	 =
{

x ∈R
5 | xi > 0, i = 1, 2, 3, 4, 5 and x1 + x2 + x3 + x4 + x5 < K

}
.

Theorem 2.1 Assume that X(t) is a solution of the system (2.1) with X(0) ∈ 	. Then X(t) ∈
	 for all t > 0.

Proof The proof is by contradiction. Let X(t) be a solution of the system (2.1) where
X(0) ∈ 	. Suppose to the contrary that there exists a t0 > 0 such that X(t0) /∈ 	. Let T =
inf{t > 0 : X(t) /∈ 	}. Since 	 is an open set due to continuity of X(t), T is strictly positive.

Choose a0 > 0 sufficiently small in order to have a0cβ1 < μ and a0cβ2 < μ. Consider the
function V1 defined by

V1(t) =
(

S – a0 ln
S
a0

)
+ (I1 – ln I1) + (I2 – ln I2)

+ (A – ln A) + (E – ln E). (2.2)

Note that, for every T < t, each of the five bracketed terms on the right hand side of equa-
tion (2.2) are positive while (S, I1, I2, A, E) ∈ 	.

Now we find an upper bound for the set

G =
{

V1(t) : 0 < t < T
}

.

We note that, for any 0 < t < T ,

V̇1(t) =
[(

1 –
a0

S

)
(
μK – c(β1I1 + β2I2)S – (μ + φ)S + θE

)
]

+
[(

1 –
1
I1

)(
c(β1I1 + β2I2)S – (μ + k1)I1 + αI2

)]
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+
[(

1 –
1
I2

)(
k1I1 – (μ + k2 + α)I2

)]

+
[(

1 –
1
A

)(
k2I2 – (μ + δ)A

)]
+

[(
1 –

1
E

)(
φS – (μ + θ )E

)]

= μK –
a0

S
μK – μ(S + I1 + I2 + A + E) –

a0

S
θE + a0(μ + φ) + a0c(β1I1 + β2I2)

–
1
I1

c(β1I1 + β2I2)S + (μ + k1) –
1
I1

αI2 + (μ + k2 + α) –
1
A

k2I2 + (μ + δ)

–
1
E

φS + (μ + θ )

≤ μK – μ(I1 + I2) + a0c(β1I1 + β2I2) + 4μ + a0(μ + φ) + k1 + k2 + α + δ + θ .

Note that by the choice of a0 we have

a0cβ1I1 – μI1 = I1(a0cβ1 – μ) < 0 and a0cβ2I2 – μI2 = I2(a0cβ2 – μ) < 0.

Therefore

V̇1(t) ≤ C,

where C = μK + 4μ + a0(μ + φ) + k1 + k2 + α + δ + θ .
Integrating from 0 to t yields

V1(t) = V1(0) +
∫ t

0
V̇1(s) ds ≤ V1(0) + Ct ≤ V1(0) + CT . (2.3)

However, we note that, for any positive constant q,

lim
x→0+

(
x – q ln

x
q

)
= ∞.

Now further, due to positivity of the bracketed terms on the right hand side of equation
(2.2), it follows that

lim
t→T

V1(t) = ∞. (2.4)

Equation (2.4) is in conflict with the inequality (2.3). Thus we have arrived at a contradic-
tion. �

3 Stability analysis
3.1 Global stability of the disease-free equilibrium
The following positive numbers are useful in the proof of the global stability of disease-free
equilibrium:

ξ1 = μ + k2 + α + k1
β2

β1
, ξ2 = α +

β2

β1
(μ + k1), ξ4 = (μ + k1)(μ + k2) + αμ.

Theorem 3.1 If R0 < 1, then the disease-free equilibrium �0 of system (2.1) is globally
asymptotically stable.
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Proof We introduce a number � by

� =
(μ + θ )K
μ + φ + θ

.

Assuming that R0 < 1, it is possible to find positive numbers ξ0 and ξ3 sufficiently small
such as to have the following inequality:

C2 = ξ0cβ2� + ξ3k2 + ξ4(R0 – 1) < 0.

Using such ξ0 and ξ3, together with the numbers ξi introduced already, we define a function
V2 as follows:

V2(t) = ξ0
[
K – (S + E)

]
+ ξ1I1 + ξ2I2 + ξ3A. (3.1)

The time derivative of V2(t) is given by

V̇2(t) = ξ0
[
–μ

(
K – (S + E)

)
+ c(β1I1 + β2I2)S

]
+ ξ1

[
c(β1I1 + β2I2)S – (μ + k1)I1 + αI2

]

+ ξ2
[
k1I1 – (μ + k2 + α)I2

]
+ ξ3

[
k2I2 – (μ + δ)A

]
.

Grouping some terms we have

V̇2(t) ≤ C0
[
K – (S + E)

]
+ C1I1 + C2I2 + C3A,

where

C0 = –μξ0 < 0,

C1 = ξ0cβ1� + ξ1cβ1� – (μ + k1)ξ1 + ξ2k1,

C2 = ξ0cβ2� + ξ1cβ2� – (μ + k2 + α)ξ2 + ξ3k2 + ξ1α,

C3 = –(μ + δ)ξ3 < 0.

Now we show that the coefficients C1, C2 are also negative. Firstly, it is easy to see that

–(μ + k1)ξ1 + ξ2k1 = –ξ4 = –
(
(μ + k1)(μ + k2) + αμ

)
.

It follows that

C1 = ξ0cβ1� + ξ1cβ1� – ξ4 = ξ0cβ1� + ξ4(R0 – 1) < 0.

Further, notice that

–(μ + k2 + α)ξ2 + ξ1α = –ξ4
β2

β1
.

Thus, we have

ξ1cβ2� – ξ4
β2

β1
= ξ4(R0 – 1).



Nsuami and Witbooi Advances in Difference Equations  (2018) 2018:11 Page 7 of 12

Therefore,

C2 = ξ0cβ2� + ξ3k2 + ξ4(R0 – 1) < 0,

confirming that V2 is a Lyapunov function. This completes the proof. �

3.2 Global stability of the endemic equilibrium
We investigate global stability of the endemic equilibrium of model (2.1) in the general
case, that is, when θ �= 0 and in particular case, when θ = 0.

Theorem 3.2 Assume that R0 > 1 and θE∗ < cβ1I∗
1 S∗. Then the endemic equilibrium �∗

of system (2.1) is globally asymptotically stable.

Proof Consider a function V3 of the form

V3(t) =
(

S – S∗ – S∗ ln
S
S∗

)
+ D1

(
I1 – I∗

1 – I∗
1 ln

I1

I∗
1

)

+ D2

(
I2 – I∗

2 – I∗
2 ln

I2

I∗
2

)
+ D3

(
A – A∗ – A∗ ln

A
A∗

)

+ D4

(
E – E∗ – E∗ ln

E
E∗

)
,

where D1, D2, D3 and D4 are positive constants, to be determined at a later stage.
The (endemic) equilibrium values of the system (2.1) satisfy the following equations:

μK = S∗(β1I∗
1 + β2I∗

2
)
c + (μ + φ)S∗ – θE∗,

(μ + k2 + α) = k1
I∗

1
I∗

2
,

(μ + k1) =
S∗

I∗
1

(
β1I∗

1 + β2I∗
2
)
c + α

I∗
2

I∗
1

,

(μ + δ) = k2
I∗

2
A∗ ,

(μ + θ ) = φ
S∗

E∗ .

The time derivative of V3(t) is given by

V̇3(t) = cβ1

(
1 –

S∗

S

)(
I∗

1 S∗ – I1S
)

+ cβ2

(
1 –

S∗

S

)(
I∗

2 S∗ – I2S
)

+
(

2 –
S
S∗ –

S∗

S

)
S∗(μ + φ) +

(
1 –

I∗
1

I1

)
D1cβ1

(
I1S – I1S∗)

+
(

1 –
I∗

1
I1

)
D1cβ2

(
I2S – I∗

2 S∗ I1

I∗
1

)
+

(
E – E∗)θ

(
1 –

S∗

S

)

+ D3

(
1 –

A∗

A

)
k4

(
I2 – I∗

2
A
A∗

)
+ D2

(
I1 – I∗

1
I2

I∗
2

)(
1 –

I∗
2

I2

)
k3

+
(

1 –
E∗

E

)
D4

(
S – S∗ E

E∗

)
φ. (3.2)
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Let

x =
S
S∗ , y =

I1

I∗
1

, z =
I2

I∗
2

, v =
A
A∗ , w =

E
E∗ .

Then (3.2) becomes

V̇3(t) = S∗(μ + φ)
(

2 –
1
x

– x
)

+ D1cβ1I∗
1 S∗

(
1 –

1
y

)
(xy – y)

+ D1cβ2I∗
2 S∗

(
1 –

1
y

)
(xz – y)

+ D2I∗
1 k1

(
1 –

1
z

)
(y – z) + D3I∗

2 k2

(
1 –

1
v

)
(z – v) + αD1I∗

2

(
1 –

1
y

)
(z – y)

+ D4k2

(
1 –

1
w

)
φS∗(x – w) + cβ1I∗

1 S∗
(

1 –
1
x

)
(1 – xy)

+ β2I∗
2 S∗

(
1 –

1
x

)
(1 – xz) +

(
1 –

1
x

)
(x – 1)θE∗. (3.3)

This equation informs a choice of values for the numbers Di, in order to render V3 a Lya-
punov function. For making our choices, we require the numbers Di to satisfy the following
equations.

(D1 – 1) = 0,

–D2I∗
1 k1 + αD1I∗

2 + D3I∗
2 k2 + cβ2I∗

2 S∗ = 0,

–D1cβ1I∗
1 S∗ – D1cβ2I∗

2 S∗ + D2I∗
1 k1 – αD1I∗

2 + cβ1I∗
1 S∗ = 0,

–D1cβ1I∗
1 S∗ + D4k2φS∗ + θE∗ = 0.

This leads us to choose the following Di-values:

D1 = 1, D2 =
cβ2S∗I∗

2 + αI∗
2

k1I∗
1

, D3 =
D2k1I∗

1 – (cβ2S∗I∗
2 + αI∗

2 )
k2I∗

2
,

D4 =
cβ1I∗

1 S∗ – θE∗

k2φS∗ .

Substituting back the Di terms in (3.3), we have

V̇3(t) = S∗(μ + φ)
(

2 –
1
x

– x
)

+ cβ2S∗I∗
2

(
3 –

1
x

–
xz
y

–
y
z

)

+ αI∗
2

(
2 –

z
y

–
y
z

)
+

(
cβ1I∗

1 S∗ – θE∗)
(

3 – w –
1
x

–
x
w

)
≤ 0.

This completes the proof. �

In particular, we have the following corollary.

Corollary 3.3 If θ = 0, then the endemic equilibrium �∗ of system (2.1) is globally asymp-
totically stable for R0 > 1.
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Table 1 The following parameters values are fixed

Parameters Value Source

α 0.33 [17]
k1 0.125 [18]
k2 0.1 [17]
c 3 cf. [19, 20]
δ 0.279 [2]
μ 1

62.4 [2]
φ 0.01 Nominal
θ 0.001 Nominal

4 Numerical simulation
The model can be used to test the efficiency of a given intervention. In particular, authori-
ties may want to see the effect of, for example, expanding the use of PrEP. Thus, simulations
in this context will also be shown.

We illustrate the analytical results by way of numerical simulations with the parameters
applicable to South Africa as in Table 1.

4.1 Details on estimation of parameters
In [19, 20] for instance, the average number of sexual partners per given time denoted
by c is determined; values ranging from 1 to 2 for a specific case. In our case we find it
convenient to take c = 3. We expect the inequality β1 < β2 to hold since the intensity of
disease transmission in the symptomatic phase exceeds that of the asymptomatic phase.
In the year 2016, the life expectancy in South Africa was estimated at 62.4 years; see for
instance [2]. The mortality rate μ is simply the inverse of the life expectancy, and thus
μ = 1

62.4 year–1. The parameter K is the size of the population when it is free from HIV. Ac-
cording to [2], in 2016 South Africa had an estimated total population 55.91 million. Thus
we consider it reasonable to choose K = 56 million. We assume that 1% of the susceptible
individuals take PrEP, that is, φ = 0.01 and the default rate takes the value θ = 0.001.

4.2 Initial conditions
For initial conditions, we first refer to the South African statistical release [2] of 2016 in
order to do some projections.

Let us denote the time 25 August 2016 by t0. We note that

N(t0) = S(t0) + I1(t0) + I2(t0) + A(t0) + E(t0).

An estimated 7.03 million of the total population were infected with HIV/AIDS in 2016.
This number can be split between the classes of I1(t0), I2(t0) and A(t0). We shall then use
the parameters listed in Table 1 below to find a suitable equilibrium point to split the
numbers between the classes of I1(t0), I2(t0) and A(t0). In this process we keep varying
the value of β1 and β2 in order to vary the value of the basic reproduction number. This
method leads to the following initial values for our simulations:

I1,0 = 5.11, I2,0 = 1.43, A0 = 0.48.

We note that in endemic equilibrium,

E∗ =
φ

μ + θ
S∗.
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Therefore, we consider it reasonable to use the initial value

E(t0) =
1

50
φ

μ + θ
S(t0).

This consideration leads us to assign initial values to S0 and E0, and thus our initial state
for these two variables are taken as:

S0 = 46.18, E0 = 1.12.

4.3 Simulations on the effect of PrEP
In the following we show the trajectories of I1(t), I2(t), A(t) of the model for φ = 0.01 in
Figure 1, and in Figure 2 the trajectories of I2(t) for different values of φ, φ = 0.01, 0.02, 0.03.
For the different values of φ, the corresponding value of R0 will be denoted by R0(φ).

In both Figure 1 and Figure 2 we have chosen the values: β1 = 0.000481, β2 = 0.000581.
In Figure 1 we compute the basic reproduction number, R0(0.01) = 1.401 > 1. The tra-
jectories show that the disease is prevailing at the endemic level. We also compute the
endemic equilibrium values I∗

1 = 5.28, I∗
2 = 1.48 and A∗ = 0.50 (in millions). In Figure 2, we

show the graph of I2(t) with different values of φ. In the case φ = 0.02, the basic reproduc-
tion number reduces to R0(0.02) = 1.021. This is due to increasing uptake of PrEP from
0.01 to 0.02, and we observe that the increase in the uptake of PrEP has decreased the
basic reproduction number and the class of I2(t). The equilibrium value is computed as
I∗

2 = 0.12. The same scenario is also very well observed in the simulation for the case where

Figure 1 Population dynamics of the model for
the case φ = 0.01.

Figure 2 Comparing the class of symptomatic
infectives, I2, for different values of φ.
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φ = 0.03. In this case, the basic reproduction number is found to be below unity, that is,
R0(0.02) = 0.8039. The class of I2(t) converges to zero. We note I∗

2 is a decreasing function
of φ. We note that also the long term (or asymptotic) values of I1 and A are decreasing
functions of φ.

5 Concluding remarks
In this paper, we have investigated a model describing the population dynamics of
HIV/AIDS including treatment and pre-exposure prophylaxis (PrEP) in the context of
South Africa. We proved global stability of disease-free and endemic equilibria, Theo-
rem 2.1 and Theorem 3.2, respectively. Our analytical results and our sample simulations
are quite meaningful as we work with the current HIV trend in South Africa. We showed
the substantial impact that treatment has on the incidence, prevalence and mortality due
to AIDS. Managing HIV with early treatment can decrease transmission and possibly de-
crease the number of AIDS-related deaths. Our model quantifies how the use of PrEP
potentially reduces the number of new HIV infections, and this has been well observed in
the sample simulations. South Africa has a wide range of its population being exposed to
HIV. Its high-risk sections of the population include adolescent girls and young women,
sex workers, men who have sex with men (MSM), discordant couples and truckers, all of
whom face various barriers to access including stigma, criminalization and lack of sup-
portive service delivery infrastructure [21]. If they are to be the focal point for PrEP, it
will be imperative to assess how best to introduce PrEP into programmes where these
high-risk sections of the population can be supported [22].
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