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Abstract 

Background: We evaluated the role that selected variants in serotonin transporter (5-HTT), 

dopamine receptor 2 (DRD2) and brain-derived neurotrophic factor (BDNF) genes play in 

PTSD symptom severity in an at-risk population. We also investigated the interaction 

between the genetic variants to determine whether these variables and the interactions 

between the variables influenced the severity of PTSD symptoms. 

Methods: PTSD symptoms were quantitatively assessed using the Davidson Trauma Scale 

(DTS) in 150 participants from an at-risk South African population. All participants were 

genotyped for the 5-HTTLPR, DRD2 Taq1A and BDNF  Val66Met polymorphisms. Gene–

gene interactions were investigated using various linear models. All analyses were adjusted 

for age, gender, major depressive disorder diagnosis, level of resilience, level of social 

support and alcohol dependence. 

Results: A significant interaction effect between DRD2 Taq1A and BDNF Val66Met 

variants on DTS score was observed. On the background of the BDNF Val66Val genotype, 

DTS score increased significantly with the addition of a DRD2 Taq1A A1 allele. However, on 

the BDNF Met66 allele background, the addition of an A1 allele was found to reduce total 

DTS score. 

Conclusions: This study provides preliminary evidence for an epistatic interaction between 

BDNF Val66Met and DRD2 Taq1A polymorphisms on the severity of PTSD symptoms, 

where both too little and too much dopamine can result in increased PTSD symptom 

severity. 

 

1. Introduction 

Posttraumatic stress disorder (PTSD) is an anxiety disorder that develops following exposure 

to a life-threatening event (APA, 1994). However, not all trauma-exposed individuals 

develop PTSD. The lifetime prevalence of exposure to traumatic events varies between 40% 

and 90%, depending on the sample investigated, whereas the lifetime prevalence of PTSD in 

trauma-exposed individuals has been estimated at approximately 9% (Breslau et al., 2012). 

Numerous risk factors for developing PTSD have been elucidated, including those 

pertaining to the traumatic event, such as type, severity and duration of trauma, poor 

social support and childhood adversity (reviewed in Yehuda and LeDoux, 2007). In addition, 
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twin and family studies have indicated that genetics plays an important role in the 

development of PTSD, with heritability estimates between 30% and 40% (Sack et al., 1995; 

Stein et al., 2002; True et al., 1993; Yehuda et al., 1998, 2001, 2002). Although a number of 

candidate gene association studies have been conducted to identify susceptibility variants 

playing a role in the aetiology of PTSD (reviewed in Cornelis et al., 2010), no gene variant 

has yet been reported as being unequivocally involved in the development of the disorder. 

One of the reasons for the inconclusive results may be that few studies have accounted for 

environmental factors that potentially influence the development of PTSD. In addition, to 

date, no studies have investigated the potential effects that interactions between genetic 

variants may have on influencing susceptibility to PTSD. 

 

The most widely studied polymorphism in PTSD genetics is one that occurs in the promoter 

region of the gene encoding the serotonin transporter (5-HTT), which plays a crucial role in 

regulating serotonergic activity in the synapse. The 5-HTT-linked polymorphic region (5-

HTTLPR) is a 44 base pair (bp) insertion/deletion polymorphism characterised by either 

14 (short, S) or 16 (long, L) copies of an imperfect 22–23 bp repeat (Heils et al., 1996; Lesch 

et al., 1996). The S allele has been found to possess transcriptional activity two to three fold 

lower than that of the L allele (Lesch et al., 1996). Of the ten candidate gene association 

studies that have investigated the role that 5-HTTLPR plays in the development of PTSD, five 

have yielded significant associations between the lower-expressing allele (S allele) and PTSD 

(Kilpatrick et al., 2007; Koenen et al., 2009; Kolassa et al., 2010; Lee et al., 2005; Xie et al., 

2009). However, three studies yielded results implicating  the higher-expressing  allele (L 

allele)  in  the pathogenesis of PTSD (Grabe et al., 2009; Sayin et al., 2010; Thakur et al., 

2009), while two studies did not find any association between 5-HTTLPR and PTSD 

(Mellman et al., 2009; Valente et al., 2011). 

 

A number of lines of evidence implicating dopamine in the development of PTSD also exist. 

Dopamine has been detected at elevated amounts in urine and plasma samples from PTSD 

patients compared to controls (Hamner and Diamond, 1993; Lemieux and Coe, 1995; Yehuda et 

al., 1992). The dopamine receptor 2 gene (DRD2) possesses a potentially functional single 

nucleotide polymorphism (SNP), DRD2 Taq1A (rs1800497), in the 3′UTR (Grandy et al., 

1989). The SNP comprises two alleles, namely a T allele, known historically as the A1 allele, and 

a C allele, known historically as the A2 allele. For the sake of parity with previous publications, 

the current study will make use of the A1/A2 allelic nomenclature. Numerous studies have 

indicated that A1 allele carriers exhibit a reduced number of DRD2 in the brain (Jonsson et al., 

1999; Noble et al., 1991; Pohjalainen et al., 1998; Ritchie and Noble, 2003; Thompson et al., 

1997) and increased rates of dopamine synthesis rates in the striatum (Laakso et al., 2005). The 

DRD2 Taq1A variant has been investigated for its role in the development of PTSD in a number 

of studies, with inconsistent results. A significant association has been observed between the A1 

allele and PTSD in a cohort of European American Vietnam war veterans (Comings et al., 

1996), although these results were not replicated in a subsequent study (Gelernter et al., 1999). 

On the other hand, Young et al. (2002) observed an association between the A1 allele and 
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PTSD, but this association was only observed in patients with PTSD who were classified as 

‘harmful drinkers’ (i.e. consuming >60 g alcohol/day). In a more recent study, Bailey et al. 

(2010) found no association between DRD2 Taq1A and PTSD. 

 

Brain-derived neurotrophic factor (BDNF) has also been implicated in the development of 

PTSD. BDNF is widely expressed throughout the mammalian brain, and is involved in 

neurodevelopment, neuronal  survival,  neuronal  morphology  and  differentiation,  synaptic 

plasticity and protection against stress-induced neuronal damage (Bergstrom et al., 2008; 

Duman and Monteggia, 2006; Hoglinger et al., 1998; Huang and Reichardt, 2001; Lu, 2003; 

Poo, 2001). There is also evidence from animal studies that psychological or physical 

stress, or both, may inhibit hippocampal BDNF expression (Duman et al., 1997, 2000; 

Kozlovsky et al., 2007; Smith et al., 1995). In addition, serum levels of BDNF have been found 

to be decreased in individuals with PTSD compared to healthy controls (Dell'osso et al.,  

2009). Karege et al. (2002) previously demonstrated a correlation between levels of BDNF in 

the serum and central nervous system (CNS). A SNP in the BDNF gene (Val66Met; rs6265) has 

been found to affect dendritic trafficking, synaptic localisation and activity-dependent 

secretion of BDNF (Chen et al., 2006; Egan et al., 2003). Individuals who carry the Met66 allele 

have been found to exhibit poorer episodic memory and abnormal hippocampal activation 

(Egan et al., 2003), as well as reduced hippocampal volumes (Bueller et al., 2006; Hajek et al., 

2012; Montag et al., 2009; Pezawas et al., 2004), often observed in patients with PTSD 

(Bremner et al., 1997, 2008; Sapolsky, 2000). The BDNF Met66 allele has also been found to 

be associated with impaired fear extinction in both a mouse model and human cohort 

(Soliman et al., 2010; Yu et al., 2009). Although previous studies found no association between 

BDNF Val66Met and PTSD (Lee et al., 2006; Valente et al., 2011; Zhang et al., 2006), 

sample sizes were relatively small in these studies, and none  of them accounted for gene–

gene interactions, warranting further investigation. 

 

The sample in the present study was drawn from four communities of low socioeconomic status 

in the Western Cape, namely Ravensmead, Uitsig, Adriaanse and Elsies River. A large 

proportion of the residents from these areas are unemployed, and those that are employed 

receive annual incomes of between R19,201 (US equivalent $2300) and R76,800 (US 

equivalent $9183). In addition to being very poor, these areas have a very high tuberculosis 

(TB) incidence (Kritzinger et al., 2009). Crime and violence are also common in this area. 

Ravensmead has been named as a “high-risk area” for gang-related serious violent crime by 

the Western Cape Organised Crime Unit of the South African Police Service (SAPS) (Kagee and 

Frank, 2005). Dinan et al. (2004) found that South African women from a similarly low 

socioeconomic area characterised by high levels of both domestic and community violence 

reported a median of three traumatic incidences in the previous 12-month period. Moreover, a 

PTSD rate of 25.8%, as assessed by a self-report measure of PTSD, has previously been 

documented in a study conducted in an urban community sample of adult victims of violent 

crime in South Africa (Peltzer, 2000). The aforementioned rate of PTSD is considerably 

higher than that found in the recently conducted South African Stress and Health (SASH) 
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study. The SASH study, which was conducted among a national representative sample of 4351 

adults, reported an estimated 12-month prevalence for PTSD of 0.6%, with an estimated 

lifetime prevalence rate for PTSD of 2.3% (Herman et al., 2009). Thus, the study population 

represents a population at high risk for experiencing trauma and for developing subsequent 

stress-related  disorders. 

 

The aim of the current study was to determine whether genetic factors play a role in the 

development and severity of PTSD symptoms in a population that is at high risk for 

experiencing trauma. To this end, we investigated the association between specific alleles or 

genotypes of (1) 5-HTTLPR, (2) DRD2 Taq1A and (3) BDNF Val66Met and trauma 

symptom severity in a vulnerable population. We also investigated whether epistatic 

interactions between the genetic variants influenced trauma symptom severity. 

 

2. Methods 

2.1 Participants 

One hundred and fifty participants were drawn from an ongoing study investigating the 

effect of psychological stress on the development of TB in close contacts of TB patients 

(unpublished data). All participants were trauma-exposed, close household contacts of 

patients with active TB disease, diagnosed through four community health clinics in the 

Cape Town area. The participants were all non-TB cases, and all identified themselves as 

Coloured (mixed race). The protocol was approved by the Health Research Ethics Committee at 

Stellenbosch University, and all subjects provided written, informed consent after being 

presented with a complete description of the study. 

 

2.2 Measurements: demographic characteristics 

A researcher-administered questionnaire was used to collect information on participants' 

age, marital status, level of education, annual household income and employment status. 

 

2.3 Clinical measures 

Psychiatric morbidity, including PTSD, was assessed using the Mini-International 

Neuropsychiatric Interview (M.I.N.I.) (Sheehan et al., 1998), a clinician-administered, 

structured diagnostic interview for major psychiatric disorders based on the DSM-IV 

diagnostic criteria. 

 

The 18-item Traumatic Life Events Checklist (LEC) was used to identify exposure to potentially 

traumatic events that participants may have directly experienced, witnessed or learned about. 

Once the most traumatic event was specified by the participant, the Davidson Trauma Scale 

(DTS) (Davidson et al., 1997) was administered to those participants who endorsed trauma 

exposure so as to determine the severity of posttraumatic stress symptoms. The DTS is a 17-

item self-report measure that assesses both the frequency and intensity of PTSD symptoms 

among individuals with a history of trauma exposure. Items are measured on a 5-point Likert-

type scale, ranging from 0 (‘not at all’) to 4 (‘every day/extreme’), with higher scores 
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depicting more severe PTSD symptoms. A total score of greater than, or equal to, 40 has been 

found to most accurately predict clinical diagnosis of PTSD (Davidson et al., 1997). 

 

Perceived social support was assessed using the Multidimensional Scale of Perceived Social 

Support (MSPSS) (Zimet et al., 1988), a 12-item, self-report measure that assesses 

perceptions of social support from three sources, namely family, friends and significant others. 

The items are measured on a 7-point scale, ranging from 1 (‘very strongly disagree’) to 7 

(very strongly agree), with higher scores indicating a greater degree of social support. Because 

social support has been found to represent a risk/resiliency factor in PTSD (Brewin et al., 

2000; Ozer et al., 2003), it was necessary to assess and correct for this variable. 

 

Resilience was measured using the Connor–Davidson Resilience Scale (CD-RISC) (Connor 

and Davidson, 2003). This is a 25-item self-report scale that measures stress coping ability. 

Items are measured on a 5-point scale from 0 (‘not true at all’) to 4 (‘true nearly all of the 

time’). A total score between 0 and 100 is obtained, with higher scores indicating increased 

resilience. 

 

2.4. Genotyping 

DNA was extracted from whole blood, using the Nucleon BACC3 Illustra extraction kit (GE 

Healthcare). The loci containing each of the polymorphisms were amplified individually, 

using previously published primers (Baune et al., 2008; Grandy et al., 1993; Sen et al., 

2003). Thermal cycling was performed in a GeneAmp® PCR system 9700 (Perkin Elmer 

Biosystems, Foster City, CA, USA) for 30 cycles for all polymorphisms. The annealing 

temperatures and length of the PCR-amplified product for each set of oligonucleotide 

primers are presented in Table 1. 

 

The long allele (L) of 5-HTTLPR is characterised by a size of 528 bp, while the short allele (S) is 

characterised by a size of 484 bp (Table 1). The 5-HTTLPR amplicons were electrophoresed 

on 2% ethidium bromide-stained agarose gels, and sized accordingly. Allele-specific 

restriction enzyme analysis (ASREA) was performed to characterise the genotypes arising 

from the DRD2 Taq1A and BDNF Val66Met polymorphisms as follows. 

 

For DRD2 Taq1A, the 310 bp amplicon was digested overnight at 65 °C with 10 U of Taq1 

(New England Biolabs, Beverly, MA, USA). The restriction enzyme recognizes a site in the A2 

allele, resulting in two DNA fragments of 130 bp and 180 bp, whereas the A1 allele remains 

uncut as a 310 bp fragment. DRD2 Taq1A alleles were visualised on 2% agarose gels, 

stained with ethidium bromide. For BDNF Val66Met, the 274 bp amplimer was digested 

with 5U NlaIII (New England Biolabs, Beverly, MA, USA) overnight at 37 °C. Two NlaIII 

restriction enzyme sites are present in the amplified genomic fragment. The first site is cut 

constitutively and produces fragment sizes of 57 bp and 217 bp, whereas at the polymorphic 

site, NlaIII cuts the A (Met66) allele, generating fragments of 140 bp, 77 bp and 57 bp in 

http://repository.uwc.ac.za



 

6 
 

size, while the G (Val66) allele remains uncut. BDNF Val66Met alleles were visualised on 

3% agarose gels, stained with ethidium bromide. 

 

2.5. Statistical analysis 

Data was summarised as median (interquartile range [IQR]) for all quantitative variables, as 

most had very skewed, and therefore non-normal, distributions. Categorical traits, including  

genotypes, were summarised as counts and percentages for the study group as a whole, and for 

males and females separately. The appropriate unadjusted tests provided the p-values for sex 

differences in the variables. 

 

The DTS scores did not possess a standard distribution, as a preponderance of zeros was 

observed (53 [35%]). To obtain valid results, a zero-inflated analysis model was required 

(Zeileis et al., 2008). This analysis represents a mixture of two models: one model fits a 

count distribution to the data, the second (binomial) makes a percentage of those values 

zero. We used a zero-inflated model with a negative binomial family for the (non-zero) 

counts. 

 

Genetic association and interactions were tested by including single genotype and genotype-

by-genotype interaction terms, respectively, as categorical fixed effects in the models. 

Interaction terms that were not significant were removed from the models. When 

inspection of genotype effects indicated that the heterozygote and the minor homozygote 

had similar effects, a dominant coding of the genotype was tested. 

 

The analysis was adjusted for known confounders, namely age, sex, the presence or absence of 

major depression, alcohol dependence, resilience, social support, and levels of education and 

employment. These confounders were adjusted for by including them in the statistical 

models as fixed effects. The analysis yields two sets of results, corresponding to the mixture of 

two models, for each factor (confounders and polymorphisms investigated): first, whether it 

affects the zero or non-zero status of DTS, and second, what the count is, if it is not zero. The 

significance of effects (p-values) and effect sizes (% differences) are part of the results of the 

confounder-adjusted zero-inflated models used in the analyses. 

 

Statistical analyses were done with functions from R (www.r-project.org), and R packages 

genetics (genotype and allelic counts and frequencies; Hardy-Weinberg equilibrium testing) 

and pscl (zero-inflated modelling). 
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3. Results 

3.1. Demographic and clinical measures 

Table 2 summarises the demographic and clinical variables measured in the total study 

group, and stratified by sex. Thirty-one percent (47/150) of the study group was male. The 

median age of the group was 30.5 years (IQR: 23–42 years), with no significant differences 

observed between male and female participants (p= 0.440). Fifty-nine participants (39.3%) 

possessed an education level of Grade 8 (equivalent to ten years of schooling) or less, and no 

significant differences were observed with regard to level of education between male and 

female participants (p= 0.858). Only 32.7% of the participants were employed, with 

significantly more males being employed (pb 0.001). More than half of the participants 

reported an annual income of less than R10,000 (US equivalent $1205), indicating that the 

majority were living in poverty. 
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According to the M.I.N.I, seventeen participants met the criteria for current PTSD diagnosis 

(11.3%). The median scores for CD-RISC and MSPSS were 73 (IQR: 58–84) and 64 (IQR: 51–

73), respectively, with no sex differences observed for either scores (p= 0.711 [CD-RISC] and 

p= 0.984 [MSPSS]) (Table 2). Thirty-seven (25%) of the study participants were diagnosed 

with major depressive disorder (MDD) (10 [21%] male; 27 [26%] female; p= 0.548). 

Twenty-four individuals (16%) met criteria for alcohol dependence, and of those, 12 (50%) 

were male. Males were significantly more likely to exhibit alcohol dependence compared to 

females (p= 0.030). 

 

According to the LEC, 99% of the participants (149/150) had experienced, witnessed or 

learned about a traumatic event (s). A DTS score of zero indicated that either the participant 

had not experienced a traumatic event, or that the traumatic event that was experienced did 

not result in the development of PTSD symptoms. Fifty-three participants (35%) reported zero 

DTS scores, while 97 participants (65%) reported non-zero DTS scores. The median of the DTS 

non-zero scores was 35 (IQR: 17–58). In a joint analysis of association of the potential 

confounders with DTS, none were found to be significantly associated with the zero/non-zero 

status of an individual's DTS score. However, three of the potential confounders, namely 

sex, MDD status and level of  social support, were found to contribute significantly to 

non-zero DTS score. To this end, males were found to have significantly lower DTS scores 

than females (effect= 29%; 95% CI: 1–49%; p= 0.046), while being diagnosed with MDD 

increased DTS score significantly (effect= 78%; 95% CI: 25–153%; p= 0.001). In addition, an 

increased level of social support was found to reduce the DTS score significantly (effect of 

each additional score on MSPSS scale= 2%; 95% CI: 1–3%; pb 0.001). 

 

3.2 Genotype data and allele frequencies 

All variants were in Hardy–Weinberg equilibrium (5-HTTLPR p= 0.093; DRD2  Taq1A  

p= 0.587; BDNF  Val66Met  p= 1.000). Genotype counts and percentages for each 

polymorphism, in the total study group and stratified by sex, are provided in Table 3. No 

significant differences in genotype and allele frequencies were noted between males and 

females (5-HTTLPR p= 0.977 [genotype] and p= 0.871 [allele]; DRD2 Taq1A p= 0.981 
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[genotype] and p= 0.857 [allele]; BDNF Val66Met p= 0.817 [genotype] and p= 0.594 

[allele]). 

 

3.3 Association of genetic variants with severity of trauma symptoms 

Although the 5-HTTLPR variant was not associated with the non-zero DTS score (p= 

0.444), participants who possessed at least one  5-HTTLPR  S-allele  (dominant  model)  

were  significantly  more likely to be scored as ‘zero’ on the DTS scale (odds ratio [OR]= 2.77; 

95% CI: 1.28–5.97; p= 0.012). 

 

An epistatic interaction between BDNF Val66Met and DRD2 Taq1A polymorphisms was 

found to impact non-zero DTS score (p= 0.006). The nature of this significant interaction is 

illustrated by box plots of the observed non-zero DTS scores in Fig. 1. It was found that, on 

the background of the BDNF Val66 homozygote, DTS score increased significantly with the 

addition of each DRD2 Taq1A A1 allele. However, upon the BDNF Met66 background, the 

DTS score was found to increase significantly on addition of each A2 allele. No statistically 

significant differences were observed with regard to zero or non-zero status of DTS scores 

between the genotypes or alleles comprising the individual DRD2 Taq1A or BDNF Val66Met 

polymorphisms. 

 

4. Discussion 

The study group was found to exhibit a current PTSD prevalence of 11.3%, which is 

considerably higher than the 12-month and lifetime prevalence rates observed in the 

recently conducted SASH study (Herman et al., 2009), indicating that the population is 

indeed at increased risk for developing the disorder. 

 

We found that individuals possessing the 5-HTTLPR LL genotype were significantly more 

likely to have a non-zero DTS score compared to those who possessed at least one S allele. In 

the present study, a score of ‘zero’ on the DTS indicated either that the individual had not 

experienced a traumatic event that had significantly impacted their life, or that, although the 

individual had experienced a traumatic event (s), it had not resulted in any PTSD symptoms. 

Only one participant in the present study indicated that they had not experienced any 

traumatic event. This finding therefore suggests that those individuals who possessed at least 

one S allele were more resilient to the effects of trauma compared to those carrying the LL 

genotype. Although the S allele has been found to be associated with reduced resilience in a 

recent study (Stein et al., 2009), the L-allele has also been found to be associated with 

reduced resilience in subjects with insecure attachment (Olsson et al., 2005) and those who 

had been exposed to early adversity (Carli et al., 2011; Laucht et al., 2009). Given the 

inconsistent results in publications investigating resilience and 5-HTTLPR, the current study 

needs to be replicated in a larger sample in order to validate the results presented here and 

to better understand the relationship between the two variables. 
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To our knowledge, this is the first published study to suggest a role for epistatic interaction 

between the DRD2 Taq1A and BDNF Val66Met polymorphisms in the severity of PTSD 

symptoms. We found that, on a background of the BDNF Val66Val genotype, DTS score 

increased significantly with the addition of each DRD2 Taq1A A1 allele.  

 

 
 

Interestingly, however, on the background of the BDNF Val66Met/Met66Met (Met66+) 

genotype,  DTS  score  increased  significantly  with  each additional DRD2 Taq1A A2 allele. 

Although neither of the genetic variants was found to contribute to PTSD symptom severity 

individually in the present study, prior research has suggested the involvement of the A1 allele 

in the aetiology of PTSD (Comings et al., 1996; Young et al., 2002), although Young et al. 

(2002) only observed this association in individuals who exhibited harmful drinking. Given the 

role of BDNF in a number of crucial processes in the CNS, mounting evidence suggests that 

BDNF may also play a role in the development of PTSD. However, to date, only three published 

studies have investigated the role of BDNF Val66Met in the aetiology of the disorder, all 

yielding negative results (Lee et al., 2006; Valente et al., 2011; Zhang et al., 2006). 

 

It is perhaps not surprising that the BDNF and DRD2 polymorphisms were found to interact to 

influence DTS score in the present study, since BDNF has previously been found to be 

involved in the modulation, maintenance and normal functioning of mesolimbic dopaminergic 

neurotransmission (Berton et al., 2006; Bustos et al., 2004; Goggi et al., 2003; Hunnerkopf et 

al., 2007) and in the development of dopaminergic neurons (Baquet et al., 2005; Trzaska et al., 

2009). In Fig. 1, it is noteworthy that the influence of epistatic interaction between BDNF 

Val66Met and DRD2 Taq1A polymorphisms on DTS score approximates an inverted U-

shaped curve. This observation may be best explained by previous research indicating that 

dopamine functions within a range of optimal concentrations to affect certain brain functions; 

for example, both too much dopamine and too little dopamine have been found to impair 

cognitive functionality (Cools and D'Esposito, 2011; Goldman-Rakic et al., 2000). This U-
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shaped function of dopamine has previously been thought to be due to alterations in dopamine 

D1 receptor activity (Cools and D'Esposito, 2011; Seamans and Yang, 2004), but it has 

recently been reported that DRD2 activation also affects dopamine concentrations in a non-

linear fashion, and that an optimal range of DRD2 activity exists to facilitate adequate brain 

functioning (Gjedde et al., 2010; Monte-Silva et al., 2009). Notably, DRD2 Taq1A has also 

been implicated in affecting the amount of available dopamine in various regions of the 

brain during feedback-guided learning (Cohen et al., 2007), implicating this variant in the U-

shaped effect that dopamine has on certain brain functionality. Although the precise 

relationship between BDNF Val66Met and DRD2 Taq1A variants is yet to be elucidated, it has 

been postulated that a reduction in BDNF expression results in reduced dopaminergic activity 

in the mesolimbic pathways leading to the anterior cingulate cortex (ACC) (Koven and Carr, 

2012). 

 

Given the aforementioned information and from the results obtained in the present study, 

it is tempting to speculate that the BDNF Val66Met genotype drives the U-shaped 

functionality of dopamine in the context of PTSD symptom severity. In other words, an 

increased BDNF activity-dependent secretion (due to the genotype Val66Val (Egan et al., 

2003)) may, together with the reduced DRD2 expression caused by the DRD2 Taq1A 

A1/A1 genotype (Jonsson et al., 1999; Noble et al., 1991; Pohjalainen et al., 1998; Ritchie 

and Noble, 2003; Thompson et al., 1997), cause a significant increase in dopaminergic 

concentration. On the other hand, the reduced BDNF activity-dependent secretion (due to 

Met66-containing genotypes (Egan et al., 2003)) and the increased DRD2 expression (due 

to the DRD2 Taq1A A2/A2 genotype (Jonsson et al., 1999; Noble et al., 1991; Pohjalainen et 

al., 1998; Ritchie and Noble, 2003; Thompson et al., 1997)) may, together, significantly 

reduce dopaminergic concentration. The epistatic interactions between the two genes may 

therefore render the dopaminergic levels sub-optimal for cognitive functions that impact 

PTSD symptom severity. 

 

Epistasis between the BDNF Val66Met and DRD2 Taq1A variants has previously been 

observed in the context of personality dimensions of harm avoidance and novelty seeking 

(Montag et al., 2010a) and alexithymia (Walter et al., 2011), and volume in the ACC (Montag 

et al., 2010b). Montag et al. (2010a) found that healthy individuals who possessed at least one 

Met66 and one A1 allele (Met66+/A1+ combination) exhibited significantly increased scores 

on the Harm Avoidance scale and significantly reduced scores on the Novelty Seeking scale. In a 

separate publication by the same group, the same combination of DRD2/BDNF genotypes 

was found to be associated with significantly reduced grey matter volume in the ACC (Montag et 

al., 2010b). Individuals with the Met66+/A1+ genotype combination have also been found to 

be more likely to exhibit increased levels of alexithymia (Walter et al., 2011), a personality 

construct that involves difficulties in identifying emotional states, and an inability to 

verbalise one's own emotions (Larsen et al., 2003). Interestingly, both increased levels of 

alexithymia (Declercq et al., 2010) and reduced ACC volume (Kasai et al., 2008; Kitayama et 

al., 2006; Thomaes et al., 2010; Woodward et al., 2006) have been observed in PTSD patients. 
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Therefore, the interaction between DRD2 and BDNF may increase the risk of developing PTSD 

by reducing ACC volume and increasing symptoms of alexithymia observed in PTSD. 

 

4.1. Study limitations 

A number of limitations in the present study deserve mention. The study group size of 150 

participants is relatively small; consequently, the  present  results  require  validation  in  

studies  comprising  larger sample sizes, which will impart greater power. In addition, 

population stratification was not controlled for, which may have confounded results. The 

South African Coloured population has a unique mixed ancestry dating back almost 300 

years and comprises a number of different ethnicities, including European Caucasoid, 

Asian, Khoi, San and Black African (Nurse et al., 1985). Since the admixture occurred 

several generations ago, the population has been suggested to be relatively genetically 

homogenous. In a recent study in which 25 unlinked markers were genotyped in a 

South African Coloured population comprising 351 TB cases and 360 controls, no 

significant population stratification was observed (Barreiro et al., 2006). However, in a 

subsequent study, de Wit et al. (2010) observed substantial genetic heterogeneity within 

the South African Coloured population. Future studies should thus include measures to 

correct for population stratification within the South African Coloured population. 

 

It must also be noted that multiple testing was not corrected for, primarily due to the 

exploratory nature of the present study. In addition, the most appropriate means of 

correcting for multiple testing remains contentious and applying Bonferroni's  correction  

may  be too conservative in cases where there is prior evidence that such associations may 

be present. 

 

In light of the exploratory nature of the study, it was decided to limit the genetic analysis 

of the serotonin transporter to one polymorphism, namely 5-HTTLPR. However, the 

authors are mindful of the presence of  additional  polymorphisms  within  the  gene  (such 

as rs25331 (Hu et al., 2006) and rs25532 (Wendland et al., 2008)) that may modulate 

the functionality of 5-HTTLPR. Investigating these polymorphisms will form an important 

aspect of future validation studies. 

 

It is possible that other gene variants may mediate the interaction between the BDNF 

Val66Met and DRD2 Taq1A polymorphisms. For example, the catechol-O-

methyltransferase (COMT) Val158Met variant has been found to alter the functionality of 

COMT, which is an important regulator of dopaminergic neurotransmission, and has also 

been found to be involved in reduction in ACC volume in patients with PTSD (Schulz-

Heik et al., 2011). Future studies should thus include additional variants, such as COMT 

Val158Met. 
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Finally, the aetiology of psychiatric disorders, and particularly PTSD, involves a large 

environmental component, thought to interact with the genetic component. It is 

therefore important that future studies take environmental factors into account. 

 

5. Conclusions 

The preliminary results yielded in the present study implicate the interaction between genes 

encoding BDNF and DRD2 in the severity of PTSD symptoms. As mentioned, the present 

results require validation in a larger study group, while accounting for environmental factors 

that may contribute to the development of PTSD, and possible population stratification. If 

the present results are validated, further work will be required to determine the mechanism 

of action of the interaction between BDNF and DRD2. These results could have important 

implications for novel therapeutic regimes with which to treat this debilitating psychiatric 

disorder. 
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