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Summary 

This research is focused on the epidemiological analysis of the transmission of the highly pathogenic 

avian influenza (HPAI) H5N1 virus outbreak in Nigeria. The data included 145 outbreaks together 

with the locations of the infected farms and the date of confirmation of infection. In order to 

investigate the environmental conditions that favoured the transmission and spread of the virus, 

weather stations were realigned with the locations of the infected farms. The spatial Kolmogorov–

Smirnov test for complete spatial randomness rejects the null hypothesis of constant intensity (P < 

0·0001). Preliminary exploratory analysis showed an increase in the incidence of H5N1 virus at 

farms located at high altitude. Results from the Poisson log-linear conditional intensity function 

identified temperature (−0·9601) and wind speed (0·6239) as the ecological factors that influence 

the intensity of transmission of the H5N1 virus. The model also includes distance from the first 

outbreak (−0·9175) with an Akaike’s Information Criterion of −103·87. Our analysis using a point 

process model showed that geographical heterogeneity, seasonal effects, temperature, wind as well 

as proximity to the first outbreak are very important components of spread and transmission of 

HPAI H5N1. 

Introduction 

The World Health Organization (WHO) has described avian influenza as an infectious disease of 

animals (usually birds and less commonly pigs) caused by type A strains of the influenza virus. The 

main reservoir of the virus is wild birds and in the last two decades it has been seen in commercial 

and domestics poultry in Asia and Africa. Few cases of transmissions to humans and other mammals 

have also been documented by the United States Centers for Disease Control and Prevention, 

and the WHO. This virus was first reported in one state in Nigeria in 2006. The disease spread to 25 

states and the Federal Capital Territory (FCT) within weeks [1]. The epidemic of H5N1 has huge 

socioeconomic consequences with respect to animal welfare, international trade and cost. The federal 

government set aside the sum of 1·5 billion Naira (11·5 million US$) for compensation alone for 

suspected birds that were culled throughout the nation to contain the spread of the disease. An 

economic impact assessment made by the Poultry Association of Nigeria (PAN) put the loss to 

farmers in the first 4 weeks of the outbreak to 14·4 billion Naira, which does not include 

those very small-scale farmers whose stock constitutes over 60% of the total national 

poultry population [2]. The consequence of the outbreak was devastating to the poultry 

owners as well as the consumer. 
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The initial boycott of chicken and eggs created high demand and pressure on the supply 

of fish and other meat products. Outbreaks of highly pathogenic avian influenza 

(HPAI) had been confirmed in some parts of Africa:  Benin,  2007,  2008;  Burkina  

Faso,  2006; Cameroon, 2006; Cote d’Ivoire, 2006; Djibouti, 2006, 2007; Egypt, 2006, 

2007, 2008; Ghana, 2007; Nigeria, 2006,  2008,  2009;  Niger,  2006;  South  Africa,  

2006, 2011,  2012;  Sudan,  2006,  2007;  Togo,  2007,  2008, 2009 [3]. Despite the 

spread and incidence of H5N1, some farmers did not believe in its existence. This is 

very disturbing and may influence human infection [4]. Many studies have attributed the 

spread of H5N1 virus in Nigeria and Africa to: international and interstate poultry trade 

[4, 5]; as a result of regional influx of wild birds [4]; presence of visitors on farm 

premises, purchase of live poultry and poultry products by farmers, and farm workers 

living outside the farm premises [6].  Many  households  practised  poultry  farming  at 

home (backyard) thereby increasing the risk of transmission of the avian virus to 

humans [7]. The management of backyard poultry farming has been identified as a 

challenge to the H5N1epidemic in Nigeria and improved biosecurity measures were 

advocated to prevent and control the spread of the disease [7]. In that study about one-

third of the participants were aware of bird-to-man transmission of the avian virus 

and about two thirds were unaware of the existence of H5N1  infection.  The  

knowledge  and  awareness  of avian flu and the risk of infection is low and hygiene is 

an important element to control the disease [7]. Three  distinct  waves  of  the  

H5N1  epidemic  in Nigeria  were  identified  with  peaks  in  January– March in the 

North West, North Central and North East  and  July–September  in  the  South  West  

and South South as well as disease clusters in the North West, North East and South 

West, respectively [8]. A  previous  analysis  using  the  methods  for  spatial point 

processes with altitude as the only covariate in making inferences about H5N1 

outbreaks revealed a significant effect of altitude in estimating the pattern of H5N1 

virus [9]. 

 

It is difficult to describe the mechanism underlying the H5N1 epidemic, and its origin, 

geographical, climatic and other factors that establish and influence the  spread of  

the  disease.  Such  difficulties  can be a result of mismatch between data measured at 

different resolutions resulting in spatial misalignment [10]. Spatial misalignment of 

the exposure and response variables can bias the estimation of health risk [11]. The 

first major aim of this study was to realign the weather stations with the locations of 

the infected farms. The locations of the outbreaks of H5N1 were not linked with the 

climate data measured at different weather stations. We considered the use of 

interpolation to estimate the weather data to provide a mean estimate for each 

infected farm. Moreover, possible association between H5N1 outbreaks and 

environmental factors such as altitude, temperature, wind and dew were 

investigated. The geographical constraints that may favour the outbreak of the 

disease were explored to understand the effect of distances between farms. 
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Methods  

Data source 

The data for this study consists of the HPAI H5N1 outbreaks in 2006 that were 

reported to the World Organization for Animal Health (OIE) [3]. The information 

collected included the date of confirmation of infection (diagnosed), species, number of 

susceptible birds, number of infected birds and the locations of the infected farms (x,y 

coordinate system). The datasets can be found on the website of OIE [3]. Poultry farms 

(subsequently referred to as farms) in Nigeria are categorized as backyard flocks, 

which are normally comprised of a couple of dozen birds, and commercial poultry with 

up to hundreds of thousands of chickens. Figure 1 shows the locations of the infected 

farms which include cases from both commercial and backyard farms. The disease was 

either diagnosed using clinical signs or sent for a test at the national laboratory 

(National Veterinary Research Institute, Vom, Nigeria or  the OIE’s  reference  

laboratory in Padova, Italy) [3]. A total of 145 diagnosed outbreaks were recorded; the 

first outbreak occurred on 10 January 2006 in Kaduna State, in the North-Western 

part of Nigeria. The virus spread to the central part of the country within weeks, and 

about 70% of the total reported outbreaks occurred between January and March, 2006 

(Fig. 2). 

 

The climatic data for the available weather stations (see Fig. 1 for location of the 

weather stations) in Nigeria in 2006 were extracted from the National Climatic Data 

Centre of the National Oceanic and Atmospheric   Administration,   US   Department   

of Commerce. 
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Daily weather data were collected from 48 weather stations across Nigeria; these data included 

the temperature (°C), dew point (°C), wind speed (knots), pressure (millibars) and elevation 

(metres). 

 

Bayesian kriging 

Misalignment is often encountered in spatial analysis, this occurs when sampling at different 

spatial scales are not linked. In our case, the outbreaks of H5N1 virus were not linked with 

the weather variables measured at different weather stations. One possible way to tackle this 

problem is through interpolation, a method of constructing new data points within the range 

of a discrete set of known data points. 

 

Let si; i = 1, 2, .. ., N, be the location of the infected farms and Z(sl); l = 1, 2, .. ., L, the weather 

variables measured at the weather stations. Usually, we would want to measure these weather 

variables Z(sl) at the location of the infected farms, which involves the use of interpolation 

[12]. The spatial Gaussian process was assumed for the measured predictor and we 

constructed a conditional prediction of the predictors at the set location. The Gaussian 

process model was defined for the sets of weather stations, θ=(ψ, τ)′ as the parameter vector. 

Let Zs ′ =Z(s1), . . ., Z(sl): Z(sl)|α, θ∼N(μ, Γ), where μsl=(sl, α) is a predictor at the lth farm 

and Γ is the spatial covariance matrix. Often, μs will consist of trend surface components and 

Γll′ = τρ(sl − sl′ ; ψ) (where τ is the variance and ρ(.) is a correlation function for the Z’s at 

the separation distance sl − sl′ ). Using the conventional geostatistics approach for 

interpolation, i.e. ‘kriging’, the covariance structure is estimated first, then the estimated 

covariance is used for interpolation. The exponential form was used for ρ(sl − sl′ ; ψ) given 

by: 
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where ||sl − sl′ || is the Euclidean distance between farm l and l′. The Matérn function was 

used to estimate γ(h, θ), h = sl − sl′ ; given by 

 

 
 

where θ=(c0, ck, ak, α); c050, ck50, ak50, α50 and Kα(.) is the modified Bessel function of 

the second order of α. Here, c0 measures the nugget effect and ck is the partial sill (so c0+ck 

is the sill). As in the stable family, the behaviour near the origin is determined by α, and the 

parameter ak controls the range. The behaviour of the semivariogram near the origin can be 

estimated from the data rather than assumed to be a certain form [13]. 

 

Bayesian kriging analysis was adopted for predicting a new set of locations Z(si); i=1, 2, . . ., 

N. The posterior predictive distribution of Z(si) given the observations Z(sl) is 

 

 
 

where f (α, θ |Z(sl)) is the posterior of the model parameters. 

 

The Matérn function [equation (2)] was implemented in geoR and the Bayesian analysis was 

implemented using the function krige.bayes [14]. Modelling H5N1 intensity The variations of 

the disease intensity were measured by the inhomogeneous K function. In general, the  

intensity of a point process varies from place to place and the intensity function assumes that 

the expected number of points falls in a small area du around a location ui that satisfies 

E[N(X∩B)]=∫Bλ(u)du. The inhomogeneous K function stipulates that if λ(u) is the true 

intensity function of the point process X, then each point xi will be weighted by wi = 1/λ(u): 

 

 
 

The space–time cluster interaction was measured at both the spatial and temporal scale 

using 

 

http://repository.uwc.ac.za



6 
 

 
 

where ni and nj are the numbers of observations within distance h and time interval t 

for the pair of events, respectively. 

 

The spatial point process model was fitted to the data in which the point pattern is 

dependent on spatial covariates such as geographical location, week of infection, 

elevation, temperature, dew point and wind. The conditional intensity, presences per 

unit area [15], expressed as a log-linear function of the co-variates is 

 

 
 

where β is a vector parameter and Z covariates at location u. 

 

Akaike’s Information Criterion (AIC) [16] was used to evaluate the ‘goodness of fit’ of each 

model. All data analyses were performed and implemented in R [17]. 

 

Habitat suitability analysis (HSA) 

A HSA provides a way of modelling the relationship between species and habitat characteristics. 

The Habitat suitability index (HSI) describes the suitability of a given habitat by combining 

the interactions of all key environmental variables on a species’ population characteristics 

and ultimately, survival [18]. Although the HSA is popular with species modelling, it is a 

growing area in spatial analysis of disease epidemiology that characterizes the distribution of 

the disease in a space defined by environmental parameters. The model can be constructed 

in several ways such as ecological niche analysis (ENA) which involves the use of geography and 

ecology of disease transmission [19] with the aim of determining the distribution of the 

species using the location where the species has been found [20]. 
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The idea is to use the observed presence (and absence) data together with ecological variables 

at those sites to provide a reasonable likelihood of the species being present [20]. Hirzel et al. 

[21] proposed ecological niche factor analysis (ENFA), a multivariate approach to study the 

geography of species distribution which does not require absence data. ENFA computes the 

suitability function by computing the species’ distribution in the eco-geography variable space 

with that of the whole set of cells [22]. In this study, ENFA was used to compute the suitability 

function and produce the habitat suitability map for H5N1, where the HSI values range from 0% to 

100%. HSI values close to 100% indicate an area where a species will flourish and values 

close to 0 imply an area where the species will not do very well. ENFA was performed using the 

‘enfa’ function implemented in R [23]. 

 

Results 

A high percentage of the outbreaks occurred in the Plateau State (29·7%) followed by Kaduna 

State (12·4%), Kano (11·7%) and Bauchi (11·7%) (Table 1, Fig. 3). Preliminary exploratory analysis 

showed an increase in the incidence of H5N1 virus at farms located at high altitude. 

 

Estimating weather variables 

A total of 48 weather stations across Nigeria were used for the interpolation of the weather data 

in this study. The location of the weather stations (black stars) and the infected farms (red 

triangles) are depicted in Figure 1. The occurrence of H5N1 has been described to take place 

[8], with the suspicion of seasonal effects on the outbreaks (Fig. 2). This influence may be 

explained by some climatic variables and the disease epidemiology can be explored using 

ecological data. The weather stations were misaligned with the location of infected farms. The first 

task was to realign the weather stations. Interpolation was used to estimate the mean weather 

variables (temperature, wind, dew) for the infected farms (Fig. 4). Daily data were not 

available for some weather stations and thus weekly average weather predictions were used. 

 

Different parametric models were fitted to the empirical semivariogram estimated to the data 

and the best fit model (Matérn) was chosen by varying the parameters. The estimated Bayesian 

variograms were checked against the empirical variogram by plotting the posterior distribution 

means, medians and modes. Histograms of the posterior distribution for the model parameters 

indicated a good fit of the Bayesian kriging prediction of the weather variables for the locations 

of infected farms (data not shown). 

 

H5N1 risk factors 

The spatial Kolmogorov–Smirnov test for complete spatial randomness rejects the null 

hypothesis of constant intensity with P < 0·0001. This implies that the locations of outbreaks are 

dependent on each other and that propensity varies from location to location 

(inhomogeneous). The inhomogeneous K-function plot shows that estimates of K(r) using 

different techniques are roughly the same (Fig. 5). This suggests that H5N1 outbreaks appear to 

be clustered after accounting for temperature, elevation, dew, wind and distance from the first 

outbreak. These covariates were used to fit a full inhomogeneous Poisson process intensity model. 

Using the method of backward elimination, the model with temperature, wind and distance 
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was found to best fit the data and to be suitable for predicting the intensity of a H5N1 outbreak 

with an AIC of −103·87. 

 

Results from the Poisson point process model with a 1 km × 1 km regular grid of quadrature 

points showed a negative effect of temperature and distance. This suggests that for a unit increase in 

temperature and distance from the first outbreak, the intensity of the transmission (number of 

outbreaks per unit area) of a H5N1 outbreak decreases by 0·9601 and 0·9175, respectively. 
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The result shows that an increase in wind speed will increase the conditional intensity of the disease 

outbreak. Moreover, the negative effect of distance on the intensity of the transmission implied 

that an increase in the distance results in a decrease in the intensity of the transmission of the 

virus. Figure 6 presents the intensity of the transmission of H5N1 virus using the Poission 

process model; the fitted model exhibits similar patterns in the transmission of the virus as the 

observed H5N1 outbreak. The intensity of the transmission (indicated by different colours in 

Fig. 6) suggest that most of the infected farms are located in the North Central region of Nigeria 

and occurred within a short time frame. 

 

 
 

The habitat suitability map for the disease is presented in Figure 7; higher HSI values were observed 

around the northern part of the country (60–100%); this implies that the H5N1 virus is favoured 

by the climatic condition in the North Central region of Nigeria and areas in close proximity to 

the first outbreak. 

 

Discussion and conclusion  

It is difficult to describe the mechanism underlying the H5N1 epidemic, its origin, and the 

geographical, climatic and other factors that establish and influence the spread of disease. 

Information on the spread of infectious diseases is crucial for control and surveillance initiative 

programmes. The role played by weather variables in the transmission and spread of HPAI 

should not be overlooked. The H5N1 virus was found to be a result of regional influx of wild 

birds [4], migratory waterfowl [24, 25], trade routes [26] and also the effect of transportation 

of farm staff and poultry products [6, 27]. Our results showed that the spread and transmission of 

HPAI H5N1 is favoured by some weather variables and areas in close proximity to the first 

outbreak. 
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The movement of people, equipment and animals within infected farms may contribute to the 

spread of the pathogen. Airborne transmission of the pathogen may also occur through dust and 

feathers. This method of transmission has been previously studied [28–31]; these studies attest to 

our findings suggesting that there is a relationship between the intensity of the disease in a given 

region and, wind speed and temperature. The contribution of wind in the transmission of the 

pathogens has been described as occurring only in short distances and the extent may be 

relatively small [30, 31]. Although the effect of biosecurity has been discussed in another 

paper [7], temperature and wind may induce dryness of the environment which may in turn 

make it easier for the virus to be transmitted between birds. Moreover, the effect of alternating 

temperature highs and lows may imply seasonality that could alter the transmission and 

survivability of the virus, which is consistent with the temporal patterns observed by Ekong et al. 

[8]. These authors suggest that the outbreak occurred in different waves. Brown & Rohani 

[32] have studied the effect of alteration between migratory shorebird and horseshoe crabs as a 

result of climate change. 
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Vandegrift et al. also reviewed how anthropogenic change may alter the evolution and 

transmission of influenza viruses [33]. The initial outbreak of the disease in Nigeria was attributed 

to the movement of migratory birds [34]; this supports our findings of wind as a risk factor 

because the wind speed and direction may also affect the path of migratory birds thereby 

altering the spread of the virus. 

 

This study provides empirical analysis of how spatial models can be used to capture the 

intensity and mechanism of the spread of H5N1 virus with misaligned weather data. The 

application of the Bayesian kriging method to predict weather variables in a misaligned dataset 

was demonstrated. These techniques were applied to the HPAI H5N1 virus outbreak in Nigeria in 

2006. The spatial Poisson process intensity fitted as a log-linear function has shown that 

intensity combined with temperature, wind and distance from the first outbreak provides a better 

estimate. A HSA was conducted using ecological niche modelling on the point process and the 

predicted weather data, to explore the habitat suitability of H5N1 and to predict the 

geographical distribution of the disease outbreak. 

 

The major limitation of this study lies in the data gathering and risk factors. The data on HPAI 

H5N1 virus were only extracted from the OIE database and cases of underreporting cannot 

be ruled out. Moreover, Nigeria is a very large country with very poor data acquisition and the 

lack of e-data sources may affect timely reporting of disease occurrence. It would be interesting to 

be able to have additional variables linked to the location of events (e.g. those that address 

biosecurity, farm characteristics, and measure virus dispersion). This study only considered the 

ecological aspect of disease transmission due to availability of data. Furthermore, we could not 

assess the extent (distance) of the contribution of the wind in the transmission of HPAI based 

on limited data. In spite of these limitations, OIE provides very reliable and considerable data 

that yielded extensive information crucial for HPAI analysis in Nigeria. The analysis based on 

these data offers the opportunity to detect whether environmental and ecological variables are 

potential risk factors for the mapping of suitable habitats. 

 

Our analysis using point process modelling also showed that geographical heterogeneity and 

seasonal effects are very important components of the spread and transmission of HPAI H5N1. 
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The study calls for adequate surveillance and quick quarantine of infected farms in close 

proximity to the first outbreak. Further studies could incorporate and utilize the wind 

direction and dust dispersion (as proxy for airborne dispersion of the virus), farm population 

density and biosecurity in determining the pattern and mechanism of the spread of 

disease. 
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