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Abstract 16 

When considering complex scenarios involving a multiset of attributes, such as in 17 

environmental characterization, a clearer picture of reality can be achieved through the 18 

dimensional reduction of data. 19 

In this context, maps facilitate the visualization of spatial patterns of contaminant 20 

distribution and the identification of enriched areas. Here we measured a set of 15 21 

Potentially Toxic Elements (PTEs) – (As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl, 22 

V, and Zn) in soil collected in the municipality of Langreo (80 Km2), in Asturias, northern 23 

Spain, a paradigmatic industrial area. 24 

With the aim to explore PTE dissemination trends and to define clusters of relative 25 

enrichment, we examined the mechanisms through which these contaminants are 26 

spatially distributed.  27 

Relative enrichment (RE) is introduced here to refer to the proportion of elements present 28 

in a given context. Indeed, we provide a new approach to research into PTE fate. This 29 



 

 

2 

 

method involves studying the variability of PTE proportions throughout the study area, 30 

thereby allowing the identification of dissemination trends.  31 

Transformations to open closed data are widely used for this purpose. As compositions 32 

are shown along with their spatial locations, spatial patterns have an indubitable interest. 33 

In this study, we used the Centered Log-ratio transformation (clr), followed by its back-34 

transformation, to build a set of compositional data that, combined with raw data, allowed 35 

us to establish the sources of the PTEs and trends of spatial dissemination.  36 

Based on our findings, we conclude that the Langreo area is deeply affected by its 37 

industrial and mining legacy. The city centre is highly enriched in Pb and Hg and As 38 

showed enrichment in a northwesterly direction. Overall, the multivariate geochemical 39 

approach presented facilitates the identification and quantification of anthropogenic 40 

impacts and consequent adequate monitoring measures required to safeguard the 41 

health of local communities. 42 

 43 

Keywords: Soil Pollution, PTEs, Compositional Data, Ordinary Kriging, Local G-44 

clustering, Relative Enrichment. 45 

 46 

1. Introduction 47 

Environmental characterization involves complex scenarios in which a multiset of 48 

attributes must be considered. A dimensional reduction of data is pivotal to gain a clear 49 

picture of reality (Moen and Ale, 1998). Maps are useful to visualize pollutant 50 

concentrations, as well as to determine zones of contaminant enrichment, whether 51 

natural or caused by anthropogenic activity. In this context, Potentially Toxic Elements 52 

(PTEs) are increasingly affecting soils all over the world, thus posing a threat to both 53 

public health and the environment (McIlwaine et al., 2016). The presence of these 54 

elements in soils can be explained by many factors (Alloway, 1990), the growth of 55 
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urbanization and resulting increase in industrial activities being among the most 56 

important (Biasioli et al., 2006). Given that high concentrations of PTEs can endanger 57 

human and environmental health, it is of utmost importance to characterize their spatial 58 

distribution, determine their source, and screen for enrichment trends (Fayiga and Saha, 59 

2016; Li et al., 2014; Boente et al., 2017; Cachada et al., 2013). 60 

The area of Langreo (Asturias, NW Spain) (Fig. 1) is one of the regions in the Iberian 61 

Peninsula most marked by industrialization (Gallego et al., 2016). Coal mining and 62 

industries devoted to energy, metallurgy, pharmacology, and fertilizers, among others, 63 

have been operating in this region for decades, leaving a lasting imprint on the 64 

environment (Martínez et al., 2014; Megido et al., 2017). In this regard, great amounts 65 

of PTEs have been identified in soils from former industrial plots in this area (Boente et 66 

al., 2016; Gallego et al., 2016).  67 

Here we performed a comparative study of a set of 15 chemical elements, analyzed in 68 

soils gathered in the Langreo area (80 Km2), paradigmatic industrial area as described 69 

above.  In this sort of studies the distribution of PTEs cannot be studied by merely 70 

considering the total concentrations (raw data), especially when the concentration of 71 

chemical elements in almost all datasets is compositional (Pawlowsky-Glahn., 1989; 72 

Filzmoser et al 2009), where attributes vary together with all the others. In this context, 73 

transformations that open closed data are widely used and, as compositions are 74 

recorded along with their spatial locations, spatial patterns are of interest (Pawlowsky-75 

Glahn., 1989). The contributions of Pawlowsky-Glahn to regionalized compositions 76 

(Pawlowsky-Glahn, 1989; Pawlowsky-Glahn and Burger, 1992; Pawlowsky-Glahn et al., 77 

1995) and their applications are widely applied (Odeh et al., 2003; Lark and Bishop, 78 

2007). In this context, multiple log-ratio transformations are commonly used, the most 79 

common being the additive log-ratio transformation (alr), the centered log-ratio 80 

transformation (clr) (e.g. Aitchison, 1986), and the isometric log-ratio transformation (ilr) 81 

(Egozcue et al., 2003). In this study, the clr transformation and its back-transformation 82 
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were performed through CoDaPack v2.02.21 software to create a set of compositional 83 

data that provides information about the comparative magnitudes of their constituents. 84 

This compositional dataset was used to map patterns of RE, thereby allowing us to 85 

identify spatial dissemination trends for PTEs. 86 

In summary, the main goal of this study was to test a methodology that, by means of 87 

combining raw and compositional data, has the capacity to identify spatial patterns, areas 88 

of pollution risk and anthropogenic or natural sources of PTEs. All the evidence provided 89 

is supported by uni- and multi-variate statistical analysis, together with ordinary kriging 90 

and Local G clustering for the area of Langreo. Finally, core strengths and weaknesses 91 

are extrapolated to make this methodology useful and applicable to studies of a similar 92 

nature. 93 

 94 

2. Materials and Methods 95 

2.1. Study area 96 

Covering 80 km2, the municipality of Langreo (Asturias, NW Spain, Fig. 1) has a history 97 

of mining and industrial activity that dates back to the 1850s (Martínez et al., 2014). This 98 

activity left behind a legacy of polluted sites, making this zone one of the most 99 

contaminated areas in northern Spain (Gallego et al., 2016) and thus an ideal site in 100 

which to test the method presented in this study. 101 

The region lies along the Nalón River, which is the longest and the most voluminous in 102 

Asturias. Altitudes in the area vary from 200 m (location of the urban areas and industry) 103 

to 900 m (rural environments, forests), with the presence of steep mountains. This 104 

geography gives rise to an enclosed area that facilitates the accumulation of PTEs by 105 

atmospheric deposition. 106 
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 107 

Fig. 1. Location of the study area in the municipality of Langreo in Asturias, Spain. 108 

 109 

2.2. Data collection and chemical analyses  110 

Samples were collected using a stratified systematic sampling method at random 111 

distances to obtain a representative set of data on the total variability of PTE content and 112 

site diversity (natural or anthropic environments, geomorphology, land uses, etc.). To 113 

this end, 10 equidistant transects, 250 m wide and each one 1000 m apart, were 114 

distributed perpendicular to the Nalón River (Fig. 2). A total of 150 samples were 115 

collected, the number per transect being determined proportionally to its length. The 116 

sample location within each transect was selected at random (Fig. 2). 117 

Each sample composed of five increases taken from each vertex of a 1-m edge square 118 

and its central point from the top 20-25 cm of the soil, using an Edelman Auger. 119 

Afterwards, samples were passed through a 2-cm mesh screen in situ to remove large 120 

material such as organic matter, rocks and gravel. The samples were then dried in an 121 
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oven at 35ºC to prevent the evaporation of volatile compounds, and finally quartered by 122 

means of a Jones riffle splitter for soil homogenization and representativeness. 123 

These fractions were ground in an RS100 Resch mill at 400 RPM for 40 s. Then, 1-g 124 

representative sub-samples were sent to the ISO 9002-accredited Bureau Veritas 125 

Laboratories (Vancouver, Canada) and subjected to 1:1:1 “aqua regia” digestion. The 126 

total concentrations of the elements Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, 127 

Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W and 128 

Zn in the digested material were determined by Inductively Coupled Plasma-Optical 129 

Emission Spectroscopy (ICP-OES). 130 

A subset of the analyzed elements corresponding to PTEs was used for this study. This 131 

subset was chosen because it represented a set of typical contaminants (heavy 132 

metal(loid)s) found in environmental studies in Asturias (Albuquerque et al., 2017; 133 

Boente et al., 2016; Gallego et al., 2015), in addition the Risk Based Soil Screening 134 

Levels (RBSSLs) for these contaminants are available for this region of Spain (BOPA, 135 

2014). Furthermore, the dispersal of the concentrations of these contaminants never 136 

exceeded three orders of magnitude and thus provided readable proportions. Therefore, 137 

of the original list of 36 elements, the following 15 were examined (PTE group): As, Ba, 138 

Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl, V and Zn. 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 
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 157 

 158 

Fig. 2. Sampling design and land use categories in the study area. 159 

 160 

2.3. Data transformation – compositional data and the closure problem 161 

In geochemistry, compositional data is obtained by transforming each original raw 162 

concentration (i.e. mg/kg of an element in a sample) into proportions of a whole whose 163 

elements sum one or 100% (Pawlowsky-Glahn and Egozcue, 2006). However, the 164 

unfeasibility of analyzing all the elements in a given soil hinders the consideration of 165 

proportions. Indeed, this issue has been heavily debated and is referred to by 166 

researchers as the closure problem (Filzmoser et al., 2009b). In environmental science 167 

studies, it is generally accepted that the elements analyzed make up the entirety of the 168 

soil on the condition that a suitable number of such elements is included in the study 169 

(Campbell et al., 2009; Reimann et al., 2012). Moreover, other authors work with 170 
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subcompositions, defined as a subset of components of parts of a composition 171 

(Pawlowsky-Glahn and Buccianti, 2011). Subcompositions are feasible when they 172 

respect the principles of compositional data (Greenacre and Lewi, 2009), including the 173 

subcompositional coherence principle (Aitchison, 1986). 174 

The most frequently used log-ratio transform functions (alr; clr and ilr) have both 175 

advantages and disadvantages, which are widely discussed in the literature. The clr 176 

transformation is the prevailing function in geochemical studies as it uses the geometric 177 

mean as normalizer parameter and it was chosen for the purposes of the present study. 178 

The centred log-ratio transformation (clr) equation was adapted from (Aitchison, 1986): 179 

 180 

where Cj is the concentration of pollutant j and D is the number of parts into which the 181 

composition is divided (in this case, the number of pollutants considered).  182 

The back-transformation equation is computed as: 183 

 184 

This equation allows representation of the clr-transformed data as compositional data 185 

(proportions). This means that the sum of all the elements after back-transformation is 186 

equal to 1. The clr transformation and the calculation of its back-transformation was 187 

performed using CoDaPack v2.02.21 software 188 

(http://www.compositionaldata.com/codapack.php). 189 

 190 

 191 

 192 

= ln	 ∏ =1
 (1) 

= ∑ =1  (2) 
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2.4. Spatial modeling  193 

The spatial characterization of PTE distribution was performed with the following two 194 

complementary objectives in mind. First, we sought to define spatial clusters of PTE 195 

concentration. To accomplish this, the raw dataset was used, allowing us to interpret 196 

contamination outbreaks and therefore locate the main sources of PTEs. Second, we 197 

aimed to define RE spatial cluster spots. The RE is used to assess the elements 198 

proportions evaluation. Thus, rather than simply looking at PTE content enrichment, we 199 

sought to develop a new approach to study PTE fate by examining the changes in their 200 

proportions throughout the study area, thus allowing us to define trends of dissemination. 201 

The compositional dataset was used to tackle this issue, and spatial clusters of RE were 202 

computed.  203 

A four-step methodology was adopted as follows: 204 

• Principal Components Analysis (PCA) for reducing dimensionality and for 205 

evaluating variable association was performed. PCA is one of the most important 206 

multivariate statistical methods and it is widely used for data preprocessing and 207 

dimension reduction (raw and compositional data). The aim of PCA is to reduce 208 

the dimensionality of data while simultaneously preserving the within variability 209 

structure (variance–covariance) (e.g. Zuo et al., 2016). The analysis starts with p 210 

random attributes X1, X2,…, Xp, where no assumption of multivariate normality is 211 

required. The axes of the constant ellipsoids correspond to the new synthesis 212 

variables, the principal components. The XlStat 2013.1.01 software 213 

(https://www.xlstat.com/en/) was used for computational purposes.  214 

 215 

• Selected attributes were subjected to a structural analysis, and experimental 216 

variograms were computed for both raw and compositional data. The variogram 217 

is a vector function used to calculate the spatial variation structure of regionalized 218 
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variables (Matheron, 1971; Journel and Huijbregts, 1978; Gringarten and 219 

Deutsch, 2001). 220 

• Spatial prediction through Ordinary Kriging (OK) aiming to predict the values for 221 

the variables at any arbitrary spatial location within the study region was 222 

performed. The raw dataset was used to infer the concentration and PTE origin, 223 

as the compositional dataset was used for dissemination trend detection and 224 

local RE evaluation. Of note, geostatistics are a reference approach for the 225 

characterization of environmental hazards in contexts in which the information 226 

available is scarce. The primary application of geostatistics is to estimate and 227 

map environmental attributes in unsampled areas where Kriging is a generic 228 

name for a set of generalized least-squares regression algorithms. OK accounts 229 

for local fluctuations of the mean by limiting the field of stationary of the mean to 230 

the local neighborhood (Goovaerts 1997). For the computation, the Space-Stat 231 

Software V. 4.0.18, Biomedwere was used (Albuquerque et al., 2014) (Fig. 6).  232 

• Finally, Local G clustering was performed. This technique allows measurement 233 

of the degree of association that results from the concentration of weighted points 234 

(or region represented by a weighted point) and all other weighted points included 235 

within a radius of distance from the original and defining clusters of high (high-236 

ring) and low (low-ring) significance. For computation, the SpaceStat V. 4.0-.18. 237 

software (https://www.biomedware.com/) was used. 238 

 239 

 240 

 241 

 242 

 243 

 244 
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3. Results and discussion 245 

3.1. Descriptive statistics 246 

Descriptive statistics for raw and clr-transformed data were computed (Table 1). The raw 247 

data revealed considerable variability for some elements, which was of particular 248 

concern for As, Cd, Cu, Pb, Sb and Zn, whose maximum values surpassed the RBSSLs 249 

(BOPA, 2014). The 5% trimmed mean allowed us to conclude that extreme values were 250 

concentrated mainly in the upper 2.5% intervals, as the remaining 97.5% can be 251 

approximated by the normal distribution. Once the clr-transformed data were applied, the 252 

associated standard deviation was clearly reduced and the mean, median and 5% 253 

trimmed mean tended to be similar. Indeed, the clr data showed a normal distribution as 254 

a result of diminishing the weight of outliers. This diminished weight enhanced the 255 

prediction of data proportions after the back-transformation of clr data, and compositional 256 

data were obtained. 257 

 258 

Table 1. Descriptive statistics for 15 PTEs: Range, Mean, Median, Standard Deviation (SD), and 259 

Trimmed Mean (T.Mean 5%) are expressed in mg·kg-1, Relative Standard Deviation (RSD) is 260 

expressed in %. 261 

 Raw Data Clr-Transformed Data 

PTE Range Mean Median SD RSD 
T.Mean 

5% 
Mean Median SD RSD 

T.Mean 

5% 

As 6.4 - 91.1 21.8 18.5 10.9 49.8 21.0 21.9 20.9 6.3 28.9 21.7 

Ba 11.0 - 1747.1 107.9 66.9 168.7 156.3 90.2 79.2 74.6 16.7 21.1 78.3 

Cd 0.02 - 26.9 0.6 0.3 2.2 382.6 0.4 0.4 0.3 0.1 19.2 0.3 

Co 1.1 - 34.0 10.0 9.8 5.0 49.8 9.9 9.4 10.2 11.4 121.7 9.4 

Cr (III) 5.7 - 69.0 18.9 18.6 6.7 35.6 18.5 19.6 20.1 4.8 24.5 19.6 

Cu 3.0 - 2022.2 39.0 22.7 163.6 419.2 24.6 24.4 24.2 7.3 29.7 24.1 

Hg 0.1 - 2.6 0.4 0.3 0.4 95.5 0.4 0.3 0.3 0.1 21.3 0.3 

Mo 0.4 - 4.6 1.0 0.9 0.6 53.6 1.0 1.0 1.0 0.2 16.0 1.0 

Ni 1.4 - 52.8 18.3 16.5 9.1 49.7 18.0 17.5 17.5 7.2 41.1 17.5 

Pb 10.5 - 3729.5 91.6 52.2 302.7 330.6 64.0 62.8 60.7 11.1 17.7 61.8 

Sb 0.3 - 256.6 2.5 0.6 20.8 821.8 0.8 0.8 0.7 0.2 26.6 0.8 

Se 0.1 - 1.9 0.9 0.8 0.4 45.1 0.8 0.8 0.9 0.3 30.3 0.8 

Tl 0.0 - 0.5 0.2 0.2 0.1 33.8 0.2 0.2 0.2 0.0 10.6 0.2 

V 7.0-56.0 27.9 27.0 6.9 24.8 27.8 29.6 29.8 6.3 21.2 29.8 

Zn 16.9-2161.0 136.2 107.2 179.4 131.7 120.8 119.8 120.8 11.8 9.9 120.1 

 262 
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On the basis of comparison of the histograms (Fig. 3) of the raw and compositional 263 

datasets, it is possible to reason that: a) when considering the raw dataset, asymmetric 264 

distributions are found for almost all the PTEs, and these distributions are biased mainly 265 

by the presence of outliers; b) the clr-transformed dataset shows an important feature as 266 

it allows the assumption of normality. Therefore, we conclude that the clr-transformed 267 

dataset and the compositional dataset (after clr back-transform) have two principal 268 

advantages, namely they allow work with proportions and also improved data 269 

normalization. 270 

Of note were the anomalous As, Cd, Cu, Pb, Sb and Zn concentrations, which greatly 271 

exceeded the RBSSLs (BOPA, 2014) (Table 1). These elements are classic fingerprints 272 

of heavy industrial activity. However, the presence of Ba, Co, Cr, Hg, Mo, Ni, Se, Tl and 273 

V did not constitute an immediate risk for human health or the environment. 274 

 275 

 276 

Fig. 3. As, Co, Pb and Sb histograms for raw data (R.D.) and clr-transformed data (CLR). 277 

 278 

 279 

 280 
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3.2. Multivariate statistics – Principal Components Analysis 281 

When running the raw dataset, PCA results revealed three groups (Fig. 4 a)): a) the first 282 

formed by Ba, Cd, Cr, Cu, Pb, Sb and Zn—a typical association of heavy metals; b) the 283 

second composed by As, Mo, Tl and V; and c) the third representing Co and Ni. Finally, 284 

Hg and Se showed independent behaviors, thereby possibly indicating different sources. 285 

On the other hand, when considering the compositional dataset, slight differences in the 286 

results were observed (Fig. 4 b). The first-mentioned group (Ba, Cd, Cr, Cu, Pb, Sb and 287 

Zn) was split in two: a) the first comprising Cd and Zn; b) the second Cu and Sb. 288 

Furthermore, two more groups were identified, c) the third comprising As, V, Tl  Mo, Se 289 

and Cr; and d) the fourth Ni and Co. Mercury (Hg) and Pb were found to be independent. 290 

On the basis of the PCAs, we conclude that the compositional dataset provides a fuller 291 

recognition of relevant contaminant associations. When setting a dependence on weight 292 

between elements, those which increase or decrease proportionally tend to be 293 

associated.  294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 



 

 

14 

 

 306 

 307 

 308 

       309 

 310 

Fig. 4. a) PCA - Raw dataset; b) PCA - Compositional data. 311 

 312 
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3.3. Spatial modeling – geostatistical approach 314 

At this point, As, Cu, Hg, Pb, and Zn were chosen for spatial modeling purposes as they 315 

are core PTEs in contamination forecasts and also representative of the most important 316 

groups identified (Fig. 4). 317 

The spatial stochastic patterns of the five PTEs were constructed following a three-step 318 

geostatistical modeling method. 319 

 320 

3.3.1 Structural analysis and experimental variograms 321 

The selected variables were subjected to a structural analysis, and experimental 322 

variograms were computed. The variogram is a vector function used to calculate the 323 

spatial variability of regionalized variables defined by the following equation (Matheron, 324 

1971; Journel and Huijbregts, 1978): 325 

 326 

Its argument is h (distance), where Z (xi) and Z (xi+h) are the numerical values of the 327 

observed variable at points xi, and xi+h. The number of pairs forming for a h distance is 328 

N(h). Thus, it is the median value of the square of the differences between all pairs of 329 

points in the geometric field spaced at a h distance. The graphic study of the variograms 330 

obtained provides an overview of the spatial structure of the variable. One of the 331 

parameters that provide such information is the nugget effect (Co), which shows the 332 

behavior at the origin. The other two parameters are the sill (C1) and the amplitude (a) 333 

which define the inertia used in the interpolation process and the influence radius of the 334 

variable, respectively (Table 2). 335 

The experimental variograms  (h) were then fitted to a theoretical model, (h) (Isaaks and 336 

Srivastava 1989). The adjusted parameters for the five PTEs of the theoretical 337 

ℎ = 12 ℎ − + ℎ 2
ℎ

2 ℎ
 (3) 
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variograms (raw and compositional datasets) (Fig. 5) allowed us to observe that the 338 

isotropic variograms obtained generally showed a better fit for the compositional dataset. 339 

Indeed, the attributes showed a nugget effect below 40% of the total variance of all the 340 

attributes (Table 2). The error associated with the interpolation procedure, OK, is 341 

therefore minimized when using the compositional dataset.  342 

 343 

 344 

Fig. 5. Isotropic experimental variograms and fitted models for the raw and compositional 345 

datasets. 346 

 347 
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Table 2. Experimental variogram parameters for the raw and compositional datasets: a (m) is the 348 

amplitude; Co represents the value of the nugget effect; C1 and C2, the value of the sill of the first 349 

and the second spherical structure respectively, and C0(%Var) and C1+C2 (%Var) the mutual 350 

variances weighing for nugget and sill respectively.  351 

 Parameters As Cu Hg Pb Zn 

Raw 

Data 

A 2738 2575 1997 1376 1327 

Co 0.356 0.664 0.401 0.488 0.330 

C1 0.465 0.256 0.411 0.201 0.544 

C2 0.260 0.110 1.17 0.339 0.172 

Co (%Var) 33 64 20 47 32 

C1+C2 

(%Var) 67 36 80 53 68 

Comp. 

Data 

A 2700 2569 4758 2808 3903 

Co 2.77·10
-4

 1.63·10
-4

 5.93·10
-7

 9.90·10
-4

 1.47·10
-3

 

C1 6.45·10
-4

 4.83·10
-4

 3.50·10
-7

 3.52·10
-3

 1.58·10
-3

 

C2 1.14·10
-4

 8.11·10
-5

 6.90·10
-7

 5.35·10
-4

 4.18·10
-4

 

Co (%Var) 27 22 36 20 42 

C1+C2 

(%Var) 73 78 64 80 58 

 352 

3.3.2 Spatial prediction: Ordinary kriging 353 

 Analysis of the outputs obtained (Fig. 6) revealed evident contrasts between the raw 354 

and the compositional dataset representations. In reality, care must be taken when 355 

interpreting representations as they reflect distinct data. In this regard, the raw dataset 356 

mapping shows the estimated picture of PTE concentration distribution, thus indicating 357 

possible sources of these contaminants. In contrast, the compositional dataset mapping 358 

shows the spatial variability of PTE proportion, thus reflecting PTE RE and providing 359 

crucial information about the fate of these compounds within the study area. To facilitate 360 

understanding of the results, the study area was divided into various zones of interest 361 

(Fig. 6) and interpreted as follows: 362 

a) Considering the maps of the raw data set (Fig. 6 -R.D.), OK revealed high 363 

concentrations for all PTEs (Zn, Hg, As, Pb and Cu) in the central zone (zone A), which 364 

coincides with the city of Langreo (Fig. 6). Moreover, Cu and Zn showed notable 365 

presence in the southern area (zone B), where the mining industry (coal mines and 366 

processing) were located (Fig. 1). The Cu map shows a north-eastern red-colored site 367 

(zone C) coinciding with a former coal-mining area. On the other hand, high 368 
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concentrations of  Hg and As  were observed in the western (zone D) and northern (zone 369 

E) areas, which may be explained by the proximity to a derelict Hg mine (El Terronal site) 370 

whose impact has been widely discussed (e.g. Gallego et al., 2015, González-Fernández 371 

et al., 2018); 372 

b) Concerning the compositional dataset (Fig. 6-C.D.), RE in Cu, Pb and Zn was 373 

identified towards south (zone F) and northeast (zone C) of the area (Fig. 6), where the 374 

corresponding distribution was at its lowest level when using the raw data. Cu, Pb and 375 

Zn showed a significant distribution throughout the area and therefore marked RE.  376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

Fig. 6. Ordinary kriging results. Raw data (R.D) and compositional data (CD) respectively. Scale 385 

is expressed in deciles (Di) of mg∙kg-1 (R.D). and of % (C.D). 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 
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3.3.3 Spatial prediction: Local G clustering 394 

To reinforce the findings of the previous section, a Local G clustering was conducted to 395 

assess the level of association resulting from the concentration of weighted points (or 396 

region represented by a weighted point) and all other weighted points included within a 397 

radius from the original point. In this regard, a given zone was subdivided into n regions, 398 

I =1, 2,…, n, where each neighborhood is distinguished with a point whose Cartesian 399 

coordinates are known. Each i has a value x (a weight) taken from a variable X 400 

associated with it. The variable holds a natural origin and it is positive. The G(i) statistic 401 

developed below allows the testing of hypotheses concerning the spatial concentration 402 

of the sum of x values associated with the j points within d of the ith point. The following 403 

statistic is obtained: 404 

 405 

where Wij is a symmetric one/zero spatial weight matrix with a value of 1 for all links 406 

defined as being within distance d of a given i; all other links are zero, including the link 407 

of point i to itself. The numerator is the sum of all xj within d of i but not including xi. The 408 

denominator is the sum of all xj, excluding xi (Getis and Ord, 1992).  409 

The maps obtained (Fig. 7) provide a faster and more intuitive way to verify whether the 410 

problematic zones detected previously are indeed of concern. Thus, red areas (high ring) 411 

show the sites with the greatest accumulation of the PTEs, while the blue areas (low 412 

ring) represent zones with low accumulation (Fig. 7). The highest accumulation of PTEs, 413 

when considering the raw data clusters, was in the city center (high ring-zone A). The 414 

soils in this area were clearly affected by PTE deposition, presumably due to heavy 415 

industry and/or the transport of pollutants. However, examination of the significance of 416 

the spatial clusters obtained using the compositional data shows several differences. 417 

The central high ring (high significance) is now smaller, showing that the areas with the 418 

= ∑ =1∑  (4) 
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highest concentration of these PTEs (Zn, Hg, As, Pb and Cu) do not totally overlap with 419 

the corresponding higher proportions and indicating that PTE transport and RE occurs 420 

in a westerly and southerly direction. 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

Fig. 7. Local G clusters. Raw data (R.D.) and compositional data (C.D.) respectively. 430 

 431 

4. Conclusions 432 

The degree of PTE contamination in the soil of an industrial area can be characterized 433 

using two datasets, namely raw and compositional (clr-transformed followed by the back-434 

transformation function). To exemplify the complementary attributes of these two types 435 

of dataset, 150 soil samples were collected and 36 elements were analyzed in the area 436 

of Langreo (80 km2), a paradigmatic example of an industrial area affected by heavy 437 

metal and metalloid contamination. Univariate statistics allowed recognition of redundant 438 

information and the identification of outliers. The space of analysis was then reduced for 439 

both datasets by building the synthesis variables held by PCA. Five PTEs, namely Zn, 440 

Hg, As, Pb and Cu, were retained for spatial modeling due to their significance in the 441 

contamination forecast. OK and Local G clustering allowed the construction of hazard 442 

maps, which facilitate the evaluation of probable origin of PTEs (raw data) and their 443 

possible RE (compositional data).  444 
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Regarding the Langreo area, it is extensively affected by its industrial and mining history. 445 

The following observations support this conclusion: 1. The city centre is highly enriched 446 

in PTEs, which can be explained by heavy industry and pollutant transport, Pb being the 447 

main contaminant; 2. The spatial distribution of Cu indicates a strong association with 448 

coal mining and processing; and 3. Hg and As show enrichment in a northwesterly 449 

direction, which is linked to natural mineralization and former Hg mining and metallurgy. 450 

Future work would require an exhaustive study of covariates to shed light on PTE 451 

dynamics and to clarify the main sources of PTEs, as well as their RE throughout the 452 

study area.  453 

The information gathered provides a basis for delimiting the polluted zones and the 454 

sources of pollutants, thus facilitating the development of specific air and soil monitoring 455 

activities, urban planning and environmental policies. 456 
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