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Abstract 

Herein, Ag2O/Ag2CO3 nanocomposite with unique Janus morphology was synthesized by a 

facile ion-exchange followed by an in situ phase transformation method with precise control of 

its nucleation and growth processes. Contrary to conventional synthetic procedures of Janus 

architectures, the present Janus system was constructed without the need for surfactants or toxic 

chemicals. Most importantly, the visible-light-absorbing Janus Ag2O/Ag2CO3 nanocomposite 

exhibits a remarkable performance toward the degradation of Rhodamine B and 4-chlorophenol, 

far superior to that observed for bare Ag2CO3. The obvious enhancement of the photocatalytic 

performance of this nanocomposite is mainly attributed to the intimate Ag2O/Ag2CO3 interface 

created by its exceptional Janus architecture, which in turn allows for rapid charge transfer 

processes. Additionally, the Janus system exhibited a high photostability during recycling 

experiments with no significant change in the degradation activity.     

Keywords: Janus structure; photocatalysis; Ag2CO3; heterojunction; interface 
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1. Introduction 

     The rapid consumption of fossil-fuel stocks driven by the ever-growing world population has 

created significant challenges to modern-day researchers regarding alternative energy sources 

and their related environmental issues. Solar energy is a clean and abundant energy source, and 

its conversion into usable energy through photocatalysis technologies has been regarded as one 

of the most promising approaches to meet the future energy requirements and resolve the 

associated environmental problems [1-6]. For such purposes, a wide range of semiconductors, 

such as TiO2, ZnO, etc., has been extensively investigated in the past few decades [7,8]. 

However, most of them still suffer from low quantum yields and UV-only absorption (ca. 4% of 

the solar spectrum), which greatly limit their practical implementation for solar energy 

conversion. Therefore, vast efforts have been devoted to the design and exploration of visible-

light-active photocatalysts able to efficiently harness a wider range of the solar spectrum.       

     Silver-based semiconductor materials have emerged as promising photocatalysts owing to 

their excellent response to visible light [9-15]. To date, various Ag-based materials, such as 

Ag3PO4, Ag3VO4, Ag2CO3, AgCl, and AgSbO3, have been studied for diverse photocatalytic 

applications [16-24]. Among them, Ag2CO3 has been recognized as the most promising 

photocatalyst for the efficient degradation of a variety of organic contaminants when exposed to 

visible light [25-29]. Nevertheless, Ag2CO3 suffers from severe photocorrosion during 

photocatalysis processes, resulting in severe deactivation during recycling experiments and thus 

hampering its practical application. To overcome this drawback, the construction of 

heterojunctions by coupling Ag2CO3 with other semiconductors with suitable band potentials has 

been found to be an effective strategy to improve its photocatalytic performance and 

photostability [30]. Some researchers have investigated Ag2CO3‒based coupled photocatalysts, 
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and provided some insights into important issues that need to be addressed by further work [31-

36]. For instance, Yu et al. [30] have reported an Ag2O/Ag2CO3 heterostructure prepared by a 

phase transformation method and their results have indicated that the heterostructure interface is 

able to effectively hamper the recombination of photogenerated electrons and holes, leading to 

enhanced photocatalytic activity and stability. Very recently, Zhao et al. [37] have reported 

Ag2O/Ag2CO3 3-D hollow flower-like hierarchical microspheres, exhibiting improved 

photocatalytic performance and stability compared to those of bare Ag2CO3. Therefore, there has 

been great interest in design and development of tunable size and morphology based 

Ag2O/Ag2CO3 heterostructure for efficient interface contact and charge separation in order to 

boost the photocatalytic performance and photostability. 

     In this study, we report for the first time an Ag2O/Ag2CO3 nanocomposite with unique Janus 

morphology prepared by a facile ion-exchange followed by an in situ phase transformation 

method with precise control of the nucleation and growth processes. Contrary to conventional 

synthetic procedures [38,39], the present Janus system does not require the addition of any 

surfactant or toxic chemical. The photocatalytic performance of the synthesized Janus 

Ag2O/Ag2CO3 nanocomposites was assessed by the photodegradation of aqueous 4-chlorophenol 

(4-CP) and Rhodamine B (RhB) contaminants under visible-light irradiation. Moreover, the 

significance of the Janus morphology on the degradation performance of the present system was 

systematically investigated, and a possible mechanism for the improved photodegradation 

performance was proposed based on the findings of trapping, photoluminescence, and 

photocurrent experiments. Very interestingly, the Ag2O/Ag2CO3 nanocomposites with unique 

Janus contact showed improved charge separation followed photocatalytic performance and 

photostability.  This facile synthetic method could be expended to prepare various Ag-based 
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Janus heterostructures for efficient photocatalysis including pollutant degradation, water splitting 

and CO2 reduction for sustainable energy and environmental technology. 

2. Experimental section 

2.1. Materials and method 

     Silver nitrate, sodium bicarbonate, Rhodamine B, 4-chlorophenol, ammonium oxalate, tert-

butyl alcohol, and benzoquinone were obtained from Sigma-Aldrich. All the chemicals in this 

work were used as received without further purification.  

     The Janus Ag2O/Ag2CO3 nanocomposite was synthesized by a facile ion-exchange followed 

by an in situ phase transformation method. The detailed procedure is as follows. Silver nitrate 

(0.0425 g) was first dissolved in 50 mL of a water/ethanol mixture and the reaction solution was 

then heated to 60 °C. Subsequently, 50 mL of an equimolar solution of sodium bicarbonate was 

slowly added under constant stirring. After complete addition of the sodium bicarbonate solution, 

the reaction mixture was refluxed at 80 °C under constant stirring. During this period, the color 

of the reaction mixture turned from yellow-green to grey. The whole reaction process was 

completed in approximately 6 h. Once the reaction mixture turned grey, the precipitate was 

immediately collected by centrifugation, washed with deionized water several times, and dried in 

an oven at 60 °C for 12 h. Bare Ag2CO3 was obtained by a simple room temperature ion-

exchange method using the above mentioned concentrations of silver nitrate and sodium 

bicarbonate solutions. The resulting yellow-green precipitate obtained after 12 h of reaction was 

collected; this sample was denoted as bare Ag2CO3.    

     Ag2O was used as the reference material in the present study and synthesized as follows. 

Silver nitrate (0.21 g) was dissolved in 50 mL of deionized water, and then 50 mL of 0.5 M 
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NaOH was added drop wise to the solution to adjust the pH to 12. After stirring for 30 min, the 

obtained black colored precipitate was collected by centrifugation, washed with water and 

ethanol, and dried at 60 °C.    

2.2. Material characterization 

The morphology and microstructure of the synthesized catalysts were examined by field-

emission transmission electron microscopy (FETEM, FEI Company, Titan G2 ChemiSTEM Cs 

Probe). The X-ray diffraction (XRD) spectra of the catalysts were recorded on a Rigaku (D/Max-

2500) diffractometer with Cu Kα radiation (λ = 1.5408 nm). Time resolved photoluminescence 

(PL) spectra were obtained on a SHIMADZU RF-6000 spectrofluorophotometer at an excitation 

wavelength of 400 nm. A SHIMADZU UV-2600 UV-vis spectrophotometer was used to obtain 

the UV−vis diffuse reflectance spectra (DRS) of the samples. Nitrogen adsorption and desorption 

isotherm measurements were performed on a BELSORP-max, Japan, apparatus at liquid N2 

temperature. The surface electronic states of the samples were determined using a Thermo 

Scientific K-Alpha X-ray photoelectron spectrometer. The transient photocurrent measurements 

were conducted using an IVIUM Technologies electrochemical workstation using a conventional 

three-electrode system. Ag/AgCl (in saturated KCl) and platinum foil served as the reference and 

counter electrodes, respectively, and the photocatalyst deposited on indium tin oxide (ITO) as the 

working electrode. A 300 W Xe lamp was served as the light source and a 0.5 M Na2SO4 

aqueous solution as the supporting electrolyte. To prepare the working electrode, ~15 mg of the 

as-synthesized catalyst was suspended in 20 µL of Nafion (5 wt%) and 0.5 mL of ethanol, which 

was then ground thoroughly to obtain a fine paste. The paste was then evenly spread as a thin 

film on an ITO glass substrate with an active area of 1.0 cm
2
, and the resulting ITO electrodes 

were dried in an oven at 80 °C. 
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2.3. Photocatalytic performance testing 

     The photocatalytic activity of the prepared catalysts was assessed by the photodegradation of 

aqueous organic contaminants, such as RhB (a widely used hazardous dye) and 4-CP (a colorless 

water pollutant), under the visible-light illumination provided by a 300 W halogen lamp. The 

experiments were conducted as follows: 50 mg of the catalyst powder was suspended in 200 mL 

of an aqueous RhB or 4-CP (5 mg L
−1

) solution by magnetic stirring. The suspension was 

magnetically agitated for 30 min in the dark to achieve adsorption/desorption equilibrium 

between the pollutant and catalyst before light illumination. At defined irradiation time intervals, 

3 mL of the suspension was sampled and filtered to remove the catalyst particles. Then, the 

degradation of the model pollutant was examined by measuring its absorbance at the maximum 

absorption wavelength on a SHIMADZU UV-2600 UV-Vis spectrophotometer. Control 

experiments in the absence of catalyst (i.e., photolysis) were also conducted on aqueous solutions 

of RhB and 4-CP to analyze their intrinsic stability under visible-light illumination. Additionally, 

to explore the role of the reactive species generated during the photodegradation process, a series 

of experiments were performed in a similar manner to the photodegradation experiments but 

with the introduction of different scavengers to the reaction system. 

3. Results and discussion 

3.1. Photocatalyst morphology and structure characterization 

     The morphology of the synthesized catalysts was first characterized by TEM. As displayed in 

Fig. S1, the bare Ag2CO3 nanoparticles display spherical-like morphology with an average 

diameter of 15 nm. Figure 1a clearly shows the Janus morphology of the Ag2O/Ag2CO3 

nanocomposite, in particular its acorn-like structural features, which essentially consist of two 



  

8 
 

different kinds of nanoparticles. The darkest ones are assigned to Ag2CO3 nanoparticles, whereas 

the lighter ones correspond to Ag2O nanoparticles (Fig. 1b). It is worth noting that the size of the 

Ag2CO3 nanoparticles observed in the Janus nanocomposite is rather smaller than that of the bare 

Ag2CO3 particles (Fig. S2), clearly indicating the in situ formation of the Janus nanocomposite. 

Moreover, Fig. 1c clearly illustrates the strong coupling between Ag2CO3 and Ag2O in the Janus 

nanocomposite. In addition, FETEM analysis of the Janus nanocomposite (Fig. 1d) revealed 

lattice fringes d-spaced by 0.23 and 0.27 nm, consistent with the Ag2CO3 (031) and Ag2O (111) 

diffraction planes, respectively [37,40]. 

     The phase structure and purity of the synthesized bare Ag2CO3 and Janus nanocomposite were 

examined by XRD measurements, and the results are shown in Fig. 2. For comparison, the XRD 

pattern of Ag2O is also included. All the diffraction peaks of bare Ag2CO3 match well those of 

the monoclinic phase of Ag2CO3 (JCPDS No. 26-0339), while all the diffraction peaks of Ag2O 

correspond to cubic phase Ag2O (JCPDS No. 41-1104). Notably, the XRD pattern of the Janus 

Ag2O/Ag2CO3 nanocomposite comprises a combination of both the Ag2CO3 and Ag2O peaks; 

moreover, no other XRD peaks related to impurities can be discerned, indicating the successful 

fabrication of the Janus nanocomposite.  

     A comparison of the UV-Vis DRS of the synthesized samples is presented in Fig. 3. The 

absorption band-edge of bare Ag2CO3 extends from the UV to the visible region, corresponding 

to a band gap of 2.32 eV, consistent with previously reported data [20,37]. Importantly, an 

obvious improvement of the absorbance in the entire visible-light region is observed for the 

Janus nanocomposite when compared to the bare Ag2CO3 absorption spectrum. The strong 

visible-light absorption of the Janus nanocomposite will therefore generate a larger number of 

the charge carriers needed for the photocatalytic reaction, subsequently boosting its 
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photocatalytic activity. In addition, compared to bare Ag2CO3 and the Janus nanocomposite, the 

reference Ag2O sample was found to display a higher response to visible light owing to its very 

low band gap. 

     The specific surface areas of bare Ag2CO3 and the Janus Ag2O/Ag2CO3 nanocomposite were 

analyzed by nitrogen adsorption-desorption isotherm analysis (Fig. S3). It was found that the 

specific surface area of the Janus Ag2O/Ag2CO3 nanocomposite (38.5 m
2
 g

–1
) was relatively 

higher than that of bare Ag2CO3 (32.8 m
2
 g

–1
). The high specific surface area of this Janus 

nanocomposite benefits the better adsorption of pollutants and also provides more reactive sites 

for the degradation process, thereby improving the photocatalytic activity [41,42]. 

     The surface composition and chemical state of the elements in the synthesized samples were 

analyzed by XPS. As displayed in Fig. 4a, the pair of symmetric peaks centered at binding 

energy (BE) values of 367.8 and 373.8 eV was attributed to the 3d5/2 and 3d3/2 orbitals of Ag
+
 in 

the Janus nanocomposite [43,44]. A similar pair of Ag 3d peaks was also observed in the bare 

Ag2CO3 and Ag2O samples, indicating that no metallic silver (Ag
0
) was present in any of the 

synthesized samples. The O 1s peak at BE = 531.2 eV could be attributed to the oxygen atoms in 

Ag2CO3, whereas the peak at 529.6 eV corresponds to the oxygen in Ag2O (Fig. 4b) [25,45]. 

Similar chemical states of oxygen in the O 1s spectrum of the Janus nanocomposite clearly 

evidence the presence of both Ag2CO3 and Ag2O in the nanocomposite. These results are well 

consistent with the data reported by Yu et al. for an Ag2O/Ag2CO3 composite [30].  

     Based on the above findings, the following formation mechanism for the Janus Ag2CO3/Ag2O 

nanocomposite is proposed. When the aqueous sodium bicarbonate is added drop wise to the 

silver nitrate solution at 60 °C, the reaction solution initially becomes yellow in color, possibly 
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due to the formation of the weak acid H2CO3. During the reaction, the color of the mixture 

changes into yellow-green upon further addition of sodium bicarbonate, indicating the formation 

of Ag2CO3 by an ion-exchange route (Eq. 1). Under the same conditions, the color of the 

reaction mixture further changes slowly to grey, as a result of Ag2CO3 being further converted 

into Ag2O (Eq. 2). This eventually leads to the formation of the acorn-like Janus Ag2O/Ag2CO3 

nanocomposite, comprising spherical Ag2CO3 on one side and Ag2O on the other side (as shown 

in the TEM images). In this synthetic approach, the nucleation and growth processes are finely 

controlled by the use of very dilute precursors in a water/ethanol mixture and by maintaining a 

suitable temperature throughout the experiment. The possible reactions in the present synthetic 

process are summarized by the following equations: 

                                                                                                            

                                                                                                                                                                 

3.2. Photocatalytic performance      

     The photocatalytic activity of the prepared Janus nanocomposite was assessed for the 

degradation of aqueous RhB and 4-CP under visible-light illumination. Controlled tests in the 

absence of the catalyst or light illumination were also performed, and the results disclosed that 

both the catalyst and light illumination are essential to drive the photodegradation process. 

Figure 5a displays the degradation of RhB as a function of the illumination time over bare 

Ag2CO3 and the Janus nanocomposite. For comparison, the RhB photodegradation performance 

of Ag2O and P25 are also included. It can be seen from Fig. 5a that the Janus nanocomposite 

exhibits a superior photocatalytic performance than bare Ag2CO3 and Ag2O. Almost 99% RhB 

was degraded over the Janus nanocomposite after 60 min of visible-light illumination, whereas 
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only 42% and 57% of RhB degradation was achieved over bare Ag2CO3 and Ag2O, respectively, 

for the same period of light illumination. P25 was found to exhibit the lowest RhB degradation 

activity among all the tested samples, with which only 28% RhB was degraded after 60 min of 

visible-light irradiation, possibly due to its UV-light-only absorption and rapid charge carrier 

recombination. The pseudo-first-order reaction kinetics of the photodegradation of RhB was 

explored and the results are shown in Fig. 5b. Clearly, the Janus nanocomposite exhibits the 

highest RhB degradation rate (0.0555 min
–1

), which is almost 6-, 4-, and 10-times higher than 

that of bare Ag2CO3 (0.0089 min
–1

), Ag2O (0.0142 min
–1

), and P25 (0.0056 min
–1

), respectively. 

Furthermore, Fig. 6a shows the degradation of 4-CP over all the synthesized catalysts under 

visible-light irradiation. Among all the catalysts, the Janus nanocomposite displays the highest 

degradation performance, with which ~90% of 4-CP was degraded after 180 min of visible-light 

illumination. However, only 43%, 35%, and 10% of 4-CP was degraded under similar 

experimental conditions over bare Ag2CO3, Ag2O, and P25, respectively. According to the 

pseudo-first-order reaction kinetic results (Fig. 6b), the Janus nanocomposite exhibits the highest 

4-CP degradation rate, which is about 4-, 6-, and 20-times greater than that of Ag2CO3, Ag2O, 

and P25, respectively. 

     The remarkable photodegradation performance of the presented Janus nanocomposite system 

evidenced an intimate interface between Ag2CO3 and Ag2O, which was further confirmed by the 

RhB and 4-CP photodegradation results of a physical mixture of Ag2CO3 and Ag2O (termed 

Ag2O/Ag2CO3 PM in Fig. 5 and 6). Clearly, the physically mixed Ag2O/Ag2CO3 PM composite 

showed relatively low degradation activities compared to Janus nanocomposite, indicating the 

absence of strong interactions between Ag2CO3 and Ag2O in the resulting Ag2O/Ag2CO3 PM 

composite. 
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     Besides the photocatalytic performance, the photostability of silver-based catalysts is a crucial 

factor for their practical application owing to their well-known serious photocorrosion problems 

[20,30]. Therefore, to demonstrate the photostability of bare Ag2CO3 and the Janus 

nanocomposite, four successive RhB degradation experiments were carried out under visible-

light illumination. As displyed in Fig. 7a, a drastic decrease of the bare Ag2CO3 activity was 

observed in the second run and, by the fourth run, the photocatalyst had lost almost all its activity 

due to photocorrosion resulting in Ag
0 

formation. Remarkably, the Janus nanocomposite retained 

ca. 90% of its original activity after four consecutive photocatalytic runs, possibly due to no 

photocorrosion phenomena occurring during the photocatalytic reaction. To confirm this, XPS 

and XRD analyses were performed on the Janus nanocomposite before and after the 

photodegradation experimental runs. It can be clearly seen from Fig. S4a that no obvious 

changes in the BE of Ag 3d exist before and after the photocatalytic runs, clearly indicating that 

Ag
0 

is not formed during the reaction. The XRD patterns of the Janus nanocomposite before and 

after the photodegradation reactions (Fig. S4b) further confirmed its structural stability even after 

four successive runs. These results clearly indicate that the Janus nanocomposite is a stable 

catalyst with great potential for practical applications. 

     To explore the specific role of primary reactive species in the photodegradation process, 

trapping experiments were carried out over the Janus nanocomposite under similar experimental 

conditions to those used above. In this case, three different scavengers, namely, tert-butyl 

alcohol (TBA), benzoquinone (BZQ), and ammonium oxalate (AO), were added to the 

photocatalytic system to trap 
•
OH, O2

•−
, and h

+
, respectively. As shown in Fig. 7b, the RhB 

photodegradation performance was slightly reduced after the introduction of TBA, indicating 

that 
•
OH radicals play a minor role in the degradation process. The degradation performance of 
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Janus nanocomposite was fairly decreased by the addition of BZQ, indicating that O2
•−

 play a 

moderate role in the photodegradation reaction. Notably, upon addition of AO, the RhB 

photodegradation activity of the Janus nanocomposite was extensively suppressed, clearly 

indicating that h
+
 are the primary reactive species involved in the degradation process.  

     In order to understand the superior photocatalytic performance of the Janus nanocomposite 

compared to that of bare Ag2CO3, a PL spectral analysis was conducted. In general, PL analyses 

are performed to explore the transfer, migration, and recombination processes of photoinduced 

electron and holes in semiconductors [41,46]. Since PL emission arises from the recombination 

of photoinduced charge carriers, lower PL emission intensities indicate lower charge carrier 

recombination rates. As displayed in Fig. 8a, the PL emission intensity of the Janus 

nanocomposite is much lower than that of bare Ag2CO3, clearly indicating that the recombination 

of photogenerated electrons and holes is effectively suppressed by the robust heterojunction 

formed between Ag2CO3 and Ag2O, leading to the improved photocatalytic performance of the 

Janus nanocomposite. To further confirm the separation efficiency of photoinduced charge 

carriers in the Janus nanocomposite, transient photocurrent measurements were carried out. As is 

well known, higher photocurrent responses indicate better electron–hole separation efficiencies 

[47,48]. Figure 8b displays a comparison of the I‒t curves for bare Ag2CO3 and the Janus 

nanocomposite with three on–off cycles of intermittent simulated solar-light illumination. 

Notably, the photocurrent response of the Janus nanocomposite is several times higher than that 

of bare Ag2CO3, indicating a greater separation efficiency of photoinduced charge carriers. This 

result is well consistent with the PL and photodegradation activity results.  

     The enhanced photocatalytic performance of the Janus nanocomposite evidences the synergy 

between the Ag2CO3 and Ag2O components, resulting in improved separation efficiency of the 
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photogenerated charge carriers. The transfer direction of the photoinduced electrons and holes in 

the Janus nanocomposite depends on the respective band edge positions of its constituting 

components. Thus, the band edge positions of Ag2CO3 and Ag2O were determined by valence 

band XPS measurements (Fig. 9). From valence band XPS results, the valence band (VB) edge 

potentials of Ag2CO3 and Ag2O were estimated to be +2.65 and +1.42 eV, respectively. Based on 

the band gap energies of Ag2CO3 (2.32 eV) and Ag2O (1.3 eV) [49,50], the conduction band 

(CB) edge positions were estimated to be +0.33 and +0.12 eV for Ag2CO3 and Ag2O, 

respectively. Based on such band edge positions and the above results, a photocatalytic 

mechanism for the Janus nanocomposite system is proposed in Fig. 10. When the Janus 

nanocomposite is exposed to visible light, both Ag2CO3 and Ag2O are excited and generate 

electrons and holes. Due to the intimate interface between Ag2CO3 and Ag2O, the excited 

electrons in the CB of Ag2O easily transfer to the CB of Ag2CO3, while the holes in the VB of 

Ag2CO3 are also able to migrate to the VB of Ag2O, thus preventing the photoinduced 

recombination of electron–hole pairs leading to the observed improved photocatalytic 

performance. The charge transfer between Ag2CO3 and Ag2O is also facilitated by the CB and 

VB edge potentials of Ag2CO3 being more positive than those of Ag2O. The accumulated 

electrons on the surface of Ag2CO3 may be trapped by O2 to generate O2
•−

, which can further 

degrade the water pollutants [11,19]. Meanwhile, the accumulated holes on the surface of Ag2O 

can also directly degrade the pollutants. On the basis of the aforementioned experimental 

outcomes, we believe that the robust interface between Ag2CO3 and Ag2O resulting from the 

Janus morphology of the nanocomposite is able to promote interfacial charge transfer processes 

and improve the lifetime of the photoinduced charge carriers, imparting enhanced photocatalytic 

performance and photostability to the Janus nanocomposite. 
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4. Conclusion 

     In summary, we have successfully synthesized a Janus Ag2O/Ag2CO3 nanocomposite by a 

facile ion-exchange followed by an in situ phase transformation method with control of the 

nucleation and growth processes. The TEM results confirmed the Janus morphology of the 

nanocomposite. Notably, the synthesized Janus nanocomposite exhibits excellent degradation 

performance for RhB and 4-CP, much higher than that of bare Ag2CO3 as well as Ag2O and P25 

reference materials under visible-light illumination. Trapping experiments confirmed that holes 

play a major role in the degradation process. The synergistic effect between Ag2CO3 and Ag2O, 

mainly resulting from the Janus morphology promoting interfacial charge transfer processes and 

improving the separation efficiency of photoinduced charge carriers, results in the enhanced 

photocatalytic performance and photostability of such a Janus Ag2O/Ag2CO3 nanocomposite. 

Therefore, the present work provides insight for the future design of novel Janus catalysts for 

diverse photocatalytic applications. 
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Figure captions 

Fig. 1. TEM (a, b) and FETEM (c, d) images of the Janus Ag2O/Ag2CO3 heterojunction. 

Fig. 2. XRD patterns of the synthesized bare Ag2CO3, Ag2O, and Janus Ag2O/Ag2CO3 samples.  

Fig. 3. UV-vis DRS of bare Ag2CO3, Ag2O, and Janus Ag2O/Ag2CO3 samples.  

Fig. 4. High-resolution XPS patterns of Ag 3d and O 1s of the synthesized photocatalysts.  

Fig. 5.  (a) Comparison of the photocatalytic activities in the decomposition of RhB over the 

synthesized samples under visible-light illumination, and (b) the related first-order kinetics plots 

for different samples. 

Fig. 6.  (a) Comparison of the photocatalytic activities in the decomposition of 4-CP over the 

synthesized samples under visible-light illumination, and (b) the related first-order kinetics plots 

for different samples. 

Fig. 7.  (a) Reusability of the Janus Ag2O/Ag2CO3 nanocomposite for the degradation of RhB 

upon visible-light over four successive experimental runs. (b) Effects of different scavengers on 

the degradation of RhB upon visible-light in the presence of the Janus Ag2O/Ag2CO3 

nanocomposite. 

Fig. 8. (a) Time resolved PL patterns and (b) Photocurrent responses of bare Ag2CO3 and Janus 

Ag2O/Ag2CO3 nanocomposite. 

Fig. 9. Valance band XP spectra of bare Ag2CO3 and Ag2O samples. 

Fig. 10. Schematic illustration of the charge transfer and separation in the Janus Ag2O/Ag2CO3 

heterojunction system under visible-light illumination. 
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Fig. 1. TEM (a, b) and FETEM (c, d) images of the Janus Ag2O/Ag2CO3 heterojunction. 
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Fig. 2. XRD patterns of the synthesized bare Ag2CO3, Ag2O, and Janus Ag2O/Ag2CO3 samples.  
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Fig. 3. UV-vis DRS of bare Ag2CO3, Ag2O, and Janus Ag2O/Ag2CO3 samples.  
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Fig. 4. High-resolution XPS patterns of Ag 3d and O 1s of the synthesized photocatalysts.  
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Fig. 5.  (a) Comparison of the photocatalytic activities in the decomposition of RhB over the 

synthesized samples under visible-light illumination, and (b) the related first-order kinetics plots 

for different samples. 
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Fig. 6.  (a) Comparison of the photocatalytic activities in the decomposition of 4-CP over the 

synthesized samples under visible-light illumination, and (b) the related first-order kinetics plots 

for different samples. 
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Fig. 7.  (a) Reusability of the Janus Ag2O/Ag2CO3 nanocomposite for the degradation of RhB 

upon visible-light over four successive experimental runs. (b) Effects of different scavengers on 

the degradation of RhB upon visible-light in the presence of the Janus Ag2O/Ag2CO3 

nanocomposite. 
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Fig. 8. (a) Time resolved PL patterns and (b) Photocurrent responses of bare Ag2CO3 and Janus 

Ag2O/Ag2CO3 nanocomposite. 
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Fig. 9. Valance band XP spectra of bare Ag2CO3 and Ag2O samples. 
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Fig. 10. Schematic illustration of the charge transfer and separation in the Janus Ag2O/Ag2CO3 

heterojunction system under visible-light illumination. 

Graphical abstract 

 

Highlights 

 A Janus system was constructed without the need for conventionally used surfactants 

 Facile ion-exchange followed by an in situ phase transformation method was used 

 Rapid charge transfer at Ag2O/Ag2CO3 interface contributed to enhanced activity 

 Janus nanocomposite exhibited excellent photostability in recycling experiments 
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 Janus system prepared using less harmful chemicals showed high photoactivity  

 

 

 

 


