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Abstract 

This paper contributes to the literature on the estimation of the Risk Neutral Density (RND) 

function by modeling the prices of options for West Texas Intermediate (WTI) crude oil that 

were traded in the period between January 2016 and January 2017. For these series we extract 

the implicit RND in the option prices by applying the traditional Black & Scholes (1973) 

model and the semi-nonparametric (SNP) model proposed by Backus, Foresi, Li, & Wu 

(1997). The results obtained show that when the average market price is compared to the 

average theoretical price, the lognormal specification tends to systematically undervalue the 

estimation. On the contrary, the SNP option pricing model, which explicitly adjust for 

negative skewness and excess kurtosis, results in markedly improved accuracy. 
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1. Introduction 

The fluctuation of oil prices over recent years has caused huge concern among consumers, 

firms and governments (Huang, Yu, Fabozzi, & Fukushima, 2009; Kallis & Sager, 2017). 

On a global level, forecasting macroeconomic variables is largely impacted by oil price 

projections, given that economic activity and inflation are dependent on them (He, Kwok, & 

Wan, 2010; Kallis & Sager, 2017). The difficulty is due to the fact that oil prices are strongly 

influenced by stock levels, the weather, the short-term imbalances between supply and 

demand, and political issues (Huang, Yu, Fabozzi, & Fukushima, 2009; de Souza e Silva, 

Legey, & de Souza e Silva, 2010; Abhyankar, Xu, & Wang, 2013). However, as the Risk 

Neutral Density (RND) function reflects the market expectations on the future development 

of the underlying assets, such density has become a useful tool to model the price of this 

commodity  (Jondeau & Rockinger, 2000; Liu, Shackleton, Taylor, & Xu, 2007; Monteiro, 

Tütüncü, & Vicente, 2008; Fabozzi, Tunaru, & Albota, 2009; Du, Wang, & Du, 2012; Lai, 

2014; Taboga, 2016; Kiesel & Rahe, 2017). 

The prices of financial options are a valuable source of information to be able to obtain the 

RND (Liu, 2007; Rompolis, 2010; Völkert, 2015). Hence, this research seeks to contribute 

to the literature on estimating the RND through modeling WTI crude oil options that are 

priced on the New York Mercantile Exchange (NYMEX) commodity market. Different 

methods have been developed to extract the RND; however, their efficiency must be tested 

in several types of markets and not only in the stock market (on which the majority of studies 

have been focused) (see, for example, Corrado & Su, 1996; Corrado & Su, 1997; Hartvig, 

Jensen, & Pedersen, 2001; Lim, Martin, & Martin, 2005; Monteiro, Tütüncü, & Vicente, 

2008; Birru & Figlewski, 2012; Christoffersen, Heston, & Jacobs, 2013; Kiesel & Rahe, 

2017; Leippold & Schärer, 2017; etc.). The very fact that oil continues to be a fundamental 

energy component in modern economies is an important reason to study the behavior of 

option prices for the WTI. Changes in oil prices can produce important effects on the global 

economy, which means it is important to create new methods that allow for the stochastic 

process of the future price to be adjusted (Abhyankar, Xu, & Wang, 2013; Su, Li, Chang, & 

Lobonţ, 2017). 



The theory based on which modeling the prices of financial assets was developed began with 

the publication of the Black-Scholes (1973) valuation model. This seminal work has been the 

basis for many generalizations and enhancements by academics and finance professionals 

(Peña, Rubio, & Serna, 1999; Liu, 2007; León, Mencía, & Sentana, 2009; Rompolis, 2010; 

Du, Wang, & Du, 2012; Lai, 2014; Feng & Dang, 2016). However, the Black-Scholes model 

has become less reliable over time. Even for markets for which it was expected to be more 

precise, there have been differences between the theoretical prices and the market prices 

(Jarrow & Rudd, 1982; Corrado & Su, 1996; Backus, Foresi, Li, & Wu, 1997; Birru & 

Figlewski, 2012; Christoffersen, Heston, & Jacobs, 2013). 

It is known that after the stock market crisis of October 1987, the Black-Scholes option 

valuation model tended to underestimate the options that are very much ‘in-the-money’ and 

‘out-of-the-money’ (see Rubinstein (1994) for a detailed discussion of this empirical 

regularity). This is the result of the violation of the assumption under which all option prices 

for the same underlying asset with the same expiration date but with a different exercise price 

should have the implied volatility (Corrado & Su, 1997; Lim, Martin, & Martin, 2005; 

Friesen, Zhang, & Zorn, 2012). The empirical evidence reveals that the implied volatility 

derived from the Black-Scholes model seems to be different across the exercise price by 

drawing the well-known volatility smile (Peña, Rubio, & Serna, 1999; Jondeau & Rockinger, 

2000; Liu, 2007; Kiesel & Rahe, 2017). 

The Black-Scholes model assumes that the RND is lognormal, but this prediction has been 

convincingly rejected by (MacBeth & Merville, 1979). Hence, the literature on option pricing 

has suggested models that allow for adjustments to be included, both in terms of bias and 

excess kurtosis in the RND, in order to correct the previously mentioned problems (Backus, 

Foresi, Li, & Wu, 1997; Nikkinen, 2003; Jondeau, Poon, & Rockinger, 2007, p. 365; Friesen, 

Zhang, & Zorn, 2012). The relevance of these types of models lies in the assumption that the 

logarithm of the share price being normal is unrealistic, specifically because the distribution’s 

tails are heavier than those that have a normal distribution (Fama, 1965; Das & Sundaram, 

1999; Dennis & Mayhew, 2002; Nikkinen, 2003; Huang, Yu, Fabozzi, & Fukushima, 2009; 

Feng & Dang, 2016). 



To this effect, the most up-to-date academic literature has taken two different directions to 

try to measure the RND. The first consists of specifying a stochastic process of the alternative 

price different to that proposed by Black-Scholes, which, in turn, results in an alternative 

RND. The second seeks to develop procedures to extract implicit RND from the option prices 

observed (Hartvig, Jensen, & Pedersen, 2001; Dennis & Mayhew, 2002; Lai, 2014). In line 

with the second direction, Breeden & Litzerberger (1978), Shimko (1993) and Jondeau, 

Poon, & Rockinger (2007, p. 398) suggest making use of the fact that the RND is the second 

derivative from the call option price with respect to the exercise price. 

However, other authors have proposed different approaches such as: parametric ones, which 

suggest a direct expression for the RND without referring to the specific price dynamics 

(Ritchey, 1990; Melick & Thomas, 1997; Anagnou-Basioudis, Bedendo, Hodges, & 

Tompkins, 2005; Fabozzi, Tunaru, & Albota, 2009; Völkert, 2015); nonparametric ones that 

do not try to give an explicit form of the RND (Jackwerth & Rubinstein, 1996; Aït-Sahalia 

& Lo, 1998); and semi-nonparametric ones (SNP) that suggest an approximation of the RND 

(Jarrow & Rudd, 1982; Corrado & Su, 1996; Backus, Foresi, Li, & Wu, 1997; Rompolis & 

Tzavalis , 2007; León, Mencía, & Sentana, 2009; Taboga, 2016).  

This study’s approach seeks to extract the RND that is implicit in the option prices by 

applying an SNP model. Specifically, we verify whether the SNP model proposed by Backus, 

Foresi, Li, & Wu (1997) outperforms option pricing measures for the WTI listed in the period 

between January 2016 and January 2017. Additionally, for the purpose of contrasting the 

results obtained, the dates that are being analyzed are either special events in the oil market 

and political events that have the ability to affect the financial markets or days of “relative” 

calm. In the first stage, the skewness parameters and excess kurtosis are calibrated by using 

the SNP distribution. In the second stage, the previously estimated parameters (skewness and 

excess kurtosis) are used to approximate the price distribution of the underlying asset under 

a specification that we write as log-SNP.1 The advantage of applying SNP models is that they 

are not as data intensive as other methods, which allows for the RND to be extracted (Aït-

																																																													
1 The Black-Scholes approach considers that the price of an underlying asset is distributed under a lognormal 
specification in the sense that its variations follow a normal distribution. As is demonstrated in Section 2, the 
Gram-Charlier or SNP distribution corresponds to an extention of the normal distribution, and the log-SNP 
corresponds to an extention of the log-normal distribution. Consequently, the SNP option valuation model is a 
generalization of the Black-Scholes model. 



Sahalia & Lo, 1998; Taboga, 2016). Given that there is scanty number of price data obtained 

from the financial markets in a trading day, it is essential the seach of a method which fit the 

data in an accurate way for practioners so as they can take optimal decisions (Liu, 2007; Feng 

& Dang, 2016). 

Backus, Foresi, Li & Wu (1997) use a Gram-Charlier A series expansion (hereafter denoted 

as SNP) around a normal density function to incorporate the terms of adjustment for 

skewness and excess kurtosis for the Black-Scholes formula. These authors used the model 

suggested by Jarrow & Rudd (1982) as a baseline; they were pioneers in proposing an SNP 

model for valuing options using an Edgeworth series expansion around the lognormal density 

function. Subsequently, Corrado & Su (1996) also derived a valuation model for option prices 

using a Gram-Charlier series expansion around the normal density function.  

Although Corrado & Su’s (1996) model is derived from Jarrow & Rudd (1982), operationally 

the pioneers explain the bias deviations and the excess kurtosis of the lognormality of the 

share price while the model developed by Corrado & Su (1996) explain the deviations from 

normality of the asset returns in terms of bias and excess kurtosis. It is noteworthy that Brown 

& Robinson (2002) have corrected two of Corrado & Su’s (1996) typographical errors and 

they provide examples of how errors such as these may have economic significance. We 

adopt the Backus, Foresi, Li, & Wu (1997) model in this study because these authors show 

that some of the terms in Corrado & Su’s (1996) model are numerically very small in real 

markets and can be eliminated from the option pricing model. As such, Backus, Foresi, Li, 

& Wu (1997) propose a more parsimonious model that represents a good approximation of 

the option price.  

This paper is divided into the following sections: Section 2 presents the model to be estimated 

and the applied methodology. Section 3 describes the data that will be used. Section 4 gathers 

the results and discusses the suggested method, and, finally, Section 5 summarizes the 

conclusions.  

 



2. Model and methodology 

2.1. Model  

The first attempt to estimate the RND was developed by Breeden & Litzerberger (1978). The 

authors demonstrated that the RND can be recovered from the second derivative of the call 

price. ! (") is a European call (put) option with exercise price # and the time at expiration	%, 

! #; ' = )*+,
-
.

/0 − # 2 /0; ' 3/0,         (1) 

" #; ' = )*+,
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# − /0 2 /0; ' 3/0,         (2) 

where 6 is the risk-free rate. Hence, 
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The term )*+,2 /0 	is generally referred to as the state price density (SPD), and 2 . 	is the 

undiscounted RND (Jondeau, Poon, & Rockinger, 2007, p. 387). The estimation of the RND 

by (3) requires a continuous series of exercise prices to estimate the parameters by using a 

finite differences method. However, this procedure leads to unstable results and, in turn, 

several methods such as (i) local volatility or implied tree models, (ii) interpolation of the 

implied volatility curve, (iii) stochastic volatility and jumps, (iv) nonparametric approach, 

and (v) the combination of parametric and nonparametric approaches that have been 

suggested in the literature (see, for example, Fusai & Roncoroni, 2008 and the references 

therein). This research uses a classic parametric approach from the lognormal approximation 

and its achievements can be compared with the SNP suggested approach, which is explained 

in the following subsection. 

 

2.2. Methodology 

For a particular date and for various call and put option contracts with the same expiration 

and different exercise prices, the Black-Scholes and SNP models’ set of parameters	' is 

estimated by minimizing the sum of the squared errors between the observed market prices 

and the theoretical prices, and the parameter set is used to represent the RND for each model.  



In the first step, the parameters (>,?,	@A,	@B) are callibrated by using the Black-Scholes and 

SNP models for call and put options. These parameters are used in the second step to fit the 

probability density function (pdf) by assuming a lognormal distribution and log-SNP, 

respectively.2 

The well-known theoretical price for the Black-Scholes call option is given by, 

!C; #; ' = /0D 3E − #)*+,D 3F ,       (4) 

where D .  denotes the cumulative distribution function (cdf) of the normal standard, 	3E =

GH /0 # + 6 + ?F 2 % ? %. Moreover, the call option price of the SNP model can be 

formulated as (Backus, Foresi, Li, & Wu, 1997; Christoffersen, 2012, p. 237): 

!;KL #; ' = !C; #; ' + /0M 3E ? @A 2 %? − 3E − @B % 1 − 3E
F + 33E %? − 3%?F .  (5) 

The put prices are obtained through the Put–call parity. In order to obtain (5), the log-returns 

are assumed to be Gram-Charlier distributed instead of Gaussian as in the case of Black-

Scholes. The pdf of the Gram-Charlier distribution is given by: 

P Q = 1 + @RSR Q
T
R:E M Q ,          (6) 

where @R are the parameters and the Gram-Charlier distribution3 and SR Q  is the sth order 

Hermite polynomial (HP), which can be defined in terms of the derivatives of normal 

standard density M Q , such as U
VW X

UXV
= −1 RSR Q M Q . 

Specifically, the four first HP are: 

SE Q = Q,            (7) 

SF Q = QF − 1,           (8) 

																																																													
2	The methodology used in this paper was developed based on the R Package Risk Neutral Density Extraction 
Package (RND). Specifically, modifications were made to program the SNP model calculations. The code is 
available on request. For more information, please refer to https://cran.r-
project.org/web/packages/RND/index.html	
3	Hence Gram-Charlier distribution collapses to the Normal as	@R®0,	"s.	



SA Q = QA − 3Q,           (9) 

SB Q = QB − 6QF + 3.                   (10) 

It is worth mentioning that other expressions can be suggested for the SNP option price, see, 

for example, Jarrow & Rudd (1982) and Corrado & Su (1996). The main difference lies in 

the fact that the approximation is made based on the price logarithm instead of the price, 

according to Jarrow & Rudd’s research (Backus, Foresi, Li, & Wu, 1997). 

Each model is calibrated by selecting a set of ' parameters, which minimize the sum of the 

squared differences among the theoretical prices (Black-Scholes and SNP) and the market 

prices observed for different values of [\ calls and [] puts and the same time to expiration. 

The call and put market prices are denoted by !^_`a and "̂_`a, respectively. 

min
e

!^
_`a − ! #^; '

F
+Kf

^:E "̂_`a − " #g; '
FKh

g:E .              (11) 

In order to estimate the accuracy of each model, we perform a linear regression of the call 

(put) values for each method as a dependent variable and the respective market values as the 

independent variables. We consider the method with the minimum mean absolute error 

(MAE) to be the best. To obtain the undiscounted RND graph for the Black-Scholes model, 

the lognormal density is used with the parameters obtained from the calibration process, 
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Similarly, the undiscounted RND graph for the SNP model is obtained by employing the log-

SNP distribution suggested by Ñíguez, Paya, Peel, & Perote (2012), and the parameters are 

calibrated from the SNP modes for the option prices. This distribution has shown exceptional 

results in the literature when compared to the lognormal distribution as the benchmark model 

(see Cortés, Mora-Valencia, & Perote, 2016 and 2017). The log-SNP pdf is defined as 

2ujk;KL /0; ' = 1 + @RSR
vw ;<*x

m
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where SR  denotes the sth order HP. It should be noted that the lognormal distribution is 

recovered from the log-SNP when 	@R = 0	"y. Also, if a random variable Q is distributed as 

log-SNP, log Q  is distributed as Gram-Charlier, which resembles the relationship between 

the lognormal and normal random variables. 

 

3. Description of the data 

The database compiled includes the closing prices for call and put option contracts for WTI 

crude oil listed on NYMEX. Specifically, data was obtained for ten unevenly spaced dates 

taking into consideration special events in the oil market or political events that could affect 

the financial markets. In order to contrast the results obtained, five dates of ‘relative calm’ 

were also selected. The first was January 20 2016, and the last was January 24 2017. For each 

event, options with different exercise prices but the same expiration date were selected. We 

used the Bloomberg database to obtain the quoted prices for the WTI and the call and put 

options. Also, news items were gathered from Bloomberg’s Financial Information Network 

and the OPEC website.4 The selected contracts mature in between approximately thirty and 

sixty days as the London Interbank Offered Rate (LIBOR) is used as the referenced risk-free 

rate for either one or two months, depending on the contract. LIBOR was obtained from the 

ICE Benchmark Administration (IBA).5 

The interest in analyzing the oil market comes from the fact that the unexpected changes in 

the price of this commodity have had an impact on the global economy, and thus this issue 

has become a topic of interest for investors and central banks (Postali & Picchetti, 2006; He, 

Kwok, & Wan, 2010; Antonakakis, Chatziantoniou, & Filis, 2017). Figure 1 corresponds to 

the time series of the evolution of the spot price of WTI crude oil between January 1 2016 

and January 31 2017.  

 

																																																													
4 See: http://www.opec.org/opec_web/en/index.htm  
5  See: https://www.theice.com/iba/libor.This study only uses LIBOR without taking into account other 
reference rates that could be studied in different future research. 



FIGURE 1  THE EVOLUTION OF WTI CRUDE OIL PRICES 

 
The figure represents the time series of the evolution of the spot price for WTI crude oil between January 1 
2016 and January 31 2017. The dates selected in this research are signalled in the figure by dots. The black dot 
(News) represents a date with important news events that had an impact on the oil price. The grey dot (Calm) 
represents a date on which there were no outstanding news events relating to the oil market. 

In this period, the WTI oil price reached a maximum of US$54.06 and a minimum of 

US$26.21, which is reflected in the historic standard deviation of the price of US$6.89. This 

same behavior has persisted over recent years. From 2014, oil prices have remained low in 

an economic environment in which the growth of several countries has progressively 

depleted. The decrease in oil prices also caused other problems as it affected global stock 

markets, inflation in several economies, and led to central banks raising interest rates (Kallis 

& Sager, 2017). 

Table 1 shows in detail the news events relating to oil on the selected dates that are to be 

analyzed as well as the information on call and put options taken for each one of the events. 

Also, Figure 1 shows dots representing the dates that have been selected for analysis. The 

black dot (News) represents a date that had an important news event that caused an impact 

on the price of oil. The grey dot (Calm) represents a date on which there was no outstanding 

news event relating to oil. 

 

 



TABLE 1 NEWS EVENTS RELATING TO OIL 

Date of the 
event News item Ticker 

symbol  
Expiration 

date 

Time to 
expiration 
(in days) 

20/01/2016 The WTI plunged to less than US$28 and thus reached a 
new thirteen year low CLH6 17/02/2016 28 

22/01/2016 

The WTI increased by 9.1% and closed at US$32.19. 
Part of the loss was recovered that had accumulated since 
the beginning of the year. The percentage increase is the 
highest since 27th August 2015. 

CLH6 17/02/2016 26 

27/01/2016 Day of relative calm CLH6 17/02/2016 21 

09/02/2016 The price of oil fell because of fears relating to excess 
supply. CLJ6 16/03/2016 36 

10/03/2016 Day of relative calm CLK6 15/04/2016 36 
11/05/2016 Day of relative calm CLN6 16/06/2016 36 

24/06/2016 
The WTI fell 5% following the general debacle of 
markets resulting from the British vote in favor of 
leaving the European Union 

CLU6 17/08/2016 54 

02/08/2016 The WTI falls beneath US$40 due to worry about excess 
supply CLV6 15/09/2016 44 

18/08/2016 
World leaders from the oil market are ready to discuss 
the possibility of freezing production levels, which would 
make oil prices increase. 

CLV6 15/09/2016 28 

28/09/2016 The price of WTI increased by 6% because of OPEC’s 
agreement to limit production in November. CLZ6 16/11/2016 49 

10/10/2016 Day of relative calm CLZ6 16/11/2016 37 

09/11/2016 A day of volatile prices resulting from the election of 
Donald Trump CLF7 15/12/2016 36 

30/11/2016 
The oil prices go up due to the prospect that OPEC 
countries meeting in Vienna may achieve an agreement 
to limit production and stimulate prices. 

CLG7 17/01/2017 48 

19/01/2017 

Oil prices fall significantly during the trading day 
because of worries about the US’ increase in production 
of crude, which were more important than optimistic 
OPEC forecasts for increased demand. 

CLH7 15/02/2017 27 

24/01/2017 Day of relative calm CLH7 15/02/2017 22 
The Table shows in detail the news events relating to oil on the selected dates in the study as well as the 
information on call and put options taken for each one of the events. Source: Bloomberg’s Financial Information 
Network and the OPEC webpage. 	

 

4. Results and discussion  

Table 2 summarizes the results of the estimations undertaken with the Black-Scholes model 

(equation 4) and the SNP option pricing model (5) proposed by Backus, Foresi, Li, & Wu 

(1997). Using equation 11, which is presented in the methodology (subsection 2.2), each one 

of the parameters was obtained for the distributions. Specifically, for the Black-Scholes 

model, the implicit standard deviation is shown for each of the selected dates (see Panel A). 



Similarly, for the SNP model, the implicit standard deviation, the implicit skewness, and the 

excess kurtosis are presented (see Panel B). Given that the call and put options with the same 

exercise price and the same expiration date are related through the put-call parity, the study 

only focuses on the results from the call options.  

TABLE 2 ESTIMATED PARAMETERS, BLACK-SCHOLES VS. SNP 

Date of 
event 

Number of 
prices 

observed 

Panel A Black-Scholes   Panel B SNP 

Implicit standard 
deviation    Implicit standard 

deviation 
Implicit 

asymmetry 

Implicit 
excess 

kurtosis 
20/01/2016 82 0.65  0.70 -0.15 0.08 
22/01/2016 82 0.59  0.61 -0.05 0.07 
27/01/2016 82 0.65  0.68 -0.07 0.06 
09/02/2016 63 0.70  0.74 -0.15 0.11 
10/03/2016 60 0.49  0.51 -0.14 0.11 
11/05/2016 46 0.40  0.41 -0.14 0.08 
24/06/2016 57 0.40  0.42 -0.30 0.13 
02/08/2016 44 0.44  0.46 -0.17 0.11 
18/08/2016 46 0.34  0.35 -0.13 0.07 
28/09/2016 94 0.42  0.43 -0.14 0.14 
10/10/2016 95 0.35  0.36 -0.16 0.12 
09/11/2016 46 0.40  0.41 -0.11 0.06 
30/11/2016 44 0.40  0.41 -0.17 0.04 
19/01/2017 59 0.29  0.30 -0.16 0.05 
24/01/2017 61 0.29   0.30 -0.11 0.03 
The table summarizes the results from the estimations made with the Black-Scholes model and the SNP option 
pricing model. The first column shows each one of the dates selected in the study, and the second column 
contains the number of market prices observed in each date. Panel A shows the implicit standard deviation, the 
implicit skewness, and the implicit excess kurtosis for the SNP model.  

The results show very close implicit standard deviations. However, as shown in Panel B, the 

results suggest that the implicit distributions are leptokurtic and negatively biased. These 

findings are consistent with those obtained by Corrado & Su (1996), Backus, Foresi, Li, & 

Wu (1997), Corrado & Su (1997) and Nikkinen (2003). Also, they strengthen existing 

evidence on the behavior of returns and underlying asset prices, which usually do not present 

normal and lognormal behavior, respectively (MacBeth & Merville, 1979). 

Based on the input parameters presented in Table 2, the theoretical price was obtained for the 

call options for each one of the dates selected in the study. Using Table 3, it is possible to 

compare the average market price observed with the average theoretical price under a 

lognormal RND (see panel A) and a log-SNP RND (see panel B).  



TABLE 3 COMPARISON OF THE AVERAGE MARKET PRICE FOR THE CALL OPTIONS VS. THE 
THEORETICAL PRICE 

Date of 
event 

Number of 
prices 

observed 

Average call 
option market 

price ($US) 

Panel A Lognormal   Panel B Log-SNP 

Average 
call option 
theoretical 
price ($US) 

Difference in 
average 

market and 
theoretical 
call option 
price ($US) 

  

Average 
call option 
theoretical 
price ($US) 

Difference in 
average 

market and 
theoretical 
call option 
price ($US) 

20/01/2016 82 0.507 0.501 0.005  0.504 0.003 

22/01/2016 82 1.203 1.188 0.015  1.200 0.003 

27/01/2016 82 1.221 1.206 0.014  1.218 0.002 

09/02/2016 63 1.156 1.145 0.010  1.155 0.000 

10/03/2016 60 3.984 3.965 0.019  3.982 0.002 

11/05/2016 46 6.940 6.912 0.028  6.938 0.002 

24/06/2016 57 6.411 6.371 0.040  6.408 0.003 

02/08/2016 44 1.829 1.832 -0.003  1.827 0.002 

18/08/2016 46 5.551 5.532 0.019  5.548 0.003 

28/09/2016 94 3.834 3.820 0.013  3.832 0.002 

10/10/2016 95 5.275 5.259 0.015  5.271 0.003 

09/11/2016 46 2.515 2.514 0.001  2.514 0.001 

30/11/2016 44 4.227 4.219 0.008  4.226 0.000 

19/01/2017 59 4.862 4.855 0.007  4.859 0.003 

24/01/2017 61 5.238 5.231 0.007   5.235 0.003 
The table compares the average price observed on the market with the average theoretical price. The first 
column shows each one of the dates selected in the study, the second column shows the number of market prices 
observed, and the third shows the average market price on each date selected in the study. Panel A shows the 
average theoretical price that follows a lognormal RND. Panel B shows the average theoretical price that follows 
a log-SNP RND.  

When comparing the average market prices and the average theoretical prices for each one 

of the distributions, we found that if the prices follow a lognormal RND, they tend to 

statistically underestimate the call options prices. Particularly, for May 11 and June 24 2016 

when the option averages were more in the money, the difference was more noticeable. This 

result is not surprising given that Rubinstein (1994) obtained this empirical regularity for 

options on the S&P500 index. 

 

	

	



FIGURE 2 RISK NEUTRAL DENSITY 

 

 
The figure shows the risk neutral density (RND) function for January 24 2017, a day of relative calm (Calm) in 
the financial markets. The grey line corresponds to the lognormal specification and the black line corresponds 
to a Log-SNP specification.  
 
 

FIGURE 3 RISK NEUTRAL DENSITY 

 

The figure shows the risk neutral density (RND) function for June 24 2016, a day on which news events (News) 
affected the financial markets. The grey line corresponds to the lognormal specification and the black line 
corresponds to a Log-SNP specification.  
 

An example of the lognormal - equation (12) - and log-SNP - equation (13) - RNDs are 

shown in Figures 2 and 3. We (randomly) selected one of the dates of relative calm and one 

of the dates on which there was an event that affected the behavior of the WTI. The first 

corresponds to January 24 2017 (Figure 2). The second date corresponds to June 24 2016, a 

day on which the financial markets reacted adversely due to the British voting in favor of 

leaving the European Union (Figure 3). Note that for the date of relative calm (Calm), the 



RNDs under both specifications do not seem very different. However, for the second date 

(News), the RND that follows the log-SNP distribution is more biased than the lognormal 

one. This seems to allow a better collection of the evolution of the option prices.  

In addition to the monetary difference between the average market and theoretical prices, 

shown in Table 3, as a measure of goodness of fit, the mean absolute value (MAE) of the 

residuals is calculated as explained in subsection 2.2. As shown in Table 4, for all the dates 

in the study, the prices that follow a log-SNP RND consistently have a lower MAE.  

TABLE 4 MEAN ABSOLUTE ERROR OF THE RESIDUALS, LOGNORMAL VS. LOG-SNP 

Date of 
event 

Lognormal   Log-SNP 
Mean absolute error   Mean absolute error 

20/01/2016 0.0204  0.0051 
22/01/2016 0.0165  0.0039 
27/01/2016 0.0186  0.0039 
09/02/2016 0.0342  0.0033 
10/03/2016 0.0449  0.0068 
11/05/2016 0.0516  0.0061 
24/06/2016 0.1076  0.0186 
02/08/2016 0.0397  0.0103 
18/08/2016 0.0445  0.0067 
28/09/2016 0.0478  0.0090 
10/10/2016 0.0451  0.0076 
09/11/2016 0.0326  0.0076 
30/11/2016 0.0464  0.0091 
19/01/2017 0.0458  0.0080 
24/01/2017 0.0304   0.0079 

 
The table shows the mean absolute error (MAE) of the residuals when estimating call option prices. The first 
column shows each of the dates selected in the study. The second column shows the MAE under a lognormal 
specification, and the third column shows the MAE under a log-SNP specification. 



FIGURE 4 MEAN ABSOLUTE ERROR OF THE RESIDUALS 

The figure shows the mean absolute error (MAE) when estimating call option prices on January 24 2017, a day of relative calm (Calm) in financial markets. The 
figure on the left corresponds to the MAE under a lognormal specification, and the figure on the right corresponds to the MAE under a log-SNP specification.  

FIGURE 5 MEAN ABSOLUTE VALUE OF THE RESIDUALS 

 

The figure shows the mean error of the absolute value of the residuals (MAE) when estimating call option prices on June 24 2016, a day on which the news affected 
financial markets. The figure on the left corresponds to the MAE under a lognormal specification, and the figure on the right corresponds to the MAE under a log-
SNP specification.  



Figures 4 and 5 graphically support the results presented in Table 4. Specifically, they offer 

an example for the same dates of calm (Figure 4) and news events in the market (Figure 5) 

that were previously selected. The main difference between the modeled RNDs is the ability 

to capture the high-order moments such as skewness and excess kurtosis. Especially for the 

dates on which there was the most amount of market uncertainty, the results suggest a better 

adjustment for the prices from the log-SNP distribution.  

Studying models that allow for a better fit to be obtained between the market prices and the 

theoretical prices is fundamental, not only from an option pricing point of view but also from 

a risk management perspective. For example, within risk management framework one of the 

most important issues is quantifying the change in the option price relatively to the change 

in the price of an underlying asset (Backus, Foresi, Li, & Wu, 1997). 

In this case, as a hedging strategy against risk, the calculation of measurements such as the 

option’s delta becomes crucial. This measurement quantifies the sensitivity of the option 

price in response to a change in the price of the underlying asset. With the Black-Scholes 

model, we can demonstrate that the delta (Δ"#) is given by Δ%&''"# = Φ *+  for the call option, 

and by Δ,-."# = Φ *+ − 1 for the put option (see the proof in Appendix A).  

However, as we have previously shown, the results obtained in Table 2 suggest that the 

implicit distributions in the option prices are leptokurtic and negatively biased. As such, it is 

necessary that the delta also captures the effects of the skewness and the excess kurtosis. In 

this case, the delta of the SNP model is given by:  

 Δ%&''#12 = Φ *+ −
34

5
∅ *+ 1 − *+

7 + 3*+: ; − 2:7; + 

=>∅ *+ 3*+ 1 − 2:
7; − *+

? + 4*+
7: ; − 4: ; + 3:?;

?
7 ,  (14) 

for the call option, and by  

 Δ,-.#12 =
A2BCD

A#E
− 1           (15) 

for the put option (see the proof in Appendix B).  



As shown in the previous equations, the traditional Black-Scholes approximation, which is 

frequently used in risk hedging and management of options, can differ substantially when the 

option price shows skewness and excess kurtosis. Consequently, it is possible to reach 

incorrect hedging decisions that lead to severe losses. 

 

5. Conclusions 

This study uses the SNP model proposed by Backus, Foresi, Li, & Wu (1997) who follow a 

Gram-Charlier A series expansion around the normal density function. The Black-Scholes 

model, which is a universal standard used in valuing options, was used as the benchmark. 

Using options prices for WTI crude oil traded on NYMEX in the period between January 

2016 and January 2017, the skewness and excess kurtosis parameters were calibrated by 

using the SNP distribution. Compared to a normal distribution, a negative skewness was 

found, as well as a positive excess of kurtosis. These results were constant for the ten dates 

that were selected taking into account either special events in the oil market or political events 

that could affect financial markets and five days of relative calm.  

Furthermore, when the average market price is observed in comparison to the average 

theoretical price, we found that the option prices under a lognormal RND tend to 

systematically be underestimated. This result is even more remarkable on the dates during 

which the financial markets are more unstable. In summary, we can conclude that the log-

SNP RND option pricing model outperforms the traditional Black-Scholes model when 

pricing WTI options. These significant gains in accuracy are due to the fact that the terms 

accounting for skewness and excess kurtosis seem to be a relevant source of information, 

particularly on the presence of extreme events. Therefore the log-SNP model should be 

implemented for undertaking appropriate risk hedging and management strategies.  
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Appendix A 

This appendix derives the expression for the delta of the Black-Scholes model (Δ"#): 

From equation (4) we know that the theoretical price for the Black-Scholes call option can 

be obtained as 

F"# G; I = JKL *+ − GMNO5L *7 , 
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Developing the squared binomial and replacing	*+ , the following can be obtained  
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Also, the following holds true, 
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The delta of an option is defined as the partial derivative of the option price with respect to 

the price of the underlying asset, for the call  
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replacing equations (A.1), (A.2) and (A.3), the following is obtained 

Δ%&''
"# = Φ *+ . □                 (A.4) 

For the put option, it can be demonstrated that, 

Δ,-.
"# = Φ *+ − 1.                  (A.5) 

Appendix B 

This appendix derives the expression for the delta of the SNP (Δ#12) model: 

From equation (5), we know that the theoretical price for the SNP call option can be obtained 

as 

F#12 G; I = F"# G; I + JKk *+ l *+ , 

with l *+ = : =? 2 ;: − *+ − => ; 1 − *+
7 + 3*+ ;: − 3;:7 ,            (B.1) 
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First, the following are derived, 
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 is the equation found in (A.3). Also, the following is 

obtained 
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Also, the derivative of (B.1) is given by		Am(UV)
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such a way that the following is obtained 
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Thus, the delta of the SON model for the call can be defined by the partial derivative 
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By replacing equations (A.4), (B.1), (B.2) and (B.3), the following is obtained 
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For the put option, it can be demonstrated that 
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