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Abstract
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This dissertation examines the motion of colloids in a temperature gradient, a non-equilibrium
phenomenon also known as thermophoresis. Chapter 1 gives an introduction to the existing
applications and basic concepts of thermophoresis and outlines some of the experimental and
theoretical challenges that serve as a motivation for this PhD project. In Chapter 2, a general
theoretical description for thermophoresis is formulated using the theory of non-equilibrium
thermodynamics. The colloidal flux is split up into an interfacial single-colloid contribution
and a bulk contribution, followed by a determination of transport coefficients based on
Onsager’s reciprocal relations. It is further shown how the phenomenological expression
of the thermophoretic flux can be recovered when the fluid is at steady-state. The results
issuing from this description are then discussed and compared to other existing approaches,
some of which are shown to neglect the hydrodynamic character of colloidal thermophoresis.
Chapter 3 is dedicated to the validation of the introduced theoretical framework by means
of computer simulations, using a simulation technique known as multi-particle collision
dynamics. More specifically, the dependence of the thermophoretic force on different system
parameters is examined and deviations from the theoretical prediction are explained by an
advective distortion of interfacial fluid properties at the colloidal surface. Chapter 4 presents
steady-state measurements of functionalised colloids in a temperature gradient, showing
how the addition of molecular surface groups increases the experimental complexity of
thermophoretic motion. The relaxation process behind this steady-state is also studied, to
determine how the relaxation speed depends on the applied temperature gradient. In chapter
5, a general conclusion is drawn from the presented work and its implications are briefly
discussed in relation to the current state of knowledge. Finally, the discussion is closed with
an outlook on remaining challenges in understanding colloidal motion that could be the
subject of future research.
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Chapter 1

General Introduction

How do micron-sized particles move inside a liquid when subjected to a temperature gradient?
Simple question, not so simple answer. This phenomenon is known as thermophoresis and
can be seen as the counterpart of the Ludwig-Soret effect in fluid mixtures, which was first
observed by Carl Ludwig and Charles Soret in 1856 and 1879 respectively [53, 82].

Since its discovery, thermophoresis has been studied experimentally in various systems,
from charged particles in aqueous electrolyte solutions [72, 29, 41, 10, 28, 24, 70, 69]
to long-chain polymers in polar or non-polar solvents [78, 96, 26, 11], revealing a large
number of interesting applications. The key feature of thermophoresis is that it is governed
by system-specific interactions that may be tuned such that different species of particles
migrate into opposite directions. The thermophoretic effect has been found to be a promising
technique for the segregation or accumulation of biomolecules [27]. Experimental evidence
suggests that the thermophoretic velocity is insensitive to particle size, making it the ideal
candidate for the fractionation of small particles [46], as opposed to dielectrophoresis or
magnetophoresis, where the velocity scales with the square of the particle radius [71].
Moreover, thermophoresis combined with convection has been used as a focussing technique
to achieve strong accumulation of DNA [11], indicating that it might have played a key role
as an initiator of biochemical reactions that allowed the formation of life [5]. Thermophoresis
in living matter is also of particular interest in pharmaceutical research as it is believed to
contribute to diffusive processes such as membrane transport or drug delivery inside porous
tissues [73]. It has further been shown to be responsible for the compositional grading in the
Earth’s petroleum reservoirs and the isotope fractionation in silicate melts [35, 25].

The aforementioned examples show that thermophoresis is omnipresent in our everyday
life. This can be explained by the fact that no system is ever in a perfect thermodynamic
equilibrium, be it deep down in the ocean, high up in the Earth’s atmosphere, or somewhere
inside the human body. Whereas other transport phenomena rely on the generation of electric
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or magnetic fields, thermophoresis only requires a weak temperature difference across a
confined geometry, making it a simple and feasible technique for particle separation.

1.1 Motivation

Despite these advances, studying thermophoresis remains a challenging task, both exper-
imentally and theoretically. This particularly applies to colloidal suspensions, where the
physical mechanisms behind thermophoresis are rooted in the mesoscopic nature of colloidal
motion. Thermophoresis in colloidal suspensions is mainly driven by hydrodynamic stresses
resulting from the specific interaction of the colloids with the surrounding medium. Due to
the dynamic length and time separation between the colloids and the fluid molecules, the
action of thermodynamic forces produces interfacial fluid flows that cannot be explained
by purely thermodynamic considerations. These interactions are further influenced by a
wide range of parameters [71], including intensive variables of the system such as temper-
ature, salinity, pH and solvent expansivity, as well as single-colloid properties like shape
and surface coating [90]. In experiments, it is often difficult to precisely control all these
parameters, which is however necessary to make an accurate prediction for the sign and
strength of the thermophoretic effect. Moreover, colloids can also be perturbed by external
forces, resulting in undesirable effects such as large-scale convection or colloidal aggregation
that inhibit the direct measurement of thermophoretic motion. The discrepancy between
different experimental observations has further sparked a debate in recent literature about
the applicability of different thermodynamic and hydrodynamic theories to colloidal ther-
mophoresis [24, 90, 68, 76, 91, 21, 33], suggesting that a complete and consistent theoretical
description is yet to be formulated.

The disagreement between authors on many theoretical and experimental aspects of
thermophoresis suggests that this phenomenon requires further research. In this dissertation,
I will therefore address some of these issues by carefully identifying their causes and by pro-
viding clear answers to some of the related questions, using well-founded physical arguments
that specifically apply to colloidal suspensions. For this purpose, I will first give a brief intro-
duction to the phenomonological concept and current understanding of thermophoresis based
on recent findings. I will then introduce a most general theoretical framework for the motion
of colloids based on Onsager’s theory of Non-Equilibrium Thermodynamics, by making use
of the length and time scale separation occurring in colloidal suspensions. The resulting
expressions for the particle fluxes allow me to draw firm conclusions for some of the trends
that are currently still under debate. In a second step, I will test the validity of my theoretical
predictions by means of computer simulation, by measuring the thermophoretic force exerted
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on a single colloid. Finally, I will present experimental results on thermophoresis in dilute
suspensions of functionalised colloids, which suggest that molecular surface groups lead to
an intricate change of thermodynamic and hydrodynamic surface properties.

1.2 Basic Definitions and Orders of Magnitude

A colloidal suspension is a mixture in which microscopically dispersed insoluble particles
are suspended throughout a fluid. This fluid can be a pure liquid, a liquid mixture, or a liquid
containing small soluble species of negligible size compared to the dispersed particles. In
this work, the dispersed particles will be referred to as the ’colloids’, whereas the pure liquid
and soluble species will be called ’solvent’ and ’solute’, respectively.

In the absence of external forces, the diffusive transport of colloids in suspensions is
quantified by a phenomenological expression for the net particle flux [71]

J =−D∇c− cDT ∇T, (1.1)

where D is the Fickian diffusion coefficient, c is the colloidal concentration, DT is the
thermal diffusion coefficient and ∇T is the gradient in temperature T . The first term in eq.
(1.1) represents the effect of Fickian diffusion in a concentration gradient, whereas the second
term accounts for the contribution to the flux induced by a temperature gradient. The thermal
diffusion coefficient DT can be interpreted as the coupling coefficient between the particle
flux and the temperature gradient. By using the relation J = cv to write each term of the flux
as a product of the local concentration c and an effective drift velocity v, it can be seen that
thermophoretic motion can be described in terms of a drift velocity vT given by

vT =−DT ∇T. (1.2)

As I will show in Chapter 2, it is useful to relate this drift velocity to an effective
thermophoretic force FT via

FT = ξ vT =−ξ DT ∇T, (1.3)

where ξ is the friction coefficient of a colloid. However, thermophoresis is a force-free
transport phenomenon that cannot simply be interpreted as resulting from a force FT that
directly acts on the colloid. Instead, the thermophoretic force FT should be thought of as the
force that needs to be exerted on the colloid to cancel out its thermophoretic drift velocity.
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In dilute suspensions, measuring the average drift speed of single colloids in a temperature
gradient hence allows the determination of the thermal diffusion coefficient. This can in
principle be achieved by single-particle tracking where the position of a colloid is recorded at
a fixed frame rate [17]. However, thermophoretic drifts might not be directly measurable over
short time scales as colloids also undergo random Brownian motion. In colloidal suspensions,
the magnitude of DT is usually found to lie in a rather narrow range with an upper bound
given by DT . 10 µm2s−1K−1 [71]. A maximal temperature difference of around 100K
in aqueous suspensions is usually applied across samples that have a minimal width of
∼ 100 µm to avoid hydrodynamic edge effects, yielding a maximal temperature gradient of
about ∼ 1Kµm−1. In view of eq. (1.2), typical values of thermophoretic speeds are thus
rather weak, lying in the range of nanometres to micrometres per second. It is therefore
instructive to compare the square of the corresponding mean displacement ⟨xi(t)⟩2 = v2

T t2 to
the mean square displacement resulting from the random Brownian motion of a single colloid
at uniform temperature, given by

〈
xi(t)2〉

T = 2Dt [30]. Thermophoretic drifts can hence
only be clearly distinguished from Brownian motion when ⟨xi(t)⟩2 ≫

〈
xi(t)2〉

T , yielding the
criterion

tdri f t ≫
2D
v2

T
, (1.4)

where tdri f t is the time scale above which the drift becomes observable. The diffusion
coefficient D can be measured independently by analysing Brownian motion at uniform
temperature, taking values of about 1µm2s−1 for micron-sized colloids [48]. It follows from
the above criterion that colloids should be tracked over several minutes to obtain an accurate
measure of the thermal diffusion coefficient. This is however not easy to achieve in denser
colloidal suspensions where SPT might fail to distinguish between different trajectories.
Furthermore, the gradual build-up of a concentration gradient induces a diffusive flux that
may bias the direct measurement of thermophoretic drifts depending on which tracking
scheme is used.

Alternatively, other experimental techniques rely on the observation of the steady-state
distribution of colloids in a closed cell, which is reached when J = 0:

∇c =−c
DT

D
∇T =−cST ∇T. (1.5)

A schematic depiction of such a steady-state profile is shown in fig. 1.1. The ratio
ST = DT/D is called the Soret coefficient and is widely used to quantify the relative strength
of thermophoresis to Fickian diffusion. Eq. (1.5) thus shows that the Soret coefficient ST can
be determined from the colloidal concentration profile at steady-state. The previously stated
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Figure 1.1: Steady-state concentration profile of colloids in a temperature gradient. The
concentration gradient has been chosen to be opposite to the temperature gradient in this
figure, corresponding to a thermophobic behaviour of the colloids.

values of DT and D further imply that the magnitude of the Soret coefficient for colloids is
expected to be of the order ∼ 1K−1. The advantage of determining ST from the colloidal
steady-state is that it does not require a direct observation of colloidal motion, meaning that
it does not rely on an experimental distinction between thermophoretic motion and Fickian
diffusion.

1.3 To the Hot or to the Cold?

From the definition of the Soret coefficient, it can be seen that colloids move to lower temper-
atures if ST > 0 and to higher temperatures otherwise. In practice, predicting the sign of ST is
however not trivial at all. Experimental studies [72, 29, 41, 10, 28, 24, 70, 69, 78, 96, 26, 11]
have clearly shown that thermophoresis does not follow a simple trend due to its high sensitiv-
ity to multiple system parameters. These observations strongly suggest that thermophoretic
motion results from a complex interplay between different contributions induced by the
temperature gradient. A comprehensive review of the most prominent theoretical models
for thermophoresis has been published by Würger [90], providing quantitative explanations
for some of the observed trends. However, most theories only make correct predictions for
ST in a limited range of certain parameters, suggesting that they might be incomplete or too
simplified for practical purposes. The majority of these models [24, 68, 76, 91, 63] predict a
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thermophobic behaviour of the colloids (ST > 0), which generally agrees with experimental
results [28, 24, 69, 15], but not under all experimental conditions [29, 41, 10, 77].

For instance, Piazza et al. have found that the sign of ST changes at a specific critical
temperature T∗ in aqueous suspensions of functionalised polystyrene (PS) and micelles,
fitting it with the empirical formula

ST (T ) = S∞
T

[
1− exp

(
T∗−T

T0

)]
, (1.6)

where S∞
T , T ∗ and T 0 are system-specific parameters [41]. They noticed that the temper-

ature dependence of ST closely mirrors the one of the thermal expansivity of the solvent and
that T ∗ often coincides with the temperature where the solvent density is maximal. Würger
[89] has proposed that this correlation could be traced back to a close relation between
thermal expansion and the thermodiffusive separation of dissociated salt in a temperature
gradient. The accumulation of ions and counterions on opposite sides of the system leads to
the build-up of a thermoelectric field that exerts an electric force on the charged colloids. The
sign and strength of this thermoelectric field are set by the interaction between the ions and
water molecules, which in turn depends on the thermal properties of water. The temperature
dependence of these thermal properties is therefore transmitted to the thermoelectric field, to
an extent that the field can change sign when the temperature crosses a certain critical value.

For dilute suspensions, Piazza’s measurements also suggest that ST scales linearly with
particle radius R and that it increases with the square of the Debye screening length λ

[10, 69]. These scalings are supported by a theoretical model for thermophoresis of a single
colloid developed by Piazza and Parola [68], similar to an earlier hydrodynamic approach by
Ruckenstein [76] based on the application of Debye-Hückel theory in thin boundary layers.
This hydrodynamic approach has further been generalised by Würger to additionally account
for thermoelectric fields and diffusiophoretic contributions [90]. As the diffusion coefficient
of a single colloid is proportional to the particle radius, this approach indeed makes DT and
vT independent of particle size. However, for similar PS suspensions, Braun et al. have
found that ST is proportional to the square of the particle radius and that it rises linearly with
the Debye length [28, 29, 24]. Their results are in turn well fitted by a single-colloid model
proposed by Dhont [24, 23], whose dominant contribution is based on the minimisation of
an excess free energy.

In response to the ongoing debate about these parameter dependences, in particular
the one concerning the colloidal radius, one of my key aims is to derive a most general
theory for colloidal thermophoresis. In the following chapter, I will therefore first give
a detailed introduction to the theoretical background of thermophoresis, followed by a
rigorous derivation of my theoretical results. I will then use these results to provide a
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quantitative explanation for the discrepancy between these predicted scalings and show that
Dhont’s dominant contribution should not be appropriate for the description of colloidal
thermophoresis.





Chapter 2

Theory

Although different models have already been proposed for colloidal thermophoresis, a
complete theoretical description is still lacking. However, as the name suggests, the consensus
is that thermophoresis is a phoretic phenomenon: the thermal motion of a colloid is mainly
driven by local hydrodynamic stresses in the surrounding liquid, confined in a region close to
the particle surface, often referred to as the interfacial layer.

The difficulty in describing colloidal thermophoresis with a unique theoretical model is
twofold. First, colloidal masses and sizes are much bigger than those of solvent molecules,
but they are small enough for the onset of Brownian motion. Secondly, thermophoresis is
a non-equilibrium phenomenon [18], meaning that a formulation based on local equilib-
rium thermodynamics only applies when fluid advection and temperature variations can
be neglected on the colloidal scale. Most theoretical models [24, 90, 68, 76] describe ther-
mophoresis as driven by a gradient in surface tension or excess chemical potential, usually
adopting either a purely hydrodynamic or thermodynamic viewpoint. In analogy to molecular
thermodiffusion [92, 93], a thermodynamic approach relates the Soret coefficient to the
excess enthalpy [91] or a gradient in thermodynamic potential [21], but it neglects dissipation
via local fluid flows, thus restricting its validity to particles that are small compared to the
interaction range. This dissipative character is correctly incorporated in a hydrodynamic
approach [68, 33] that describes the fluid as a continuous medium subjected to stresses due
to colloid-fluid interactions. However, hydrodynamic descriptions are usually formulated in
a single-particle picture that ignores collective effects and Brownian motion.

So far, these approaches have mostly been discussed independently in literature due to
a lack of common ground, although they are not mutually exclusive. This has lead to a
general confusion and a disagreement about which thermophoretic contributions should be
considered in a thermodynamic or hydrodynamic picture. Here, I will show that the length
and time scale separation in colloidal suspensions can be used to clarify this matter. I will
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derive system-specific relations between different transport coefficients that describe the
coupling of thermodynamic forces to the colloidal flux. My starting point is the theory of
Non-Equilibrium Thermodynamics (NET), in which the temperature gradient is treated as
a first order perturbation from equilibrium. NET has only received little attention in the
discussion of colloidal thermophoresis, even though it provides a most general framework
for thermal motion in multi-component systems.

2.1 Non-Equilibrium Thermodynamics

The theory of NET is based on the laws of thermodynamics, stating that the evolution of all
components in a system is governed by its rate of entropy production. A key requirement for
NET is that the system is at Local Thermodynamic Equilibrium (LTE), meaning that it can
be partitioned into small volume elements, each of which may be assumed in thermodynamic
equilibrium. This condition is usually satisfied for moderate temperature gradients in the
absence of large-scale advection [28, 18].

Let us consider a continuous thermodynamic system at LTE, in the absence of chemical
reactions. The system consists of N components, each with a corresponding number density
nk and a chemical potential µk. From the resulting balance equations for heat, mass and
internal energy, it can be shown that the rate of entropy production σs inside a volume
element takes the following form [18]:

σs = Jq∇
1
T
+∑

k
Jk

{
−∇

µk

T
+

1
T

Fk

}
− 1

T
Γ : ∇u, (2.1)

where Γ is the viscous stress tensor and u is the centre of mass velocity of the volume
element. The net particle flux of component k relative to u is defined by

Jk = nk (vk −u) (2.2)

and satisfies ∑k mkJk = 0, where mk is the corresponding particle mass. The total heat
flux Jq accounts for both heat conduction and heat diffusion and the body force Fk includes
external forces as well as internal forces whose range exceeds the typical LTE scale (e.g.
thermoelectric forces). A more convenient form of eq. (2.1) can be obtained by rewriting
∇

µk
T as

∇
µk

T
= H̄k∇

1
T
+

1
T

∇T µk, (2.3)



2.1 Non-Equilibrium Thermodynamics 11

where the subscript T indicates that the gradient is evaluated at constant temperature.
The partial molar enthalpy H̄k of component k is defined as

H̄k =−T 2 ∂

∂T

(
µk

T

)
P,n j

. (2.4)

With eq. (2.3), the rate of entropy production can thus be expressed as

σs = J′q∇
1
T
+

1
T ∑

k
Jk {−∇T µk +Fk}−

1
T

Γ : ∇u, (2.5)

where the ’modified’ heat flux J′q is related to Jq via

J′q = Jq −∑
k

H̄kJk. (2.6)

Eq. (2.5) shows that entropy can be produced by two vectorial fluxes J′q and Jk; and one
tensorial flux related to the fluid flow gradient ∇u. Onsager’s theory of NET postulates linear
constitutive relations between the vectorial fluxes and thermodynamic forces, of the form

Ji = Liq∇
1
T
+

1
T ∑

k
Lik {−∇T µk +Fk} , (2.7)

J′q = Lqq∇
1
T
+

1
T ∑

k
Lqk {−∇T µk +Fk} , (2.8)

The scalar coefficients L are known as the Onsager transport coefficients. The flux
induced by a body force Fi is more commonly written as

Ji =
ni

ξi
Fi, (2.9)

where ξi is the friction coefficient of a particle of component i. As a result, ξi and Lii are
related by

Lii =
niT
ξi

. (2.10)

An important feature of Onsager’s theory, also known as the reciprocal relations, is that
the cross-coefficients are symmetric, so that [65, 66]

Lik = Lki and Liq = Lqi. (2.11)



12 Theory

It is crucial to note that these relations hold in any chosen basis of thermodynamic
forces, meaning that relations similar to eqs. (2.7), (2.8) and (2.11) could also have been
formulated based on the initial form of the entropy production given by eq. (2.1). Although
the Curie symmetry principle forbids coupling between tensorial forces and vectorial fluxes
in a homogeneous isotropic medium, a local hydrodynamic coupling between shear flows
and vectorial forces can occur inside the interfacial fluid layer around a colloid.

The thermodynamic forces acting on volume element at LTE are further related via the
Gibbs-Duhem equation [18]

dP = sdT +∑
k

nkdµk, (2.12)

where s is the entropy density and P is the total pressure of the volume element. In the
presence of thermodynamic gradients, the Gibbs-Duhem equation can hence be interpreted as
a balance equation for the forces acting on a volume element. In order to write this equation
in terms of the same thermodynamic forces as the Onsager fluxes, we split the differential of
the chemical potential up into

dµk =−S̄kdT +dT µk, (2.13)

where the partial molar entropy S̄k is defined as

S̄k =−
(

∂ µk

∂T

)
P,n j

. (2.14)

As a result, the Gibbs-Duhem equation can now be rewritten as

dP = s′dT +∑
k

nkdT µk, (2.15)

where the ’modified’ entropy density s′ is given by

s′ = s−∑
k

nkS̄k. (2.16)

It is crucial to notice the delicate difference between the entropy densities s′ and s. The
change from s to s′ is analoguous to the transition from Jq to J′q, which naturally arises when
the basis of thermodynamic forces is changed from

(
∇

1
T ,∇µk

)
to the linearly independent

set
(
∇

1
T ,∇T µk

)
. A discussion of entropy and heat flux is therefore only meaningful if these

quantities are clearly specified within the chosen basis. More generally, the modified density
x′ related to the density x of an extensive thermodynamic variable X can be defined as
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x′ = x−∑
k

nkX̄k, (2.17)

where X̄k is the corresponding partial molar property.
Finally, we note that in an N-component system, the Onsager flux given by eq. (2.7)

carries a much large number of variables than the phenomenological expression given
by eq. 1.1, with (1+N)N/2 independent transport coefficients and N − 1 independent
thermodynamic forces. This suggests that an introduction of specific assumptions is required
to achieve a hydrodynamic description of thermophoresis in terms of a reduced number of
independent variables.

2.2 Dynamic Length and Time Scale Separation in Col-
loidal Suspensions

Onsager’s theory provides general expressions for the particle and heat fluxes, but it makes no
attempt to determine the relevant transport coefficients L in specific thermodynamic systems.
Here, I construct a framework that allows the formulation of system-specific relation between
these coefficients for thermophoresis in colloidal suspensions. The system of interest is
a closed suspension at LTE, subjected to a constant and uniform temperature gradient by
keeping opposite sides of the system in contact with thermostats at different temperatures.
The colloids are dispersed in a fluid that mainly consists of solvent molecules, but that can
additionally contain small solutes of negligible size (e.g. ions). In the following, the index
i = 0 is reserved for the solvent. The colloidal concentration and flux are denoted by c
and J respectively, and the index i = 1 is used to refer to other quantities of the colloidal
component.

My theoretical framework is based on the dynamic length and time scale separation in
colloidal suspensions [69, 9]. The length scale separation refers to the difference in size and
concentration between the colloids and fluid particles, whereas the time scale separation
occurs between the (longer) time it takes the colloid to move a distance equal to its own
diameter and the (shorter) time needed for the fluid flows to establish themselves. More
specifically, the framework relies on the following set of assumptions:

1. The colloids are much larger/heavier than fluid particles

2. The component densities satisfy c ≪ nk ̸=0,1 ≪ n0

3. The solvent is incompressible
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4. The Reynolds number of the fluid is much smaller than one (Re ≪ 1)

5. Fluid mass diffusion dominates over fluid advection and colloidal motion (the Péclet
number of the fluid is much smaller than one)

These assumptions form the basis of the hydrodynamic approach to thermophoresis. In
particular, assumptions 1 and 2 allow the use of the continuum approximation. The fluid may
thus be treated as a continuous medium and the incompressibility of the solvent leads to a
rapid momentum relaxation in the system. Further, the presence of a large bulk reservoir of
pure fluid allows the introduction of an effective bulk fluid pressure Pb

s , which can be defined
via eq. (2.15) as the pressure resulting from thermodynamic forces inside a volume element
of pure fluid (hereafter referred to as fluid element):

dPb
s = s′bs dT + ∑

k ̸=1
nb

kdT µk, (2.18)

where s′bs is the modified entropy density of the pure bulk fluid and nb
k is the corresponding

bulk concentration of fluid component k. From eq. (2.18), the osmotic pressure Π of the
colloids can be unambiguously defined as the difference between the total pressure and the
bulk fluid pressure inside the volume element:

Π = P−Pb
s (2.19)

For visual aid, the components and corresponding pressures inside a volume element at
LTE are displayed in fig. 2.1.

For colloids, a departure from the ideal state occurs due to specific interactions with the
surrounding components. The colloidal chemical potential can then more generally be written
as µ1 = µid +µexc, where µid is the ideal chemical potential. The excess chemical potential
µexc accounts for a specific colloid-fluid interaction, denoted by µcs; and for a collective
contribution µcc due to excluded volume effects or specific pair-interactions between colloids.
According to assumptions 1 and 5, the fluid responds to these interactions with a rapid
relaxation to a local equilibrium distribution around the colloids that remains unperturbed
by colloidal motion or advection. At uniform temperature, this allows the formulation of a
’reduced’ description [85, 34], in which the colloid-fluid interaction µcs is treated as a local
interfacial layer around the colloid, separated out from the bulk. Inside the interfacial layer,
the local thermodynamic properties of the fluid differ from those of the bulk fluid, which in
turn barely feels the presence of the colloids. As the introduction of a colloid necessarily
leads to the build-up of an interfacial layer, µcs is equal to the surface energy of the created
interface:
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Figure 2.1: A volume element of the colloidal suspension at LTE, containing colloids (red
spheres) and fluid. The fluid is made of solvent (continuous light blue background) and
solutes (f. ex. ions and counterions). The dashed blue square shows an element of pure fluid
with a corresponding bulk fluid pressure Pb

s . The interfacial layers around the colloids are
not shown here.

µcs = Ac

(
∂G
∂A

)
P,T,Nk ̸=1

= Acγcs, (2.20)

where G is the Gibbs free energy, γcs is the interfacial tension and Ac is the constant
surface area of a colloid. The change in surface energy can further be related to interfacial
excess properties of the fluid via the Gibbs adsorption equation [61]

−dµcs =−Acdγcs = Sφ dT + ∑
k ̸=1

Nφ

k dT µk, (2.21)

where Nφ

k is the excess number of fluid particles of component k and Sφ is the interfacial
excess entropy. The Gibbs adsorption equation shows that Sφ and Nφ

k can be interpreted as
the partial molar properties of the colloidal component if the interfacial chemical potential
µcs changes in response to the thermodynamic forces dT and dT µk. In addition, a collective
contribution µcc may arise from the interaction between overlapping layers. From this
description, it follows that the colloidal chemical potential can be expressed as a sum of two
separate terms:

µ1 = µcs +µc, (2.22)
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where µc = µid +µcc is the ’bulk’ chemical potential of the colloidal component, account-
ing for colloidal pair-interactions and for the ideal part of the chemical potential. To make
progress in the description of thermophoresis, we shall extend this superposition principle to
the colloidal flux, by writing

J = Jcs +Jc. (2.23)

Due to the hydrodynamic character of the Onsager transport coefficients, the separation
into an interfacial single-colloid contribution Jcs and a bulk contribution Jc is only useful if
the fluid flows induced by these fluxes can also be treated as decoupled from each other. This
indeed applies to fluids at low Reynolds number since the Navier-Stokes equation is linear
when Re ≪ 1, allowing the use of the superposition principle of fluid flows. By separating
out the direct contribution from the colloidal chemical potential (i = 1) in eq. (2.7), Jc and
Jcs can now be written as two decoupled Onsager fluxes, respectively given by

Jc = Lc
1q∇

1
T
− L11

T
∇T µc +

1
T ∑

k ̸=1
Lc

1k {−∇T µk +Fk} (2.24)

and

Jcs = Lcs
1q∇

1
T
+

L11

T
(−∇T µcs +F1)+

1
T ∑

k ̸=1
Lcs

1k {−∇T µk +Fk} , (2.25)

where each term in L1q = Lcs
1q +Lc

1q and L1k = Lcs
1k +Lc

1k separately satisfies Onsager’s
reciprocal relation.

In general, the body force Fk on component k may consist of an external body force
Fk,ext, such as gravity, and an internal body force Fk,int, resulting from a thermoelectric field
inside the system. As this work is meant to focus on the motion of colloids in a temperature
gradient, I will ignore external forces in the following theoretical considerations. However,
external forces can easily be included by noticing that they couple to the colloidal flux via
the same Onsager coefficients L1k as the corresponding chemical potential gradients ∇T µk

and thermoelectric forces Fk,int. By setting Fk,ext = 0 and Fk = Fk,int, the condition of charge
neutrality implies that equal and opposite body forces are exerted on the colloid and its
interfacial layer, giving

F1 + ∑
k ̸=1

Nφ

k Fk = 0. (2.26)

Combining this result with eq. (2.21) at uniform temperature, we obtain the relation
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−∇T µcs +F1 =− ∑
k ̸=1

Nφ

k {−∇T µk +Fk} . (2.27)

For the treatment of interfacial thermophoresis, it is useful to eliminate the term −∇T µcs+

F1 with eq. (2.27), allowing us to express eq. (2.25) in the alternative form

Jcs =
L11

T

(
−Qcs

1q
∇T
T

+ ∑
k ̸=1

Ncs
1k {−∇T µk +Fk}

)
, (2.28)

where the interfacial transport coefficients Qcs
1q and Ncs

1k are given by

Qcs
1q = Lcs

1q/L11, (2.29)

Ncs
1k = Lcs

1k/L11 −Nφ

k . (2.30)

A carefully chosen set of assumptions that specifically applies to colloidal suspensions
has thus lead us to a framework in which the separate evaluation of Jcs and Jc is well justified.
As a result, the interfacial contribution Jcs can now be discussed within a hydrodynamic
single-colloid picture.

2.3 Interfacial Thermophoresis and the Hydrodynamic Ap-
proach

The hydrodynamic single-colloid picture is concerned with the interfacial stresses that
thermodynamic bulk gradients produce inside the fluid around a single colloid. It is well
known that a thermodynamic gradient across an interfacial layer gives rise to a fluid flow in
one direction and a corresponding phoretic drift of the colloid in the opposite direction [4]
(Fig. 2.2). In the absence of a temperature gradient, a radially symmetric distribution of fluid
around the colloid is maintained by a local balance between a body force density fs and a
gradient in fluid pressure Ps, such that fs −∇Ps = 0. A temperature gradient then breaks this
balance and sets the colloid and fluid into motion. A steady-state drift velocity v is reached
when the total force on the colloid is zero and the resulting colloidal flux can then be written
as

Jcs = cv =
c
ξ

Fcs, (2.31)
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Figure 2.2: Schematic depiction of hydrodynamic stresses caused by a temperature gradient
inside an interfacial (electric double) layer around a charged colloid. The gradient in excess
pressure induces an interfacial fluid flow close to the colloidal surface (grey lines). In
response, the colloid moves in the opposite direction (dark red arrow).

where ξ is the friction coefficient of the colloid. In view of eq. (2.28), the interfacial
driving force Fcs is given by

Fcs =−Qcs
1q

∇T
T

+ ∑
k ̸=1

Ncs
1k {−∇T µk +Fk} . (2.32)

Although the ’interfacial heat of transport’ Qcs
1q has commonly been identified as the

driving force behind interfacial thermophoresis, the contribution related to Ncs
1k has often been

overlooked. This is rather surprising, as it is the latter contribution that can give rise to the
well-known effect of diffusiophoresis at uniform temperature. Based on Onsager’s reciprocal
relations, I will show that Qcs

1q and Ncs
1k can respectively be determined from the interfacial

transport of heat and fluid particles that arises when a stationary colloid is subjected to
a uniform bulk flow in a fluid kept at constant temperature and chemical potential. The
corresponding interfacial excess densities of the fluid must however be defined carefully
before these transport coefficients can be computed. For this purpose, I first consider the
momentum balance equation of the fluid, which is governed by the Navier-Stokes equation

F⃗ +η∇
2us = 0, (2.33)
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where F⃗ = fs −∇Ps is the net force density acting on the fluid element, us is the local
centre of mass velocity of the fluid element and η is the fluid viscosity. The inertia term has
been neglected in eq. (2.33) due to the assumption of small Reynolds number. Here, I first
derive a general expression for the interfacial force density F⃗φ that drives phoretic motion.
In recent literature [90, 68, 23], different expressions have only been given in the case where
the excess fluid inside the layer is described by Poisson-Boltzmann theory, suggesting that a
general expression of F⃗φ for non-ideal fluids is still lacking.

2.3.1 The Interfacial Force Density

Let us consider a stationary colloid whose surface is in contact with a large bulk reservoir
of fluid made of solvent molecules and small solutes. The solvent is pictured as an incom-
pressible, polarisable medium. I denote a fluid property x with an index b to refer to its value
in the bulk and write it as x(r) to refer to its local value at a position r from the colloidal
centre. The interfacial layer around the colloid results from a specific interaction between
the colloid and fluid component k, characterised by a potential φk(r) that tends to zero in
the bulk. Interfacial excess densities will therefore be denoted by an index φ . Close to the
colloidal surface, a fluid component k can hence be subjected to a local conservative body
force −∇T φk(r) and an internal body force Fk induced by the temperature gradient in the
bulk. The body force density in a local fluid element is thus given by

fs(r) =− ∑
k ̸=1

nk(r)(∇T φk(r)−Fk)+p(r)∇E(r), (2.34)

where the last term accounts for the electric force due to the solvent polarisation p(r) in
the non-uniform electric field E(r) of the colloid. Assuming that the fluid element is at LTE,
the Gibbs-Duhem equation can further be used to relate the gradient in fluid pressure Ps(r)
across the element to the local thermodynamic gradients [18]:

∇Ps(r) = s′s(r)∇T + ∑
k ̸=1

nk(r)∇T µk(r)+p(r)∇E(r), (2.35)

where

s′s(r) = ss(r)− ∑
k ̸=1

nk(r)S̄k. (2.36)

In view of eqs. (2.34) and (2.35), it should be noted that the potential φk(r) created by the
colloid is treated as an external field at this stage, so that the fluid chemical potentials µk(r)
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only account for internal interactions between fluid components. The local force density
F⃗ (r) on a fluid element thus equals

F⃗ (r) = fs(r)−∇Ps(r) =−s′s(r)∇T − ∑
k ̸=1

nk(r){∇T (µk(r)+φk(r))−Fk} . (2.37)

Due to the gradient in φk(r), the force density given by eq. (2.37) cannot yet be related
back to the thermodynamic forces that appear in eq. (2.28). However, this problem can be
solved by extending the condition of thermodynamic equilibrium to the scale of the entire
interfacial layer. In a homogeneous system at uniform temperature, the radially symmetric
equilibrium structure of the interfacial layer around a colloid is determined by the condition
of zero force density

F⃗ (r) =− ∑
k ̸=1

nk(r)∇T (µk(r)+φk(r)) = 0, (2.38)

which is satisfied if ∇T (µk(r)+φk(r)) = 0. Integration from the colloidal surface into
the bulk of the suspension then directly yields the chemical equilibrium condition

µk(r)+φk(r) = µ
b
k , (2.39)

where µb
k is the chemical potential of component k in the bulk of the suspension. In a

non-equilibrium system, µb
k can more generally be understood as the value of the chemical

potential far away from the colloidal surface, along the isotherm of the considered fluid
element. Eq. (2.39) is supposed to remain valid if the interfacial layer is at thermodynamic
equilibrium. This crucial assumption, which shall henceforth be referred to as Interfacial
Thermodynamic Equilibrium (ITE), allows us to redefine the fluid chemical potential µk by
including the potential φk as an internal interaction in the fluid equation of state:

µk ≡ µk(r)+φk(r) = µ
b
k , (2.40)

so that the ’bulk’ index b of µk can simply be omitted. As (∂φk/∂T )P,n j
= 0, the partial

molar entropy S̄k remains unaffected by this redefinition, but the potential φk(r) now directly
contributes to the local fluid enthalpy density hs(r). From the standard thermodynamic
relations T ss = hs −∑k ̸=1 nkµk and T S̄k = H̄k −µk, it is then easily verified that an enthalpy-
entropy compensation of the form

T s′s(r) = h′s(r) (2.41)
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holds between the modified densities s′s(r) and h′s(r). With eq. (2.40), the force density
given by eq. (2.37) can now be written as

F⃗ (r) =−h′s(r)
∇T
T

+ ∑
k ̸=1

nk(r){−∇T µk +Fk} . (2.42)

where h′s(r) and nk(r) only depend on the radial distance r from the colloidal centre. In
the absence of an interfacial layer, the same fluid element will be subjected to a bulk force
density given by

F⃗b =−h′bs
∇T
T

+ ∑
k ̸=1

nb
k {−∇T µk +Fk} . (2.43)

As interfacial thermophoresis is only concerned with the motion induced by the part of
F⃗ that directly stems from the specific colloid-fluid interaction, we have to subtract this bulk
force density from eq. (2.42), giving

F⃗φ (r) = F⃗ (r)− F⃗b =−qφ (r)
∇T
T

+ ∑
k ̸=1

nφ

k (r){−∇T µk +Fk} (2.44)

with

qφ (r) = hφ (r) = h′s(r)−h′bs , (2.45)

nφ

k (r) = nk(r)−nb
k , (2.46)

where qφ (r) is the interfacial heat density and nφ

k (r) is the interfacial excess (number)
density of fluid component k. As I will show more explicitly in the section on bulk ther-
mophoresis, a non-zero value of F⃗b is an indicator of collective effects due to the presence
of multiple colloids inside the system. For a single colloid in an infinitely large bulk fluid,
the fluid must be force-free in the absence of external forces, such that F⃗b = 0, implying that
h′bs = 0. Eq. (2.45) reduces to qφ (r) = h′s(r) in this case, meaning that the interfacial heat
density is simply equal to the modified enthalpy density of the fluid.

With eq. (2.44), I have derived a most general expression for the interfacial force density
resulting from the specific colloid-fluid interaction. This result specifically relies on the
assumption of ITE and shows that thermodynamic forces couple to the interfacial excess
densities of the fluid, which are now unambiguously defined by eqs. (2.45) and (2.46).
Finally, it must be noted that eq. (2.44) and (2.45) ignore heat conduction through the
colloid. Internal heat flows through the colloid must however be treated with care as they
modify the local temperature profile around the colloid if its thermal conductivity σc differs
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Figure 2.3: As the fluid streams past the stationary colloid (light blue lines), it carries
heat/fluid particles out of the interfacial layer. The thermodynamic equilibrium inside the
layer is then restored by an instantaneous absorption of heat/fluid particles from the bulk
(dark blue arrows). Overall, this combined process leads to a flux of heat/fluid particles in
the bulk. The depicted fluid flows are based on [7].

from the conductivity σs of the fluid [90]. To preserve the condition of ITE, the resulting
local temperature gradient must then be assumed to be reasonably weak and approximately
uniform over the layer. This issue will be given further attention in my second chapter on the
simulation of thermophoresis.

2.3.2 Determination of the Interfacial Driving Force: Onsager’s Recip-
rocal Relations

Based on momentum conservation, the thermophoretic drift is usually directly determined
from eq. (2.33) using the expression of the interfacial force density of the fluid inside
a temperature gradient. However, these hydrodynamic arguments have so far only been
successfully applied in the limiting cases where the interaction range is either very small or
very large compared to the colloidal size [33, 62]. Here, I propose an alternative approach
based on Onsager’s reciprocal relations that applies to any case, irrespective of the interaction
range. The strength of these relations, as given by eq. (2.11), lies in the prediction that
the colloidal flux couples to gradients in temperature and fluid chemical potential in the
same way as heat and fluid fluxes couple to an external force on the colloid. Instead of
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using momentum conservation arguments in a force-free system subjected to thermodynamic
gradients, these transport coefficients can hence be determined by computing the heat and
fluid fluxes in the absence of thermodynamic gradients when an external force is applied to
the colloid.

To obtain a general hydrodynamic expression for Qcs
1q or Ncs

1k, we consider a single colloid
of radius R inside an infinitely large fluid at uniform temperature and chemical potential.
The fluid is moving at a uniform flow velocity u∞ = u∞ŷ in the bulk and the colloid is kept
at rest by an applied force F1 =−ξ u∞. The fluid streams through the interfacial layer and
carries an excess of heat and fluid particles into the bulk. As the interfacial layer is assumed
to remain in a thermodynamic equilibrium around the colloid, the excess carried out of the
layer is balanced by an absorption of an equal amount of heat/fluid particles from the bulk
fluid. This interfacial balance, which is represented in fig. 2.3, results in the following heat
and particle fluxes:

J′q,V =
∫

∞

R
qφ (r)us (r)dV (2.47)

Jk,V =
∫

∞

R
nφ

k (r)(us (r)−u∞)dV , (2.48)

where us is the fluid flow velocity. In view of eq. (2.2), particle fluxes are computed with
respect to the bulk velocity u∞, which has therefore been subtracted from the flow velocity in
eq. (2.48). It is worth noting that eqs. (2.47) and (2.48) are the integrated heat and particle
fluxes, meaning that the fluxes have been integrated over the volume V of the system. Based
on Onsager’s reciprocal relations (2.11), these fluxes can equivalently be expressed as

J′q,V = V
Lcs

q1

T
F1 =−

Lcs
q1

L11
u∞ =−

Lcs
1q

L11
u∞ =−Qcs

1qu∞, (2.49)

Jk,V = V
Lcs

k1
T

F1 =−
Lcs

k1
L11

u∞ =−
Lcs

1k
L11

u∞ =−
(

Ncs
1k +Nφ

k

)
u∞. (2.50)

More generally, let us denote the interfacial excess densities qφ (r) and nφ

k (r) by xφ (r)
and the corresponding interfacial transport coefficients Qcs

1q and Ncs
1k by Xcs. By respectively

combining eqs. (2.47) and (2.48) with eqs. (2.49) and (2.50), we obtain

Xcsu∞ =−
∫

∞

R
xφ (r)us (r)dV. (2.51)
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Due to the circular symmetry around the direction ŷ of the bulk flow, only the y-
component of us contributes to the volume integral. Furthermore, as the interfacial excess
density xφ (r) only depends on radial distance, the angular integration in eq. (2.51) can be
carried out separately over us, so that we can write

Xcsu∞ =−
∫

∞

R
xφ (r)⟨us (r) ŷ⟩4πr2dr, (2.52)

with an orientational average ⟨us (r) ŷ⟩ defined by

⟨us (r) ŷ⟩= 1
2

∫
π

0
uy(r,θ)sinθdθ , (2.53)

where uy(r,θ) is the y-component of us and θ is the angle with respect the bulk flow
direction (rŷ = cosθ ). The solution for the fluid flow velocity us around a spherical particle
is known for both stick and slip boundary conditions [6, 52]. In the spherical basis (r̂, θ̂ ), the
coordinates of us are given by

ur = u∞ cosθ

[
1−2

(
3
4
−a
)

R
r
+2
(

1
4
−a
)(

R
r

)3
]

(2.54)

uθ = −u∞ sinθ

[
1−
(

3
4
−a
)

R
r
−
(

1
4
−a
)(

R
r

)3
]
, (2.55)

where the parameter a takes the value a = 0 for stick and a = 1/4 for slip. The ori-
entational average can thus be evaluated in a straightforward manner (see appendix A),
yielding

Xcs =−
∫

∞

R
xφ (r)

(
1−b

R
r

)
4πr2dr, (2.56)

where the parameter b takes the value b = 1 for stick and b = 2/3 for slip.

With eq. (2.56), I have derived a general hydrodynamic form for the interfacial transport
coefficient Xcs based on Onsager’s reciprocal relations. Eq. (2.56) can now be used to
compute the interfacial driving force Fcs as defined by eq. (2.32). As the thermodynamic
bulk gradients ∇T and ∇T µk are uniform over the layer, the hydrodynamic form can be
directly applied to the interfacial force density F⃗φ (r), giving

Fcs =−
∫

∞

R
F⃗φ (r)

(
1−b

R
r

)
4πr2dr, (2.57)

which, by changing variables, can alternatively be expressed as
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Figure 2.4: Schematic depiction of the Hückel limit (R ≪ λ ) and the boundary layer approxi-
mation (R ≫ λ )

Fcs =−4π

∫
∞

0
F⃗φ (z)

[
z2 +(2−b)Rz+(1−b)R2]dz. (2.58)

where z = r −R is the radial distance from the colloidal surface. For the following
considerations, it is convenient to introduce a characteristic length scale λ that defines the
’thickness’ of the interfacial layer. Of particular interest are the limiting cases of ’large layers’
(R ≪ λ ) and ’thin layers’ (R ≫ λ ), which are respectively known as the Hückel limit [62]
and the boundary layer approximation [90] (fig. 2.4).

In the Hückel limit, the particle size is negligible (R/r → 0) and eq. (2.57) reduces to a
volume integral over the layer. Further, heat conduction through the colloid can be ignored,
so that the identity qφ = hφ remains valid. We obtain

Fcs =−
∫

∞

R
F⃗φ (r)4πr2dr = Hφ

∇T
T

− ∑
k ̸=1

Nφ

k {−∇T µk +Fk} , R ≪ λ , (2.59)

where Nφ

k is the interfacial excess number of fluid component k and Hφ is the interfacial
excess enthalpy. In the Hückel limit, Fcs is independent of the boundary condition at the
colloidal surface and the interfacial Onsager coefficients, as defined by eqs. (2.29) and (2.30),
reduce to

Lcs
1q = −Hφ L11, (2.60)

Lcs
1k = 0. (2.61)
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Noting that Hφ = T Sφ , eqs. (2.21) and (2.27) can further be used to rewrite eq. (2.59) in
the alternative form

Fcs =−∇µcs +F1, R ≪ λ . (2.62)

This result shows that the Hückel limit corresponds to an effective ’thermodynamic’
treatment of colloidal motion, driven by a gradient in surface energy −∇µcs.

As the Hückel limit is restricted to particles that are small compared to the layer thickness,
it is not expected to hold for colloidal thermophoresis. Colloids usually have diameters that
largely exceed the interaction range and should therefore be considered in the boundary layer
approximation R≫ λ , where the heat flux through the colloid must also be taken into account.
In this limit, the interfacial heat density is therefore no longer equal to the interfacial enthalpy
density hφ but can be related to hφ via qφ =Chφ where the factor C = 3/(2+σc/σs) is set
by the ratio between σc and σs [90, 37]. To first order in z/R ≪ 1, eq. (2.58) reduces to:

Fcs = −4π

∫
∞

0
F⃗φ (z)

[
(2−b)Rz+(1−b)R2]dz, R ≫ λ

=


−4πR

∫
∞

0 zF⃗φ (z)dz for stick

−1
3 ×4πR2 ∫ ∞

0 F⃗φ (z)dz− 4
3 ×4πR

∫
∞

0 zF⃗φ (z)dz for slip,

(2.63)

where it should again be noted that −4πR2 ∫ F⃗φ (z)dz =−∇µcs +F1.

Interestingly, the expression for a stick boundary in eq. (2.63) coincides with the ex-
pression first derived by Derjaguin, who based his derivation on Onsager reciprocity by
considering isothermal fluid flow through a porous medium [20, 4]. An important feature of
the boundary layer approximation is that, although thermophoretic motion is still induced by
a gradient in surface energy µcs, the force Fcs that drives thermophoresis can no longer just be
written as −∇µcs +F1. In view of eqs. (2.29) and (2.30), we notice that this hydrodynamic
aspect of colloidal thermophoresis is characterised by non-zero cross-coefficients Lcs

1k and
a value of −Q∗

cs that differs from the interfacial excess enthalpy Hφ . From the form of the
integral in eq. (2.57), it can also be seen that the thermodynamic limit (R/r → 0) constitutes
an upper bound for Fcs. As a result, we conclude that the presence of a solid surface leads to
dissipative effects that tend to inhibit thermophoretic motion.

In this section, I have constructed a general hydrodynamic theory for interfacial ther-
mophoresis, showing that Onsager’s reciprocal relations can be used to derive explicit
expressions for the interfacial transport coefficients that determine the corresponding single-
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particle contribution Jcs to the colloidal flux, as defined by eq. (2.28). Hence, what still
remains to be considered is the bulk contribution Jc that represents the effect of Brownian
motion and collective effects when multiple colloids are inside the system.

2.4 Bulk Thermophoresis and the Microscopic Approach

Bulk thermophoresis is usually described using a microscopic approach that relies on a clear
separation of colloid-fluid interactions from colloidal pair-interactions. To justify the validity
of such an approach, let us first consider the Gibbs-Duhem equation for a volume element
(containing colloids and fluid) at LTE:

∇P = s′∇T +∑
k

nk∇T µk. (2.64)

The incompressible solvent allows a rapid momentum relaxation in the system, leading
to a net momentum balance ∇P = fext, where fext is the external body force density. As the
imposed temperature gradient and fext are independent, it follows that

T s′ = h′ = 0, (2.65)

so that the total entropy (or enthalpy) density is the sum of the partial entropy (or enthalpy)
densities: s = ∑k nkS̄. Further, eq. (2.64) can now be rewritten as

c∇T µ1 + ∑
k ̸=1

nk∇T µk = fext, (2.66)

where the colloidal component (i = 1) has been separated out. In order to obtain a balance
equation for the bulk of the suspension, we need to make eq. (2.66) independent of the
specific colloid-fluid interaction, which can be achieved by using eq. (2.21). The applicability
of the Gibbs adsorption equation is therefore crucial to arrive at separate balance equation for
the bulk of the suspension, as it relies on the existence of an interfacial layer that can simply
be ’subtracted’. By using eq. (2.21) to eliminate the interfacial term c∇T µcs in eq. (2.66), we
get

c∇T µc + ∑
k ̸=1

nB
k ∇T µk = fext, (2.67)

where nB
k = nk − cNφ

k is the number of bulk fluid particles per volume. As every colloid
occupies a volume Vc =

4
3πR3 of the volume element, nB

k is related to the bulk density nb
k of

the pure fluid via nB
k = nb

k (1−ϕ), where ϕ = cVc is the colloidal volume fraction.
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The balance equation given by eq. (2.67) is independent of the specific colloid-fluid
interaction and therefore justifies the formulation of a separate microscopic approach that
only considers the mutual interaction between colloids in a heat bath. A most general starting
point for such a microscopic description is the generalised Fokker-Planck equation [75]

∂PN

∂ t
+∑

i
vi∇iPN +∑

i j

Fi j

m
∂PN

∂vi
(2.68)

= ∑
i j

∂

∂v j

[
αi j

(
v jPN +

kBTj

m
∂PN

∂v j

)
+βi jPN

∇ jT
Tj

]
,

where PN is the N-particle probability distribution of the colloids. The indices i and j
run over all colloids inside the volume element, so that Fi j represents the force that colloid
j exerts on colloid i. The coefficients αi j and βi j are microscopic Onsager coefficients for
the transport of momentum and heat due to hydrodynamic interactions between colloids i
and j. In the absence of external forces, when fext = 0 and ∇P = 0, it has been shown that
the N-particle Smoluchowski equation can be recovered from eq. (2.68) [64], yielding the
result Jc =−∇Π/ξ , where Π is the osmotic pressure of the colloids [21, 22]. The friction
coefficient is given by ξ = 6πbηR/K(ϕ), where the mobility factor K(ϕ) accounts for
hydrodynamic interactions at finite volume fraction [8]. However, as this result is obtained
by neglecting βi j, a more general form is instead given by

Jc =
cT
ξ

βcc (ϕ)∇
1
T
− 1

ξ
∇Π. (2.69)

where βcc (ϕ) is a ’collective’ heat coefficient. Although the evaluation of βcc is beyond
the scope of this work, it is clear that this quantity vanishes when the volume fraction goes to
zero, which occurs in the single-colloid limit or in the case where the colloids are point-like.
Eq. (2.69) can be rearranged into the same form as eq. (2.24) by making use of eq. (2.19).
Due to uniformity of the total pressure (∇P = 0), it can be seen from eq. (2.19) that the
osmotic pressure gradient ∇Π is related to the gradient in bulk fluid pressure ∇Pb

s via

∇Π =−∇Pb
s . (2.70)

Based on eq. (2.18), the bulk fluid pressure gradient ∇Pb
s can be expressed as

∇Pb
s = s′bs ∇T + ∑

k ̸=1
nb

k∇T µk = h′bs
∇T
T

+ ∑
k ̸=1

nb
k∇T µk. (2.71)



2.4 Bulk Thermophoresis and the Microscopic Approach 29

Due to the condition of charge neutrality, the internal body force density in the bulk
fluid must vanish, such that ∑k ̸=1 nb

kFk = 0. Using this result, eq. (2.71) can alternatively be
written as

∇Pb
s = h′bs

∇T
T

+ ∑
k ̸=1

nb
k {∇T µk −Fk} , (2.72)

which is equivalent to eq. (2.43). Eq. (2.72) shows that F⃗b =−∇Pb
s = ∇Π, confirming

my previous statement that a non-zero value of F⃗b stems from collective effects or Brownian
motion inside a system where the colloidal concentration is non-zero. Combining eqs. (2.72),
(2.69) and (2.67), the flux Jc thus takes the form

Jc = L11

(
βcc −

h′bs
c

)
∇

1
T
− L11

T
∇T µc −

L11

T ∑
k ̸=1

Vcnb
k {−∇T µk +Fk} (2.73)

and a comparison to eq. (2.24) yields the following Onsager coefficients for bulk ther-
mophoresis:

Lc
1q =

(
βcc −

h′bs
c

)
L11, (2.74)

Lc
1k = −Vcnb

kL11. (2.75)

(2.76)

In analogy to eq. (2.31), we can further define an effective driving force Fc behind bulk
thermophoresis via Jc =

c
ξ

Fc, such that

Fc =−Qc
1q

∇T
T

−∇T µc + ∑
k ̸=1

Nc
1k {−∇T µk +Fk} , (2.77)

where the bulk transport coefficients Qc
1q and Nc

1k are given by

Qc
1q = βcc −

h′bs
c
, (2.78)

Nc
1k = −Vcnb

k . (2.79)

Although eqs. (2.78) and (2.79) have been derived from a microscopic approach using
the notion of osmotic pressure, it is important to note that these transport quantities could
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also have been obtained from Onsager’s reciprocal relations. A crucial implication of this
is that eqs. (2.78) and (2.79) are expected to remain valid even in the presence of external
forces when ∇P ̸= 0. Indeed, Nc

1k simply corresponds to the number of fluid particles that
need to be displaced in the bulk when a colloid of volume Vc moves into a volume element
at uniform temperature and chemical potential. Similarly, it can be seen that the term h′bs
in Qc

1q corresponds to the heat transported by a uniform fluid flow u∞ through a field of
mutually interacting colloids. It now becomes clear that the coefficient βcc must account
for heat dissipation due to hydrodynamic interactions. These dissipative effects can best be
understood by writing the flow velocity as us(r) = u∞+δu(r), where the contribution δu(r)
accounts for the flow engendered by every single colloid and for hydrodynamic interactions
between colloids. The coefficient βcc must therefore account for the heat transport h′bs δu
resulting from a non-uniformity in the flow due to the colloids. Furthermore, the transport of
heat out of the interfacial layer of one colloid can also be modified by the fluid flows induced
by all other colloids. This raises the fundamental question why the total colloidal flux is
not directly determined from the reciprocal relations, but instead split up into an interfacial
contribution and a bulk contribution that are evaluated separately using different approaches.
The reason is that the fluid flow field us(r) required in the reciprocal argument cannot be
determined in a straightforward manner if there are multiple colloids in the system. The
separation of J into Jcs and Jcc thus allows us to describe colloidal thermophoresis as a
superposition of an interfacial single-particle phenomenon and a bulk effect in the regime
where the cross-coupling between Jcs and Jc is weak, namely at low colloidal concentrations.
As a result, the only coefficient that remains unknown in this description is the collective heat
coefficient βcc, which represents the dissipative character of bulk thermophoresis at higher
concentrations.

2.5 The Thermophoretic Flux

We can now combine the bulk contribution Jc with the interfacial contribution Jcs to obtain an
expression for the total colloidal flux J = Jcs +Jcc. Collecting all derived Onsager relations,
given by eqs. (2.29), (2.30), (2.74) and (2.75), we get

J = Jcs +Jc = Liq∇
1
T
+

1
T ∑

k
Lik {−∇T µk +Fk} , (2.80)

where the corresponding Onsager coefficients can be identified as
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Figure 2.5: Charged colloids dispersed in a bulk fluid at steady-state in a temperature gradient.
The bulk fluid is made of solvent (e.g. water) and ionic solutes (e.g. ions and counterions).
The chemical potential gradients of the bulk fluid (light blue gradient in the background)
couple to the fluid excess inside the layers around the colloids and the thermophoretic
separation of ions and counterions in the bulk leads to the build-up of a thermoelectric field
ET =−VT ∇T/T . The resulting interfacial forces on the colloid are all taken into account
in the evaluation of Jcs. Brownian motion and pair-interactions resulting from overlapping
layers further give rise to an additional bulk contribution Jc, which is closely related to the
osmotic pressure gradient. The dimensions of colloid and system are not to scale, as the
system should actually contain a much larger number of colloids.

L11 =
cT
ξ
, (2.81)

L1q = Lcs
1q +Lc

1q =

(
Qcs

1q +βcc −
h′bs
c

)
L11, (2.82)

L1k ̸=1 = Lcs
1k +Lc

1k =
(

Ncs
1k +Nφ

k −Vcnb
k

)
L11. (2.83)

A reduction to the phenomenological expression of the thermophoretic flux given by
eq. (1.1) can now be achieved by making use of the assumptions introduced in section 2.2.
Due to the length and time scale separation between the colloid and the fluid, which marks
the transition from the micron-scale of the colloid to the nano- or even picometer-scale of
the fluid, the bulk fluid is expected to relax to steady-state much faster than the colloids. In
milli- or centimeter-sized systems, it is therefore reasonable to assume that the bulk fluid
reaches steady-state before the colloids move over a considerable distance compared to
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the system size. For visual aid, a schematic depiction of charged colloids dispersed in a
bulk fluid at steady-state inside a temperature gradient is shown in fig. 2.5. A noticeable
delay of this relaxation might however occur in larger systems, in which case the reduced
form given by eq. (1.1) will only hold in the long-time regime of the experiment. To
obtain explicit, time-independent expressions for the diffusion coefficient D and the thermal
diffusion coefficient DT , we shall assume that the relaxation of the bulk fluid to steady-state
happens instantaneously. This steady-state could in principle be perturbed by the bulk flux Jc

of colloids, which must be balanced by an opposite flux Jb
k of bulk fluid, such that

m1Jc =− ∑
k ̸=1

mkJb
k , (2.84)

where m1 is the mass of a colloid. Due to assumption 2 stated in section 2.2, this effect
can however be ignored as eq. (2.67) shows that the corresponding force on a particle
of fluid component k is expected to be about c/nk times smaller than the thermodynamic
force −∇T µc. In dilute suspensions (c ≪ nk ̸=1), it is therefore also reasonable to assume
that the bulk motion of colloids leaves the steady-state of the bulk fluid unperturbed. The
incompressibility of the solvent (k = 0) further implies that nφ

0 = 0, meaning that there is
no coupling between Jcs and ∇µ0. Based on eq. (1.5), the steady-state distribution of the
fluid components (k ̸= 1) in the bulk is described by ∇nb

k =−nb
kSk

T ∇T , where Sk
T is the Soret

coefficient of fluid component k. The chemical potential gradients ∇T µk and thermoelectric
forces Fk in eq. (2.80) can hence be written as

∇T µk = ∑
j ̸=0

(
∂ µk

∂nb
j

)
P,T

∇nb
j =−∇T ∑

j ̸=0,1
nb

jS
j
T

∂ µk

∂nb
j
+∇c

∂ µk

∂c
(2.85)

and

Fk = −zkVT
∇T
T

, (2.86)

where zk is the valence of a particle of component k. The thermoelectric potential VT is
fixed by the steady-state of the ionic solutes [58]. To simplify the notation, let us introduce
the net transport coefficients Q1q = L1q/L11 and N1k = L1k/L11, such that
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Q1q = Qcs
1q +βcc −

h′bs
c
, (2.87)

N1k =

1 if k = 1

Ncs
1k +Nφ

k −Vcnb
k if k ̸= 1.

(2.88)

By substituting eqs. (2.85) and (2.86) into eq. (2.80), the colloidal flux finally takes the
form

J = −D∇c− cDT ∇T, (2.89)

where the diffusion coefficient D and the thermal diffusion coefficient DT of the colloid
are respectively given by

ξ D = c∑
k

N1k
∂ µk

∂c
=

∂Π

∂c
+ c ∑

k ̸=1
Ncs

1k
∂ µk

∂c
. (2.90)

ξ DT =
Q1q

T
−∑

k
N1k

{
∑

j ̸=0,1
nb

jS
j
T

∂ µk

∂nb
j
− zkVT

T

}
. (2.91)

From eqs. (2.91) and (2.90), it can be seen that the Soret coefficient of the colloids ST =

DT/D is independent of the friction coefficient ξ . The Soret coefficient is therefore insensitive
to hydrodynamic interactions due to collective colloidal motion, but might nonetheless
depend on bulk fluid flows through the collective heat coefficient βcc(ϕ) contained in Q1q.
For a separate interpretation of interfacial and bulk thermophoresis, the thermal diffusion
coefficient can be split up into DT = Dcs

T +Dc
T , where each term represents the thermal

diffusion coefficient of the corresponding flux contribution. From the expressions of Jcs and
Jc as given by eqs. (2.28) and (2.69), these can readily be identified as

ξ Dcs
T =

Qcs
1q

T
− ∑

k ̸=0,1
Ncs

1k

{
∑

j ̸=0,1
nb

jS
j
T

∂ µk

∂nb
j
− zkVT

T

}
, (2.92)

ξ Dc
T =

βcc

T
+

1
c

∂Π

∂T
. (2.93)
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In general, we note that both Dcs
T and Dc

T depend on the Soret coefficients S j
T of the

fluid components, meaning that the signs of Dcs
T and Dc

T do not only depend on whether
the specific interactions of the colloids are attractive or repulsive. In the special case where
the colloids are point-like (Vc = 0) and ideal (no specific interactions), we have βcc = 0,
N1k = δ1k and nb

k∂ µc/∂nb
k = δ1kkBT , where δ1k is the Kronecker delta. The Einstein relation

ξ D = kBT (2.94)

is then directly recovered from eq. (2.90). As the ideal osmotic pressure is just Π = ckBT ,
the corresponding ideal contribution to the thermal diffusion coefficient is given by

ξ DT = kB. (2.95)

In dilute suspensions, colloidal motion is mainly driven by interfacial thermophoresis and
the single-colloid limit is therefore of particular interest. For a single colloid, the Einstein
relation ξ D = kBT holds and the thermal diffusion coefficient takes the simple form

DT = Dcs
T +

kB

ξ
. (2.96)

The ideal contribution kB/ξ is usually multiple orders of magnitude weaker than Dcs
T and

is therefore often neglected [71]. Within the single-colloid limit, let us now consider the
special case where the fluid only consists of solvent. The Soret coefficient of a colloid is then
just given by

ST =
Qcs

1q

kBT 2 +
1
T
. (2.97)

In fact, this result is also commonly used to describe ionic thermophoresis due to hydration
[1], by treating the ionic solute as a dilute gas of non-interacting, charged particles surrounded
by hydration shells. The steady-state of the ionic solute j in the bulk fluid is thus governed by

∇nb
j +nb

jS
j
T ∇T = 0 (2.98)

with an ionic Soret coefficient

S j
T =

Q jq + z jVT

kBT 2 +
1
T
. (2.99)

In analogy to eq. (2.56), the interfacial heat of transport Q jq of the ion can be related to
the interfacial excess enthalpy density h j

φ
(r) of the surrounding water molecules via [1]
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Q jq =−
∫

∞

R j

h j
φ
(r)
(

1−b j
R
r

)
4πr2dr, (2.100)

which in the Hückel limit reduces to Q jq =−H j
φ

, where the interfacial excess enthalpy

H j
φ

of the hydration shell around the ion is also known as the enthalpy of solvation. The term
z jVT in eq. (2.99) accounts for the thermoelectric force that directly acts on the ion. It should
be noted that small ions do not necessarily satisfy assumptions 1 and 5 in section 2.2, so
that deviations from eq. (2.100) should be expected due to distortions of the hydration shell.
An explicit expression for VT can further be obtained by multiplying eq. (2.98) by z j and
summing over all ionic solutes ( j ̸= 0,1), giving

VT =−
∑ j nb

jz jQ jq

∑ j nb
jz

2
j

, (2.101)

where the condition of charge neutrality ∑ j z jnb
j = 0 has also been used. Remembering

that the solvent is incompressible and that the solutes have negligible sizes, the partial
derivatives of the solute chemical potentials in eq. (2.93) reduce to nb

j∂ µk/∂nb
j = δk jkBT .

By substituting eq. (2.99) into eq. (2.92), the thermal diffusion coefficient Dcs
T of a charged

colloid becomes

ξ T Dcs
T = Qcs

1q − ∑
k ̸=0,1

Ncs
1k
(
Qkq + kBT

)
(2.102)

= −
∫

∞

R

[
qφ (r)− ∑

k ̸=0,1
nφ

k (r)
(
Qkq + kBT

)](
1−b

R
r

)
4πr2dr (2.103)

= −
∫

∞

R
q∗φ (r)

(
1−b

R
r

)
4πr2dr (2.104)

In dilute aqueous suspensions, the thermal diffusion coefficient Dcs
T of charged colloids

can hence be evaluated using the hydrodynamic form given by eq. (2.56), by replacing the
interfacial heat density qφ with the density q∗

φ
, which also accounts for the heat transport

due to hydration and Brownian motion of ions inside the interfacial layer of a colloid. The
evaluation of Dcs

T does therefore not require an explicit determination of the thermoelectric
potential VT .

With a complete theoretical description of colloidal thermophoresis at hand, we are
finally able to examine the validity of the theoretical approaches proposed by Würger [90]
and Dhont [24] for a charged colloid in an aqueous electrolyte solution, which have yielded
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different dependences of the Soret coefficient ST on the colloidal radius R and interfacial
width λ .

2.6 Discussion and Comparison

Würger’s theoretical model for interfacial thermophoresis is based on a derived expression
for the interfacial force density at the surface of a charged colloid [90, 62]. The colloidal
surface is screened by the ionic solute, leading to the formation of an electric double layer
[19] (fig. 2.2). The ions are treated as a dilute gas of non-interacting, point-like particles
surrounded by hydration shells, with corresponding densities

nk(r) = nb
k exp

(
−φk(r)

kBT

)
(2.105)

around the colloid. The pressure gradient is directly evaluated from the ionic solute
pressure Ps(r), given by

Ps(r) = ∑
k ̸=0,1

nk(r)kBT (2.106)

and the body force density acting on the fluid element reads

fs(r) =− ∑
k ̸=0,1

nk(r)(∇φk(r)−Fk)−
1
2

εT εE2(r)
∇T
T

, (2.107)

where Fk is the thermoelectric force, ε is the electric permittivity and εT = ∂ lnε/∂ lnT .
The last term in eq. (2.107) corresponds to the interfacial excess enthalpy density of the
polarised solvent (e.g. water) in the local electric field E of the colloid [51] and should
therefore be interpreted as a contribution the the pressure gradient rather than the body force
density. As the net force density is defined by F⃗ = fs −∇Ps, Würger’s interfacial force
density takes the form

F⃗φ (r) = F⃗ − F⃗b = − ∑
k ̸=0,1

(
nk(r)φk(r)+nφ

k (r)kBT
)

∇T
T

− 1
2

εT εE2(r)
∇T
T

+ ∑
k ̸=0,1

nφ

k (r)(−∇T µk +Fk) , (2.108)

where ∇T µk = kBT ∇ ln nb
k for a non-interacting, point-like gas. Using the relation

hs = Ps +uint, where uint is the internal energy density, the total enthalpy density of the ionic
solutes at the colloidal surface and in the bulk can be expressed as
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hs(r) = Ps(r)+ ∑
k ̸=0,1

nk(r)
(

φk(r)+
3
2

kBT + H̄0
k

)
, (2.109)

hb
s = Pb

s + ∑
k ̸=0,1

nb
k

(
3
2

kBT + H̄0
k

)
, (2.110)

where the term H̄0
k accounts for ionic hydration. As the partial molar enthalpy of solute k

is just H̄k =
3
2kBT + H̄0

k (see appendix B), the interfacial enthalpy density hφ (r) of the ionic
gas around the colloid becomes

hφ (r) = h′s(r)−h′bs =

(
hs(r)− ∑

k ̸=0,1
nk(r)H̄k

)
−

(
hb

s − ∑
k ̸=0,1

nb
kH̄k

)
(2.111)

= ∑
k ̸=0,1

(
nk(r)φk(r)+nφ

k (r)kBT
)
. (2.112)

With eq. (2.112), eq. (2.108) can be written in the same form as eq. (2.44), proving
that Würger’s result is in agreement with my more general expression for the interfacial
force density. With eq. (2.56), Würger then determines the interfacial driving force Fcs

in the boundary layer approximation (R ≫ λ ) by computing the fluid slip velocity when
a temperature gradient is applied across the interfacial layer (derivation given in appendix
C). Although this approach is inherently different from my derivation based on reciprocal
arguments, Würger’s final result coincides with my expression for colloids with a stick
boundary condition, given by

Fcs =−4πR
∫

∞

0
zF⃗φ (z)dz. (2.113)

Whether considering an ideal or non-ideal fluid, it is clear that any additional size-
dependence in F⃗φ (z) would have to stem from a direct dependence of φ(z) on R. However,
the potential φ(z) is generally independent of colloidal size in the limit R ≫ λ where the
shape of the colloid does not matter [91]. As the interfacial force on the colloid simply
reduces to the thermophoretic force FT =−ξ DT ∇T when the bulk fluid is at steady-state, it
directly follows from eq. (2.113) that FT ∝ R. In view of the Einstein relation ξ D = kBT , the
corresponding Soret coefficient of the colloid, given by ST = DT/D =−FT/(kBT ∇T ), hence
also satisfies the linear scaling relation ST ∝ R. In fact, the linearity in R for a stick boundary
holds irrespective of the size ratio between colloid and layer when F⃗φ is independent of R.
This can be seen by setting b = 1 in eq. (2.58), giving
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Fcs =−4π

∫
∞

0
z2F⃗φ (z)dz−4πR

∫
∞

0
zF⃗φ (z)dz, (2.114)

where the first term just represents a constant offset in a plot of Fcs vs R. As the
stick boundary condition is believed to be a good approximation for colloids under most
experimental conditions, the Soret coefficient should be observed to increase linearly with
colloidal radius. Nonetheless, it is worth noting that a more complex quadratic behaviour in
R may occur when there is slippage at the colloidal surface, as evidenced by eq. (2.58).

Similar to other authors [32, 12, 88, 21], Dhont’s approach to interfacial thermophoresis
is based on a minimal model where the interfacial force is derived from a gradient in a certain
thermodynamic potential Ucs

T associated with the colloid. This potential is determined by
treating the colloid as a charging capacitor undergoing a Gibbs adsorption process at uniform
temperature and pressure [24]

Ucs
T =− ∑

k ̸=1

∫
Nφ

k (dµk)T = µcs, (2.115)

so that Ucs
T coincides with the interfacial chemical potential µcs. The corresponding

colloidal flux is then given by:

J =− c
ξ

∇µcs −
1
ξ

∇Π. (2.116)

First of all, it is worth noting that the above form does not account for a thermoelectric
force F1, showing that the thermoelectric effect cannot simply be derived from a minimal
model. Eq. (2.116) contains the appropriate form for Jc with the neglect of βcc (ϕ). A
comparison to eq. (2.62) shows that Dhont’s capacitor model evaluates Jcs in the Hückel
limit, which should however not apply to colloidal thermophoresis as it only holds when
R ≪ λ . Dhont nonetheless applies this model to the colloidal regime R ≫ λ where φ(r) is
independent of R, obtaining an interfacial driving force given by:

Fcs =−
∫

∞

R
F⃗φ (z)dV =−4πR2

∫
∞

R
F⃗φ (z)dz. (2.117)

Using the same scaling arguments as for eq. (2.113), this capacitor model leads us to the
flawed conclusion that the Soret coefficient is directly proportional to the surface area of the
colloid ST ∝ R2. The general problem with minimal models is that they are purely based on
the minimisation of a thermodynamic potential. The form of this potential then automatically
imposes certain relations for the Onsager coefficients that should actually be determined
based on hydrodynamic and reciprocal arguments, as shown in the previous sections. It is
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therefore clear that such minimal models cannot properly account for the hydrodynamic
character of colloidal thermophoresis.

2.7 Conclusion

In this chapter, I have introduced a well-founded framework for colloidal thermophoresis
based on the length and time scale separation in colloidal suspensions, which allows a
separate evaluation of the interfacial and bulk contribution to the colloidal flux. I have shown
how a hydrodyanmic theory based on Onsager’s reciprocal relations can be used to derive
explicit expressions for the transport coefficients that govern interfacial thermophoresis.
A careful analysis of these expressions has proven that colloidal thermophoresis cannot
solely be explained by the thermodynamic treatment proposed by Dhont, but that it has
a hydrodynamic character related to irreversible fluid flows in thin boundary layers. The
recovery of existing limiting cases further shows that my theoretical work draws a clear
connection between hydrodynamic and thermodynamic approaches within the theory of
NET.

However, my results also suggest that interfacial thermophoresis is not only set by the
sign and strength of the interaction between the colloid and the fluid, but that it also depends
on the steady-state of the bulk fluid, leading to a complex interplay of different effects when
the fluid is made of multiple ionic and non-ionic components. To examine the validity of
the underlying hydrodynamic approach, it is more instructive to consider a single colloid
suspended in a one-component fluid. In the following chapter, I will therefore study such
a system using computer simulations. In particular, the range of validity of my theoretical
model and the parameter-dependence of the thermophoretic force will be explored.





Chapter 3

Simulation

As I have shown in the theoretical section, the sign and strength of interfacial thermophoresis
are related to the specific interaction between the colloid and the fluid, resulting in the
build-up of an interfacial layer around the colloid. These interactions are often hard to
control in experiments, making a direct comparison to theory difficult. Simulations therefore
provide a promising alternative for testing theoretical predictions as they allow a very fine
and controlled tuning of interactions and transport coefficients. Choosing the appropriate
level of coarse graining for these simulations is however not always straightforward [81].

Due to the hydrodynamic character of thermophoresis, the chosen simulation technique
must be able to reproduce fluid flows. Although Molecular Dynamics (MD) has previously
been used to simulate non-equilibrium motion in a temperature gradient [86, 36], the re-
production of fluid flows based on MD is computationally expensive as it relies on the
microscopic resolution of intermolecular interactions in a system containing up to a million
fluid particles. A far more coarse-grained approach can be achieved by abandoning the molec-
ular description of the fluid and simulating the effect of colloid-fluid interactions implicitly
via a generalised Langevin equation [31, 40, 16]. Langevin Dynamics (LD) thus requires
an analytic expression of the net force on the colloid as an input to solve the corresponding
equation of motion, implying that it cannot be used to test my theoretical prediction for the
thermophoretic force.

For colloids, it is instead more convenient to adopt a hybrid mesoscale-molecular dy-
namics scheme known as Multi-Particle Collision Dynamics (MPC) [59], which reproduces
hydrodynamic flows and thermal fluctuations on a mesoscopic scale without explicitly re-
solving the molecular dynamics of the fluid. So far, most existing MPC simulations of
thermophoresis have been performed by modelling both the specific and collisional inter-
action between the colloid and the fluid with Lennard-Jones potentials, corresponding to a
slip boundary condition at the colloidal surface [54, 57, 55]. Although both stick and slip
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Figure 3.1: Snapshot of simulation box filled with point-like MPC fluid particles.

surfaces have been considered elsewhere [94, 95], these studies focussed on the interplay be-
tween thermophoretic drifts and interfacial flows without relating the physical cause of these
drifts to an underlying theoretical model. However, an effective use of the thermophoretic
effect in soft matter and biological systems relies on an accurate prediction of its sign and
strength. Here, I bridge this gap by relating my simulation results to the theoretical model
for interfacial thermophoresis developed in the previous chapter. I will present accurate
measurements of the thermophoretic force acting on a single colloid, which are found to be
well described by my theoretical prediction. The colloid is modelled as a fixed solid sphere in
a temperature gradient, interacting with the MPC fluid via a polynomial potential that decays
with radial distance from the surface. The application of a stick or slip boundary condition at
the surface allows an on and off switching of the shear force, a component that has mostly
been overlooked in existing MPC simulations of thermophoresis. I start this chapter with an
introduction to MPC, followed by a detailed description of the simulated system.

3.1 Multi-Particle Collision Dynamics

3.1.1 Introduction to the Simulation Technique

MPC is situated in between MD and LD on the coarse-graining scale, thus reducing the
computational costs while preserving a mesoscopic description of hydrodynamic fluid flows.
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Figure 3.2: Schematic diagram of the streaming step in a unit cell. The black arrows represent
the instantaneous particle velocities.

MPC is particularly well suited for the simulation of thermophoresis because it reproduces
thermal fluctuations and allows a straightforward implementation of temperature inhomo-
geneities in the system [56]. The molecular complexity of the fluid is reduced by introducing
ideal fluid particles that carry the same energy and momentum as the non-ideal fluid, but
whose collisions and interactions are no longer resolved explicitly. A random distribution
of such MPC particles in a simulation box is shown in fig 3.1. The MPC fluid follows the
ideal gas equation of state P = nkBT and its motion is simulated by performing alternating
streaming and collision steps. In the streaming step (fig. 3.2), the fluid particles of mass m
follow ballistic trajectories for a discrete time δ t:

ri(t +δ t) = ri(t)+vi(t)δ t, (3.1)

where ri(t) and vi(t) are the position and velocity of fluid particle i at time t. The
collision step allows the transfer of energy and momentum between fluid particles based on a
coarse-grained rotation procedure that neglects the molecular structure of the fluid (fig. 3.3).
The system is first split into a randomly positioned but regularly spaced lattice of cubic cells,
each of length a. In each cell, particle velocities are then updated corresponding to a rotation
through a constant angle α about a randomly chosen axis [3]:

vi(t +δ t) = vCM(t)+R(α)[vi(t)−vCM(t)], (3.2)
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where R(α) is the rotation operator. The centre of mass velocity of the considered cell
vCM corresponds to the local fluid flow velocity us. In view of eq. (3.2), it is the thermal
velocity vth = vi−vCM that is rotated around the randomly chosen axis. This axis is specified
by a corresponding unit vector R, with components [3]

Rx = cosϕ

√
1−ρ2, Ry = sinϕ

√
1−ρ2, Rz = ρ (3.3)

where ϕ = 2πR1, ρ = 2R2 −1, and R1 and R2 are uncorrelated random numbers drawn
from a uniform distribution in the interval [0,1]. As the rotation only affects the component v⊥
of vth perpendicular to R, the rotated thermal velocity can be written as v′th = vα +v∥, where
v∥ is the component of vth parallel to R. The rotated component vα can then straightforwardly
be calculated from

vα = v⊥ cosα +(v⊥×R)sinα (3.4)

where v⊥×R designates the corresponding vector product.
By construction, the algorithm conserves energy and momentum and correctly reproduces

Navier-Stokes dynamics on length scales larger than a [59], but it does not obey the principle
of Galilean Invariance if the same lattice of unit cells is used for each collision step. The
reason is that, for a fixed lattice, fluid particles in the same cell repeatedly collide with each
other rather than with other particles in neighbouring cells, resulting in local correlations that
mark the breakdown of molecular chaos. However, the chaos assumption can be restored by
shifting the lattice through a random vector with coordinates in the range [−a/2,a/2] before
each collision step [42, 43, 50].

Simulation units are simplified by setting m = 1, a = 1, kB = 1 and T0 = 1, where T0 is
a standard reference value for the system temperature. Time and speed are thus given in
units of (ma2/kBT0)

1/2 and (kBT0/m)1/2 respectively [80]. In my simulations, I have used
the standard MPC parameter values α = 120◦, δ t = 0.1 and an average number of M = 7
particles per cell, as this choice has been shown to reproduce liquid-like behaviour of the
MPC fluid [38]. Analytical expressions for the fluid transport coefficients can further be
derived based on these MPC properties [44, 84, 45], with an expression for the self-diffusion
coefficient Ds of the fluid given by

Ds =
kBT δ t

2m

[
3n

(1− cosα)(n−1+ e−n)
−1
]
. (3.5)

Here, T and n are the local temperature and particle density in a cell, which may differ
from the global values T0 and M if the system is inhomogeneous. This theoretical prediction



3.1 Multi-Particle Collision Dynamics 45

Figure 3.3: Schematic diagram of the collision step in a unit cell. The curved red arrows
represent the rotation of the particle velocities.

for Ds has been verified elsewhere using a discrete version of the Green-Kubo relation
[42, 44, 74]. As shown in fig. (3.4), the self-diffusion coefficient is rather insensitive to the
fluid density for densities larger than 5 particles per cell. With an average number density of
M = 7 in the system, the value of Ds is therefore expected to remain approximately constant
inside flow regions where the local density coincides with or exceeds M.

3.1.2 Implementation

The simulations have been performed on a computer equipped with a Graphics Processing
Unit (GPU) and a GNU/Linux operating system. The MPC code has been implemented
in C++ and compiled using a standard GNU C++ compiler (g++). The streaming step and
collision step are embedded as separate functions in the main function, which performs
the step-wise integration over the total simulation time. Boundary conditions are treated
carefully with a number of sub-functions within the streaming step. These conditions include
collisions with the system boundaries and the colloidal surface as well as streaming into and
out of the interfacial layer. The random numbers required in the collision step are generated
by planting a seed at the start of the simulation with the srand(time(NULL)) command and
by using the pre-defined function rand() from the standard <random> library.

Due to the large number of fluid particles and unit cells, particle coordinates and cell
properties are stored in dynamic arrays using the vector class. For the measurements of
momentum transfer, temperature, MPC density and fluid flow, data is written to text files in
regular time intervals with the output stream class ’ofstream’. The system parameters and
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Figure 3.4: Plot of self-diffusion coefficient Ds vs fluid density n based on eq. (3.5), for
standard MPC parameter values and T = T0.

final coordinates are also saved and can serve as an input to the code, allowing a continuation
of the simulation beyond the standard simulation time.

3.2 The Simulated System

My system consists of a stationary colloidal sphere placed in the middle of a rectangular
box of dimensions Lx ×Ly ×Lz containing an MPC fluid (fig. 3.5). A uniform temperature
gradient of standard value ∇T = 0.01 is applied along the (positive) x-direction by placing
thermostat walls at x = 0 and x = Lx. The thermostats are treated with a slip boundary
condition and are kept at temperatures Tc and Th respectively, such that the temperature in the
centre of the system T (x = Lx/2) coincides with T0 = 1. The temperature profile is given by

T (x) = Tc + x∇T, (3.6)

where ∇T = (Th −Tc)/Lx. The existing temperature profile inside the fluid can be
measured by splitting the system up into unit-slabs along the x-direction and by determining
the local temperature of each slab. The temperature Tj of the jth slab containing N j particles
is fixed by the equipartition of energy

3
2
(N j −1)kBTj = ∑

i∈ j

1
2

m|vi −vCM|2, (3.7)
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Figure 3.5: Schematic depiction of the simulated system. The colloid (red sphere) is
surrounded by the MPC fluid (grey particles). A temperature gradient is maintained by
performing thermal velocity rescaling in the unit slabs (blue and red slab), respectively kept
at temperatures Tc and Th. Specular Reflection (SR) is applied at the thermostats (x-direction),
whereas Periodic Boundary (PB) conditions are applied in the other two directions.

where three degrees of freedom have been removed to account for the subtraction of the
centre of mass velocity from each particle velocity. Different methods for the implementation
of temperature inhomogeneities have been tested in recent literature [57]. Here, I employ a
robust and physically intuitive technique based on thermal velocity rescaling. The gradient
is maintained by rescaling the velocities of the Nslab fluid particles inside the unit-slab in
contact with the corresponding thermostat, according to [54]:

v′i = vCM +(vi −vCM)
√

E ′/E, (3.8)

where

E = ∑
i∈slab

1
2

m|vi −vCM|2 and E ′ =
3
2
(Nslab −1)kBTc,h. (3.9)

This rescaling hence guarantees that the measurement of Tslab based on eq. (3.7) produces
Tslab = Tc,h. Periodic boundary conditions are applied in the y and z- direction. The radius R
of the colloidal sphere defines the position of the solid surface with respect to its centre and
is given the standard value R = 4. Upon collision with the stationary solid surface, a stick
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or slip boundary condition is then imposed by respectively applying Bounce-Back (BB) or
Specular Reflection (SR) to the coordinates of the fluid particles. For this purpose, the fluid
particle is first streamed to the surface of the colloid and its velocity vi is then updated to v′i
according to

v′i =


−v⊥i −v∥i for stick (BB),

−v⊥i +v∥i for slip (SR),

(3.10)

where v∥i and v⊥i are the velocity components parallel and perpendicular to the colloidal
surface. This updated velocity is then used to stream the particle for the remaining time of
the step. Hence, only the perpendicular component of the velocity is reflected with SR, so
that a slip boundary condition is equivalent to modelling the colloidal surface as a radial
potential wall. However, the total reflection of the particle velocity with BB results in
an additional shear force Fi,shear = −m

(
v′∥i −v∥i

)
/δ t on the colloid, showing that a stick

boundary condition accounts for the effect of surface roughness that cannot be modelled by a
soft or hard radial potential.

As the colloidal radius usually greatly exceeds the thickness of the interfacial layer, the
specific colloid-fluid interaction is generally expected to be independent of R. To simulate
this interaction, I have therefore used a radial potential φ(z) that is independent of R, of the
form

φ(z) = ε

(
1− z

λ

)q
, 0 < z ≤ λ (3.11)

where z = r−R is the radial distance from the surface. The cut-off distance λ defines the
width of the interfacial layer, with a standard value of λ = 3. The parameter ε sets the sign
and strength of the potential whereas the positive integer q quantifies its steepness. These
parameters take the standard values ε =−1 and q = 3 in my simulations, corresponding to
an attractive potential that decreases cubically with radial distance. By choosing q > 3, the
interaction is ’well behaved’ at the potential boundary, meaning that the potential is zero and
its first two derivatives are continuous at z = λ . For visual aid, a schematic diagram of the
colloid and its potential is shown in fig. 3.6, including a table with the standard values of
the system parameters. Inside the potential, particle positions and velocities are updated by
performing 50 MD steps of length δ tMD after each collision step, based on the Velocity-Verlet
algorithm
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Figure 3.6: Schematic diagram of the colloid and its potential interaction. The table sum-
marises the standard values of the main system parameters.

ri(t +δ tMD) = ri(t)+δ tMDvi(t)+
δ t2

MD
2m

Fi(ri(t)), (3.12)

vi(t +δ tMD) = vi(t)+
δ tMD

2m
[Fi(ri(t +δ tMD))+Fi(ri(t))] , (3.13)

where Fi(ri) =−∇φ(ri). The MD step size δ tMD = δ t/50 has previously been shown
to be a sensible choice for the study of colloidal thermophoresis [67], even when steep
Lennard-Jones potentials are used [95]. As the effect of finite system size on fluid flows is
mainly determined by the hydrodynamic boundary conditions at the colloidal surface and the
system boundaries, the system size is chosen to scale with the colloidal radius R according to
Ly = Lz =

3
4Lx = 12R.

The initialisation of the MPC fluid is performed per cell by splitting the system into
a regular cubic lattice of unit cells. To ensure uniform pressure in the bulk of the system,
the fluid density n is initialised to its ideal gas steady-state n(T (x)) ∝ T (x)−1 based on
Poisson statistics and rescaled as to obtain a global bulk density equal to M = 7 outside
the potential. The densities inside the potential are then multiplied by the Boltzmann
factor exp(−φ(r)/kBT (x)) to build up the corresponding interfacial layer. Initial velocity
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Figure 3.7: Comparison between measured velocity distribution and Maxwell-Boltzmann
distribution for the x-component.

components vx,y,z are drawn from a local Maxwell-Boltzmann distribution at temperature
T (x):

f (vx,y,z) =

(
m

2πkBT (x)

) 1
2

exp

(
−

mv2
x,y,z

2kBT (x)

)
. (3.14)

The system is then simulated according to MPC dynamics for a total simulation time
of τ = 2×105δ t. The Maxwell-Boltzmann distribution for the thermal velocities remains
preserved in the MPC fluid throughout the simulation, as shown in fig. (3.7). Furthermore,
the steady-state of the system is verified by measuring the time-averaged temperatures and
densities in the cells. The right side of fig. 3.8a shows a measured density histogram of the
centred slice along the temperature gradient, averaged around the axis of rotational symmetry
(white line). The ideal gas steady-state used for initialisation is displayed on the left side of
the axis. The agreement between both sides is particularly good in the bulk, showing that the
bulk pressure remains uniform during the simulation. This is also confirmed by figs. 3.8b
and 3.8c, which respectively show the averaged density nb(x) and temperature profile T (x)
in the bulk (symbols). The linear temperature profile perfectly overlaps with the theoretical
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prediction T (x) = Tc+x∇T and the bulk density shows an excellent agreement with the ideal
gas equation

Pb = nb(x)kBT (x). (3.15)

To recognise the dependence of nb(x) on different system parameters, eq. (3.15) needs to
be rewritten in an alternative form. The uniform bulk pressure Pb is fixed by the conservation
of particle number:∫ Lx

0
nb(x)dx =

Pb

kB

∫ Lx

0

1
T (x)

dx =
Pb

kB∇T
ln

Th

Tc
= MLx. (3.16)

In terms of ∇T and T (Lx/2) = T0 = 1, the bulk density nb(x) can be expressed as

nb(x) =
nB

1+ ∇T
T0

(
x− Lx

2

) , (3.17)

where nB, the central bulk density at x = Lx/2, is given by

nB =
MLx∇T

2T0 arctanh
(

Lx
2

∇T
T0

) . (3.18)

The interfacial layer of the colloid is hence in contact with a bulk density nB that tends
to zero in the limit where Lx∇T/(2T0)→ 1. However, as the condition Tc > 0 implies that
Lx∇T/(2T0) cannot exceed unity, varying either Lx or ∇T for our standard parameter choice
requires that these parameters do not exceed Lx = 200 and ∇T = 0.03. The reduction of
nB with increasing Lx or ∇T must also be taken into account when studying the parameter
dependence of the forces on the colloid, which will be shown to scale linearly with nB.

3.3 Forces on a Colloid inside an MPC fluid

As the thermophoretic force FT is the total force acting on the colloid, it can be expressed as
the sum of a body force Fφ , deriving from the interaction potential φ , and a surface force
FS, resulting from the collisional interaction with the fluid. The surface force is defined as
the integral of the hydrodynamic stress over the colloidal surface and therefore cannot be
determined without an explicit expression of the stress tensor. However, the total body force
can be determined by noticing that every fluid element exerts a body force n(r)∇φ(r) on the
colloid, so that Fφ takes the form of a volume integral over the interfacial layer:

Fφ =
∫

∞

R
n(r)∇φ(r)dV. (3.19)
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Figure 3.8: Steady-State of the MPC fluid around a colloid with a stick surface and an
interfacial width λ = 6. All other parameters are set to their standard values. a) Histogram
of measured fluid density profile (RHS) and theoretical prediction (LHS) in the xy-plane. b)
Comparison between measured bulk density nb(x) (circles) and ideal gas equation (solid line).
c) Comparison between measured bulk temperature T (x) (circles) and theoretical prediction
(solid line).
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Under the condition that the interfacial layer is at thermodynamic equilibrium (ITE),
the local density n(r) of the MPC fluid around the colloid is further expected to follow the
Boltzmann distribution

n(r) = nb(T (r))exp
(
− φ(r)

kBT (r)

)
, (3.20)

where nb(T (r)) = nBT0/T (r).

If the density is assumed to be radially symmetric (T (r) = T0), it is easily verified that
Fφ = 0, showing that Fφ is a non-equilibrium component that specifically relies on the
asymmetry in n(r) induced by the local temperature variation δT ∼ r∇T . Although eq.
(3.19) must be solved numerically for my choice of φ(r), it is clear that the direction of Fφ

is determined by the sign of the interaction: The colloid will feel a body force towards the
colder and hence denser side of the layer (Fφ < 0) for attractive potentials (ε < 0) and a body
force to the hotter and less dense side of the layer otherwise.

Unlike the body force, the thermophoretic force is evaluated to first order in the temper-
ature gradient by assuming that the interfacial layer is radially symmetric. In view of eq.
(2.44), the interfacial force density for a one-component fluid reads

F⃗φ (r) =−qφ (r)
∇T
T

−nφ (r)∇T µ, (3.21)

where µ is the ideal chemical potential of the MPC fluid. As ∇T and ∇T µ are independent
thermodynamic forces, the condition of uniform pressure in the bulk directly implies that
∇T µ = 0 and Hb = H̄. For the MPC fluid, the partial molar enthalpy H̄ is thus equal to the
total enthalpy per fluid particle in the bulk, given by Hb =

5
2kBT . It directly follows from eq.

(2.45) that

hφ = h′s = hs −nHb =

(
nφ +

5
2

nkBT
)
− 5

2
nkBT = nφ . (3.22)

However, the local temperature gradient around the colloid may differ from the applied
bulk gradient ∇T due to heat flows through the colloid and its interfacial layer. This issue
was already briefly mentioned at the end of section 2.3.1, where the modification was said
to stem from a difference between the thermal conductivities of the colloid and the fluid.
In the simulated system, we are further confronted with the difficulty that the gradient can
be disturbed by interfacial fluid flows and that the thermal conductivity of the MPC fluid
depends on its density, resulting in a varying conductivity inside the layer. This leads to
a complex modification of the local temperature profile, as evidenced in the right part of
fig. 3.9a, which shows a histogram of the measured temperature around a colloid with a
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slip boundary and an interfacial width of λ = 6. The blue rectangle indicates the central
isothermal plane (CIP) inside the interfacial layer. The local temperature gradient ∇T (r)
measured inside this plane as a function of radial distance from the colloid is shown in
fig. 3.9b. It can be seen that ∇T (r) is reduced inside the layer but coincides with the
imposed bulk gradient ∇T at larger distances. Local temperature modifications might be
incompatible with my theoretical framework for two reasons. Firstly, the condition of ITE
could be violated if the local gradient varies in both magnitude and direction. Secondly,
the resulting interfacial heat density qφ might not be radially symmetric and may no longer
be equal to the interfacial excess enthalpy density hφ . It is currently unclear how these
local modifications could be properly incorporated into my theoretical framework without
violating its underlying assumptions. To circumvent this issue, we shall instead evaluate eq.
(2.57) using an approximate method, by defining an effectively uniform interfacial gradient
∇Ts that directly couple to the excess enthalpy density, such that

F⃗φ (r) =−hφ (r)
∇Ts

T
. (3.23)

More specifically, ∇Ts is determined from the simulation data by computing the average
temperature gradient across the CIP inside the interfacial layer. The value of ∇Ts (red
horizontal line in fig. 3.9b) lies right in-between the bulk gradient ∇T and the gradient
∇T (r = R) at the surface. Combining eqs. (3.23) and (3.22) with eq. (2.57), we obtain the
final form for the thermophoretic force acting on a colloid in an MPC fluid:

FT =
∇Ts

T0

∫
∞

R
n(r)φ(r)

(
1−b

R
r

)
4πr2dr. (3.24)

In view of eqs. (3.24) and (3.19), both FT and Fφ are indeed expected to scale linearly
with the bulk fluid density nB in the middle of the system. Further, a prediction for the
surface force is now indirectly provided by FS = FT −Fφ . The theoretical prediction for FT

is proportional to ∇Ts and its direction is determined by the sign of the interaction. Like
the body force, the thermophoretic force is hence directed towards lower temperature for
attractive potentials, corresponding to a thermophobic behaviour of the colloid. Despite the
relatively simple form of φ(r), the integral in eq. (3.24) has to be solved numerically, hinting
at a non-trivial dependence of FT on the parameters λ , ε and q. The numerical solutions for
FT (R) and FT (λ ) are displayed in fig. 3.10 for different values of q. The magnitude of FT

increases with both R and λ but undergoes a steeper increase with λ than with R. Although
these features are not directly visible in the graphs, it should be noted that FT = 0 for λ = 0
whereas FT ̸= 0 for R = 0. We also see that FT decreases in magnitude with increasing q and
that the magnitude for a slip boundary always exceeds the one for a stick boundary. The latter
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Figure 3.9: Local temperature changes and flow field around a colloid with a slip surface
and an interfacial width λ = 6. All other parameters are set to their standard values. a) The
right side of the symmetry axis shows the local temperature rescaled with respect to its bulk
profile, whereas the left side shows the flow field. The blue rectangle designates the central
isothermal plane (CIP). b) Local temperature gradient ∇T (r) inside CIP as a function of
radial distance (red curve). The bulk gradient ∇T is shown by the black line and the red
line indicates the value of ∇Ts obtained from averaging over the interfacial layer. c) Flow
strength as a function of radial distance inside CIP, for a slip boundary (red curve) and a stick
boundary (blue curve).
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Figure 3.10: Theoretical prediction for the thermophoretic force based on eq. (3.24). a)
FT vs R and b) FT vs λ for different values of q, using the standard parameter choice.
Triangular symbols are used to distinguish between slip boundary (lines with triangles) and
stick boundary (plain lines).

observation is evident from eq. (3.24), which shows that a switching from b = 1 to b = 2/3
results in a larger value of the hydrodynamic integral. As the potential φ is independent of
colloidal size, FT is linear in R for all values of q when a stick boundary condition is applied,
a trend that has previously been observed experimentally for charged colloids [10]. Before
we may proceed to the simulation results, the range of validity of these theoretical predictions
must however be addressed in more detail.

3.4 Validity of ITE: the Péclet Number

The hydrodynamic form of the thermophoretic force given by eq. (3.24) relies on interfacial
thermodynamic equilibrium (ITE), which is expected to break down for excessively large
temperature gradients or strong interfacial fluid flows. On one hand, ITE thus requires that
the temperature variation across the colloid and its layer is small (thermal equilibrium), so
that we need dλ |∇T | ≪ T0, where dλ = 2(R+λ ) is the effective diameter of the colloid
and its layer. This condition is indeed satisfied for the standard choice of R = 4, λ = 3 and
∇T = 0.01, but does not necessarily hold for the entire parameter space explored in the
simulations. On the other hand, fluid advection can perturb both the temperature gradient
and the chemical equilibrium inside the interfacial layer, resulting in a deviation of n(r) from
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its local Boltzmann distribution. A more quantitative measure for the strength of fluid flow
relative to fluid diffusion is provided by the Péclet number, defined as

Pe =
uadL
Ds

, (3.25)

where uad is a speed that expresses the typical flow strength of fluid advection. As a Péclet
number much smaller than one is supposed to express the validity of ITE, the characteristic
length scale L has to be defined carefully for our system. This can be achieved by noticing
that ITE is preserved if the body force −∇φ that the colloid exerts on a fluid particle is much
stronger than the frictional force γuad on that particle due to fluid flow. Using the Einstein
relation γ = kBT0/Ds for the fluid friction coefficient γ and the value −∇φ(R) = qε/λ as an
estimate for ∇φ , we obtain the criterion:

Pe =
∣∣∣∣kBT0

qε

uadλ

Ds

∣∣∣∣≪ 1, (3.26)

showing that L =
∣∣∣kBT0

qε
λ

∣∣∣ corresponds to the length over which the body force at the
surface does an amount of work equal to kBT0 = 1. Being rather insensitive to fluid density,
the self-diffusion coefficient Ds is evaluated from eq. (3.5) at the potential boundary z = λ

where n = nB and T = T0, yielding a standard value of about Ds ≈ 0.67. Hence, the only
quantity in eq. (3.26) that needs to be determined by direct measurement is uad, which is
taken to be equal to the maximal fluid flow speed inside the isothermal plane shown in fig.
3.9a. A typical flow profile around a colloid with a slip boundary is displayed in the left part
of fig. 3.9a. The fluid inside the layer flows in the direction opposite to the thermophoretic
force, and therefore to higher temperature for an attractive potential. Fig. 3.9c shows the
flow speed as a function of radial distance inside the CIP. The maximal speed is reached
close to the potential boundary and is higher for a slip boundary (red curve) than for a stick
boundary (blue curve). The flow then decays away and finally changes direction at larger
distances from the colloid, resulting in a weak back-flow in the bulk. As fluid advection
tends to reduce the thermodynamic gradients across the layer [4], a Péclet number close to or
larger than unity should always lead to a reduction of the measured force compared to its
theoretical prediction.

Finally, we recall that eq. (3.24) is also based on the assumption that the fluid is
incompressible. This criterion is fulfilled at small Mach number Ma = uad/cs, which is
defined as the ratio between the advective flow strength uad and the speed of sound cs [38].
The speed of sound can be computed from the pressure using the relation cs =

√
∂P/m∂n,

which reduces to cs ∼
√

kBT/m for the MPC fluid [67]. Inside the interfacial layer where
T = T0, the speed of sound is hence close to unity. As evidenced by fig. 3.9c, the flow
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strength is usually of the order 10−2, suggesting that MPC fluid flows can indeed be assumed
incompressible.

3.5 Force Measurements

3.5.1 Measurement Technique

The forces on the colloid have been measured by recording the momentum transfer from
fluid to colloid for each time step during the simulation. The thermophoretic force FT , the
body force Fφ and the surface force FS have all been measured independently by splitting
the momentum transfer up into a potential and a collisional part, providing a consistency
check for FT = Fφ +FS. The radial component of the surface force has also been measured
separately, allowing a decomposition of FS into a pressure and shear component in the case
of a stick boundary. It has further been verified that the y and z-components of all forces
correctly average to zero, so that only the x-component along the temperature gradient is of
interest.

The time evolutions of these forces along the temperature gradient for a stick boundary
are shown in fig. 3.11, where each point corresponds to a local time average over 2×104

MPC steps. The weak variations in time suggest that the thermodynamic steady-state used
for initialisation is close to the actual thermophoretic steady-state, allowing a rapid relaxation
of the forces to their steady-state values. It can be seen that there is a difference of nearly
one order of magnitude between FT (∼ 10 units) and Fφ and FS (∼ 100 units). Both FT and
Fφ are negative (opposite to ∇T ) whereas FS is positive (same direction as ∇T ), as expected
for ε < 0. Interestingly, Fφ and FS seem to follow mirroring trends in time, suggesting a
time correlation between body and surface forces inside the interfacial layer. We also note
that the pressure and shear component have the same sign as FS. In general, the shear force
is found to be smaller than the pressure force and can be switched off by changing from a
stick boundary condition to a slip boundary condition at the colloidal surface. The MPC
algorithm has further been tested by direct comparison to existing simulations in literature.
An example of such a test simulation is shown in fig. (3.12), where I report an excellent
agreement between my thermophoretic force measurement and a result obtained in [54].
The graph from [54] is less noisy because the displayed measurement is averaged over 19
independent runs, whereas my measurement has been obtained from a single run over a
longer simulation time. The observed agreement is particularly astonishing considering that
a different measurement technique was used in [54].
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Figure 3.11: Time evolution of different force components acting on a colloid with a stick
boundary, for the standard parameter choice.

Figure 3.12: Convergence of the time-averaged thermophoretic force ⟨FT (t)⟩ as measured in
my simulation, for the same MPC parameters as used for figure 5.6 on page 93 in [54].
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Figure 3.13: Legend for main plots in figs. 3.14-3.17. Forces are distinguished by symbols,
whereas boundaries conditions are distinguished by colour. Full symbols are used for
simulation results and theoretical predictions are plotted with empty symbols connected by
straight lines.

As eqs. (3.24) and (3.19) give precise theoretical predictions for the thermophoretic
force and the body force, I will focus on the dependence of FT and Fφ on different system
parameters in the following analysis, by computing the net time-averages

〈
FT,φ (t)

〉
of these

forces over the simulation time. To facilitate the graphical presentation of my results, a
separate legend for the data is shown in fig. 3.13.

3.5.2 Finite Size Effects

For an accurate comparison to theory, the force measurements have to be corrected for
finite-size effects that result from hydrodynamic interactions between solid boundaries inside
the system. These include the thermostats, the colloid and its mirror images due to periodic
boundary conditions in y and z. Using the standard choice of system parameters, I have
analysed the dependence of FT/nB and Fφ/nB on the scaling factor R/Lx, which goes to zero
at infinite system size. As shown previously, the bulk density nB outside the interfacial layer
tends to zero at constant ∇T when R/Lx → 0. Unlike other finite-size corrections [54, 57], I
have therefore chosen to study the evolution of FT,φ/nB rather than FT,φ , as increasing the
system size naturally reduces the forces due to a depletion of bulk fluid in the centre of the
system.

In fig. 3.14, it can be seen that the trends of FT,φ/nB vs. R/Lx follow a linear relationship.
Extrapolating the corresponding best-fit lines to R/Lx = 0 then allows the determination of
FT,φ/nB at infinite system size. In order to show all trends in a single graph, each data set in
fig. 3.14 has been rescaled with respect to its limiting value at R/Lx = 0. As my simulations
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Figure 3.14: Dependence of FT/nB and Fφ/nB on system size for the standard parameter
choice.

have been performed with a standard scaling of Lx = 16R, the force F∞
T,φ at infinite system

size is related to the measured value F16
T,φ at R/Lx = 1/16 via

F∞
T,φ =

(
1+

β

16

)−1

F16
T,φ (3.27)

where β are the slopes of the best-fit lines in fig. 3.14. Based on the corresponding values
of β , we obtain the following scaling relations for the measured forces:

F∞
T =


0.59F16

T stick,

0.71F16
T slip,

F∞
φ =


1.00F16

φ stick

0.90F16
φ slip

(3.28)

Hence, a measurement of forces at finite system size generally exceeds the expected
value at infinite system size. It can further be seen that the correction in FT is more important
for a stick boundary than for a slip boundary and that the body force Fφ is rather insensitive
to system size, showing that the above scaling relations capture the hydrodynamic character
of the thermophoretic force at ITE. I now proceed to the presentation of my main simulation
results, which concern the parameter dependence of FT and Fφ and a direct comparison to
my theoretical predictions. For this purpose, the force measurements have been rescaled
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according to eqs. (3.28). It should however be noted that these scaling relations have been
obtained for my standard choice of system parameters, corresponding to a weakly attractive
potential that is reasonably short-ranged compared to the colloid size (λ/q < R). The
scaling relations might therefore not be completely accurate for strongly attractive/repulsive
or excessively long-ranged potentials. The theoretical predictions of FT and Fφ have been
evaluated for each simulation using the measured value of the interfacial temperature gradient
∇Ts. The trend of ∇Ts will be presented as an inset in the graph for the thermophoretic force
FT , with the value of the bulk gradient ∇T indicated by a black line, and the Péclet number
Pe will be shown as an inset in the graph for the body force Fφ . Apart from the considered
variable, all other parameters are set to their standard values. For convenience, I denote the
theoretical prediction by Fth

T,φ to distinguish it from the measured force FT,φ .

3.5.3 Linearity in the Temperature Gradient

Let us first consider the dependence of FT,φ on the applied temperature gradient ∇T . The
linearity of the thermophoretic force in ∇T , as predicted by NET, has recently been observed
experimentally in aqueous suspensions of charged polystyrene colloids [15]. As the bulk
density naturally decreases with ∇T in my simulations, I verify this linearity by considering
the ratio FT,φ/nB, as shown in fig. 3.15 for a stick boundary. The interfacial temperature
gradient ∇Ts is found to be equal to the applied gradient ∇T for the standard parameter choice.
The linear increase of the Péclet number with ∇T stems from the linearity of the flow strength
uad in the gradient. We notice that the theoretical predictions are proportional to ∇Ts, which
is expected for Fth

T from eq. (3.24), but which is less obvious for Fth
φ based on eq. (3.19).

Although there is a very good overall agreement between simulation and theory, deviations
occur at larger gradients (∇T > 0.02), where the magnitude of the measured force exceeds
the theoretical prediction. This feature can therefore not be explained by advective effects
(large Pe), which should lead to a reduction of FT,φ compared to theory, but must be due to a
departure from ITE caused by strong temperature variations across the layer. For ∇T = 0.03,
we find that dλ ∇Ts ∼ 0.4, which is indeed a non-negligible temperature difference compared
to the reference temperature T0 = 1. A departure from the linear response regime of NET
should hence be expected for excessively large temperature gradients.

3.5.4 Dependence on Colloidal Radius and Interfacial Width

The dependence of FT on colloidal radius R and interfacial width λ has attracted a lot
of attention in research on thermophoresis as these parameters are relatively easy to tune
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Figure 3.15: Dependence of forces on temperature gradient ∇T . a) FT/nB vs. ∇T and b)
Fφ/nB vs. ∇T . The black solid lines are linear fits to the corresponding data.

experimentally [10, 29, 70]. I have therefore carried out the simulation studies of these
parameter dependences for both stick and slip boundary conditions.

As shown in fig. 3.16, I find a very good agreement between simulation and theory
for both FT (R) and Fφ (R) in the case of a stick boundary. The inset in fig. 3.16a further
suggests that the local temperature gradient is rather insensitive to R, such that ∇Ts(R)≈ ∇T
for stick. In particular, we note that the trend of FT vs. R displays a linear relationship,
which agrees with fig. 3.10 where I plotted the theoretical prediction for ∇Ts = ∇T , and
which hence supports the linear trend reported for colloids in literature [10, 69, 90]. The
excellent agreement for a stick boundary is further supported by low Péclet numbers that do
not exceed 0.2. However, moderate deviations are observed for a slip boundary. Although
simulation and theory still follow very similar trends, the force measurements are always
slightly lower in magnitude. Moreover, we see a clear divergence between the measurements
of Fφ for stick and slip, even though the body force should be independent of the boundary
condition if the fluid is at ITE. These observations hint at a departure from ITE due to fluid
advection. The Péclet number is indeed found to be higher for a slip boundary, which stems
from the increase in flow strength when the boundary condition is changed from stick to
slip. Furthermore, the advection of heat tends to weaken the interfacial temperature gradient
compared to its bulk value, as evidenced by the trend of ∇Ts(R) for a slip boundary.

The influence of the interfacial width λ on the forces is presented in fig. 3.17. Unlike
the theoretical prediction, the measured thermophoretic force is approximately linear and
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Figure 3.16: Dependence of forces on colloidal radius R. a) FT vs. R and b) Fφ vs. R.

displays a reduced magnitude at larger values of λ for both stick and slip boundary conditions.
This departure from the theoretical prediction is supported by increasingly large values of Pe.
As the interfacial layer becomes wider, the body force acting on the fluid particles decreases
and thus allows the layer to be more easily perturbed by interfacial fluid flows. Due to the
drastic decrease of ∇Ts with λ , the increase in magnitude of Fth

T is also much slower than
in fig. 3.10. Advective effects are again found to be more pronounced for slip than for
stick, which agrees with my previous argument based on the change in flow strength. The
deviations in the thermophoretic force occur at around λ & 5 for stick and λ & 3 for slip,
corresponding to a Péclet number larger than 0.3. This suggests that Pe & 0.3 constitutes a
general limit above which advective effects become observable in FT . We also notice that
fluid advection has a stronger influence on the body force than on the thermophoretic force.
The measured value of Fφ (λ ) clearly differs from the prediction at large Péclet number and is
even found to decrease in magnitude for a slip boundary. This is rather intuitively explained
by the fact that the asymmetry of the layer, which gives rise to a body force, is more easily
perturbed by advective flows than the radially symmetric part of the layer.

3.5.5 Influence of Potential Strength and Steepness

The dependence on potential strength is shown in fig. 3.18. A very good overall agreement
between simulation and theory is confirmed by small Péclet numbers (Pe < 0.2). Although
a stick boundary condition was applied at the colloidal surface, FT is very well described
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Figure 3.17: Dependence of forces on interfacial width λ . a) FT vs. λ and b) Fφ vs. λ .

by the prediction for a slip boundary when ε > 0, as an increasingly repulsive potential
effectively leads to a slip boundary condition when fluid particles no longer directly collide
with the colloid. I have therefore analysed the data for ε > 0 accordingly, by evaluating
Fth

T (ε) with b= 2/3 and applying the corresponding scaling relations to the simulation results.
A particularly interesting feature is the linear behaviour of the body force and interfacial
temperature gradient for attractive potentials. A quasi-linear trend is also observed for the
thermophoretic force in the range −1 ≤ ε ≤ 1, with a sign switching from negative to positive
occurring at ε = 0 as expected.

The evolutions of the body force and surface force for increasingly repulsive potentials
deserve particular attention and are therefore shown in fig. 3.19. It can be seen that the
surface force vanishes beyond ε ≈ 4 due to the absence of direct collisions with the solid
surface. For the body force, simulation and theory both reach a maximum at ε ≈ 1.5 followed
by a slow decay, but start diverging from each other at larger ε despite small Péclet numbers.
This suggests that the condition Pe < 0.3 does not guarantee the preservation of the gradient-
induced asymmetry in the Boltzmann distribution that gives rise to a body force. It is also
worth noting that the unscaled data conforms to Fφ = FT when FS = 0, as required. This is
however not the case for the rescaled data, implying that the finite-size correction for Fφ is
inaccurate for ε > 0. We therefore conclude that the body force acquires a hydrodynamic
character for increasingly repulsive potentials that cannot solely be described by a gradient-
induced asymmetry in the local Boltzmann distribution. In this regime, the body force instead
merges with the thermophoretic force, which is well described by the hydrodynamic form for
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Figure 3.18: Dependence of forces on potential strength ε . a) FT vs. ε and b) Fφ vs. ε .

a stick boundary, as given by eq. (3.24). This force is further expected to vanish in the limit
ε → ∞ when the potential interaction is effectively reduced to a slip-surface at a distance
r = R+λ from the colloidal centre.

The influence of potential steepness on the forces is presented in fig. 3.20. As reducing
q has a similar effect on the shape of φ(r) as increasing λ , I have studied the dependence
of the forces on the inverse of q. For the thermophoretic force, simulation and theory are
quasi-linear and coincide within errors except for q = 1, where Pe > 0.3. The increase of the
thermophoretic force with 1/q agrees with the trend previously observed in fig. 3.10. It can
also be seen that ∇Ts decreases linearly with 1/q whereas Pe follows a linearly increasing
trend. The body force Fφ is found to be approximately constant and close to the theoretical
prediction. However, a plot of Fth

φ for ∇Ts = ∇T (blue curve in 3.20b) displays a steep
increase in magnitude, suggesting that the observed constancy of Fφ is solely due to the
strong reduction of ∇Ts with 1/q. A comparison between figs. 3.20 and 3.16 shows that the
parameters 1/q and λ indeed have similar effects on the forces, as suggested by my argument
based on the shape of the potential. From these trends we thus conclude that, although the
forces on the colloid are generally expected to increase with the range of the potential, an
increase in the quantity λ/q also leads to stronger fluid advection that tends to reduce the
magnitude of these forces.
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Figure 3.19: Evolution of body force Fφ and surface force FS in the range ε > 0. The smooth
red curve shows the theoretical prediction Fth

φ for ∇Ts = ∇T .

Figure 3.20: Dependence of forces on the inverse of potential steepness q. a) FT vs. 1/q and
b) Fφ vs. 1/q. All solid lines are linear fits apart from the blue curve in the main plot of b),
which shows Fφ (1/q) for ∇Ts = ∇T .
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3.6 Conclusion

In this chapter, I have used Multi-Particle Collision Dynamics to simulate colloidal ther-
mophoresis on a mesoscopic scale, showing that a favorable comparison between simulation
and theory relies on a detailed analysis of fluid properties at the colloidal interface. My
simulation results show that the forces are indeed linear in the gradient as long as the temper-
ature variation across the interfacial layer is weak. The introduction of the Péclet number
has allowed me to quantify deviations from my theoretical predictions due to advective
effects, showing that the criterion Pe < 0.3 is generally a good indicator for interfacial ther-
modynamic equilibrium of the MPC fluid around the colloid. The body force is particularly
sensitive to fluid advection, suggesting that the asymmetry of the interfacial layer is more
easily perturbed by advection than its radially symmetric part. It has further been shown
that repulsive potentials lead to an effective slip boundary condition at the colloidal surface.
Increasing the interfacial width and decreasing the potential steepness have similar effects,
yielding larger predicted values on one hand, but reducing the force due to advection on the
other hand. Most notably, the thermophoretic force has been found to scale linearly with the
colloid radius for a stick boundary, a trend that conforms to my theoretical prediction and
that has been observed experimentally for charged colloids in aqueous electrolyte solutions.

The excellent agreement between simulation and theory at low Péclet numbers is mainly
due to the well-defined physical properties of the considered system, especially the equation
of state of the MPC fluid and the simple surface properties of the spherical colloid. Al-
though my theoretical model can in principle also be applied to more complicated colloidal
suspensions encountered in real experiments, the main challenge in such experiments is
to pin down all interactions that contribute to the interfacial excess enthalpy density and
to identify the appropriate boundary conditions at the colloidal surface. This becomes a
particularly challenging task when the colloids are coated with molecular surface groups that
may change the hydrodynamic boundary conditions and whose interactions with the fluid
give additional contributions to the net Soret coefficient. In my final chapter, I will therefore
present experiments on functionalised colloids whose interaction with the fluid is no longer
sufficient to explain the observed thermophoretic motion.



Chapter 4

Experiment

In this final chapter, I present thermophoretic measurements in aqueous suspensions of
colloids with different surface coatings. Thermophoresis is commonly measured indirectly
using advanced laser techniques such as Thermal Lensing [77], Beam Deflection [49], Digital
Interferometry [60] or Forced Rayleigh Scattering [83], although it has been questioned
to what extend these techniques may suffer from undesirable effects such as local heating
or convection [71]. Recently, a direct measurement of thermophoretic forces on a single
colloidal particle in confinement has further been achieved by means of evanescent light
scattering [39]. Here, I employ an alternative technique based on the observation of the
colloidal steady-state distribution in a closed cell, using conventional bright-field microscopy.
This method avoids laser-induced convection or local heating and has the advantage of
capturing all single-colloid and collective contributions to thermophoresis. Furthermore,
I also study the motion of colloids during the relaxation to steady-state and propose a
theoretical model to describe this relaxation more quantitatively.

4.1 Experimental Technique

4.1.1 Materials and Methods

I have performed thermophoretic measurements in aqueous suspensions using three different
polystyrene (PS) particles of varying negative charge, size and surface coating, including
Streptavidin (PS-STV, from microParticles GmbH), Polyethylenglycol-azide groups (PS-
PEG-N3, in house) and Polyethylenglycol-DNA (PS-PEG-DNA, in house [97]). The PS
particles and their surface groups are shown in fig. (4.1). The particles are either dispersed
in deionised water (ACROS Organics, Fisher Scientific), abbreviated as DiW, or custom-
made Tris-EDTA (TE) buffer (10 mM Tris-HCl and 1 mM disodium EDTA at pH 8.0, in
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Figure 4.1: Schematic representation of the PS colloids and their surface groups.

house), and diluted down to volume fractions of about 0.01%. The reason for using PS
is because it has a mass density similar to water (1040kgm−3), so that micron-sized PS
particles do not completely settle down due to gravitational sedimentation. Before each
experiment, the suspensions were sonicated for 20 minutes to break up potential aggregates.
The hydrodynamic diameters dh and zeta potentials ζ of the PS particles have been obtained
from Dynamic Light Scattering (DLS) measurements using a Zetasizer (Nano ZS, Malvern).

A schematic diagram of the setup is shown in fig. 4.2. The cell for the suspension is made
of an ultra thin silicone spacer with a circular hole (∼ 170µm thick, from Silex Silicones
LTD), sandwiched between two sapphire windows (32×37×0.50mm, from UQG Optics).
Sapphire is optically transparent and a very good heat conductor, thus guaranteeing a uniform
temperature gradient inside the sample. Upon contact, the silicone film immediately sticks to
the sapphire window due to strong adhesion forces. A droplet of the suspension (∼ 25µL) is
then introduced and the second window is carefully placed on top of the spacer. Moderate
pressure is exerted on the top window to squeeze out any excess liquid and to amplify the
adhesion between the windows. The sample is then transferred to a Nikon Eclipse Ti-E
inverted microscope, equipped with a Ximea MQ013MG-E2 camera with a E2V EV76C560
CMOS sensor. An extra-long working distance objective is used for bright-field imaging,
with a numerical aperture of 0.60, corresponding to a depth of focus of about ∼ 1.3µm. The
sample is then mounted onto the microscope stage and sandwiched between two copper
blocks. Both blocks are connected to PID (proportional integral derivative) controllers and
have small central holes for the transmission of light. To avoid large-scale convection, a
uniform temperature gradient is set up vertically by heating at the top and cooling at the
bottom. For this purpose, the top and bottom blocks are connected to an electric heater
and a water bath; and the corresponding temperatures are monitored using thermocouples.
The time evolution of the colloidal concentration profile is captured by acquiring images of
horizontal slices in 10 minute intervals, spanning the entire height of the cell. The slices are
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Figure 4.2: Lateral view of the experimental setup (dimensions are not to scale).

all equally spaced by a vertical distance of ∼ 10µm and averaged over multiple images to
improve the accuracy of the measurement.

4.1.2 Steady-State Measurements

My experimental technique is based on eq. (1.5), which shows that the Soret coefficient
ST can be determined from the colloidal concentration profile at steady-state when the
temperature gradient is known. In dilute suspensions, colloidal pair-interactions can be
neglected and the Einstein relation ξ D = kBT can be used to relate the diffusion coefficient D
to the friction coefficient ξ of the colloid. A single colloid is then subjected to two different
forces, the thermophoretic force FT =−kBT ST ∇T and the gravitational pull Fg = mrg where
g = 9.81ms−2. The reduced mass mr of the colloid is given by mr =Vc(ρc −ρw), where Vc

is the volume of a colloid and ρc and ρw are the pure mass densities of the colloid (PS) and
solvent (water), respectively. Taking into account the gravitational pull of the suspended
particle, the colloidal distribution along the temperature gradient can hence be written as

∂ lnP(z)
∂ z

=
Fg

kBT
−ST

∂T
∂ z

. (4.1)
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PS-STV PS-PEG-N3 PS-PEG-DNA
dh (nm) 591 446 491

D(µm2s−1) 0.84 1.11 1.01
τD (h) 4.78 3.62 3.97

Table 4.1: The values of D are determined from the Stokes-Einstein relation at room temper-
ature, using the values of the hydrodynamic diameters dh.

Here, the colloidal concentration c(z) has simply been replaced by its corresponding
probability distribution P(z).

In my experiments, I have measured the colloidal concentration profile at steady-state
for different temperature gradients, keeping the bottom block at ∼ 20◦C and raising the
temperature of the upper block to a maximum of ∼ 50◦C. Within this narrow temperature
range, the expansion of water barely effects the reduced mass of the colloid and the thermal
energy kBT can be assumed constant throughout the sample. In view of eq. (4.1), the Soret
coefficient ST can then be identified as the negative slope of the curve defined by ∂ lnP/∂ z
vs ∂T/∂ z, allowing a natural elimination of the gravitational pull as a constant offset at
∂T/∂ z = 0. It is important to note that the colloids must be at steady-state before this
measurement technique for ST is applied. An order of magnitude estimate for the relaxation
time required to reach this steady-state is given by the diffusive time scale τD ∼ h2/2D,
where h is the cell height set by the thickness of the silicone spacer. The diffusion coefficient
can be determined from the Stokes-Einstein relation D = kBT/(3πηdh), where the viscosity
of water takes the value of η = 8.910−4Pas at room temperature. The values of dh, D and τD

are reported in Table 4.1, showing that all examined colloids are expected reach steady-state
on a time scale of 4-5 hours.

The local concentration at each altitude is determined via image analysis using a home-
developed MATLAB code, based on a binarisation method with a high pass filter for contrast
and feature size. The images are acquired in bright-field and have a size of 10242 px2. As
shown in fig. 4.3a, the colloids appear as black blobs on a grey background. The image is
inverted and split into smaller bins of 642 px2 inside which the background illumination can
be assumed uniform. Each bin is then binarised according to a contrast parameter f , which
defines the binarisation threshold B as

B = min
{

1,
(

1+
f

100

)
I
}
, (4.2)

where I is the mean intensity of the bin. All pixels are set to 1 (white) above this
threshold and to 0 (black) otherwise. As the mean intensity of a white bin cannot exceed
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Figure 4.3: Comparison between raw and binarised image.

1, the binarisation threshold is automatically cut off at this value. The remaining features
are sent through a high pass filter to eliminate background noise. The white features in the
binarised image, shown in fig. 4.3b, display an excellent agreement with the colloids that
are visible in the raw image (fig. 4.3a). The reason for binarising each bin rather than the
entire image is that the illumination is never completely uniform over the image, even if the
optics is properly aligned. This effect can be seen in fig. 4.4, which shows the area fraction
of detected features in each bin before the high pass filter is applied. Direct binarisation of
the whole image results in a non-uniform scatter of area fractions, whereas binarising each
bin separately leads to a uniform scatter.

The complete relaxation to steady-state is verified by monitoring the time evolution of
the decay parameter κ(t), which we define as the negative slope of the best-fit line to the
curve ln P(z) vs z:

κ(t) =−
〈

∂ lnc(z)
∂ z

〉
z
(t). (4.3)

Examples of these time evolutions are shown in fig. (4.5), for PS-PEG-N3 and PS-STV in
DiW. For both systems, κ(t) reaches a stable value after around 4 hours, which indeed falls
into the range of values for τD given in Table 4.1. The local concentration c(z) of colloids
is further related to the area fraction φa(z) via c(z) = φa(z)/(Acl), where Ac is the average
feature size of a colloid and l is the observed depth of the image. We can thus write:

− ∂ lnc(z)
∂ z

=−∂ lnφa(z)
∂ z

+
∂ lnAcl

∂ z
. (4.4)
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Figure 4.4: Scatter plot of detected area fraction per bin. Empty circles show the non-uniform
distribution obtained by binarisation over the entire image, whereas full circles show the
uniform distribution obtained by binarisation of each bin.

Figure 4.5: Time evolution of the decay parameter κ(t) for PS-PEG-N3 (full symbols) and
PS-STV (empty symbols) in DiW, for varying external temperature differences ∆Te. The
time origin is not absolute, but set to zero at the start of each measurement.
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Figure 4.6: Dependence of κ on the contrast parameter f and maximal feature size s. The
dashed horizontal line shows the value of κ determined with the chosen parameters.

As our examined suspensions are very dilute, the overall intensity of the image does not
change with height. Although Ac and l depend on the binarisation parameters, this implies
that Ac and l are independent of z, giving:

− ∂ lnc(z)
∂ z

=−∂ lnφa(z)
∂ z

, (4.5)

so that we can directly use the measured area fraction to determine the Soret coefficient.
The contrast parameter f and maximal size s for the high pass filter are calibrated by analysing
the behaviour of κ = κ(t → ∞) over a physical range of these parameters. Examples of such
calibration curves are shown in fig. 4.6. These curves display a stable value of κ over a wide
range of parameter values. Divergences are only visible when the parameters take unphysical
values, leading to a high noise level at very low f and s, and a shortage of detections for
exceedingly large values of f and s. The value of κ is then determined with an optimal
parameter choice within the stable range.

4.2 Steady-State Measurement Results

The rigorous image analysis technique presented in the previous section allows an accurate
measurement of the colloidal concentration profile at steady-state. Fig. (4.7) shows the
plots of ln P(z) vs z at steady-state for PS-PEG-N3 and PS-STV in DiW. It can be seen
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that the concentration of colloids is highest at the bottom of the cell and falls off rapidly
towards the top. The lines represent best fits to the data over the range of 30-100µm above
the bottom surface. The reason for limiting the fitting to this bulk range is twofold. Apart
from colloidal absorption, which tends to be stronger at the bottom due to gravity, lower
concentrations give poor statistics close to the top surface. The absence of colloids tends
to reduce the slope of the curves at the top of the cell, where the area fraction of detected
features is mainly set by a constant level of background noise. This effect is visible in fig.
4.7 at higher altitudes and becomes more pronounced with increasing temperature difference.
Although it cannot be ruled out that this systematic deviation might partly stem from a weak
temperature dependence of the Soret coefficient, the curves undoubtedly show that ln P(z)
is linear over a wide range inside the cell. In view of eq. (4.1), this linearity implies that
the Soret coefficient ST is approximately constant throughout the suspension, meaning that
the colloids are subjected to a uniform thermophoretic force. At steady-state, the decay
parameter κ can thus be related to the Soret coefficient via

κ = ST ∇T +κg, (4.6)

where κg =−Fg/(kBT ).
Knowing the cell height and the internal temperature difference ∆Ti inside the suspension,

ST can hence be determined from

ST = h
∂κ

∂∆Ti
, (4.7)

where h is the cell height. The internal temperature difference ∆Ti differs from the
externally applied difference ∆Te due to the finite thermal conductivity of sapphire. By
treating the sapphire windows and suspension as conducting elements in series, it can be
shown that (see appendix D):

∆Ti =
1

1+2σwhs
σsh

∆Te, (4.8)

where hs = 0.5mm is the thickness of a sapphire window and σs = 27.21Wm−1K−1

and σw = 0.6Wm−1K−1 are the thermal conductivities of sapphire and water, respectively.
Using these values, we obtain the relation

∆Ti = 0.88∆Te. (4.9)

The plots of κ vs ∆Ti are shown in fig. 4.8 for all studied systems. It should be noted that
the measurements on PS-STV were performed on different samples, explaining the higher
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Figure 4.7: Natural logarithm of probability P(z) vs altitude z for varying external temperature
differences ∆Te, for a) PS-PEG-N3 and b) PS-STV, in DiW. The probability P(z) is normalised
according to P(zi) = c(zi)/∑i c(zi), where zi are the discrete altitudes inside the bulk range.

noise level in fig. 4.8a. The relative sample error associated with these measurements is 7%
and is likely due to a fluctuating pH in DiW. It can be seen that κ(∆Ti) is approximately
linear for each system, indicating that the thermophoretic force is linear in ∇T and that
the Soret coefficient is rather insensitive to temperature. The values of ST obtained from
eq. (4.7) are also displayed in fig. 4.8 and are exclusively positive, corresponding to a
thermophobic behaviour of all studied PS particles. The values of ST measured in DiW
deserve particular attention, as they do not conform with existing theoretical predictions
for charged colloids in aqueous electrolyte solutions [68, 90]. These models are based on
eq. (2.113) and only account for the electric double layers around the colloids, yielding
a scaling ST/dh ∝ ζ 2/3+ ζVT/e, where e is the elementary charge. The first term stems
from the interfacial excess enthalpy whereas the second term accounts for a thermoelectric
potential VT . For comparison, the measured values of ST/dh and ζ in DiW are given in
Table 4.2. Although the value of ζ may fluctuate in DiW (±5mV), these measurements
show that PS-PEG-N3 clearly has the weakest zeta potential. This is mainly due to the azide
(N3) groups on the colloidal surface. Unlike DNA, which carries a net negative charge, the
azide groups are neutral and therefore reduce the zeta potential by shifting the hydrodynamic
slip plane away from the charged surface. Nonetheless, the ratio ST/dh has been found to
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Figure 4.8: Decay parameter κ vs internal temperature difference ∆Ti, for a) PS-STV in DiW,
b) PS-PEG-DNA in DiW, c) PS-PEG-N3 in DiW and d) PS-PEG-N3 in TE. The values of κ

are averages over the last 5 measures at steady-state. The corresponding standard errors and
propagated errors on ∆Ti due to an uncertainty in sapphire conductivity are relatively small
and therefore not shown.
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in DiW PS-STV PS-PEG-N3 PS-PEG-DNA
ST/dh (K−1µm−1) 0.25 ±0.02 0.63 ±0.04 0.43 ±0.03

ζ (mV) -29.5 -18.9 -30.6

Table 4.2: The errors on ST/dh are calculated from the relative sample error of 7%.

be highest for PS-PEG-N3, which could only be explained by the scaling if ζ and VT have
opposite signs. However, this would still not provide an explanation for the difference in
ST/dh for PS-STV and PS-PEG-DNA, whose zeta potentials are nearly equal. Therefore, my
measurements clearly suggest that surface functionality leads to an additional contribution to
ST that is not accounted for by the aforementioned ζ -model.

4.3 Thermophoretic Relaxation to Steady-State

Although the colloidal steady-state distribution has previously been exploited to determine ST ,
very little is known about the relaxation process behind this steady-state. The diffusive time
scale τD yields a rough estimate for the relaxation time but provides no further insight into
the underlying relaxation dynamics. In biological processes however, we are often interested
in how a collection of confined particles or molecules relaxes to steady-state under the action
of a weak thermodynamic force, the accumulation of biomolecules in out-of-equilibrium
pores being an important example [5]. A theoretical model is therefore required that allows
a more quantitative description of this collective relaxation. Here, I propose the colloidal
centre of mass (CoM) as a natural candidate for this description, defined by

Z =
∑i ziP(zi)

∑i P(zi)
, (4.10)

which, in the continuous limit, can equivalently be written as

Z =
∫

zPz(z)dz, (4.11)

where Pz(z) is the linear probability density in the z-direction, satisfying
∫

Pz(z)dz = 1.
From eq. (4.11), we see that the motion of the CoM is related to the evolution of Pz(z), which
is governed by the continuity equation for an effectively one-dimensional, closed system in
the absence of particle generation

∂Pz

∂ t
+

∂ j
∂ z

= 0. (4.12)
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The corresponding probability flux j is simply given by

j =−D
∂Pz

∂ z
+

F
ξ

Pz, (4.13)

where F = Fg +FT is the total force on a colloid. Due to the temperature dependence of
the water viscosity [2], it should be noted that the friction coefficient drops to half its value
between 20◦C and 50◦C whereas the diffusion coefficient doubles in this range. For the
sake of simplicity, we shall nonetheless assume that D and ξ can be taken as approximately
constant. This is a reasonable assumption for the CoM dynamics as the colloids close
to the top surface will be rapidly driven away from that surface by an increasingly large
thermophoretic force at higher gradients, so that the majority of the colloids will be located
in lower temperature regions during most the relaxation process. With the expression for j
given by eq. (4.13), the continuity equation (4.12) can then be rewritten in terms of rescaled
variables

∂Pz

∂ t ′
+

∂Pz

∂ z′
− ∂ 2Pz

∂ z′2
= 0, (4.14)

where t ′ = κ2Dt and z′ = κz. Here, I compare my experimental data to numerical
solutions of eq. (4.14), using a standard PDE-solver (MATLAB). By assuming perfectly
reflecting boundaries at z = 0 and z = h, eqs. (4.12) and (4.13) can further be used to derive
the following equation of motion for the colloidal CoM (see appendix E):

F +Π−ξVZ = 0, (4.15)

where VZ is the CoM velocity. The term Π has an entropic nature and is given by

Π =−kBT (Pz(h)−Pz(0)) . (4.16)

As Pz(z′, t ′) only has a simple stationary solution at steady-state, there is no straightfor-
ward analytical prediction for the time evolution of Π.

Let us now consider the case where the system is at steady-state. The colloidal CoM has
reached a stable position (VZ = 0) and the force balance is given by F +Π = 0. The system
is then suddenly subjected to a constant perturbation δF at time t = 0, e.g. by increasing the
temperature gradient. The resulting CoM shift δZ will induce an entropic response δΠ that
opposes the external perturbation until a new steady-state is reached. It follows that δΠ acts
as a restoring force, satisfying δΠ(δZ = 0) = 0. To make progress in quantifying the CoM
relaxation, I examine the weak perturbation limit by assuming a linear response relation of
the form δΠ ∝ δZ. Eq. (4.15) can then be solved analytically, giving:
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Figure 4.9: Observed time evolution of the CoM shift δZ of PS-STV in DiW, rescaled with
respect to the cell height h, for three different values of ∆Te. The dashed lines are exponential
fits from which the values of ω are determined. The time offset at δZ = 0 is due to the fact
that the time origin coincides with the moment when the colloidal concentration is uniform,
whereas δZ is defined with respect to the first CoM position measured during the observation.

δZ(t) = δZ f (1− exp(−ωt)) , (4.17)

where δZ f is the final CoM shift over the entire system, in response to the perturbation
δF . Following eq. (4.17), I therefore propose that the temporal decay constant ω can be
used to quantify the speed of the relaxation to steady-state. In view of eq. (4.15), ω should
further satisfy the relation

ξ ω ∼
∣∣∣∣ δF
δZ f

∣∣∣∣ . (4.18)

As eq. (4.17) relies on reflecting boundaries, it must be noted that some of my colloids
suffered from weak surface absorption to the sapphire windows, in particular PS-STV in
DiW. Although the number of absorbed colloids saturates during the relaxation, absorption
can temporarily perturb the free evolution of the CoM. Furthermore, the system boundaries
have to be excluded from the data analysis due to the previously mentioned reasons, leading
to deviations from eq. (4.18) when the CoM is only tracked over a limited bulk range of the
system. Nonetheless, the CoM relaxation of PS-STV in DiW is found to be well fitted by



82 Experiment

Figure 4.10: Relaxation speed ω vs decay parameter κ for PS-STV in DiW (squares). The
solid line shows the trend of ω(κ) obtained from numerical solutions of eq. (4.14), based on
reflecting boundaries and using the value of D given for PS-STV in Table 4.1.

an exponential decay. For this system, each relaxation was studied in a separate experiment
where an initially uniform distribution of colloids was subjected to a thermophoretic force
FT fixed by the externally applied temperature difference ∆Te. Three of these relaxations are
displayed in fig. 4.9, together with their exponential fits from which the relaxation speed ω

is determined. In fig. 4.10, these values of ω are plotted against the corresponding values of
κ , which are directly related to the magnitude of FT via eq. (4.6). It can be seen that ω tends
to increase with κ , corresponding to shorter relaxation times for stronger thermophoretic
forces. The same conclusion is drawn from the trend of ω(κ) as obtained from numerical
solutions of eq. (4.14). Although assuming reflecting boundaries, the numerical curve (full
line) displays a good agreement with the experimental data. The observed trend of ω(κ) can
clearly not be explained by the diffusive time scale τD, which just gives ω = τ

−1
D ∝ D, with

no allowance for a dependence on κ .

Fig. (4.11) shows the relaxation of PS-PEG-N3 in TE, for which no surface absorption
was observed. The CoM shifts are again very well fitted by my exponential model (dashed
lines). This system was measured in a single experiment, so that the initial concentration was
uniform for the relaxation at ∆Te = 10K and subsequently fixed by the previously reached
steady-states for the relaxations at ∆Te = 20K and ∆Te = 30K. For each relaxation, the
perturbation δF is thus fixed by the difference between the values of κ at the final and initial
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Figure 4.11: Observed time evolution of δZ for PS-PEG-N3 in TE (symbols), for varying
external temperature differences ∆Te. Full lines correspond to numerical solutions of eq.
(4.14). The legend above each curve shows the value of ω obtained from the exponential fit
(dashed line) and the optimal value of D used for fitting of the numerical solution.

steady-state. In units of κ , these are given by δF = 0.017µm−1, δF = 0.014µm−1 and
δF = 0.011µm−1 in order of increasing ∆Te. The corresponding values of ω are reported
in fig. 4.11 and indicate that the relaxation speed increased rapidly with the incremental
increase of ∆Te. As the magnitude of δF barely changed from one relaxation to the next, the
observed increase of ω with ∆Te in this experiment is mainly related to the initial condition,
showing that the CoM relaxes faster when the distance to steady-state δZ f is reduced.

Due to the absence of absorption, the CoM shift of PS-PEG-N3 can be directly compared
to numerical solutions of eq. (4.14). For this purpose, the solutions (full lines in fig. 4.11)
were obtained by using the diffusion coefficient D as a fitting parameter to reproduce the
measured value of ω most accurately. This is achieved by extracting D from a curve of ω vs
D based on eq. (4.14), for each perturbation δF and corresponding initial condition. These
curves are shown in fig. 4.12 and display a linear relationship ω ∝ D for each relaxation.
Interestingly, the thus determined optimal value of D is always smaller than the value
of 1.11µm2s−1 for PS-PEG-N3 obtained from the Einstein relation, the difference being
particularly large for the relaxations at ∆Te = 10K and ∆Te = 20K, where the optimal value
is roughly 0.66µm2s−1. A possible reason for this discrepancy might be the existence of
hydrodynamic effects such as temporary convective flows, giving rise to an additional time-
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Figure 4.12: Numerical simulation of ω vs D (symbols) based on eq. (4.14), for the given
perturbations and initial conditions of PS-PEG-N3 in TE. The full lines are best linear fits.

dependent term in eq. (4.13) that slows down the relaxation and disappears at steady-state.
However, fig. 4.13 suggests that these effects do not influence the z′ -dependence of eq.
(4.14), as the observed shape of the concentration profile P(z′, t ′) of PS-PEG-N3 is always
well fitted by a corresponding numerical solution.

4.4 Conclusion

I have introduced a measurement technique for thermophoresis that is based on observing
the change of the colloidal steady-state concentration profile with the applied temperature
gradient. This method automatically eliminates the gravitational pull and is free of any other
external influences, allowing a clean and direct measurement of the Soret coefficient. My
measurements show that the Soret coefficient is rather insensitive to temperature for charged
PS particles in aqueous suspensions. Further, the measured thermophoretic force varies
linearly with the temperature gradient, supporting the linear-response assumption of the
theory of non-equilibrium thermodynamics. The colloids with the weakest zeta potential
exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more
intricate dependence on surface functionality than predicted by existing theoretical models.
I have also investigated the relaxation to steady-state by studying the CoM motion of the
colloids. The observed CoM motion is in agreement with a theoretical model that predicts an
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Figure 4.13: a) Probability distribution P(z′) vs rescaled altitude z′ for PS-PEG-N3 in TE
(symbols), at different instants texp during the relaxation to steady-state for ∆Te = 10K. The
full lines are best fits obtained from eq. (4.14), based on least square fitting. texp is rescaled
w.r.t the total relaxation time.

exponential decay to steady-state. The decay speed ω has been found to depend on both the
initial condition and the thermophoretic force, with a tendency to increase with the magnitude
of the force. This insight cannot be gained from an estimate based on the diffusive time scale,
which only predicts a linear dependence on the diffusion coefficient.





Chapter 5

General Conclusion and Outlook

As I have shown in this work, colloidal thermophoresis is an exciting and yet intricate
physical phenomenon that clearly deserves to be the subject of current research.

From a theoretical point of view this is evidenced by the fact that, to my knowledge,
the theoretical approach presented in chapter 2 represents the first complete description of
thermophoresis within the framework of non-equilibrium thermodynamics. A likely reason
why this has not been achieved before is that the application of NET requires a very careful
set of assumptions for the evaluation of transport coefficients, which in colloidal suspensions
derives from the dynamic length and time scale separation between the colloid and the fluid.
Correctly identifying these assumptions is a challenging task in soft matter physics as they
strongly depend on the physical properties of the considered system. This has lead many
to avoid NET and instead base their approaches on seemingly intuitive arguments adopted
from other transport phenomena at uniform temperature, such as sedimentation or diffusion.
I have shown that such approaches are incomplete as thermophoresis has a hydrodynamic
character that requires a full treatment within the framework of NET. Most importantly,
the application of Onsager’s reciprocal relations has not only allowed me to determine
the transport coefficients for thermophoresis, but has also shown that these coefficients
account for any colloidal transport phenomenon, including diffusiophoresis, electrophoresis
or sedimentation. My theoretical description therefore paves the way to a general and
thorough understanding of the physical mechanisms behind colloidal motion. Chapter 3
was dedicated to simulations of thermophoresis based on multi-particle collision dynamics,
providing a means to test my theoretical predictions and explore the range of validity of the
underlying assumptions. A valuable insight gained from these simulations is that strong
temperature variations and fluid flows can perturb the local equilibrium structure of the
interfacial layer around a colloid, suggesting that the assumption of interfacial thermodynamic
equilibrium should be questioned when studying thermophoresis. As mentioned in section 1.2,
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the Soret coefficients of micron-sized colloids are usually found to be of the order ∼ 1K−1. As
applied temperature gradients do not exceed ∼ 1Kµm−1, the relative temperature variation
R |∇T |/T across the colloids is indeed negligible. Given that the solvent is non-ideal in
real experiments, the more general form of the introduced Péclet number Pe = |γuad/∇φ |
should be used to quantify advective effects in dilute colloidal suspensions. An estimate of
uad is provided by uad ∼ |FT/ξ | based on momentum conservation and the ratio between
the friction coefficients of the fluid and colloid rs = γ/ξ is mainly set by the ratio of the
corresponding sizes, giving rs ∼ R/Rs where Rs is the radius of a fluid particle. Using
∇φ ∼ ε/λ and assuming that ε ∼ kBT , we obtain the criterion |ST ∇T | ≪ R/(λRs), which is
indeed satisfied for typical values of |ST ∇T | ∼ 1 µm−1 in the colloidal regime where both
Rs and λ are much smaller than the radius of a colloid. As a result, advective distortions
should be negligible in most colloidal suspensions, but are expected to be more pronounced
in molecular mixtures where Soret coefficients tend to be higher and where particle sizes and
interaction ranges are of the same order of magnitude.

However, applying the theoretical predictions to more complex experimental systems is
less trivial, as it is in practise often impossible to precisely define the interfacial interactions
and hydrodynamic boundary conditions at the colloidal surface, or to exactly pin down all
contributions related to the fluid steady-state. Some of these difficulties are encountered in my
experiments presented in chapter 4, where the measured Soret coefficient of functionalised
colloids in aqueous electrolyte solutions is influenced by different molecular surface groups
in a way that is hard to predict theoretically. On a positive note, the sensitivity of the Soret
coefficient to surface functionality suggests that a more efficient separation of different species
of particles could be achieved with functionalisation. In analogy to a recently developed
technique for determining binding affinities of proteins in biological systems [87, 47, 79],
thermophoresis could also be used to quantify the surface coverage of functionalised colloids
in reversible adsorption processes. As such techniques often rely on the observation of the
colloidal distribution at steady-state, I have studied the corresponding relaxation dynamics,
showing that the relaxation speed depends on both the diffusion coefficient and the applied
thermophoretic force.

Although I have managed to answer many of the unresolved questions that I was con-
fronted with at the beginning of my PhD, my work has also raised some new questions
that offer a fruitful ground for future research. For instance, one could try to find a more
quantitative link between fluid advection and the resulting distortion of the interfacial layer,
to understand more precisely how the observed deviations depend on the Péclet number. As
my simulations considered a stationary colloid, these advective distortions could instead be
analysed in the case where the colloid is freely moving. Another open question concerns the
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effect of local distortions in the gradient due to fluid advection or conduction through the
colloid and its layer. It is currently rather unclear to what extent a locally modified gradient
violates the assumption of ITE upon which my theoretical framework is based. After all, it
must be remembered that the condition of ITE sets the length scale over which local thermo-
dynamic equilibrium must hold in order to treat the colloids as a thermodynamic component
within the framework of NET, thus allowing the use of the Onsager reciprocal relations.
Therefore, it would be very interesting to examine whether the motion of self-phoretic (Janus)
particles can still be described with my theoretical approach, as these particles create strong,
locally varying gradients around their surfaces.





Appendix

A. Evaluation of the Orientational Average over the Fluid Flow

Here, I evaluate the orientational average ⟨usŷ⟩, defined by

⟨usŷ⟩=
1
2

∫
π

0
uy(r,θ)sinθdθ , (5.1)

where uy(r,θ) is the component of the flow velocity along the direction ŷ of the bulk
flow. The solution for the fluid flow velocity us in the spherical basis (r̂, θ̂ ) is given by

ur = u∞ cosθ
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where the parameter a takes the value a = 0 for stick and a = 1/4 for slip. The component
uy can hence be computed:

uy = ur cosθ −uθ sinθ (5.4)
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Using the trigonometric identity cos2 θ = 1− sin2
θ , this can be rearranged into
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uy = u∞
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Knowing that the orientational average over sin2
θ takes the value

1
2

∫
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, (5.8)

the orientational average ⟨usŷ⟩ takes the form

⟨usŷ⟩= u∞
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I have thus recovered the result used in eq. (2.52) to obtain eq. (2.56), which allows the
determination of the interfacial transport coefficient Xcs.

B. The Partial Enthalpy of a Point-Like Component

We consider a component k of point-like particles that do not interact with each other. The
component is embedded in a solvent and the particles are therefore surrounded by solvation
layers due to the specific interaction with the solvent molecules. In this case, the chemical
potential of component k just comprises an ideal part µid and an interfacial part µks, such
that µk = µid +µks. The ideal contribution µid is given by [12]

µid = kBT lnnb
k −

3
2

kBT lnT +K, (5.9)

where K is a constant. As the solvent is incompressible, there is no interfacial excess of
solvent molecules and the Gibbs adsorption equation for the solvation layer reduces to

−dµks =−Hk
φ

dT
T

, (5.10)

where Hk
φ
= T Sk

φ
is the enthalpy of solvation. Based on eq. (2.4), the partial molar

enthalpy of component k can then be computed:
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Figure 5.1: Schematic diagram of the boundary layer approximation. The blue arrows show
the interfacial fluid flow as observed in the rest frame of the colloid, reaching a maximal slip
velocity uslip at the boundary of the interfacial layer.
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=
3
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kBT + H̄0
k , (5.14)

where H̄0
k = T Sk

φ
+µks is the contribution to H̄k stemming from the solvation layer. For

ions in water, H̄0
k hence corresponds to the partial molar enthalpy due to hydration.

C. Würger’s derivation of Fcs in the boundary layer approximation

In my derivation of Fcs, I used Onsager’s reciprocal relations by considering the fluid flow
induced by a colloid moving through a homogeneous fluid at uniform temperature. However,
Würger’s derivation of Fcs involves the interfacial fluid flow induced in the rest frame of the
colloid when a temperature gradient is applied across the interfacial layer [33, 90]. Here, the
direction of the temperature gradient is specified by the unit vector ŷ. In the boundary layer
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approximation, the colloidal surface is locally treated as a flat wall and the corresponding flow
is parallel to the surface. A shown in fig. 5.1, the hydrodynamic problem can be described
in the spherical basis (r̂, θ̂ ) by using the coordinates z = r−R and θ , where θ is the angle
between ŷ and r̂. For simplicity, I will assume that the thermal conductivities of the colloid
and the fluid are the same.

Let us write the interfacial force density as F⃗φ = Fφ ŷ and let Fθ =−Fφ sinθ be the
component of F⃗φ parallel to the surface. The Navier-Stokes equation for the interfacial flow
can then be written as

Fθ +η
∂ 2uθ

∂ z2 = 0. (5.15)

Knowing that the flow reaches a maximal slip velocity uslip = uslipθ̂ at the boundary of
the interfacial layer (z → ∞), a first integration from the boundary into the layer yields

[
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By applying a stick boundary condition at the surface (uθ = 0 at z = 0), a second
integration from the surface (z = 0) to the boundary gives

[uθ ]
∞

0 = uslip =
∫

∞

0

(∫
∞

z

F cs
θ

η
dz′
)

dz′′, (5.17)

which, with integration by parts, can be simplified to
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Due to momentum conservation, the reciprocal theorem for the Stokes flow problem can
be applied outside the boundary layer [4, 9], showing that the colloid moves along the tem-
perature gradient with a steady-state velocity v = vŷ =−

〈
uslipŷ

〉
ŷ, where the orientational

average
〈
uslipŷ

〉
is given by

〈
uslipŷ

〉
=

1
2

∫
π

0

(
uslipŷ

)
sinθdθ =

1
2

∫
∞

0
z
Fφ

η
dz
∫

π

0
sin3

θdθ =
2
3

∫
∞

0
z
Fφ

η
dz (5.19)

The interfacial force Fcs is simply related to the velocity v via Fcs = ξ v, where the friction
coefficient takes the value ξ = 6πηR for a stick boundary. Assuming that the viscosity of
the fluid is constant, it follows that
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Fcs =−4πR
∫

∞

0
zF⃗φ (z)dz. (5.20)

Eq. (5.20) constitutes Würger’s final result, which is in agreement with my expression
for a stick boundary given in eq. (2.63).

D. External and Internal Temperature Difference

Due to the finite thermal conductivities of the sapphire windows, the externally applied
temperature difference ∆Te will not be equal to the internal temperature difference ∆Ti inside
the cell. This system is made of an aqueous colloidal suspension sandwiched between two
sapphire windows. As the suspension is very dilute, its thermal conductivity is simply equal
to that of water. At thermal steady-state, the heat current q through the system Sapphire-
Water-Sapphire (sws) must be the same as the current through each element. The thermal
conductance is defined as

C =
σS
d
, (5.21)

where σ is the thermal conductivity of the considered element, S is the surface area of
the element and d is its thickness. For the heat current through the entire system (sws), we
thus have

q =Csws∆Te. (5.22)

Similarly, the heat current through the suspension reads

qw =Cw∆Ti. (5.23)

Using the relation q = qw, the internal temperature difference can hence be written as

∆Ti =
Csws

Cw
∆Te. (5.24)

Given that the suspension is sandwiched between the sapphire windows, these three
conducting elements are in series, so that we have

1
Csws

=
1

Cw
+

2
Cs

, (5.25)

which can be rearranged into
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Csws

Cw
=

1
1+2Cw

Cs

=
1

1+2σwhs
σsh

(5.26)

Substituting eq. (5.26) into eq. (5.24) then allows the recovery of the expression for ∆Ti

used in section 4.2.

E. Equation of Motion of the Colloidal CoM

As stated in section (4.3), the 1D probability flux j of colloids takes the form

j =−D
∂Pz

∂ z
+

F
ξ

Pz. (5.27)

The derivation of the equation of motion for the colloidal CoM starts from the definition
of the CoM velocity VZ = dZ/dt, where Z is given by

Z =
∫

zPz(z)dz. (5.28)

Using the continuity equation, the CoM velocity can hence be written as:

VZ =
∫

z
∂Pz

∂ t
dz =−

∫
z
∂ j(z)

∂ z
dz. (5.29)

With reflecting boundaries ( j(z = 0) = 0 and j(z = h) = 0), integration by parts then
directly yields

VZ =
∫

j(z)dz. (5.30)

Assuming that D, ξ and F are approximately uniform inside the system, substituting eq.
(5.27) for j into eq. (5.30) gives

VZ =−D
∫

∂Pz

∂ z
dz+

F
ξ

∫
Pzdz =−D(Pz(h)−Pz(0))+

F
ξ
. (5.31)

Multiplying eq. (5.31) by ξ , using ξ D = kBT and rearranging, we obtain the equation of
motion of the colloidal CoM

F +Π−ξVZ = 0, (5.32)

where Π =−kBT (Pz(h)−Pz(0)) is the entropic restoring force.
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