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Abstract

Let RG be the group ring of the group G and the ring R. If R is a field, we usually refer to RG as
a group algebra. We initially describe the unit group of the group algebra IF,x Dg where [Fy is a
Galois Field of 2F elements and Dy is the dihedral group of order 8. We then describe the unitary
unit group of IF,xDg. Furthermore, we show the connection between unitary units in group rings
and self-dual codes. Finally, we construct certain self-dual codes from the unitary units of the
group algebra IF,Dg.
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Symbols

Cn the cyclic group of order n.

Do, the dihedral group of order 2n.

|G| the order of the group G.

HNK the intersection of H and K.

H x K the external direct product H and K.
HxK the semidirect product of H and K.
HK the internal direct product of H and K.
N<G N is a normal subgroup of G.

IF the Galois field of p* elements.

RG the group ring of G over R.

U(RG) the unit group of RG.

€(RG) the augmentation mapping of RG.
V(RG) the normalized unit group of RG.

ZD(RG) the zero divisors of RG.
(

ker(6) the kernel of a group/ring homomorphism.

circ(V) the circulant matrix of the vector V.

M, (R) the ring of n x n matrices over R.

In the n x n matrix of ones.

I, the n x n identity matrix, sometimes denoted as just I.
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Introduction

In this thesis, we describe the structure of the unit group and unitary unit group for certain
group algebras. Additionally we detail the connection between unitary units of group rings and
self-dual codes.

Chapter Outlines

Chapter 1: First we study the fundamental terms and theorems related to groups, rings, fields,
group-rings and coding theory which will be required to fully understand the material in the
following chapters. This chapter will also introduce GAP, a system for computational discrete
algebra. Examples will sometimes be verified using this package.

Chapter 2: Next, we introduce a ring isomorphism first shown by T. Hurley in [12]. This chapter
is essential to chapters 2 and 3 where we examine the units and unitary units of group rings.

Chapter 3: This chapter follows the work of J. Gildea and L. Creedon [4], who have determined
the structure of the unit group U (F,«Dg). Alternative proofs to many of the results are provided,
using the ring isomorphism from Chapter 2.

Chapter 4: Here we continue to follow the work of J. Gildea [6], this time studying the unitary
units, Vi (IF,xDg). Again, alternative proofs with full details are provided.

Chapter 5: In this final chapter, we show how the unitary units from Chapter 4 relate to self-
dual codes. We examine codes over F,[F4 and F4 + ulF,, using a construction based on the
isomophism given in Chapter 2.



Chapter 1

Introduction to Groups, Rings, Fields and
Coding Theory

1.1 Groups

We start with the most basic of algebraic stuctures, namely, groups. Here we will cover basic
definitions, see examples of different groups, and demonstrate how you can use GAP to create
and manipulate them.

Definition 1.1 ([17]) A group (G, *) is a set G on which a binary operation * has been defined such
that the following axioms are satisfied:

i) xxyeGVabeG
ii) ax (bxc)= (axb)*cVab,ceG
iii) There exists a unique identity element e € G such thataxe =exa=aVa € G

iv) There exists an inverse element a—! € Gsuchthataxa ' =a lxa=eVa e G.

If the following extra condition is satisfied then (G, x) is called an abelian group:
v) axb=bxaVabegG.

Definition 1.2 ([17]) If the set G has a finite number of elements, then the number of elements is called
the order of the G and is denoted |G|.

Example 1.3 The set of integers modulo 4, Z4 = {0,1,2,3}. along with the addition operator form a
group (Zy, +). Therefore the order of Z4 is | Z4| = 4. since there are four elements in the set.

Definition 1.4 ([16]) A group G is said to be cylic if there exists x € G such that every element of G
can be written in the form x" for some n € Z. Such an element x is said to be a generator of G

2



CHAPTER 1. INTRODUCTION TO GROUPS, RINGS, FIELDS AND CODING THEORY 3

Example 1.5 The cylic group generated by x with order n = 3 has the following elements
G ={1,x,x%}.

Listing 1.1 shows how you can use GAP to display the elements of this group, and produce the
cayley table. Note that <id> refers to the identity element which in this case is 1.

Listing 1.1: Cyclic Group of Order 3

gap> G:=CyclicGroup (IsFpGroup,3); # defines the cyclic group of order 3
<fp group of size 3 on the generators [ a ]>
gap> Elements (G); # displays the elements of G
[ <identity ...>, a, a*2 ]
gap> ShowMultiplicationTable (G); # displays the cayley table
* | <id> a ar2
_____ +_______________
<id> | <id> a a2
a | a a2 <id>
a2 | a”2 <id> a

Definition 1.6 ([16]) The nth dihedral group of order 2n generated by x and y is defined to be

Doy = (x,y | x" = y* = xyxy = 1).
This particular type of group will feature throughout this thesis, therefore it will be useful to
have an idea of how they can be represented.

Example 1.7 The dihedral group D1y can be thought of as the number of different ways that you can
rotate, or reflect a six-sided regular polygon.

/1—2 6—1 5—6 4—5 3—4
6 B 5 2 4 Q 6 2 Q 4
{ {©} (O} XSO}
By 4 4 — 3 3 — 2 2 — 1 1 — 6
(a) Rotate 0°  (b) Rotate 60° (c) Rotate 120° (d) Rotate 180° (e) Rotate 240° (f) Rotate 300°
2—+1 1—6 6 —5 5—4 4—3 3—2
/  + \ /v N\ R \ / \ / X / SN\
3 | 6 2 N 51 ~~_'4 6------ 3 5 .- 2 4 / 1
! ' \ ~/ X’ N, /

N ' / \ / \ / / ,
4 +~5 3—4 2—3 1—2 6 —1 5—6
(g) Reflect1  (h) Reflect 2 (i) Reflect 3 (j) Reflect 4 (k) Reflect 5 (1) Reflect 6

Figure 1.1: Visual representation of D

It can be easily checked that six 60° rotations of any hexagon seen in Figure 1.1 will leave it
unchanged i.e. x", similarly with two reflections along the same axis i.e. y?>. However, it is
less obvious to see that the sequence: rotation, reflection, rotation, reflection i.e. (xy)2 will also
produce no change.
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Next we look at subgroups and normal subgroups. We will use these definitions in order to
identify the structures of U (IF,xDg) and V. (IFF,Dg) in the later chapters.

Definition 1.8 ([3]) Let G be a group, and let H be a subset of G. Then H is a subgroup of G if and
only if the following conditions hold:

1. xy € H forall x,y € H
2. The identity element e € H
3. x ' € Hforall x € H.

The following corollary provides a much shorter method for checking that a group is a subgroup.

Corollary 1.9 ([3]) Let G be a group and let H be a finite, nonempty subset of G. Then H is a subgroup
of G ifand only if xy € H forall x,y € H.

Definition 1.10 ([17]) Let H be a subgroup of a group G. We say that H is a normal subgroup of G,
denoted H < G, if for all x € G we have x 'Hx = H.

When describing the stucture of a group we are often required to break it down into products of
subgroups. Let us define three different products of groups.

Definition 1.11 ([3]) Let G be a group, and let H and K be subsets of G. Then

HK = {x € G | x = hk for some h € H, k € K}.
If H and K are subgroups of G then we call HK the product of H and K.

Definition 1.12 ([17]) Let H and K be two subgroups of a group G. We say that G is the (internal)
direct product of H and K if the following conditions hold:

i) G=HK
ii) HNK = {1}
iii) H<aGand K< G.
To denote this relation we write G = H x K.

Definition 1.13 ([17]) Let H and K be two subgroups of a group G. We say that G is the (internal)
semidirect product of H and K, and write G = H x K if we have the following:

i) G = HK
i) HNK = {1}
iii) H<G.
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The only difference being that a semidirect product is a weaker condition, since K < G is not
required.

Proposition 1.14 ([9]) Let H and K be finite subgroups of a group G. Then

[H]IK]

HK| = .
IHK] = 1A K]

1.2 Rings & Fields

Next we look at Rings and Fields, an extension of Groups, the difference being that two opera-
tions are now considered. We also look briefly introduce the concept of a ring homomorphism,
a function between two rings which respects the structure.

Definition 1.15 ([17]) A set R with two operations (usually addition and multiplication) denoted by
(R, +, ) is called a ring if the following conditions hold:

i) (R,+) is an abelian group
ii)a-(b-c)=(a-b)-cVabceR
iii) There exists an identity element 1 such thata-1=1-a =aVa € R
iv) a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-cVabceR
If the following additional property is satisfied then the ring is called commutative
v)a-b=b-aVabeR.

Definition 1.16 ([17]) An element a of a ring R is called invertible if there exists an inverse element,
denoted a=! € R. such that a-a=1 = a='-a = 1. The set of all invertible elements of R are known as
the group units of R and are denoted by

UR)={acR|a! €R}.

Definition 1.17 ([8]) An algebraic structure consisting of a set together with two operations (again,
usually addition and multiplication) is called a field if (F,+,-) is a ring and (F/{0},-) is an abelian

group.
Definition 1.18 ([8]) A finite field is a field which has a finite number of elements, this number is known

as the order of the field. In general, we will denote a field with q elements by IF; or GF(q), a Galois Field
with q elements.
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Definition 1.19 ([17]) Let Rand S be two rings. Then, amap ¢ : R — S is called a ring homomorphism
if forall &, B € R we have

D) pa+p) =) +o(p)
i) p(aB) = ¢(a)9(B).
Example 1.20 Consider the mapping ¢ : Fy — o such that ¢(x) = x2. Let x, y € IFy then we have

o(x+y) = (x+y)°
= x>+ 2xy + y2
— 42 +y2
= ¢(x) + @(y).
g(xy) = (xy)?
= 222
= ¢(x)(y).

Thus, ¢ is a ring homomorphism.

1.3 Group Rings

In this section we introduce group rings. We begin with a definition and accompanying exam-
ples, then we take a closer look at the invertible elements (units) of a group ring, U (RG). Next,
we introduce the augmentation mapping €, which leads us to the normalized units, V(RG). We
then finish the section with a definition for V.. (RG), a special subgroup of V(RG).

Definition 1.21 ([17]) A group ring RG is the set of all linear combinations
a=) agg,
gcG
where ag € R.

Example 1.22 Let Z, = {0,1} be a ring and Cy be the cyclic group of order 2, i.e. C; = {x | x*> =
1} = {1, x}. Then, the group ring Z,C, is defined as

ZyCy = {a1-1+a2-x]ai622}
={0,1,x,1+ x}.

We can identify the units of a group ring by producing a multiplication table of all possible pairs
of elements and see which ones give the identity. Such a table is often called a Cayley table.
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We can construct the Cayley table for Z,C; as follows:

X 1 X 1+x
1 1 X 1+x
X X 1 14+x
1+x || 1+x|1+x 0

Table 1.1: The Cayley Table for Z,C,

From table 1.1, we can see that the units of this group ring are U (Z,C;) = {1, x}. We verify the
units using GAP in Listing 1.2.

Listing 1.2: Units of Z,C,

gap> Read("/home/harrison/.../CustomFunctions.g"); # import Tidy ()

gap> RG := GroupRing (GF (2),CyclicGroup (IsFpGroup,2)); # defines F_2C_2
<algebra-with-one over GF (2), with 1 generators>

gap> Elements (Units(RG)); # prints the elements of RG

[ (Z(2)70)*<identity ...>, (Z(2)70)=*a ]

gap> Print (Tidy (Elements (Units(RG)))); # prints reader friendly elements
[ 1, a]

Example 1.23 Similarly to the previous example, let Z, = {0, 1} be a ring, but now combined with the
cyclic group C3 = {x | x3 = 1} = {1, x,x?}. Then, the group ring Z,Cs is given as

ZyC3={a1-1+ay-x+az-x*|a; € Zy}
= {0,1,x,x2,1+x,1+x2,x—|—x2,1—|—x+x2}.

X H 1 ‘ x x2 ‘1+x‘1+ﬁ‘x+ﬂ‘1+x+ﬁ

1 1 X x2 T4+x | 14+x% [ x+x%2 | 14+ x+x?

X x x2 1 x+x2 | 14+x | 14+x2 | 14+x+x2

x2 x? 1 X 1422 | x+x2 | 14+x [ 1+x+x?
1+ x 1+x x + x? 1422 | 1422 | x+x2| 14+« 0
1+x2 1+x2 1+x x+x2 | x+x2| 14+x | 1422 0
x + x2 x + x2 1+ x2 1+« 14+x | 1422 | x + x2 0

T4+x4+22 [ 1+x+x2 | 1+x+x% | 1+x+x2 0 0 0 14 x4 22

Table 1.2: The Cayley Table for Z,C3

The units are the invertible elements from table 1.2 and are given as U (Z,C3) = {1, x, x*>}. Notice
that U(Z,C2) = {1,x,x*} = Cy and U(Z,C3) = {1, x,x*} = C3. leading to our next definition.
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Definition 1.24 ([17]) Let RG be the group ring formed by the group G over the ring R. The elements
of RG of the form rg, where r € U(R) and g € G are called the trivial units.

The units we’ve found in the examples so far are clearly trivial units. It is tempting to think that
group rings only ever have trivial units, but we shall see now that this is not always the case.

Definition 1.25 ([17]) Let G be an abelian group. Then, the subgroup

T(G) ={g € Glo(g) < oo}
is called the torsion subgroup of G. If T(G) = {1} then we say that G is a torsion-free group.

Proposition 1.26 ([18]) Let K be a field and let G be a group that is not torsion-free. Then, with the
exception of the following:

i) K=T,. with |G| =2o0r3
ii) K = 3. with |G| = 2.
the group ring contains non-trivial units.
In Examples 1.22 and 1.23, the field was F; and the order of the groups were 2 and 3 respectively.

Definition 1.27 ([17]) Let R be a ring witha, b € R, then ifa - b = 0 then a and b are zero divisors.

Example 1.28 Consider the group ring Z,Cs = {0,1,x, 214+ x1+x%x+x314+x+ xz} from
Example 1.23. The zero divisors can be seen from Table 1.2 and are denoted by ZD(Z,C3) = {0,1 +
x,1+x%,x+x%,1+x+ 2}

Definition 1.29 ([17]) The homomorphism € : RG — R given by

6(2%8) =) %

gcG gcG
is called the augmentation mapping of RG

This concept is best understood with an example.
Example 1.30 Consider group ring RG created by the ring IF3 and the cyclic group C,
F3C, = {061 + arx | ®; € ]Fg,}
={0,1,2,x,2x,1+x,1+2x,2+ x,2 4 2x}.
The augmentation map of RG is as follows:

e(l)=1+0=1 e2x)=0+2=2 €eR+x)=2+1=0
€2)=2+0=2 el+x)=14+1=2 e2+2x)=2+2=1
e(x)=0+1=1 €(l14+2x)=1+2=0 e(0)=04+0=0.
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Listing 1.3 shows a loop created in GAP to verify the above augmentation map, for the Tidy
function see Appendix A.1.

Listing 1.3: Augmentation of Z3C;

gap> Read("/home/harrison/.../CustomFunctions.g"); # import Tidy ()

gap> RG:= GroupRing (GF (3),CyclicGroup (IsFpGroup,2));

<algebra-with-one over GF(3), with 1 generators>

gap> for i1 in [1l..Size(RG)] do

> Print (Tidy (Elements (RG) [1i]), "\t->\t", Tidy (Augmentation (Elements (RG) [1])),"\n");

> od;

0 -> 0
1 > 1
1+a -> 2
1+2a -=> 0
2 -> 2
2+ta > 0
2+2a —> 1
a -> 1
2a -> 2

There also exists V(RG) C U(RG) known as the normalized units, which we define below.

Definition 1.31 ([17]) Let RG be a group ring with units U(RG). Then

V(RG) = {u € U(RG) | e(u) = 1}

is called the normalized units of RG, or units of augmentation one.

Example 1.32 Continuing from Example 1.30, it can be shown that U(IF3Cy) = {1,2,x,2x}. From
these units, the two with augmentation one are 1 and x, therefore

V(IF3C2) = {1,x} = Cz.

Definition 1.33 ([6]) Consider the map * : RG — RG, defined by <dec agg)* =Y gcC agg~". This
map is an antiautomorphism of RG of order 2. An element v € V(RG) satisfying v=! = v* is called
unitary. We denote the subgroup consisting of the unitary elements of V(RG) by V. (RG).

Theorem 1.34 ([15]) V(RG) is a normal subgroup of U(RG) and

U(RG) = U(R) x V(RG).

Proof. The result V(RG) <U(RG) comes from the fact that € : RG — R is a homomorphism.
Now, note that the only common element in V(RG) and U (RG) is the identity, and that for any
u € U(RG), we have that r = e(u) € U(R) is a unit such that e(r'u) = e(r 1)e(u) = 1. Then,
u = r(r~'u) shows that U (RG) = U(R) - V(RG), hence the result. |
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Definition 1.35 ([17]) A group G is called an extension of a group K by a group H if there an exists an
epimorphism ¢ from G onto K with H = ker(¢). Furthermore, the extension is called a split extension if
there exists a homomorphism ¢ : K — G such that ¢ o  is the identity map of K

We finish this section with a definition of a circulant matrix. We will see how this type of matrix
relates to group rings in Chapter 2.

Definition 1.36 ([5]) The following n X n matrix:

ap a4z 4z ---  4p

anp ap 4z --- 4up-1
M= |01 an a1 --- dp-2

a» as ay a1

is called a circulant matrix.

Since circulant matrices appear frequently within the later chapters, we will use the abbreviated
form M = circlay, ap, a3, - -, ay]. For further reading on circulant matrices see [5].

1.4 Coding Theory

Error-correcting codes as the name suggests are used to correct errors in data transmitted through
a noisy communication channel. In this section we will look at some basic definitions and im-
portant results from coding theory, including weight enumerators and minimum distance. We
also look at what is meant by a self-dual code, which is the subject of chapter 5.

Definition 1.37 ([7]) An alphabet is a set of symbols, usually letters, characters or digits. The most
commonly used alphabet is Fy = {0, 1}, the binary alphabet.

Example 1.38 F, = {0, 1} has the following addition and multiplication tables

_|_
0
1

— OO

1
1
0

o OO
— Ol

0
1
Alphabets are used to create codewords, which are the vectors which form code blocks.

Definition 1.39 ([7]) An error correcting code C of length n over a finite alphabet Iy is a subset of IFy.
The elements of C are called codewords. A codeword of C takes the form (c1, ¢, ..., ¢n ), where each ¢; € IF,.

If Cis a code over [F,; then we say that C is a g-ary code.
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Example 1.40 Consider the following binary code over [Fy:

C =

O R O
OO ==
O = O
OO ==

The rows of C produce 4 codewords: ¢1 = (1,1,1,1), ¢ = (0,1,0,1), c3 = (1,0,1,0), ¢4 = (0,0,0,0).

Two properties of codes which we are concerned with are the weight and the distance of code-
words.

Definition 1.41 ([7]) Let x,y € IF} be two codewords of length n, then the distance d(x,y) of x and y
is given by

d(x,y) = {il1<i<mn x; #yi}|.
The weight of a codeword is defined as
w(x) =d(x,0),
where 0 = (0,0, ...,0) is the zero vector.

Definition 1.41 describes the Hamming-distance, named after Richard Hamming. You can think
of the Hamming-distance as the number of places in which two codewords differ, and weight
as the number of ones. In GAP, the Hamming-distance can be calculated with the command
DistanceCodeword (x,y), and the weight can be calculated using WeightCodeword (x).

Proposition 1.42 ([8]) The Hamming-distance d(x,y) satisfies the required conditions to be a metric:
a) d(x,y) > 0and d(x,y) = 0ifand only if x =y
b) d(x,y) = d(y,x)

c) d(x,z) <d(x,y)+d(y,z) forany x,y,z € F}
Definition 1.43 ([7]) The minimum distance of a code C is defined as

d=min{d(x,y)|x,y € C,x #y}.

The minimum distance is important in determining the error-correcting capability of a code.
Codes with larger minimum distance can correct more errors. The command for finding the
minimum distance of a code C in GAP is MinimumDistance (C).

1 1

=

Example 1.44 Let C = with codewords ¢ = (1,1,1,1), ¢ = (0,1,0,1), ¢35 =

1
0
0 0

(1,0,1,0) and ¢4 = (0,0,0,0). The weights of the individual codewords are: w(c1) = 4, w(cp) = 2,
w(cz) =4and w(cy) = 0.

o = O
O O = =
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The Hamming-distances for each pair of codewords are:

L d(Cl,Cz) =2 L d(Cz,C3) =4
e d(cy,c3) =2 e d(cy,cy) =2
° d(Cl,C4) =4 ° d(Cg,C4) =2

Therefore the minimum distance d of C is the smallest Hamming-distance which is 2.

Lemma 1.45 ([7]) For x,y € Iy (the finite field of q—elements)

d(x,y) = w(x —y).

Note that in IF}, d(x,y) = w(x + y) also holds since the elements are modulo 2 (see example
1.38).

Theorem 1.46 ([8]) For a linear code C, the minimum distance is equal to the minimum weight.

Definition 1.47 ([7]) The number of vectors in the basis of the subspace is called the dimension of C and
is denoted by dim(C).

Definition 1.48 ([7]1) A g-ary linear code C (binary if g = 2, ternary if ¢ = 3) is a linear subspace of
IFy. If C has dimension k then C is called an [n, k| code.

A k—dimensional linear code of length n and minimum distance d is often referred to as an
[n,k,d] code.

Definition 1.49 ([7]) Let C be a linear [n, k| code, then its’ weight enumerator is defined to be the
polynomial

n
We(y) = ) Awi
i=0
= Ao+ Ay + -+ Any",
where each A; denotes the numbers of codewords in C of weight i.

Definition 1.50 ([7]) A generator matrix G of a linear code C is a k x n matrix for which the rows form
a basis of C.

We say that G is in standard (or reduced echelon) form if G = (Ix|A), where I is the k x k
identity matrix.
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[ YUY

Example 1.51 Consider the code C = . Cis not in standard form since the rows of C are

OO ==
O R O -
O O = =

0

. . . L ’ 1010
not linearly independent. Since ci and c4 can be written in terms of c and c3 then C' = 0101
is the [4,2,2] generator matrix for C.

There are inbuilt functions in GAP for finding the standard form of a given code:

Listing 1.4: Standard form function in GAP

gap> ¢1 := [[1,1,1,1],[1,0,1,07,(0,1,0,11,10,0,0,011;

rra1, 2, 2, 21, (1, 0, 2, 01, 0, 12, 0, 21, [0, 0, O, 011
gap> C2 := GeneratorMatCode (Cl,GF (2));
a linear [4,2,1..2]11..2 code defined by generator matrix over GF (2)
gap> G := MutableCopyMat (GeneratorMat (C2)) ;;
gap> Display (G);

1111

.1 01

gap> PutStandardForm(G) ;;
gap> Display (G);

1. 1.

.11

Definition 1.52 ([7]) Two linear codes over IF, are called equivalent if one can be obtained from another
by the following operations:

1. permutations of the positions of the code

2. multiplication of symbols in a fixed position by a non-zero scalar in IFy.

Theorem 1.53 ([7]) Two k x n matrices are equivalent if one can be obtained from the other by a sequence
of operations of the following types:

(R1) Exchanging of rows

(R2) Multiplication of a row by a non-zero element of IF,
(R3) Adding a scalar multiple of one row to another
(C1) Exchanging of columns

(C2) Multiplication of a fixed column by a non-zero element of IF,

Theorem 1.54 ([7]) Let G be a generator matrix of an [n,k|-code. Then by applying the operations
described in theorem 1.53, G can be transformed into an equivalent matrix of the form (Iy|A) where Iy is
the k x k identity matrix and A is a k x (n — k) matrix.
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Example 1.55 Consider the generator matrix

C =

=
__ O
—_ OO R
O OO
O R M
O = O =
_ O

We can give C in standard form G = [I|A] by the following operations of type R3:

1111111 1111111
1000101 0111010 |mntn
1100010 “loo0o11101 |rm+n
1110001 0001110/)rm+n
100010 1\r+r 1000101
0111010 0100111 |rntr
“loo0o11101 “loo11101
0001110 0001110
1000101
0100111
“1o0o010011 |rm+r
0001110

We can confirm this result in GAP using the following code:

Listing 1.5: Confirming Example 1.55 in GAP

gap> Cc1:= [([1,1,1,1,1,1,1],(1,0,0,0,12,0,127,(1,2,0,0,0,1,0],(2,1,1,0,0,0,1]11;;
gap> C2 := GeneratorMatCode (Cl,GF(2));;
gap> G:=MutableCopyMat (GeneratorMat (C2)) ;;
gap> Display (G);

1111111

111 .01 .

.1 11 .1

..o 111
gap> PutStandardForm(G) ;;
gap> Display (G);

r. . .1 .1

.1 .. 111

.1 . .11
111

This is the well known [7, 4, 3] hamming code.
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Definition 1.56 ([7]) The dual of a linear code C C IF} is another linear code defined to be

CL:{xengHx,c) =0VceC},

where (x, c) is the euclidean inner product given by

n
(x,c) = inci.
i=1

In linear algebra this is actually the definition of a null space of C. There is a theorem known as
the Rank Nullity theorem which tells us the dimension of the null space, or in this case C.

Theorem 1.57 ([7]) Let C be a linear [n, k] —code over F,. Then, C* is a linear [n, n — k]—code.
Lemma 1.58 Let C bea linear code in Iy with generator matrix G. Then x € Ctifand only ifxGT = 0.

Definition 1.59 ([8]) A linear code C is said to be self-dual if it is equal to its own dual i.e. C = C*.

Theorem 1.60 ([8]) Let C be a self-dual code of length n. Then C is an [n, 5]-code.

Proof.
Since C is self-dual code then C = C* and by the rank nullity theorem we have

dim(C) + dim(C*) = 2dim(C) = n
Therefore dim(C) = 7.

Theorem 1.61 Let C be a self-dual [n, }]-code with generator matrix G = [I|A] then AAT = —1I,
where I is the 5 x % identity matrix.

Proof. By Lemma 1.58, since G consists of codewords which are orthogonal to every codeword
in G then we have

I

GGT=0= (I A) (AT

):12+AAT:o

Rearranging gives AAT = —I and when the elements are in IFp, we have AAT = I. |

Theorem 1.62 ([8]) Let C bean [n, 5, d] self-dual binary code. Then
o d< 4|5 |+4, ifCisof Typellor Cis Typeland n # 22 mod 24
o d< 4|4 +6, ifCisTypelandn =22 mod 24

Codes that achieve distance d are called extremal self-dual codes.



Chapter 2

An Established Isomorphism

Let R be a ring, G be a group of order n, RG be the group ring of R over G and M, (R) the ring
of n X n matrices over R. In this second chapter we introduce a ring isomorphism from RG to
a subring of M,,(R), first constructed by T. Hurley in [12]. This isomorphism is used to convert
elements of group rings into matrix form which will be useful in Chapters 3 and 4.

Definition 2.1 ([12]) Let {g1,82,...,4n} be a fixed listing of the elements of the group G. Then the

matrix
81 1g1 87 1gz gy 1gn
gz_lgl 82_182 gz_lgn
M(G)= (88 & & - 8 &n
8181 8n'82 v &n'8&n
is called the matrix of G.

Example 2.2 Consider the cyclic group of order 3, ie. C3 = {1,x,x2}. Then, the matrix of Cy is

computed as follows:
1-1 1-x 1-x? 1 x?
M(G3) = [x2-1 x2-x x> 22| = [ ? x |.
x-1 x-x x-x? x x* 1

Definition 2.3 ([12]) Let w = } ' ; aq,g; € RG. Then, the following is called the RG-matrix of w:

R;_\R

a _ a _ e a -
s'ar “g'e g1 gn

a _ a _ e a -
& 1g1 & 182 & 1gn
M(RG,w) = | g 1g fglg, 0 fglg,
Aelg gl 0 fgilg,

16
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Example 2.4 Let RG be the group ring FoCs = {a1 + ax + azx? | a; € Fo}. Then,

ap az as
M(F,C3,w) = | az a1 ap | = circ(ay, az,a3).
a as ai

Labelling the elements of F,Cs, calculated in Example 1.23, we have

FoC3={0,1,x,x%,14+x1+x2 x—l—x 14 x4+ 2%},

w1 w2 w3 w4 Ws We wg
So,
’ w \ M(RG, w) H w \ M(RG, w) ‘
000 110
0[]0 00 14+ x 011
000 101
100 101
17010 1+ x? 110
001 011
010 011
x| [0 01 x + x? 101
100 110
001 111
x21 00} 14+x+x%2](1 11
010 111

Table 2.1: RG-matrix for F,Cs.

Theorem 2.5 ([12]) Given a listing of the elements of a group G of order n there is a bijective ring
homomorphism between RG and the n x n G—matrices over R. This bijective ring homomorphism is
given by 0 : w — M(RG,w).

Proof. Let G = {g1,2,...,gn} be the listing of the elements of G and let M denote the set of
G—matrices relative to this listing. Now define the mapping ¢ : RG — M as follows. Suppose
w =Y, a8 Then

o o o -
gi'er “silsr Tgilss 81 '8n

o - o - o - -
O'(ZU) — gz'lgl 82'122 32.183 gz.lgn
Roler Roler Yenles T Rgilen

This mapping is additive, surjective and injective. Therefore it is sufficient to show that ¢ is
multiplicative. So, consider t = Y/ | B¢,g; and
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1 1

Poigr Poles Peitey 7 Py,
oty = [P Pute Pae T Pote

‘Bg;?lgl ‘Bg;?lgz ‘Bg51g3 ‘Bg;Ilgn
Suppose t x w = ¢, where ¢ = Y/ | 7¢,8i. Then

Terler Ver'e Vo' Veign
Y1 Y,-1 Y,-1 Y ,-1
O'(t) *O'(ZU) — 82' 81 gz. 82 gz' 83 gz. 8n ,
Touler Taler Toulss 7 Vauls
which is of course M(RG, ¢) = o(t * w) as required. ]

The following results are extremely useful in identifying units and zero divisors of group rings.
Checking matrix invertibility using a computer is quick and easy, since most computer software
is designed to work with matrices.

Theorem 2.6 ([12]) Let R be a ring containing an identity element. Then, w € RG is a unit in RG if
and only if o(w) is a unit in R"*™.

Proof. Suppose w is a unit in RG and that u is its inverse. Then u *w = 1 and hence o(w) *
o(u) = I, the n x n identity matrix. Thus o(u) * o(w) = I,. Similarly, oc(w) * o(u) = I,, and so
o(w) is invertible in R"*".

Suppose now that o(w) is a unit in R"*" and let B denote its inverse. Let w = &g, g1 + ag,92 +
o+ g, &y Then

[) A X _ X _ “ .. o
gr'sr il gyl 81'8n
[) A [) S N — CEE ) A
o(w) = gz.lgl 82.132 gZ.lgs 82.1gn
“85181 “85182 “85183 o “g;?lgn

We do not yet know that B is an RG—matrix. Let b = (B1, B2, ..., Bn) be the first row of B. Then

ﬁl“gflgl+51“8£1gl+51“g51g1 Cothiag g, =1
Bt =0
Ppor =

ﬁlagflg +'31(Xg271gn+ﬁ1ag§1gn .. '+ﬁ1ag,?1gn =0
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Now, w = ag, 81+ ag, 80 + - - + g, 8n = acgflglgi_lgl +txg;1g2gi_2g2 +--+ ocgiflgngi_”gn for each
,1<i<n.

Define u = 191 + B2g2 + - - - Bngn. Then:

Bigi(tg, 81 + g, 82 + - + g, 8n) = Pigitto1y 87 81+ Pigittyrg 87 2+ + Pigitty 1 &7
- ‘Bi(xg[lglgl T 'Bi(nglgzgz Tt ﬁi“gi‘lgng”'

Hence:

wxw = (B181+ Paga + -+ Pugn) (ag181 + ag,82 + . + g, 8n)
= P1810 10,87 1 Pagaty 10,87 81+ + Pugnlty 1o € §1F
+ /31g106g1—1g2g1_1g2 + ﬁzgzagz—l&g{lgz ot ﬁngn“gn—lgzgﬁl&"‘
o Prgitg g 81 '8+ Pagatty 1y 85 '8+ + Pugntty 1, 8 g
= Prlg g 1 Patg1g &1t e Pt S1F
tPrag 1, 82+ Porty 1, 82+ a1, g2t
ot Py gt oy g Gntee+ Pute 1y g

which is ¢ from the above. Thus ¢ ! u is the inverse of w and w is a unit in RG. |

Corollary 2.7 ([12]) When R is commutative, w is a unit in RG if and only if o (w) is a unit in R"*" if
and only if det(o(w)) is a unit in R.

Corollary 2.8 ([12]) An element w € RG is a zero divisor if and only if o(w) is a zero divisor in R"*".

Theorem 2.9 ([12]) When R is a field, w # 0 in RG is either a unit or a zero divisor, depending on
whether det(o(w)) # 0 or det(c(w)) = 0.

We will now use some of the previous results to find the units and zero divisors of IF»Cj.
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Example 2.10 Let w =

3

a;xt € FyCy, where a; € TFy.

determine the units and zero divisors in IF,Cy by checking the determinant of o(w) mod 2.

20

Using Corollary’s 2.7 and 2.8, we can

w o(w) lo(w)| | Unit/ZD w o(w) |o(w)| | Unit/ZD
0 circ[0,0,0, 0] 0 ZD x> circ[0,0,0, 1] 1 Unit
x? circ[0,0,1,0] | 1 Unit x? + 3 circ[0,0,1,1]| 0 ZD
X circ[0,1,0,0] | 1 Unit x4 x° circ[0,1,0,1]| 0 ZD
x+x% | circ[0,1,1,0] | 0 ZD x+x*+x* |circ[0,1,1,1]| 1 Unit
1 circ[1,0,0,0] 1 Unit 1+ 3 circ[1,0,0, 1] 0 ZD
1+x% |circ[1,0,1,0] | O ZD 1+x2+x% |circ[1,0,1,1]| 1 Unit
1+x |circ[1,1,0,0] | 0 ZD 1+x*+x% |cire[1,1,0,1] | 1 Unit
1+ x+x? |circ[1,1,1,0] | 1 Unit | 1+x+x2+x%|circ[1,1,1,1]| 0 ZD

Table 2.2: Units and zero divisors for IF,Cjy.

This is verified in GAP, using a custom function UnitOrZDTable (n) where n denotes the order of the
cyclic group. The source code can be found in Appendices A.1 and A.3.

Listing 2.1: Units and Zero Divisors for [F»Cy.

gap> Read ("/home/harrison/..
gap> Read ("/home/harrison/..

gap> UnitOrzZDTable (4);

Circ()

—
.}

~
S

~

~
~

~
~

NN N
NN N

~
~

NN N N NN ~
NN N NN ~

e e e T T
[ R T T e e e e N e e )
~
MmN RN N OO OO R KRKROOO
~

~
NN

0, 0]
0, 1]
1, 0]
1, 1]
0, 0]
0, 1]
1, 0]
1, 1]
0, 0]
0, 1]
1, 0]
1, 1]
0, 0]
0, 1]
1, 0]
1, 1]

Det ()

OR RO OO R R OO ROKRRKRO

./MatrixFunctions.g");

Unit/ZeroDivisor

Zero

Divisor

Unit
Unit

Zero

Divisor

Unit

Zero
Zero

Divisor
Divisor

Unit
Unit

zero
Zero

Divisor
Divisor

Unit

Zero

Divisor

Unit
Unit

Zero

Divisor

# import Circulant () & Tidy()
./ZeroDivisorTable.g"); # import UnitOrZDTable ()




Chapter 3
Units of [F,:Dg

In this chapter we will study the units of IF Dg, first constructed by Creedon and Gildea [4]. The
original paper omits the details of the proofs, we aim to fill these gaps by proving the majority
of results using an alternative, matrix-based approach.

3.1 Constructing a Ring Homomorphism

Let Dg = (x,y | x* = y> = (xy)? = 1) be the dihedral group of order 8 and & = Y3, x*(a; +
ait4Y), a; € Fo be an element of the group algebra IF,cDg. We shall begin by constructing a
ring homomorphism IF,:Dg — F,xCy, which we will then restrict to the group homomorphism
U(FF,xDg) — U(FxCy). Later we will see that this can be used to construct a certain split exten-
sion.

Proposition 3.1 ([4]) There exists a mapping 0 : Fox Dg — ok Cy such that for « € ForDg, we have

3 3
0(a) =0 (Zx’(ﬂi + ﬂi+4y)> =) ai+ai4f € FCy,
i=0 =0

where i is the generator of Cy. This mapping satisfies the two conditions for being a ring homomorphism.

Proof. Let o = ZZ oX'(a;+ajy4y) € FxDg, B = Z o X'(b; + bj4y) € FxDg. Then,

3 .
O(a+pB) =10 (Z x' ((a; +b;) + (aipq + bz’+4)y)>

i=0

(a; +b;i) + (ajsa + biza)y

a; + a1—|—4y + Z b + b1+4]/

i=0
) +0(B).
21

L
L
= 0(a
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6(ap) =10 (aobo + agbsy + asboy + asby + agbix + apbsxy + a4b1x3y + asbsx®
+ agbyx* + a0b6x2y + a4b2x2y + agbex® + agbsx® + a0b7x3y + agbaxy + asbyx
+ a1box + a1baxy + asboxy + asbsx + a1by x> + a1b5x2y + asbyy + asbs
+ a1byx® + a1b6x3y + a5b2x3y + asbex® + a1bs + a1byy + a5b3x2y + asbyx?
+ apbox? + a2b4x2y + a6box2y + aghyx? + aybix® + a2b5x3y + agbyxy + agbsx
+ axby 4 axbgy + agbay + agbe + axbsx + axbyxy + a6b3x3y + agbyx®
+ azbox® + a3b4x3y + a7b0x3y + aybyx® + azby + azbsy + a7b1x2y + aybsx?
+ azbyx + azbexy + aybyxy + azbgx + asbsx® + a3b7x2y + aybzy + a7b7)

= (aobo + aob1 + agba + agbs + a1bg + a1by + a1by + a1bs + asby + axby + axby + axbs
+ azbg + azby + azby + azbs + agby + asbs + agbg + asby + asby + asbs + asbeg + asby
+ agby + agbs + agbe + agby + aybs + azbs + azbe + azby) - 1
+ (aobs + agbs + agbe + aoby + a1bs + a1bs + a1be + a1by + axby + arbs + asbe + azby
+ asby + azbs + azbg + azby + agbg + agby + agby, + agbs + asbg + asby + asby + asbs
+ a6b0 + agby + agby + agbs + azby + azby + azby 4 azbs) -

3 3 3
=) Z aibj + ai1abja) + 7Y ) (aibjea + ai1aby)
i=0j=0 i=0j=0

3 3
(211 +ﬂz+4y> (ij+bj+4?>
=0

1

ocG

Therefore, 0 is a ring homomorphism. [ |

Proposition 3.2 ([4]) Let the restricted mapping 6’ : U(FxDg) — U(FFxCy) be a group homomor-
phism. Then U(IF,Dg) is a split extension of U(FxCy) by K = ker(0') ie. U(FxDg) = K x
u(]szCZ).

Proof. Define the group homomorphism ¢ : U(FCp) — U(F,xDg), where a + by +— a + by.
Then, for « = a + by we have

0o p(a) = 0" 0 ¢(a+ by)
= 0'(a + by)
=a+ by
= K.

Thus, 0’ o ¢ is the identity mapping and by Definition 1.35 we find that U (IF,Dg) is a split ex-
tension of U (F,+Cy) by K. |
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3.2 Calculating the Exponent of the Kernel

At this point, we will show that K has exponent 4 and define an abelian subgroup of K, which
we will call H.

Proposition 3.3 ([4]) The kernel of the group homomorphism 6’ has exponent 4.

Proof. . _
Leta =1+Y7 ; (a;(1+x%) +b;(1+ x')y) € K. Then

otw) = ("5 L)

where A = circ|ay + ap + a3, a1, a,a3] and B = circ[by + by + b3, by, by, b3]. Now,

2
» (I+A B
o2 = (15" g Ly
(I+A)Y(I+A)+BBT (I+A)B+B(I+AT)
BTI+A (I+AT)BT BBT + (I+ AT)(I+ AT)
(I+A2+BBT AB—I—BAT)

BTA+ ATBT BBT 41+ (AT)?
I + X

I+X)

where

= circ ai + 513, bz —+ b3, 111 —+ ﬂ3, bz + b3]

a3
= circ[y1, 12, 11, 712l
= Cer[(bl + b3)(al + a3), (bl + b3)(al + a3), (bl + b3)(al + a3), (bl + b3)(dl + 113)]

= circ[ys, 13, 73, 73]

We can immediately see that the exponent of K is not 2. Squaring once more we have

(c()* = (I+X I}:X)z

(I+X)?+Y? I+ X)Y+Y(I+X)
YI+X + (I+X)Y Y2+ (I + X)?

( 2+ X?4+Y2 Y+XY+Y+YX)

Y+YX+Y+XY 2+ X?>+Y2
I+X2+Y2 0
I+ X%+ Y2

) (since XY = YX)
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Let J4 be the 4 x 4 matrix of ones, then notice that the Y? terms disappear since Y? = (73 ]4)2 =

442] = 0. Then, letting X = <§ ’[g) with B = circ|y1, 72] gives

< P-69

Therefore,
(I+ X2 + Y2 0
N I+ X% +Y?
(14 O +0 0
- I+0+4+0
Thus, K has exponent 4. [ |

3.3 Constructing a Subgroup H and a Normal Subgroup N

Proposition 3.4 ([4]) Let H = {1+ Y3 ;a;(1+x))(1+y) | a; € Fy } be a subset of K. Then H is an
abelian subgroup of K.

Proof. To show that H is a subgroup, it is sufficient to check that H is closed with respect to
multiplication. So, lethy = 1+ Y3 a;(1+x)(1+y), hy =1+ Y5 b;(1+x)(1+y) € H. Then

o) = (" o ayr)r e =50 o oyt

where B = circ[a] + ap + a3, a1, ap, az], D = circ[by + by + b3, by, by, b3]. Now,

I+B B I+D D
O(hl)a(hZ) = BT (I—|— B)T DT (I—|— D)T

_( (I+B)(I+D)+BD" (I+B)D+ B(I+DT)

“ \BT(I+D)+ (I+B")DT B'™D+ (I1+ BT)(I+DT)

_ (I+D+B+BD+BD? D + B+ BD + BDT

~ \DT+BT+B'D+BTDT 1+DT+B"+B'D+BTDT
_ (I+D+B+BD+BDT D+ B+ BD + BD'

~ \DT"+B"+DB"+D'BT 1+ DT+ BT+ DBT + DTBT
_ (I1+D+B+BD+BDT D+ B+ BD + BDT cH
“\(D+B+BD+BDNT (I+D+ B+ BD+BD")T

Therefore H is closed, and a subgroup of K. Next, we need to show that o (h1)o(hy) = o(hy)o(hy).
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Note DBT = (DBT)T = BDT, DB = (D'B)T = B'D = DB and that circulant matrices
commute, then we have

o(ha)o(h1) = (IgTD (1 +DD)T> (I;_TB (1 +BB)T)

([ (I+D)(I+B)+DB" (I+D)B+D(I+B)T
- DTI+B (I+D)T'BT DTB+ (I1+D)T(I+B)T
B I+D+B+DB+DBT D+ B+ DB+ DBT
N +DT+D'B+DT'BT 1+BT+ DT+ DTB+ DTBT
B I+D+B+BD+BDT D+ B+ BD + BDT
- + DT+ DBT + DTBT 1+ BT+ DT + DBT + DTBT
B 1+D+B+BD+BDT D+ B+ BD + BD?
- B+D+BDT+BD) (I+B+ D+ BDT +BD)T
:(T hz)
Thus, H is an abelian subgroup. u

Proposition 3.5 ([4]) Let N be the set of elements of K of the form

T plx+a7) +9(1+ )y + r(x + 27y
where p,q,r € Fo. Then N is an abelian subgroup of K.

Proof.
Letn; =1+ p1(x+23) +q1(1+23)y+ri(x+x%)y € Nand np = 1+ po(x +x3) + g2 (1 + 23y +

r2(x + %)y € N. Then
o(n)o(nz) = (]_?T i) (ST 18)

(AC+BDT AD+BC)

B'C+ ADT BTD + AC
where A = circ|[1, p1,0, p1], B = circ|gy, 11,71, q1), C = circ[1, p2, 0, p2] and D = circ[qy, 72,72, 42)-

Note that the product of two circulant matrices is itself circulant. Then, considering AC, BDT,AD
and BC separately, we need only find the first row of each result.

AC = circ[(1, p1,0, p1) - circ[1, p2, 0, p2]]
= circ[l + p1p2 + p1p2, P1 + P2, P1P2 + P1P2, P1 + P2
= circ[1, p1 + p2,0, p1 + p2]
= circ[1,&,0, a].
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Let x = circ[xy, X2, X3, ..., X, ] be a circulant matrix, then its” transpose is x” = circ[xy, x, ..., X3, xz]

That is, with the exception of the first element, the order is reversed. So, DT = (circ[qy, 72, 72,92])T =
circ[q, g2, 12, 2] and we have

BDT = circ[(qy,71,71,41) - circ[qa, g2, 72, 72]]
= circ|qiqz + rir2 + 112 + 9192, 4192 + 112 + 1112 + qit2,
q172 + 1192 + r1q2 + q1r2, q1r2 + r1r2 + 1142 + q1492)
= circ[0, (g1 +71)(g2 +12),0, (g1 + 1) (92 + 72)]
= circ[0, B, 0, B].

Therefore, AC + BDT = circ[1,a,0, ] + circ|0, B,0, B] = circ[l,a + B,0,a + B], which is of the
correct form, i.e. the first element is 1, the third is 0 and the second and fourth are identical.
Now,

AD = circ[(1, p1,0, p1) - circ[go, 12,72, 92]]
= circlga + p192 + p1r2, 12 + p192 + pira, 12 + p1ra + p1g2,92 + pira + p1q2)
= circ[vy, 9,9, 7].

BC = circ[(g1,71,11,91) - circ[1, p2, 0, p2]]
= circ|q1 +r1p1 + qap1, gip1 + 11+ ripLrpr + 1+ qipn gipr +rip1 + 1)
= circ[A, p, p, A

Therefore AD + BC = circ[y, 9,6, y] + circ[A, u, u, A] = circ[y + A, 6 + u, 6 + p, v + A, which is
also of the desired form, since the first and last entries are equal, along with the second and third.

Observe that BDT is equal to its own transpose, so

AC+BDT = AC+ (BDT)T = AC+ DBT = AC+B™D.
Also,
(AC+BC)! = DTAT + BT = DTA+ CB? = ADT + BIC.
Therefore,

AC+BDT AD+ BC
0'(7[1)0'(7’[2) - (AD + BC)T AC-|— BDT € N.

In order to prove that N is abelian we must show that o (1) (1) = o(n
circulant matrices commute and that BDT = circ[0, 8,0, 8] = (BDT)T

2)o(n1). Note again that
BTD. Then,
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v o) (5 4)

(CA—l—DBT CB+DA)
o(n

DTA+CBT DTB+CA
AC+ BDT AD+BC)

BTC +ADT BTD + AC
)o(nz).

Thus, N is an abelian subgroup. |

Proposition 3.6 ([4]) N is a normal subgroup of K.

Proof. In order to be a normal subgroup, n* = k~!nk € N forall n € N,k € K. We have already
seen that K = NH, so our problem can be considered as n" € Nforalln € N,h € H. Now,
since N is a subgroup, n"* € N, so it remains to show that n" € N.

Leth =1+Y> ;a;(1+x")(1+y) € H. Then,

I+ A A .
o(h) = ( AT (I—i—A)T) , A =circlay + ap + a3, a1, a2, a3).

We have shown in Proposition 3.3 that the exponent of K is 4, which means that H C K also has

exponent 4, i.e. for any h € H, h~! = h3. So, our next step is to calculate (c(h))3.

Recall from the proof of Proposition 3.3, that for & = 1+ Y7 ; (a;(1+x%) + b;(1 + x')y) € K we

had
o2 = ("% 1x)

where X = circ[a? + a3, b + b3, a3 + a3, b3 + b3] and Y = (by + b3) (a1 + a3) Ja.
Now, H is a subset of K such that a; = b;. Therefore, replacing b; with 4; in X and Y we get
> (I+B C
e
with

B = (ﬂ% + a%)]‘lr
C = (611 + 613)2]4 = (a% -+ ﬂ%)]4.
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As you can see, B and C are identical, so

5 (I+B B I+A A
(o (k) _( B I+B)\ AT (1+A)T
_ ((I+B)(I+A)+BAT (I+B)A+B(I+A)T
" \B(I+A)+ (I+B)AT BA+(I+B)(I+A)T
_ (I+A+B+BA+BAT A+ B+ BA+BAT
~ \ AT+B+BA+BAT I1+AT+B+BA+BAT)"

Multiplying any matrix by B = (a2 + a3)]4 will give zero, therefore we have

5 (I+A+B A+B
WW”“(AT+B I+AT+B)"

Now,

(@) o (n)o (k) = (I;{TA:BB I+AAJ;iB) (11\\% %j) (IXTA (I +AA)T>

Kg g) + (IZTA (I+AA)T)] (II\\;;T %ﬁ) (IZTA (I+AA)T>

KB B)+(I+A A )}(N1+N1A+N2AT N2+N1A+N2AT)

B B AT (I1+A)7T) ] \Nf+ NAT+ NTA Ny + NjAT + NTA
(3.1)

Matrices are associative, so we can split Equation (3.1) into two parts. First we get

B B\ [ N1+ NtA+ N, AT No+NjA+ N, AT\ (B B (3.2)
B B) \NJ + NfAT+ NJA Ny+NAT+NJA) ~\B B)’ '

since

BN;(I+ A+ AT) = B -circ[1, p,0, p] - circ[1, a; + a3,0, a1 + a3]

= B -circ[l,a1 + a3+ p,0,a1 + a3 + p]
= circ[a? + a3, a% + a3, a3 + a3, a3 + a3
=B

BN (I+ A) = B -circ[q,q,7,7] - circ[1 + ay + ap + a3, a1, a2, a3]
= B-circla+q,p+qatrptr], a=(a+a)(q+r)p=(a2+a3)(q+r)
=0

BN,(I+ AT) = B -circ[g, r,7,q] - circ[1 + a1 + ap + a3, a3, a2, 1]
=B-circla+q,p+ra+rptql, a=(a+a)(g+r)p=(a2+as)(qg+r)
=0
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BN,AT = BNJ A = B -circlg,r,7,q] - circ[ay + ap + a3, a1, a3, a3)
= B-circla, B,a, B], = (a1+a2)(q+71),p= (a2+a3)(q+71)
= 0.

Next, we have

I+ A A Ni+NiA+ NoAT  Np + NjA + N, AT D, D,
T T T T T T T, = p (3.3)
A (I—I—A) NZ + N; A +N2A Ni + N;A +N2A D3 Dy

where

D; = N; + NiA + NpAT + NJA + N1 A% + NpAAT + NJA + NfAAT + NT A2
Dy = Ny + N1 A + Np AT + NpA + N1 A% + NpAAT + NjA + NJAAT + NT A2
D3 = NI + NjAT + NfAAT + Np(AT)? + Ny AT + NTA + NTAT + Ny (AT)? + NJAAT
Dy = N; + No AT + NJAAT 4+ N (AT)? + NJAT + NT A+ Ni AT + Ny (AT)? + NTAAT.

Note the following:

Ny A = N A? = (g4 ) - circ[as + a3, a1 + ap, ap + as, a; + a3]
N1 A% = Ny (AT)? = (a? +a3) - circ[1,0,1,0]
N,AT = NZTA = (g + r) circlay + ap, ap + a3, a1 + ap, ay + as]
NTA? = NpAAT = No(AT)? = NpAAT = (g +7) (a3 +a3) - ]
N1 AAT = (22 + a2) - circ[0,1,0,1].

Using the above we find that

D; = Ni + Ny A2 + N;AAT
= circ[1, p, 0, p]

Dy = Ny + NoAT + NoA + Ny A2 + Ny AAT
= circ[q,7,7,q] + (g + 1) (circ[a, B, &, B] + circ[B, &, B, «]) + (aF + a3) (circ[1,0,1,0] + circ[0,1,0,1])
= circ[q,7,7,q9) + (g +7) (a1 + a3) ]y

D3 = NJ + NJAAT + N A+ NJAT + Ny (AT)?
= circ[q, q,7,7] + (q + 1) (circ[a, B, «, B] + circ[B, &, B, «]) + (a3 + a3) (circ[1,0,1,0] + circ[0,1,0,1])
= circlg, q,7,7] + (g + 1) (a1 + a3) 4

Dy = Ny + NJAAT + A (AT)?
= circ[1, p, 0, p].

Notice that B = (a2 + a3)]4 is present in each case, and will cancel when we add (3.2) to (3.3).
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So finally, (3.1) reduces to
wmemem = (5 3)+ (0! )

(B E
“\El E )

with E; = circ[1, p,0, p] and E, = circ[q,7,7,q] + (q + ) (a1 + a3) Js. Thus, (c(h))3c(n)o(h) € N,
and N is a normal subgroup of K. |

3.4 The Structure of U (FDs)

We now have all of the necessary information to determine the structure of U/ (IF,«Dg). First we
write each subgroup as a product of cyclic groups, then finally we determine the structure of the
unit group.

Corollary 3.7 ([4]) H = Ck x Ck.

Proof. We know that H has exponent 4, and that |H| = 2%. Therefore H & C} x Cy' for some
I,m € Z", meaning that all elements in H have order either 1,2 or 4. The number of elements of
order 1 or2in Cé is 2! and for Cy' is 2. The total number of elements of order 1 or 2 in Cé x Cy'

is therefore 2! . 2m = 2l+m

So, the number of elements of order 4 in Cé x Cj" is the total number of elements minus the
number of elements of order 1 or 2, i.e. 2/ - 4™ — 2/ & ol . gm . pm _ pltm o plmom _ 1),

Now, recall from Proposition 3.6 that
I+B B
2 _
(o(h))” = ( B I+ B)
where B = (a2 + a3)]s.
So, (o(h))? = 1 when a; = a3, so the number of elements in H with order 1 or 2 is 2. Therefore

the number of elements with order 4 is 23 — 22k = 22F(2k — 1), So, 2k =+ m = | = m = kand
thus H = C§ x Ck. |

Corollary 3.8 ([4]) N = C} x Ci‘.
Proof. Letn = 1+ p(x + x3) + g(1 + %)y + r(x + x?)y € N then
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=3 2

and
(o(n))? = A2+ BBT AB+BA
~ \BTA+ ABT BTB+ A2
_ (A% +BBT 0
N 0 A? + BBT

where A = circ|[1, p,0, p] and B = circ[q, 7,7, q]. Now,

A? = circ[1, p,0, p] - circ[1, p, 0, p]

= circ[1+p* + p%, p+p,p* + 7% p+pl

= circ[1,0,0,0]

— I

BBT = circ[g,r,7,q] - circ[q, q,7,7]

= circ[2q* + 2r%,q* + r* + 2qr,4qr, * + 1* + 2q7]

= circ[0, 4% +1%,0,4* +1?].
Therefore, (¢(n))?> = 1if A> + BBT = I, which is only true if § = r. Elements of order 1 or 2
are of the form n/ = 1+ p(x + x%) +q(1 + x + x2 + x3)y, which gives 2 possibilities. Thus, by

following the same argument as in Corollary 3.8 we find that N = CX x Cj.
|

Proposition 3.9 ([4]) U (FCy) = Ck x Cor_;.

Proof. First, we know thatU/(RG) = V(RG) x U(R). Therefore, U (FCy) = V(FxCy) x U (Fox).
It is known that, for a Galois Field IF , Z/{(IFpk) = Cpi_q- So, U(F) = Cor_y.

Now, let &« = a1 + apx € FpCy and u € U(F,Cy). Recall from definition blah that u € V(F,Cy)
if e(u) = 1, where € is the augmentation mapping. €(#) =1< a1 +4a, =1 < ap = 1+ a;. Then

o(u) = (Z; Zi)

. 1+ﬂ1 a1
o ai 14+a

2 (1+m m 1+a m
(U(u)) _( a1 1+a1 a1 1+a1

Therefore,



CHAPTER 3. UNITS OF F,xDg 32

_ (1+a1)?+a? (1+ay)ay +a1(1+ay)
a1(1+a1) + (1+a1)m at + (1+a1)?

So the exponent of V(FxCy) is 2, meaning V(I Cy) = C5. Thus, U (FyCy) 2 C5 x Cor ;. W

Theorem 3.10 ([4]) U (FyDs) = [ (((C5 x Ck) % Ck) x C§) x C& ] x Cye_y.

Proof. Recall from Proposition 3.2 that U (FFxDg) = K x U(FFxCy). Then, since HNN = 1 we
have that

K2 N xH = (Ckx k) x (5 x k) = ((ck x k)« k) x cb.
Thus,

U(FyDs) = | (((C x C§) x C§) x C§) % CF | x Cpey.



Chapter 4
Unitary Units of [F,:Dg

In this chapter, we descibe a special subgroup of the unit group of a group algebra called the uni-
tary units, specifically for IF,x Dg. Recall from Definition 1.33 that V. (IFxDg) = {v € V(RG)|v* =
v~ 1}. We describe the structure as a semidirect product of a normal subgroup N with a subgroup
H. We begin by constructing N, followed by H, then show that N & C3¥, H 2 CX. Then finally
we show that V, (IF,Dg) = Cgk X C’2‘ . These results were first shown in [6], however many of the
details are omitted. Here, not only do we provide alternative methods of proof, but full details
of each proof are also included.

Proposition 4.1 ([6]) Let N be the set of elements of V. (IF,«Dg) of the form 1+ ap + a3 + a5 + a1 (x +
x3) + axx? + azy + ag(xy + x3y) + asx?y where a; € For. Then, N is an abelian subgroup of Vi (FyDg)
and N = C3*.

Proof. Let ny = 1+ ay + az + as + a;(x + x3) + axx? + azy + ag(xy + x>y) + asx?y and np, =
1+ by + b3 +bs+bi(x+ X3) + bzxz + b3y + by(xy + x3y) + b5x2y. Then,

o(ny)o(ny) = <I;A IfA) (Igc IEC)

_ (U+A)(I+C)+BD (I+A)D+B(I+C)
B(I+C)+(I+A)D BD+ (I+A)(I+C)

_(I+A+C B+D AC+BD AD+BC

“\ B+D I+A4A+C AD+BC AC+BD)"

where

A = circlap + a3z + as, aq,ap,a1], B = circlas, aq, as, ay),
C = circ[by + b3 + bs, by, bo, by}, D = circ|[bs, by, bs, by].

I+A+C B+D
B+D I+A+C
Therefore we only need to consider the second matrix, i.e. we need to show that AC 4+ BD =
circ[xp + x3 + x5, x1, X2, x1] and AD + BC = circ|x3, x4, X5, X4].
33

By splitting the matrix in two, we can immediately see that < € N.
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AC = circlap + a3 + as,ay,ap, a1 - circ[by + b + bs, by, by, by ]
= circlap (b3 + bs) + az(by + bs) + as(by + bs) + asbs + asbs, a1(bs + bs) + by (a3 + as),
az(b3 + bs) + ba(az + as), a1 (b3 + bs) + by (az + as)]
BD = circ[as, ay, as, a4] - circ[bs, by, bs, by]
= circ[agbs + asbs, ay(bs + bs) + by(as + as), azbs + asbs, aq(bs + bs) + by(as + as)]

AD = circlay + az + as, ay, ap, a1] - circ[bs, by, bs, by]
= circlay (b3 + bs) + b3(az + as), a1 (b3 + bs) + by(az + as), ax(bs + bs) + bs(as + as),
a1(bs + bs) + ba(az + as)]
BC = circ[as, a4, as, a4] - circ[by + bs + bs, by, by, by ]
= circ[a3(b2 + b3) ~+ abs + El5b2,a4(b3 + b5) + by (a3 + Ll5), bz(ag, + El5) + a5(b3 + b5),
ay(bs + bs) + by (az + as)]

So,

AC + BD = circ[xp + x3 + x5, X1, X2, X1]
AD + BC = CiI‘C[X3,X4, X5,X4]

where

x1 = (ay +ag) (b3 + bs) + (b1 + bs)(az + as)

xp = ay(bs + bs) + by (az + as) + asbs + asbs
= ay(bs + bs) + az(by + bs) + as(by + b3)

x3 = ap(bz + bs) + bz(az + as) + az(by + b3) + asbs + asb,
= ay(bz + bs) + asz(by + bs) + as(by + b3)

xg = (a1 + ayg) (b3 + bs) + (b1 + by)(az + as)

x5 = ap(bs + bs) + bs(az + as) + by (a3 + as) + as(bs + bs)
= ay(bs + bs) + az(by + bs) + as(by + b3).

Therefore N is closed and is a subgroup of V. (F,Dg). Now, since I, A, B,C, D are all circulant
matrices, we have that

o(np)o(ng) = (IEC IfC) <I;A IfA)

_((1+C)(1+A)+DB (I+C)B+D
" \D(I+A)+(I+C)B DB+ (I+C)
_((I+A)(I+C)+BD (I+A)D+B
_(B(I+C)+(I+A)D BD + (I+ A)

I+ A
I+A
I+C
I+C

)
)

—~— I~
— N N —
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_(I+A B \(I+C D
~\ B I+A D I+C
=o(ny)o(ny),

which shows that N is abelian. Now, n € V,(FxDg) if and only if n~! = n*Vn € N. So,

c(n ) =o(n*) & on)t =o(n*)

son) =)t

s o(n)o(n)’ =

Letn =1+ ay+as +as +ay(x + x3) + axx? + azy + ag(xy + x3y) + asx?y € N. Then

ot == (1541 7).

with A = circlay + a3 + as, ay,a», 41| and B = circ|as, a4, as, a4]. Therefore,

2

T_(I+A B

oo™ = ("5 F )
_ (I+A2+B? 0
- 0 I+ A%+ B?
(I 0
—\o 1)’

since A> = B2 = circ[a3 + 42,0,0,0]. Thus, N 2 C3* < V,(FF,Ds). |

Proposition 4.2 ([6]) Let H be the set of elements of V..(FDg) of the form 1 +a Y> ; x' +« 2]2:0 xly
where & € Fy. Then H is an abelian subgroup of Vs (FyDs) and H = C5.

Proof. Leth; =1+ a Y’ | x' +a 2]2:0 Xyandhy =1+ BY> ¥ +B 2]2-20 x/y. Then,

o(h1)o(hy) = (]?T fx) (ST g>

([ AC+BDT AD+BC

~ \BTC+ ADT BTD+ AC
_( AC+BDT AD+BC
~ \(AD+BC)T AC+B'D

with A = circ[1,a,a,a], B = circ|a, &, «,0],C = circ[1, B, B, B] and D = circ[B, B, B,0]. Consider-
ing each multiplication separately we have
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AC = circ[1, a, &, «] - circ[1, B, B, B]
= circ[l +af,a + B, a + B, a + B
BD' = circ[a, &, a,0] - circ[B,0, B, B]
= circ[af, 0,0, 0]
= (BD")T = DBT = B™D
AD = circ[1, &, a, «] - circ[B, B, B, 0]
= circ[B, B, B, af]
BC = circlw, &, &, 0] - circ[1, B, B, B]
= circ[a, &, a, aB].

Therefore,

AC + BDT = circ[1 +aB,a + B,a + B, + B] + circ[aB, 0,0, 0]
= circ[l,a + B,a + B, + B]
AD + BC = circ[B, B, B, ap] + circ[a, &, a, af]
= circla + B,a + B,a + 3, 0].

v o) G a)

(CA—{—DBT CB+DA)
o(h

Thus, H is closed. Now,

DTA+CBT DTB+CA

AC+BTD AD + BC
AD+BC AC + BDT

)o(ha),

which shows that H is also abelian. Now consider 1 = 1 +a Y5> | x' +a Z o ¥y € H. Then, in
order to be an element of V. (FxDsg), h ! = h* < o(h)o(h)T = I, So,

o(h)o(h)" = (é{? fx) (1;‘} fl)
_ (A2+BBT 0 )
0 BTB + A2

(1),

since A% + BBT = circ[1 + a2,0,0,0] + circ[a?,0,0,0] = I4. Thus, H 2 C§ < V,(FxDs). |
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Proposition 4.3 ([6]) N is a normal subgroup of V. (IF,:Dg).

Proof. N = {1 +az + a3 + a5+ ay(x + x3) + axx? + azy + ag(xy + x°y) + asx*y|a; € Fy} and
H={l+a)] x +zx2 _o¥yla € Fy}. Clearly NN H = 1.

Letn = 1—|—a2—|—a3—|—a5+a1(x+x3)+a2x2—|—a3y—|—a4(xy+x3y)+a5x2y € Nand h = 1+
oczl 1 x4 0&2]2:0 x'y € H, where a;,« € IFor. Then,

o(h)to(n)o(h) = o(h)o(n)o(h)

(1 )(”Nl ) G i)

H] H N, I+Ni)\H] H

_(H N1 N Hy Hp

- HZT N> Np HI H;
{ HINy + HiN, HIN, + HiN; HI H

I 0 4 H{N;1+ HN, HiN; + HyNj H, H
HINy + HiIN, HIN, + H1N;

(07 %)

where Hy = circ|[1, a, a, a|, Hy = circ[a, &, &, 0], Ny = circ[ay 4 az + as, a1, ap, a1], Np = circ|as, ag, as, a4],
X = H?N; + H{H;N; + HiHI N, + HyHI Ny and Y = H3 + H?N,. Now,

_ (Hl )+<H1N1-|-H2N2 H1N2+H2N1):| (Hl Hz)
H

HI H

H2N; = circ[(a? +1)(ay + az + as), (& + 1)ay, (a® + 1)ay, (a* + 1)a]
= (a® 4+ 1) circlay + a3 + as, a1, ap, a1]
= (e’ +1)N;
H1H;Np = « - circ|aay + az + ag + as, aas + as, aay + az + ag + as, aaz + as|
H{HIN, = a - circlaay + a3 + a4 + as, aa3 + as, aay + a3 + ag + as, aas + as]

HoHINy = circ[a?(ay + a3 + as), a%ay, a’ay, a®ay]
= o circlay + a3 + as, a1, 4, a1]
= a’N;

HZN, = circ[(a? + 1)as, (a* + 1)ay, (a® 4 1)as, (« + 1)ay]

= (a® 4 1) circ[az, ay, as, a4)
= (&*+1)N,

(H])2N, = circ[a?as, a’ay, a®a3, a*ay]
— o circ[as, ag, a3, a4
— H3N}.
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Therefore,

X = H3N; + H{H;N, + Hi{HI N, + HHI N,
= (&> +1)Ny + &®Ny + a - circ[0, (a + 1) (a3 + as), 0, (« + 1) (az + a5)]
= Ny + (a + 1) (a3 + as) circ[0,1,0, 1]
= circlap + a3 +as, a1 +a(a+ 1) (az + as),az, a1 + a(a + 1) (a3 + as)]
Y = Hj + HiN;
= «? - circ[as, ag, a3, a4] + (1 + a?) circ[as, ay, as, a4)

= circ[az + a®(a3 + as), ag, a5 + a*(a3 + as), ag).
We can see that X and Y are of the same form as N; and N>, therefore o(h) 1o (n)o(h) € N. Thus
N is a normal subgroup of V. (IF,:Ds). ]

We are now in a position to fully describe the structure of V; (IF,Dsg).

Theorem 4.4 ([6]) V,(FxDs) = C3F x Ck.

Proof. Recall from Definition 1.13 that for a semidirect product we require V. (FxDg) = NH,
NNH = {1} and N < V,(FxDg). We have already shown these to be true in the previous Lem-
mas, therefore since N = Cgk and H = C’2‘ the result is proven. [ |



Chapter 5
Self-Dual Codes

It is well known in the literature that there is a connection between group rings and Coding
Theory [10, 11, 13, 19]. In particular, ideals in group rings correspond to certain codes. In this
chapter, we describe the connection between unitary units in group rings and self-dual codes.
This was first established by Gildea et al. in [13]. Further into the chapter we will constuct
certain self-dual codes and detail the units that correspond to each code. In addition, we will
prove that these elements are unitary.

First, we shall describe the connection between unitary units and self-dual codes. Recall from
Chapter 1 that a generator matrix G is said to be self-dual if GGT = 0. So, note that ¢(v*) =
o(v)T, then for generators of the form G = (I | o(v)) we have

=I+0(v)o(v)!
=I1+o(v)o(v")
=TI+ o(vv*)
Therefore GGT = 0 implies that
[+0(v0*)=0
o(vv*) =1
vt =1
vl ="

Definition 1.33 tells us that v* = v~! corresponds to an element of V,(RG), and thus the connec-
tion is shown.

Now, let & = Y2 x*(a; + a;,4y) € RDs, then o(a) = (é“T £T> where A = circ[ag, a1, a2, a3] and
B = circlay, as, ag, az).
39
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Consequently, we will consider codes over [F, IF4 and [F4 4 ulF4 of the following from

I 0| A B
G_(o I|BT AT)’

where [ is the identity matrix.

5.1 Codes in [F,Dg

Let us begin by studying the codes generated by the group algebra IF,Dg. There are 28 possible
codes of this structure, using code written in GAP we will construct each one. We begin by
creating a set G containing all possible generator matrices of the form described above. To do
this we use the DihedralGeneratorMatrix () function which can be found in Appendix A.2.

Listing 5.1: Creating generator matrices for IF, Dg

gap> Read ("/home/harrison/.../CodingFunctions.g");;
gap> G:=DihedralGeneratorMatrix(4);; # 4 refers to dimensions of A and B
gap> Size(G); # number of generator matrices (278)
256
gap> Display (G[10]); # print 10th element (arbitrary)
e A
1. . ... 00001

—
=

.10 0 011

11
..o 11
11. .1

Next we check for self-duality using the GG = 0 condition from Theorem 1.61, this is done
using another custom function Get SelfDual (), also found in Appendix A.2.

Listing 5.2: Self-dual generator matrices for IF, Dg

gap> S:= GetSelfDual (G);; # extracts only self-dual codes from G
gap> Size(S); # number of self-dual codes
64

gap> Display (S[l]*TransposedMatS[1l]);

As explained in Definition 1.52, we can have codes which are equivalent under certain row
operations. The guava package in GAP contains the function IsEquivalent (), which checks



CHAPTER 5. SELF-DUAL CODES 41

whether two codes are equivalent over [Fp. The custom function UniqueGenerators () utilises
this function to compare each of the self-dual codes in S and returns only the unique ones with
minimum distance atleast 4. The reason for only selecting those with minimum distance 4 is
because those are the extremal codes, this value is obtained from Theorem 1.62.

Listing 5.3: Unique self-dual generator matrices for IF, Dg

gap> U:= UniqueGenerators(S,4);; # unigque generators in S with min distance >= 4

P 4) i
r. .. ... 000000111
1 1 .11
1. 11 .1
. 111
.10 00 o111
1. .1 .11
1 .11 1
1111 .
Type IT self-dual code with MinimumDistance = 4
1. .. ... ... .11111
r . .. .. 010001111
1. 1 . 1111
1. .1 01111
1 .1 111 1.
1. .1111 1.
1 .1111 . 1
. 11111 1 e e
Type I self-dual code with MinimumDistance = 4
Ir. .. ... 001111111
1. .1 .1 11111
1. .11 .11111
1 .1 11 .1111
1 . .1 111 .111
1. .1 1111.11
1.1 11111.1
11111111
Type IT self-dual code with MinimumDistance = 4
For each of the three codes above, the last 8 elements of the first row ie. . . . .11 1

correspond to the coefficients of 1, x, ..., x>y. From this we obtain the following table:

|1l x x> 2 y xy x*y Oy d
110 0 0 0 0 1 1 1 4
2/0 0 0 1.1 1 1 1 4
3101 1 1 1 1 1 1 4

Table 5.1: Table of coefficients for IF, Dg, obtained using GAP.

We will now check that each element is unitary by computing «;«7, in each case the result should
be 1.
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First, we have

N = xy—i—xzy-l— x3y
=y+xy

af = (xy) '+ (Py) T+ (Py)
= xy+x2y+x3y
=y+2xy

aeq = (y + £y) (v + 2y)

= yz + yXy + ﬁy2 + Xyxy
=142%+0
=1.

Secondly,

ay = x> +y +xy +xy + 23y
= x3+9€y

;= () ()7 ()T () T ()T
= x+y+ay+ 2%y + 2y
=x+ Xy

ey = (2% + #y)(x + 2y)

= x* + 3%y + Lyx + Lyky
=1+2y+2y+ (£)?
=1+2%y+0
=1

Finally,

w3 = x + x>+ 2% +y +xy + 2y + 23y
=1+2+2xy

wy = ()7 + ()T ()T ()T ()T ()T ()T
=2+ 2+ x+y+xy+ XY+ x°y
=14+%+23xy

azny = (14+ 2+ 2y)(1+ £ + £y)

=1+ 2+ 2y + 2+ (£)2+ ()% + 2y + 2yt + (2y)?
=1+ %+2%+ 2%y
=1.
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5.2 Codes in ]F4D8

Due to memory restrictions and the fact that GAP can only check equivalency over F, the fol-
lowing codes are obtained using MAGMA. We find four unique codes with minimum distance 8
and five with minimum distance 6, which we must check are unitary.

Bl1 x x» x¥* vy xy x*y Py d
1/0 0 O w 0 1 w+1 1 6
210 0 O w 1 1 1 w 6
310 0 O w 1 w+1 w w+1 8
410 0 1 1 0 1 w w 6
510 0 1 1 1 1 w w+1 8
6|0 0 w w+1 0 w 1 w+1 8
710 1 w w 0 w 1 w+1 6
810 1 w w w w w+1 w+1 8
910 w 1 w+1 1 1 w w+1 6

Table 5.2: Unique codes over IF4, obtained using MAGMA.

First, we have

B1 = wx® + xy + (w + 1)x%y + 2%y
Br=w(x’) "+ (xy) "+ (w+ (%) + (y)
= wx + xy + (w+ 1)x%y + 2%y

Multiplying gives

B1Bt = wx* + wxty + w(w + 1)x°y + wxby + wxyx + xyxy + (w + 1)xyx®y + xyx>y
+w(w + 1)x*yx + (w + 1) x?yxy + (w + 1)2%yx%y + (w + 1)x*yxy
+ wxlyx + BCyxy + (w + 1) x3yx?y + Pyxdy
= (2+w+ (14+w)) +2(w+ 1)x + 2x* + 2(w + 1)x° + 2wy + 2xy + 2wx’y
=1

Secondly,

B2 = wx3+y+xy—|—x2y+wx3y
B3 =w(x) T+ (y) "+ () T+ () w(xy)
= wx+y—{—xy+x2y—{—wx3y.
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Multiplying,

Baps = w?x* + wxly + wxty + wx'y + w?xOy + wyx + v? + yxy + yx’y + wyx’y
+ wxyx + xy* + xyxy + xyx’y + wxyx’y + wxlyx + x*y* + x*yxy
+ xzyx2y + wxzyx3y + w2x3yx + wx3y2 + wx3yxy + wx3yx2y + w2x3yx3y
= (3+2(w+1)) + (24 2w)x + (2+2w)x* + (24 2w)x’
+ 2wy + 2wxy + 2(w + 1)x%y + 2wx’y
=1

Next,
Bs = wx® +y + (w+ 1)xy +wx’y + (w+1)x°y
By = w(x) Ty + (wH+1)(xy) " +ox(y) T+ (w1 ()
= wx+y+ (w+1)xy + wx’y + (w +1)x%y
Multiplying gives

Baps = w?x* + wxly + w(w + 1)xty + w?x°y + w(w + 1)x% + wyx + y* + (w + 1)yxy + wyx’y+
(w +1)yxy + w(w + 1)xyx + (w+ 1)xy? + (w + 1)%xyxy + w(w + 1) xyx>y+
(w + 1)%xyx’y + w?x?yx + wx?y? + w(w + 1)x*yxy + wx?yxy + w(w + 1) x2yx’y+
w(w + 1)x3yx + (w+ 13y + (w + 1)23yxy + w(w + 1) x3yx?y + (w + 1)2x3yxy
= (1+2w+2w+1))+ (2+2w+1))x+ (dw+2(w+1))x* + 2+ 2(w + 1))+
2y + 2(w 4 1)xy + 2x%y + 2x%y
=1

Next,

By = x>+ x° + xy + wxPy + wxly
5 =%+ x + xy + wxy + wxy.
Multiplying,

Bapi = x* 4+ 2° + By + wrty + wxy + x° + x* + ¥ty + wxdy 4+ waly
+ xyx2 + Xyx + xyxy + wxyxzy + wxyx3y + wxzyx2 + wxzyx + wxzyxy
+ w?xPyx?y + wAxPyxy + wxdyx® + wxlyx + wxlyxy + wPyx’y + wilyxdy
=(B+2(w+1)+ (1+w+ (w+1))x+2wx* + (1+w+ (w+1))x°
+ (2 +2w)y + dwxy + 2wx’y + 2x°y
=1
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For the fifth element we have

Bs = x>+ x> +y +xy + wxly + (1 +w)x’y
Bt = x+ x> +y+xy +wxly + (1+w)x’y.

Multiplying gives

Bspt =23+ 14+ 22y + Py +wy+ 1+ w)xy+1+x+ 3y +y +wxy + (1 4+ w)x%y + yx + yx°+
y? + yxy + wyx®y + (1 + w)yx>y + xyx + xyx? 4+ xy? + xyxy + wxyx® + (1 4+ w)xyxSy+
wx?yx + wx’yx® + wxy? + wxlyxy + w xPyxy + w(l 4+ w)x*yly + (1 + w)xyx+
(1+w)xPyx® + (14 w)x°y? 4+ (1 4+ w)Cyxyx + w(l 4+ w)Cyx’y + (1 +w)*3yxy

=(G+w+(1+w)+B+w+(1+w)x+ Qw+21+w))x*+ B+ w+ (1+w))x*+
(2+2w)y+ (2w +2(14+w))xy + (2+2(1 + w))x*y + 4x°y
=1

Next,

Bs = wx® + (1 +w)x® + wxy + x*y + (1 +w)x’y
B =wx®+ (1+w)x +wxy 4+ x2y + (1 + w)x’y.

Therefore,

BeBi = w(1 +w)x® + w? + w?xy + wy + w1 +w)xy + (1 +w)? + w(l 4+ w)x +w(1 +w)y+
(1+w)xy + (14 w)?x?y + w(1 + w)xyx + wxyx® + w?xyxy + wxyx>y+
w(1+ w)xyx3y + (1 + w)x?yx + wxyx® + wxyxy + x*yx’y + (1 + w)x?yx’y+
(1+w)2xPyx + w(1 + w)xyx® + w(l 4+ w)3yxy + (1 + w)Pyxy + (1 + w)?xPyxly
=(1+2w+21+w))+ (1+w+ (14+w)x+2x+ 1+ w+ (1+w))x°
(2+2w)y + (24 2(1 4+ w))xy + 2wx’y +2(1 + w) 23y
=1

For the seventh element we have

By = x +wx? + wx® + wxy + x*y + (w + 1)x%y
Bs = x° + wx® + wx + wxy + ¥y + (w + 1)x°y.
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Multiplying gives

BrBs = x* 4+ wx® + wx? + wxy + Xy + (w4 1)xty + wx® + w?xt + w?x® 4+ w3y
+ wxty + w(w + 1)x°y + wx® + w?x® + wx* + wixty + wxy + w(w + 1)x8y
+ wxyx3 + wzxyx2 + wzxyx + wzxyxy + wxyxzy +w(w + 1)xyx3y + nyx3
+ wxyx® + wxtyx + wxlyxy + x°yx’y + (w + 1D)x?yxdy + (w + 1) %y’
+w(w + 1)x3yx? + w(w + 1) xPyx + w(w + 1) x3yxy + (w4 1) 3yxy + (w + 1)*°yx’y
= 2+w+3(w+1))+ 2w+2(w+1))x+ (24 2w)x* + (2w +2(w + 1)) x°
2w+ 4(w+ 1))y + (2+2w)xy + (2+2w)x*y + (2+2(w + 1)) 2%y
=1

Now,

Bs = x + wx? + wx® + wy + wxy + (1 + w)x*y + (1 +w)x3y
Bs = () +w(®) T+ w() T +uy) T +wly) T+ 1+ o) (@) T+ T+ w) ()
= x> + wx? + wx + wy + wxy + (1 +w)x?y + (1 4+ w)x3y.

Therefore,

BsBi = 1+ wx® + wx® + wxy + wxy + (1 +w)xy + (1 + w)y + wx + w? + w?x® + w3y +
w(1+w)y + w(l 4+ w)xy + wx? + w?x + w? + w x>y + w?y + w1l + w)xy+
w(1+w)x*y + wyx® + wryx? + w?y? + w?yxy + w(1 + w)yx*y + w(l + w)yx>y+
wxyx® + wrxyx’w?xyx + w?xy? + wixyxy + w(l + w)xyx®y + w(l + w)xyx’y+
(1+ w)x?yx® + w(1 + w)x?yx*w(1 + w)x’yx + w(1 + w)x>y? + w(1 + w)x’yxy+
(1+w)2x?yx?y + (1 + w)2x%yx® + (1 + w)xPyx® + w(l 4+ w)3yx® + w(l + w)xPyx+
w(1+w)x’y? + w(1+ w)Cyxy + (w +1)2%y2%y + (1 + w)*yx’y

= (1+2w+4(1+w)) + (2+2w+2(1+w))x + (4 +2w)x* + 2+ 2w +2(1 + w)) x>+
2+4(1+w))y+ (4+2w)xy + 2+ 2w +2(1+ w))x*y + 6(1 + w)xy
=1

Finally, we have

By = wx + x* 4+ (w4 1)x° +y + xy + wx?y + (w + 1)x%y
By = wx® 4+ x* + (w+ Dx +y + xy + wx’y + (w+1)x%y



CHAPTER 5. SELF-DUAL CODES 47

Thus,

BoBy = w?x* + wx® 4+ w(w + 1)x% + wxy + wx’y + w?x>y + w(w + 1)xty + wx® + x* + (w + 1)x°

+ 22y + 3y + waty + (w+ 1)y + w(w + 1)x® + (w +1)x° + (w + 1)%x* +
+ wyx®y 4+ (w + 1)yx’y + wxyx® + xyx® 4+ (w4 1)xyx + xy? + xyxy + wxyx?y
+ (w + D xyx’y + w?x?yx® + wxyx® + w(w + 1)x°yx + wxy? + wxlyxy + w?x*yx?y
+w(w + 1)x?yx’y + w(w + 1) x3yx® 4+ (w4 1) 3yx® + (w +1)2x3yx + (w + 1) x>y
+ (w + 1) x3yxy + w(w + 1) x3yx?y + (w + 1)%x3yxy

= (B+2w+ (w+1))+ 2+2w+2(w+1))x+ 2+ 2w +2(w+1))x* + 2+ 2w+ 2(w + 1)) x°
+(2+20+2w+1)y+ (2+2w+2(w+1))xy + (2+4w)x*y + (2+4(w +1))x%y

=1

As expected, each of the codes produced are unitary. Next we will use these nine codes to create
codes in (IF4 + ulFy)Ds.

5.3 Codes in (IF; + ulF4)Dg

The ring Fy + ulF, defined by {a + bu | a, b € Fy, u> = 0} can be viewed as an extension of
F4. The following Gray maps are used to lift the codes in Section 5.2 to generate codes over
Fy + ulFy:

¢+ (Fy+ uFy)" — (IFp + ulF)*"
aw + bw — (a,b), a,b € (F, + ulF,)"

(PZ (1F2+uIF2)” — ]an
a+bu— (ba+b), a belF)

Using this method we are able to produce the 114 [64,32,12] codes found in Appendix B.

J. H. Conway and N. ]J. A. Sloane [14] provide three possible weight enumerators for codes of
length 64. For Type I codes we have

Wi(y) = 1+ (13124 168)y'2 + (22016 — 648)y™* + (239148 — 328)y'° + - - -
Wa(y) =1+ (1312 4 168)y'2 + (23040 — 648)y™* + (228908 — 328)y*0 4 - - -,

and for Type II codes:
Ws(y) = 1+2976y'? + 454956y'® + 182756160 + 233419584y** + - - - .

Now, the maps used preserve orthogonality, so self-dual codes should map to self-dual codes.
As we have done previously, we will still verify that they are unitary, however we will only do
this for those with unique g values'.

Not to be confused with f; from Section 5.2
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In the first case, where B = 104, we have

Y1 = ux? 4+ wx® + uwy + xy + (w + u + 1)x%y + (uw + u + 1)x%y
Y1 = ux? 4+ wx + uwy + xy + (w + u +1)x%y + (uw + u + 1)x3y.

Multiplying gives

Y19} = u?x* + uwx® + vPwxy + uly + (uw + u? 4+ w)xty + (o + v+ u)xdy
+ uwx® + wx* + uw? Py + wxty + (W + uw + w)x°y + (uw? + uw + w)x%y

2wy? + uwyxy + (uw? + uw + uw)yx?y + (ww? + v?w + uw)yx>y

+ uzwyx2 + uwax +u
+ uxyx® + wxyx + uwxy* 4+ xyxy + (w + u + Dxyx®y + (uw + u + 1) xyx’y
+ (uw + u? 4+ u)¥*yx® + (0* 4+ uw + w)x*yx + (uw? + uw + uw)x*y>?
+ (w+ u+ 1)xyxy + (w4 u + 1)2%yx>y + (w + u + 1) (uw + u + 1) x*yx>y
+ (1w + u? + u)Pyx® + (uw? + uw + w)x3yx + (u?w? + vw + uw)x>y?
+ (uw 4+ u 4+ 1)x3yxy + (uw + u + 1) (w + u + 1) 3yxy + (uw + u 4+ 1)?x3yx’y
= (3+2w?) + Buw+ (w+u+1) +w*(u+1))x+ 2(uw +u +1) + 2(uw? + uw)) x>
+ (Buw+ (w+u+1) + w*(u+ 1)) x> + (2w + 2u(w + 1))y
+ (2uxy + 2(w? + uw + w) ) xy + 2 (uw? + uw + w) ¥’y + (2u + 2uw?)x’y
=1

For the second code, which has = 8, we have

Y2 = ux? 4+ (w4 u)x® + uwy + xy + (w + u + 1)x%y + (uw + u +1)x%y
s = ux® + (w + u)x + uwy + xy + (w + u + 1)x%y + (uw + u + 1)x%y.

Multiplying gives

Y25 = uPxt + u(w + u)x® + wwxy + uxly + (uw + u? + u)xty + (WPw + u® + u)xy
+ u(w + u)x® + (w + u)?x* + uw(w + u) Py + (w4 u)xty + (w4 u)(w + u +1)x°y
+ (w4 u) (uw + u + 1)x% + v?wyx® + uw(w + u)yx + v?w?y? + uwyxy
+ uw(w + u + 1)yx®y + uw(uw + u + 1)yx’y + uxyx® + (w + u)xyx + uwxy?
+ xyxy + (w + u + Dxyx®y + (uw + w + 1)xyy + u(w + u + 1) x%yx?
+ (w + u)(w + u 4+ 1)x*yx + uw(w + u + 1)x%y* + (w + u + 1)x?yxy
+ (w4 u+1)2x%yx%y + (w4 u+ 1) (uw + u + 1)x%yx>y + u(uw + u + 1) x>yx?
+ (w4 u) (uw + u 4+ 1) 3yx + uw(uw + u + 1) 33y + (uw + u + 1)x3yxy
+ (w4 u+1)(uw + u + 1)xPyx?y + (uw + u + 1)2x3yx3y
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= 24+ w+w?) + Buw+ (w+u+1) +w?(u+1))x+ (2u+2(1 +u))x?
+ (Buw+ (w+u+1) + w*(u+1))x> + (2(u +w) +2(w+ 1))y + (2u +2(1 + u))xy
+ 2wx?y + (2u + 2uw?) xy

=1.

The next code with unique B is the fifth one in our list, with a  value of 24:

v3 = uwx* + wx® + (uw 4+ u)y + xy + (w + u + 1)x*y + (u +1)x%y
vy = uwx? + wx + (uw + u)y + xy + (w4 u+ 1)x%y + (u + 1)x3y.

Multiplying gives

202t + uw?x® + uw(uw + u)x*y + uwx®y + uw(w + u 4+ 1)xty

4 uw(u + 1)x°y + uw?x® + wx* + wuw + u) 3y + wxty + w(w + u+1)x°y
+w(u 4+ 1)x% + uw(uw + u)yx* + w(uw + u)yx + (uw + u)*y?
+ (uw + u)yxy + (uw + u) (w + u + Dyx*y + (uw + u) (u + 1)yx>y + uvwxyx?
+ wxyx + (uw + u)xy? + xyxy + (w + u + 1) xyx®y + (u + 1)xyx’y
+ uw(w + u 4+ 1) x?yx? + w(w + u + 1)x?yx + (uw + u) (w + u + 1)x%y?
+ (w4 u+1)xPyxy + (w +u +1)2%yx%y + (u+ 1) (w + u + 1)x%yx’y
4 uw(u 4+ 1)x3yx® + w(u + 1)3yx + (u+ 1) (uw + u) x>y
+ (u+ D) x%yxy + (u+ 1) (w4 u+ 1) 3yxy + (u+ 1)2x3yx’y
= 2+ w+w?) + (uw? +2(uw+u) + (w+u—+1) + (uw +w +1))x
+ (2uw + 2(u + 1)) + (uw® + 2(uw + u) + (w+u+1) + (uw + w + 1)) 2
+ (2u +2w)y (2uw + 2w(w + u + 1)) xy + 2w(u + 1)x%y + (2uw + 2w (uw + u) ) x>y
=1

Y33 = U

Skipping ahead now to the 23rd code in our list which has a B value of 40:
Y4 = ux + uwx® + wx® + uwy + xy + (w +u+1)x%y + (u+ 1)y
v = ux® + uwx® + wx + uwy + xy + (w4 u + 1)x%y + (u +1)x3y.
Multiplying gives
Ya7i = uPx + 1P wx® + uwx® + vPwxy + uxy + u(w +u+ 1)y + u(u + 1)xty
+ 1Pwx® + w?w?x* + uw?x® + v Py + uwxly + uw(w + u + 1) xty + uw(u +1)x°y
+ uwx® 4+ uw?x® + w?x* + uw? 3y + wrty + w(w + u + 1)y + w(u + 1)x%y
+ 1Pwyx® + vPwryx? + uw?yx + u*wy? + uwyxy + vw(w + u + 1)yx®y + uw(u + 1)yxSy
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+ uxyx® + uwxyx® + wxyx + uwxy? + xyxy + (w + u 4+ 1)xyx®y + (u + 1)xyx>y
+u(w 4 u 4+ 1)x?yx® + uw(w + u + 1)x%yx® + w(w + u + 1) x%yx + uw(w + u + 1) x*y?
+ (w4 u+Dxyxy + (w + u +1)2%yx%y + (u+ 1) (w + u 4+ 1)x%yx’y
4+ u(u + 1)x%yx® + uw(u + 1)x3yx® + w(u + 1)xPyx + uw(u + )23y + (u+ 1)x3yxy
+ (4 1)y + (1 + 1) (w + u + 1) yx?y + (u+1)°yxy

= 2+ w+w?) + Quw + uw? + (w+u+1) + (uw +w+1))x
+ (2u+2uw + 2(u + 1)) x* + (2uw + uw? + (w+u +1) + (uw + w + 1)) 2°
+ (4u+2w)y + (2uw + 2w(w + u + 1)) xy
+ (2u+2w(u + 1)) x*y + (2uw + 2uw? + 2u(w + 1))’y

=1.

Finally, the 37th code in our list gives us our last unique p value of 16:

vs5 = (uw + u)x + ux® + (w + u)x® + uwy + xy + (w + 1)x%y + (uw + u + 1)x%y
vE = (uw 4+ u)x® + ux® + (w + u)x + uwy + xy + (w + 1)x?y + (uw 4+ u +1)x%y

Multiplying gives

Y57 = (uw + u)?x* + u(uw + u)x® + (uw + u) (w + u)x* + uw(uw + u)xy + (uw + u) x>y
+ (uw + u)(w + 1)y + (uw + u) (uw + u + 1)xy + u(uw + u)x® + u?x* + u(w + u)x®
+ 1uPwxy + uxy + u(w + 1) xty + u(uw + u + 1)x°y + (w + u) (uw + u)x® 4+ u(w + u)x°
+ (w + u)x* + uw(w + u)x3y + (w4 u)x*y + (w4 u) (w + 1)y + (w4 u) (uw + u 4 1)x%y
+ uw(uw + u)yx® + wwyx® + uw(w + u)yx + uzwzy2 + uwyxy + uw(w + 1)yx?y
+ uw(uw + u+ 1)yx’y + (uw + u)xyx® + uxyx® + (w + u)xyx + uwxy* + xyxy
+ (w + D xyx?y + (uw + u+ 1)xyxy 4 (w + 1) (uw + u)x*yx® + u(w + 1) x>yx?
+ (w4 1) (w + u)x®yx + uw(w + 1)y + (w + 1) x%yxy + (w + 1)%x*yx?y
+ (w4 1) (uw + u + 1) x%yx®y + (uw + u + 1) (uw + u)x3yx® + u(uw + u + 1)3yx?
4 (w4 u) (uw 4+ u 4+ 1) x3yx + uw(uw + u + )23y + (uw + u + 1)x>yxy
+ (uw + u + 1) (w + 1)x3yx?y + (uw + u + 1)*x3yxdy
= 24+ w+w?) + (Buw + (w+1) + (uw+w + 1)) x + (3u + 2(uw + u + 1) + w(uw + u) ) x*
+ (Buw + (w+1) + (uw +w + 1)) + (du(w + 1) + 2w+ u))y
+ (2u+2(w® + uw +u +w))xy + (2w + 2(uw + u)) ¥y + (2u + 2uw + 2uw?) x>y
=1



Appendix A

Gap Code

For more information on GAP and the Guava package, see [1, 2].

Listing A.1: Custom Functions

Circulant := function (V)

end;

local 1i,C;

# the first row of C is the input vector V

C:=[1;
Cl[1l]:=V;
# each subsequent row places the last element of previous row in first pos
# the remaining positions are the first 1..(n-1) elements of previous row
for 1 in [2..Size (V)] do
C[i] := Flat ([C[i-1]1[Size(V)],Cl[i-11{[1..Size(V)=-111}1);
od;

return (C);

# Notation in an easier to read format

Tidy

end;

:= function (S)
local O,R, 1i;
O := String(9);
R := [["<identity ...>","1"], ["<identity> of ...","1"], ["\<\>",""], ["(Z(2)"0)
*",""],["<Zero> Of ."H,"O"],

["O*Z(2)","O"]’["Z(Z)/\O","l"]];
for i in [1..Size(R)] do

O := ReplacedString(O,R[i][1],R[1i][2]);
od;

return (0O) ;
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Listing A.2: Coding Functions

DihedralGeneratorMatrix := function (d)

end;

local R,L,C,F,G,V,1,x%x,V¥;
LoadPackage ("guava") ;;

R:=GF (2);;
L:=R"d;;

C:=[1;;

F:=[1;;

G:=1[1;;
V:=Elements (L) ;;

# circulant function from CustomFunctions.g
for i in [1..Size (V)] do

C[i] := Circulant (V[i]);
od;;

# create the [A B | BT A"T] block matrix
for x in [1..Size(C)] do
for y in [1..Size(C)] do
Add(F,BlockMatrix ([ [1,1,C[x]] , [1,2,Cly]l]l , [2,1,TransposedMat (Cly
1)1 , [2,2,TransposedMat (C[x])11,2,2))
odj ;
odj;

# add the identity matrix to the LHS to create the generator matrix
for i in [1..Size(F)] do
Add (G,BlockMatrix ([ [1,1,IdentityMat (Size(F[1]),GF(2))1,I[1,2,F[i11]1,1,2))
i
od; ;

return (G);;

GetSelfDual := function (G)

end;

local S,1i;
S:=[1;

# return only self-dual by checking GG"T = 0
for 1 in [1..Size(G)] do
if G[i]*TransposedMat (G[i]) = OxIdentityMat (Size(G[i]+*TransposedMat (G[1i])
),GEF (2)) then
Add(S,G[11);;
fi;;
od; ;

return(S);;
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Listing A.2: Coding Functions (cont.)

UniqueGenerators := function(S,d)
local i, 3J,k,U,seen,D;;
U:=[1;;

D:=[1;;

end;

# add first element of S to unique list
Add (U, S[1]);;

# check each element in S against unique list using IsEquivalent,
# if the element is not equiv then add it to the unique list
for i in [2..Size(S)] do
k := Size(U);;
seen := 0;;
for j in [1..k] do
if IsEquivalent (GeneratorMatCode (S[1i],GF (2)),GeneratorMatCode (U[]],GF

(2))) = true then
seen := 1;;
break;;

fi;
if seen = 0 and j = k then
Add(U,S[1]1);;
fi;
od;
od;

# check the minimum distance against the user specified ’'d’
for i in [1..Size(U)] do
if MinimumDistance (GeneratorMatCode (U[1],GF(2))) >= d then
Add(D,U[1]);;
fi;
od;

# check whether the codes are Type I or Type II
# display the code along with type and minimum distance
for i in D do
if IsSinglyEvenCode (GeneratorMatCode (i,GF (2))) = true then
Display(i);;

Print ("Type I self-dual code with MinimumDistance = ",MinimumDistance
(GeneratorMatCode (i,GF (2))),"\n");;
elif IsDoublyEvenCode (GeneratorMatCode (i,GF (2))) = true then
Display (i) ;;
Print ("Type II self-dual code with MinimumDistance = ",
MinimumDistance (GeneratorMatCode (i,GF (2))),"\n");;

fi;
od;

return (D) ;;
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Listing A.3: Zero Divisor Table

## Verification for zero divisors of F_2C_n for any n in the form of a table

# Import Matrix Functions File (to get Circulant () and Tidy())

Read ("/home/harrison/Dropbox/Mathematics/Level 7/MA7190 - Research Dissertation/
GAP/MatrixFunctions.g");

UnitOrzDTable:=function (x)

# define variables etc
local i,3j,k,R,L,G,B,D,S,V,wspace;

R:=GF (2) ; # the set {0,1}
L:=R"x; # GF (2) "4
B:=[1;D:=[1;G:=[1;

# construct all possible vectors over (F_2)"4
V:=Elements (L) ;

# convert each vector in V to a circulant matrix

# check the determinant of the matrix
# if |B| = 1 then Unit, if |B| = 0 then ZD
for i in [1..Size (V)] do
B[i] := Circulant(VI[il]);
D[i] := Determinant(B[i]);
if D[i] = Elements(R) [1] then
G[i] := "Zero Divisor";
else
G[i] := "Unit";
fi;
od;

# white space for table alignment (not necessary, just to tidy the table)
S P [ [ n n " " ] [ n O n n " ] [ n 1 n n " ] [ n [ n nn ] [ " ] n nn ] ] .
. 4 14 4 4 4 4 7 14 14 ’ 4

wspace := Tidy(V[1]);
for j in [1..Size(S)] do

wspace := ReplacedString(wspace,S[Jjl1I[1]1,S[]j1[2]);
od;

# finally, print the table Circ(v), Det(Circ(v)), Unit/zD
for k in [1..Size(B)] do
if k = 1 then
Print ("\n");
Print ("Circ ()", wspace, "\t","Det ()", "\t\t","Unit/ZeroDivisor", "\n");
fi;
Print (Tidy (V[k])," \t", Tidy (D[k])," \t",G[k],"\n");
od;

end;




Appendix B

Full Results for (IF4 + ulF4)Dg

7|1 x x? x3 y xy x%y x3y B Weight Enumerator (excl. 3°)
11]0 0 u w wu 1 wH+u+1 wut+u+1 104 2976y'2 + 454956y1°

210 0 U w+u  wu 1 w+u+1 wut+u+1 8  1440y'2 + 22528y + 228652y1°
310 0 wu  w 0 wu+1 wHu+1 wut+u+1 104 2976y'2 + 454956y'°

410 0 wu  w  wutu 1 w+1 u+1 104 2976y'? + 454956y1°

510 0 wu  w  wu+tu 1 w+u+1 u+1 24 1696y'2 + 21504y'* + 228140y1°
6 |0 0 wu  w  wu+u wu+l w4+l wu+u+1 104 2976y'? + 454956y

710 0 wu  w wu  wu+l  w+1l  wu+u+1 24 1696y'? + 21504y + 228140416
8 |0 0 wu  w wu  wu+1l wru+l wu+u+1 8 1440y'2 + 22528y + 228652y
9 |0 0 wu  wHu u 1 w+1 u+1 104 2976y'? + 454956y

10 | 0 0 wu  w+u u wu+1  w+1  wutu+1l 104 2976y 4 454956y

1|0 0 wu wtu wut+u wu+l w4+l wu+u+1l 8 1440y'2 + 22528y + 228652y
12 |0 0 wu wt+u wu+u wu+l wu+l wutu+1 8 1440y'2 4 22528y + 22865216
1310 0 wu  wHu  wu 1 w+u+1 u+1 104 2976y + 454956y

14 |0 0 wu wHu  wu  wu+l w4+l wu+u+1 8 1440y'2 + 22528y + 228652y
15 | 0 0 wu w+u  wu  wu+l wtu+l wutu+1l 104 2976y'2 4 454956110

16 | 0 u u w  wutu 1 wH+u+1l wut+u+l 104 2976y'2 + 454956y1°

17 1 0 u U w+u u 1 w+u+1 wu+u+1 104 2976y + 454956y'°

18 |0 u u w+u  wu 1 w+1  wu+u+1 104 2976y'? + 454956y

19 |0 u wu w u 1 wHu+1 u+1 104 2976y'? + 454956y1°

20 |0 u wu  w u wu+1 wHu+1l wut+u+1 104 2976y'2 4 454956110

21 |0 u wu  w  wu+u wu+l w4+l wu+u+1 8 1440y'2 + 22528y + 228652y
22 |0 u wu  w  wut+u wu+l wru+l wu+u+1l 24 1696y'? + 21504y + 228140416
2310 u wu w wu 1 wHu+1 u+1 40  1952y'2 4 20480y 4 227628y'6
24 |0 u wu w wu  wu+l  w+1l  wutu+1 104 2976y'? + 454956y

25| 0 u wu  w+u 0 wu+1  w+1  wutu+1l 104 2976y'? 4 454956y

26 | 0 u wu  w+u u 1 w+u+1 u+1 8  1440y'? + 22528y + 228652y1°
27 | 0 u wu W+ u u wu+1  w+1  wutud+l 8 1440y'% + 22528y + 228652y1°
28 | 0 u wu  w+u wu+u 1 w+u+1 u+1 104 2976y + 454956y

29 | 0 u wu wHu wu+u wu+l w4+l wu+u+1 8 1440y'2 + 22528y + 228652y
3010 u wu wHu wut+u wu+l wHu+l wutu+l 104 2976y'% 4 454956y'6

310 u wu w+u  wu  wu+1l  w+l  wutu+l 8 1440y'2 + 22528y + 228652y1°
320 wut+u u w u 1 w+u+1 wu+u+1 104 2976y + 454956y'°

3B|0 wutu u w wu 1 w+1  wu+u+1 104 2976y'? + 454956y1°

34 |0 wutu u w wu 1 wru+1l wu+u+1 8  1440y'2 + 22528y + 228652y
35|10 wud+u u wHu 0 1 w+1  wu+u+1 104 2976y'? + 454956y

36 |0 wud+u u wHu wutu 1 w+u+1 wu+u+1 104 2976y + 454956y'°

37 |0 wu+u u w+u wu 1 w+1 wu+u+1 16 1568y'% 4 22016y + 228396y
380 wutu wu w 0 wu+1  w+1  wutu+l 104 2976y'2 + 45495610

39 |0 wu+u wu w u 1 w+u+1 u+1 8 1440y'? + 22528y + 228652y
40 |0 wut+u wu w  wutu 1 w+u+1 u+1 104 2976y'? + 454956y

41 |0 wu+u wu w wu+u wu+l w+u+l wutu+1 104 2976y'2 + 454956y'°
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No. | 1 x x? x3 y xy x2y X3y B Weight Enumerator
42 |0 wu+tu  wu w wu 1 w+1 u+1 8  1440y'? + 22528y + 228652y1°
43 |0 wu+u  wu w wu 1 w+u+1 u-+1 8  1440y'? + 22528y + 228652y
4 |0 wu+u wu  w+u u 1 w+u+1 u+1 104  2976y'2 + 454956y1°
45 |0 wu+u wu  w+u u wu+1  w+1  wutu+l 24 1696y'? + 21504y + 228140y1°
46 |0 wu+u  wu  wHu u wu+1 wHu+1 wu+u+1 104 2976y'% + 45495610
47 |0 wu+u  wu  w+u  wu 1 w+1 u-+1 104  2976y'2 + 454956y
48 | 0 wu u w  wu+tu 1 w+1 wu+u+1 104 2976y'% 4 454956y'°
49 |0  wu u wHu wu+u 1 w+1  wu+u+1 8  1440y'? + 22528y + 228652y1°
50 |0 wu u w+u  wu 1 w+u+1l wut+u+1 104 2976y'2 + 454956y'°
51 |0  wu wu w u 1 w+1 u+1 104 2976y'2 + 454956y1°
52 |0 wu wu w u wu+1  w+1  wutu+l 104 2976y'% + 454956y
53 |0  wu wu w  wutu wu+l  w+1 wutu+1 40 1952y'? + 20480y + 227628y1°
54 |0 wu wu w  wutu wu+l wru+l wu+u+1 8 1440y'2 + 22528y + 228652y
55 |0 wu wu w wu 1 w+1 u+1 8 1440y'? + 22528y + 228652y1°
56 |0 wu wu w wu wu+1 wHu+1l wut+u+1 104 2976y'% 4 454956y1°
57 10 wu wu  wHu 0 1 w+u+1 u+1 104 2976y'2 + 454956y
58 |0 wu wu  w+u 0 wu+1  w+1  wu+u+1 8  1440y'% 4 2252814 4 22865210
5 |0 wu wu  wu u 1 w41 u+1 24 1696y'? + 21504y 4 228140y'°
60 |0  wu wu w4 u wutu 1 w+1 u+1 104 2976y'2 + 454956y1°
61 |0 wu wu  w+u wu+u wu+l  w+1  wu+u+1 104 2976y'% + 45495610
62 | 0 wu wu  wHu wu 1 w+1 u+1 24 1696y'2 4 21504y '* + 228140y'°
63 |0  wu wu  wHu  wu  wu+l whu+l wutu+l 8 1440y'2 4 22528y + 228652y
64 | u 0 wu+u w 0 1 w+u+1 u+1 104  2976y'2 + 454956y
65 | u 0 wu+u W 0 wu+1 wHu+l wu+tu+1l 104 2976y'2 4 454956y
66 | u 0 wu +u w wu+u wu+l wu+l wutu+l 8  1440y'2 4 22528y + 228652y
67 | u 0 wu+u wHu u wu+1  w+1  wut+u+l 104 2976y'% + 454956y
68 | u 0 wu+u wHu wu+u 1 w+1 u+1 40 1952y'2 4 20480y'4 4- 227628y1°
69 | u 0 wutu whu wutu wut+l w4+l wutut+l 40 1952y'2 + 20480y + 227628y
70 | u 0 wu+u whu wutu wu+l wru+l wutu+l 24 1696y'? + 21504y + 228140y1°
71 | u 0 wut+u whu  wu 1 w+u+1 u+1 104  2976y'2 + 454956y
72 | u 0 wutu whu wu  wut+l w1l wutut+l 8 1440y'2 + 22528y + 228652y
73 | u 0 wut+u wHu wu  wu+l wHut+l wutu+1 104 2976y + 454956y1°
74 | u u wu+u w 0 1 w+u+1 u+1 8  1440y'? + 22528y + 228652y1°
75 | u u wu+u w u 1 w+u+1 u+1 104  2976y'2 + 454956y
76 | u u wu+u W u wu+1 wHu+l wu+tu+1l 104 2976y 4 454956y
77 | u u wu+u w wu 1 w+1 u+1 104  2976y'2 + 454956y1°
78 | u u wu+u w wi 1 w+u+1 u+1 8  1440y'? + 22528y + 228652y1°
79 | u u wu+u w wu  wu+1  w+1  wu+wu+1 104 2976y'% + 45495610
80 | u u wu+u w+u 0 1 w+u+1 u-+1 24 1696y'2 + 21504y + 228140y
81 | u u wu+u wtu wut+u wu+l wHu+l wu+u-+1 104 2976y'2 + 454956y1°
82 | u u wu+u wHu  wu 1 w+1 u+1 8  1440y'? + 22528y + 228652y1°
8 | u wutu wu+u w 0 1 w+1 u+1 104 2976y'2 + 454956y
84 |u wudu wu+u w 0 wu+l  w+1  wu+u+l 104 2976y'2 4 454956y
8 |u wu+u wutu w 0 wu+1 wHu+1l wut+u+1 24  1696y'? + 21504y + 228140y1°
86 |u wu+u wu+tu w u 1 w+1 u+1 24 1696y'2 + 21504y'* 4 228140y'°
87 |u wu+u wu+u w u 1 w+u+1 u—+1 8  1440y'? + 22528y + 228652y
88 | u wut+u wu+u w  wutu 1 w+u+1 u+1 104 2976y'2 + 454956y1°
8 |u wut+u wu-+tu w wu+u  wu+1 w+1 wu+u-+1 8  1440y'2 + 22528y + 228652y1°
0 |u wu+tu wutu w wu  wu+1l  w+1  wu+u+1 8 1440y'% 422528y + 22865216
91 |u wutu wu+tu wu u 1 w+1 u-+1 8  1440y'? + 22528y + 228652y
92 |u wu+u wu+u w+u wu+u 1 w+u+1 u+1 8 1440y'? + 22528y + 228652y1°
93 |u wu+tu wu+u wu wu 1 w+1 u+1 104 2976y'2 + 454956y
9 |u wut+u wu+u w+u wu  wu+l w4+l  wutu+1 104 2976y'? + 454956y'°
95 |u  wu  wutu w u 1 w+1 u-+1 104  2976y'2 + 454956y
9% |u  wu wu+tu w wu  wu+1l w4+l wu+u+1 24 1696y'? + 21504y + 228140416
97 |u  wu  wutu wtu 0 1 w+u+1 u+1 104  2976y'2 + 454956y
98 |u  wu wutu whu 0 wu+1 wHu+l wu+tu+1l 104 2976y 4 454956y
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APPENDIX B. FULL RESULTS FOR (F4 + UF,)Dg
No. 1 x x2 X8 y xy X2y 3y B Weight Enumerator
99 u wy  wutu whu wutu 1 w+1 u+1 104 2976y + 454956y
100 u wu  wud+u w+u wut+u wu+l  w+1l  wutu+1l 104 2976y + 454956y'°
101 | wu+u 0 wu w u 1 w+1  wu+u+1 104 2976y'? + 454956y1°
102 | wu+u 0 wu w wu 1 wH+u+1 wut+u+1 104 2976y'2 + 454956y1°
103 | wu +u 0 wu  wtu 0 1 wHu+l wutut+1 104 2976y'2 4 454956y
104 | wu+u 0 wiu w4 u wutu 1 w+1  wu+u+1 104 2976y'2 + 454956y
105 | wu+u u wu w 0 1 w+1  wu+u+1l 104 2976y'? + 454956y1°
106 | wu+u u wu  wtu u 1 w+u+1l wut+u+1l 104 2976y'2 + 454956y1°
107 | wu+u wu+u  wu w u 1 w+1  wut+u+1 8 1440y'% + 22528y + 228652y
108 | wu+u wu+u wu w u 1 wtu+1l wu+u+1 104 2976y'2 + 454956y'°
109 | wu+u wu+u wu w+u 0 1 w+1 wu+u+1 104 2976y'% 4 454956y'6
110 | wu+u  wu wu w 0 1 wH+u+1l wut+u+1l 104 2976y'2 + 454956y1°
11 | wu+u  wu wu w u 1 w+1  wutu+l 16  1568y'? +22016y'* + 228396y
12 | wu+u  wu wu W wutu 1 w+1  wut+u+1 104 2976y'% 4 454956y'6
13 | wu+u  wu wu  w+u u 1 w+1  wu+u+1 104 2976y'? + 454956y
114 | wu+u  wu wu  wHu  wu 1 wru+1 wu+u+1 104 2976y +454956y'°
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