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Abstract
Foreign tourism has expanded very fast in Iceland in recent years. 
Much of this tourism targets relatively few places of particular natural 
beauty. This has resulted in two notable external effects; deterioration 
of some of the natural features of these sites and significant crowding 
in the more popular ones. These manifestations of scarcity suggest the 
social desirability of limiting access to these sites. 

Basic economic theory holds that optimal use of scarce resources 
may be accomplished by means of prices. On that basis this paper 
considers prices for access to natural tourist sites. Optimal pricing 
rules are derived, their content explained and their practical 
applicability considered. Comparison of these optimal pricing rules 
to those that might be set by individual owners is briefly examined. 
While motivated by the Icelandic problem, the findings of the paper 
have general applicability. 
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1 Introduction 
There has been a great increase in foreign tourism in Iceland in recent years. 
According to official statistics (Ferðamálastofa 2017) about 1.3 million foreign 
visitors came to Iceland in 2015 and the corresponding number in 2016 was 
probably close to 1.8 million. Since 2010, the average annual rate of increase 
in the number of foreign visitors has been about 20%. Even more strikingly, 
this rate of increase has been climbing, being just under 30% in 2015 and 
probably close to 40% in 2016. The evolution of the number of foreign visitors 
is illustrated in figure 1.

Foreign tourism in Iceland is heavily based on the country’s extraordinary 
landscape (Geirsson and Jóhannesdóttir 2013, Jónsdóttir 2016). Most tourists 
that come to the country seek to visit one or more of its natural spectacles. As 
a result, the huge increase in the number of foreign tourists has led to a great-
ly increased pressure on many of the more popular tourist sites in Iceland. 
This has created two particularly notable economic externalities. First, many 
of these tourist sites have become overly crowded resulting in less enjoyable 
experience for the visitors. Second, the high number of visits to some tourist 
sites has had a detrimental impact on their natural quality. This applies espe-
cially to the living resources such as marine mammal, bird life and vegetation 
but also, in some cases, to delicate lava and other rock formations. While the 
living resources are generally renewable, albeit often at a slow rate, damage 
to rock formations is usually irreversible. 

Figure 1. Number of foreign visitors� (Source: Ferðamálastofa 2017)
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These observations have made it clear that, far from being abundant, 
many of these tourist sites are in fact scarce resources and, therefore – at least 
if socially optimal use is desired – access to them needs to be restricted. It is 
well known that the optimal use of scarce resources may be attained with 
the help of the price system (see e.g. Arrow and Hahn 1971). The question of 
the optimal number of visitors to particular sites can therefore be seen as the 
question of the optimal pricing of access. 

Until now, access to most of Iceland’s natural tourist sites has been free 
of charge. In other words, an access price of zero generally applies. How-
ever, inter alia for the reasons outlined above, a great deal of public discus-
sion about charging a positive price for access to natural sites in Iceland has 
arisen. A useful account of this debate and its main issues can be found in 
Jónsdóttir (2016). In recent years, some private owners of natural tourist sites 
have tried to impose an entrance fee to their sites (see e.g. Landeigendafélag 
Geysis 2015). For some reason, this has been resisted by the public authorities 
(see e.g. Viðskiptablaðið 2015).

In this paper we aim at deriving optimal pricing rules for access to natural 
tourist sites. For this purpose, we will investigate the pricing of access to tour-
ist sites that maximizes the present value of the flow of benefits from these 
sites taking environmental damage and crowding at the sites as well as other 
relevant variables into account. Since most of these tourist spots are unique 
and, therefore, give rise to monopolistic pricing (Mill 1848, Varian 1987), we 
will also consider pricing rules that maximize the present value of profits from 
each tourist site. Due to the inherent complexity of the underlying situation, 
formal expressions for these pricing rules are inevitably somewhat involved. 
Their value, however, is that they highlight certain crucial components of op-
timal pricing and, thus, set the framework for the empirical work needed to 
actually implement optimal pricing principles in particular cases.

To keep the analysis reasonably simple, we will proceed in terms of one 
(representative) site. The extension to any number of sites is straightforward, 
but adds considerably to the complexity of the presentation without adding 
much to the fundamental pricing issue. It should be noticed, however, that 
to maximize total benefits over all possible tourist sites, the optimal pricing 
rules will have to reflect the ability of tourists to substitute one site for an-
other. 

Much of economic theory is concerned with the appropriate pricing of 
scarce resources. As a result, the literature on optimal pricing is enormous. 
A subset of this theory is concerned with optimal pricing in the presence of 
external effects such as crowding and environmental deterioration which are 
central to this paper. This branch of economics was initiated by the seminal 
work of Arthur Pigou in the early part of the 20th century (Pigou 1920) who 
suggested the imposition of the appropriate taxes and subsidies to induce 
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agents to adapt optimally to the external effects. This price correction will be 
recognized as a variant of optimal pricing. Based on this groundwork, there 
has, since the 1970s, emerged a voluminous literature on market or price-
based corrections to deal with environmental externalities. Notable referenc-
es for this are Spence and Weitzman (1978), Baumol and Oates (1988), Tieten-
berg (1990), Cropper and Oates (1992) and Hanley et al. (1997) among others. 

Compared to many other environmental resources, papers dealing specif-
ically with optimal pricing of access to natural tourist sites are relatively few 
and generally not particularly well-grounded in economic theory. Lindberg 
(1991) recognizes the natural and crowding constraints of nature-based tour-
ism and how prices can assist in bringing the optimal utilization about, but 
does not derive optimal pricing rules. Clarke and Ng. (1993) explain that if 
the natural sites are owned by residents and are priced efficiently, the flow of 
social benefits from the sites are maximized and there is no need for special 
public charges or regulations. However, they do not derive optimal pricing 
rules. Laarman and Gregersen (1996) note that many natural parks and re-
serves charge access fees and wonder about the appropriate pricing princi-
ples. While they do not come up with any pricing formulae, they note that 
pricing can be a powerful tool to move toward greater efficiency and that, to 
date, this tool has been underutilized. Richter and Christensen (1999) also 
recognizing the impact of access prices stress that that pricing rules need to 
strike the balance between the need for fee revenues, interpersonal equity, 
the ability to pay as well as congestion. Thus, this paper as so many other pa-
pers about pricing of access to natural tourist does not argue from economic 
first principles, but takes the need to generate revenues and presumed social 
fairness and equity as constraints on pricing. None of these papers derives or 
even proposes optimal pricing rules. In fact, we have not been able to locate 
any previous work that specifically presents an explicit pricing rule for ac-
cess to natural tourist sites. 

The paper is organized as follows: In the next chapter the essence of the 
situation as described above will be modelled. Private behaviour, essentially 
individual demand for access, will be derived. Rules for the optimal num-
ber of visitors, i.e. the number that maximizes the flow of benefits from the 
tourist spots, will be stated. On this basis it will be shown that visits to most 
tourist spots will be excessive unless a positive price for access is charged. 
Formulae for the appropriate, i.e. the socially optimal, price will be present-
ed. While the formula for the optimal price applies generally, the resulting 
access price would vary greatly across the different tourist spots. Pricing 
rules that maximize the present value of profits from selling access rather 
than social benefits will also be deduced and compared to the socially opti-
mal ones. In chapter three, the practical implications and applications of the 
pricing rules will be discussed.
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2 Modelling the situation
We start by considering a typical tourist site. The natural features of this spot, 
animate and inanimate, may be represented by the vector x.2 Some elements 
of this vector such as animal life, vegetation, water resources and certain ge-
ological formations are renewable, albeit perhaps quite slowly in some cases. 
Others, such as lava and rock formations may not be renewable at all. We 
represent these renewal processes by the vector of renewal functions G(x), 
where each element of this vector represents the renewal process for a par-
ticular natural feature. In the case of non-renewable elements of the natural 
features, the renewal function would be identically zero. For the renewable 
ones it would be positive for some values of the vector x. The entire natural 
evolution of the natural features may be described by the differential func-
tions: 
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 ( ) x G x y 3   (1) 
 

And an equilibrium would be defined by ( ) 0G x y = . 
While (1) is a fairly general representation of the evolution of the natural features of a 

given tourist site, for simplicity of presentation, we will in what follows represent these 
natural features by a single variable and rewrite (1) as: 

 
 ( )x G x y   (2) 
 
Now, it seems safe to assume that the human impacts increase with the number of 

humans visiting the site. Thus, y may be replaced by the increasing function Y(m), where m is 
the number of visitors. So, adopting this impact function, the evolution of the natural 
features on the tourist spot is:  

                                                      
2  In this paper vectors will be indicated by bold typescript. 
3 A positive impact would be represented by a negative y. 
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Now, it seems safe to assume that the human impacts increase with the num-
ber of humans visiting the site. Thus, y may be replaced by the increasing 
function Y(m), where m is the number of visitors. So, adopting this impact 
function, the evolution of the natural features on the tourist spot is: 
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 ( ) ( )x G x Y m   (3) 
 
In what follows, we will assume that the natural renewal function, G(x) is positive from 

some positive x, declining at least for x beyond a certain level and concave. The impact 
function is assumed to be at least weakly convex, i.e. the impact may increase faster than 
proportionately with the number of visitors. Thus, the renewal process as a whole is a 
concave function. Naturally, we take it that G(0)=Y(0)=0.  

Given (3), an equilibrium of the natural features of the tourist site can only be attained if 
the number of visitors is constant. Let m° represent such a constant. In that case the 
equilibrium is defined by: 

 
 ( ) ( ) 0G x Y m°    
 
It is easy to verify that a higher number of visitors has a negative impact on the 

equilibrium x provided this equilibrium is stable, i.e. Gx<0. 

2.1 Tourists' demand for access 
Consider a typical tourist faced with the decision about whether to visit a particular tourist 
site or not. His decision, which may be referred to as e, may be modelled as a binary choice 
variable with e=0 denoting not visiting and e=1 visiting.  

Let the tourist's preferences be represented by the utility function: 
 
 ( ( , ), )U e F x m z  (4) 
 

The function F(x,m) represents the quality of the visit with x denoting the natural features of 
the site and m the number of other visitors there. We assume that the quality function is 
increasing in x and declining in m and concave. The vector z denotes the consumption of 
other goods. Obviously if the tourist decides to visit, e=1 and his utility is ( ( , ), )U F x m z . 
Otherwise his utility is simply (0, )U z .  

In accordance with standard economic theory, we assume that this utility function is 
increasing and concave in both arguments. It then follows that it is concave in all arguments 
because an increasing concave function of a concave function, i.e. F(x,m) in this case, is 
concave. 

The tourist's expenditures are constrained by his budget constraint. Let us write this 
constraint as:  

 
 a u s e    p z  (5) 
 

where a denotes the tourist's assets, u his exogenous income, s the price of entry to the tourist 
spot and p the price vector of other goods. As before, a  denotes the first time derivative of 
the variable a. Note that the price of entry, s, may be zero or even negative (as pointed out by 
an anonymous referee).  

It is reasonable to believe that a tourist contemplating whether to visit a particular 
tourist spot in Iceland takes the quality of the visit, i.e. the function F(x,m) as exogenous. In 

� (3)

In what follows, we will assume that the natural renewal function, G(x) is 
positive from some positive x, declining at least for x beyond a certain level 
and concave. The impact function is assumed to be at least weakly convex, 
i.e. the impact may increase faster than proportionately with the number of 

2	  In this paper vectors will be indicated by bold typescript.
3	 A positive impact would be represented by a negative y.
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visitors. Thus, the renewal process as a whole is a concave function. Natural-
ly, we take it that G(0)=Y(0)=0. 

Given (3), an equilibrium of the natural features of the tourist site can 
only be attained if the number of visitors is constant. Let m° represent such a 
constant. In that case the equilibrium is defined by:
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ural features of the site and m the number of other visitors there. We assume 
that the quality function is increasing in x and declining in m and concave. 
The vector z denotes the consumption of other goods. Obviously if the tour-
ist decides to visit, e=1 and his utility is 
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time, e.g. a day, may be described as follows:
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that case, his decision problem over a short period of time, e.g. a day, may be described as 
follows: 

 

 1
1( )

10,
 ( ( , ), ) ( ( ))

t r tr t

z e
Max U e F x m z e dt F a t e       (I) 

   s.t. a u s e    p z , 
    e={0,1}, 

 
where the curly brackets indicate the opportunity set of the control variable e. The function 

1( ( ))F a t is the terminal value of the maximization depending on the remaining assets at the 
terminal time a(t1).  

The period [t0,t1] denotes the duration of the visit. If this is finite, the access ticket must 
be regarded as state a variable the purchase of which represents an investment. To avoid the 
resulting complexities, which add nothing to the understanding of the economic issues of 
interest in this paper, it is henceforth assumed that the period [0,t1] is infinitely short.  

 Under these assumptions, the necessary conditions for solving problem (I) include 
the following rules:4 

 
 ( ( , ), ) (0, )   0U F x m z U z s e      (I.a) 

 ( ( , ), ) (0, )   1U F x m z U z s e      (I.b) 

 
These conditions are readily explainable. The first term on the left-hand-side of the 

inequalities, ( ( , ), )U F x m z represents utility if a visit is undertaken. The second term on the 
left-hand–side is utility if visit is not undertaken. So the entire left hand side represents the 
gain in utility (or marginal utility) from a visit. On the right hand side, the (dynamic) 
Lagrange multiplier  is the tourist's shadow value of his assets, a, and s the price of entry. 
Thus, s represents the marginal cost of a visit measured in terms of the tourist's utility. 
Given this, the first necessary condition simply says that if additional utility of a visit is less 
or equal to the utility cost of access, the visit will not take place. The second necessary 
condition, covers the other case, namely if the additional utility of a visit exceeds the utility 
cost of a visit, a visit will take place.  

Combining the necessary conditions (I.a) and (I.b) with the other necessary conditions 
for solving problem (I), defines the tourists demand function for visits. This function may be 
written as:  

 
 ( ; , , )e E s x m a  (6) 
 
Due to the discrete nature of the decision to visit, this function is a step function as 

illustrated in figure 2. For any entry price above the critical one, s*, there will not be a visit. 
However, if the entry price is s* or lower a visit will take place.  

                                                      
4  While these necessary conditions are really quite obvious, they may be formally derived by 

maximizing the appropriate Lagrangian (or Hamiltonian) function for problem (I). 

� (I)
	 s.t.	
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These conditions are readily explainable. The first term on the left-hand-side 
of the inequalities, represents utility if a visit is undertaken. The second term 
on the left-hand–side is utility if visit is not undertaken. So the entire left 
hand side represents the gain in utility (or marginal utility) from a visit. On 
the right hand side, the (dynamic) Lagrange multiplier λ is the tourist’s shad-
ow value of his assets, a, and s the price of entry. Thus, λ×s represents the 
marginal cost of a visit measured in terms of the tourist’s utility. Given this, 
the first necessary condition simply says that if additional utility of a visit 
is less or equal to the utility cost of access, the visit will not take place. The 
second necessary condition, covers the other case, namely if the additional 
utility of a visit exceeds the utility cost of a visit, a visit will take place. 

Combining the necessary conditions (I.a) and (I.b) with the other neces-
sary conditions for solving problem (I), defines the tourists demand function 
for visits. This function may be written as: 
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that case, his decision problem over a short period of time, e.g. a day, may be described as 
follows: 
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z e
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   s.t. a u s e    p z , 
    e={0,1}, 

 
where the curly brackets indicate the opportunity set of the control variable e. The function 

1( ( ))F a t is the terminal value of the maximization depending on the remaining assets at the 
terminal time a(t1).  
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cost of a visit, a visit will take place.  
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for solving problem (I), defines the tourists demand function for visits. This function may be 
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Due to the discrete nature of the decision to visit, this function is a step function as 

illustrated in figure 2. For any entry price above the critical one, s*, there will not be a visit. 
However, if the entry price is s* or lower a visit will take place.  

                                                      
4  While these necessary conditions are really quite obvious, they may be formally derived by 

maximizing the appropriate Lagrangian (or Hamiltonian) function for problem (I). 
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Due to the discrete nature of the decision to visit, this function is a step function 
as illustrated in figure 2. For any entry price above the critical one, s*, there will 
not be a visit. However, if the entry price is s* or lower a visit will take place. 

4	 While these necessary conditions are really quite obvious, they may be formally de-
rived by maximizing the appropriate Lagrangian (or Hamiltonian) function for prob-
lem (I).
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Variations in the other independent variables of the demand function will 
alter the critical price, s*. A higher degree of natural features, x, and higher 
level of assets, a will generally increase s* implying that a visit will take place 
at a higher entry price. On the other hand, more crowding at the tourist spot, 
i.e. a higher m, will reduce s* meaning that the entry price now has to be low-
er for the tourist to elect to visit. 

The demand function, (6), holds for one tourist. Different tourists will 
generally have different critical prices. Therefore, as is easy to verify, the ag-
gregate demand function for a number of tourists will be more convention-
al-looking. It will still be a step function but the steps will be more numerous 
(one step for each tourist) and therefore smaller relative to the total demand. 
The greater the number of tourists over which the aggregation is carried, the 
more smooth will the aggregate demand function become.5 

For later reference it is convenient to write the aggregate demand function 
as 
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For later reference it is convenient to write the aggregate demand function as  
 
 ( ; , )m M s x A  (7) 
 

where A now denotes the total or average assets of the tourists over which the aggregation 
holds. Note that the crowding effect, via the function F(x,m), is implicit in the form of this 
function. Basically it simply reduces the demand compared to what would otherwise be the 
case. Needless to say, this aggregate demand function is falling in s and increasing in the 
other variables. For a large number of tourists, this function may be taken to be 
approximately continuous and smooth. 

2.2 Optimal pricing 
A benevolent social planner seeks to set the number of visits at each point of time so as to 
maximize the present value of the flow of total utility from the site over time. Thus, for the 
social planner the time horizon is much longer than for the individual tourist and unlike him 
he must take account of the impact of each visit on (a) the natural quality of the spot and (b) 
the degree of crowding at the site.  

                                                      
5  This is further explained in appendix 1.  
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where A now denotes the total or average assets of the tourists over which 
the aggregation holds. Note that the crowding effect, via the function F(x,m), 
is implicit in the form of this function. Basically it simply reduces the demand 
compared to what would otherwise be the case. Needless to say, this aggre-
gate demand function is falling in s and increasing in the other variables. For 
a large number of tourists, this function may be taken to be approximately 
continuous and smooth.
5	  This is further explained in appendix 1. 
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2.2 Optimal pricing
A benevolent social planner seeks to set the number of visits at each point of 
time so as to maximize the present value of the flow of total utility from the 
site over time. Thus, for the social planner the time horizon is much longer 
than for the individual tourist and unlike him he must take account of the 
impact of each visit on (a) the natural quality of the spot and (b) the degree 
of crowding at the site. 

As before, we consider a given site. Denote the number of potential visi-

tors to the site by I. Obviously I can be a very large number. Each potential 

visitor, i, can stay away, e(i)=0, or visit e(i)=1. The total number of visitors at 

each point of time, therefore, is 
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As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 

visit e(i)=1. The total number of visitors at each point of time, therefore, is 
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potential visitor the degree of crowding is the number of other visitors at the site which may 
be denoted by ( ) ( )

j i
m i e j



 . Note that there is one m(i) for each visitor. In general there 

will be certain costs at the site associated with each visit. These costs, among other things, 
reflect resources spent on admission and to maintain trails, platforms, safety equipment and 

other facilities. In aggregate these costs may be represented by cost function C(
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( )
I

i
e i


 ). 

Given these specifications, the social planner's problem may be expressed as:  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
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The sum of individual utilities in the integrand in (II) may of course be regarded as a 
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Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
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will be certain costs at the site associated with each visit. These costs, among 

other things, reflect resources spent on admission and to maintain trails, plat-

forms, safety equipment and other facilities. In aggregate these costs may be 

represented by cost function C(
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Given these specifications, the social planner’s problem may be expressed 
as: 
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 
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individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 

 

1 1 1 1 1
( ( ) ( , ( )), ( ); ) ( ( ) ( ) ( ( )) ( ( ) ( ( )))

                                                                             ( ) ( ( ) ( )) ( ) (1 ( )).

I I I I I

i i i i i
H U e i F x m i z i i u i i C e i G x Y e i

i m i e j i e i

 

 

    

         

     

    p z

1 1

I I

i j i i  
  

 

, all i,

	 e(i)={0,1}, all i.

The first two constraints in (II) are dynamic in the sense that they involve 
the evolution of the state variables, the assets A and the natural features x, 
respectively. Note that in the aggregate budget constraint (the first constraint 
in (II)) the access prices paid by visitors cancel out because it exactly equals 
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the revenue from visits. The third constraint, which is really a set of I con-
straints, defines the degree of crowding at the site as seen by each potential 
visitor. While this set of constraints could easily be substituted out, it is con-
venient to include it explicitly to highlight the social cost of crowding. 

The sum of individual utilities in the integrand in (II) may of course be 
regarded as a particular social welfare function often referred to as classical 
utilitarianism (Bentham 1789, Mill 1863, Dasgupta 1995). The fundamental 
assumption of classical utilitarianism is that the utility functions exist and the 
social planner knows them. An important implication is that all individual 
are treated equally so classical utilitarianism is inherently egalitarian (Sen 
1970, 1973). 

To clarify the optimal pricing rule to be expressed below, it may be helpful 
to write a Hamiltonian (dynamic Lagrangian) function for problem (II) as:
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In this formulation, λ is the shadow value of the aggregate budget constraint 

defined by 

Ragnar Arnason: Efficient pricing of tourist sites  55 

 
In this formulation,  is the shadow value of the aggregate budget constraint defined by 

( ) ( ) ( )t V t x t    , where V(t) is the maximum utility value obtainable from the site.  is the 
shadow value of natural features defined by ( ) ( ) ( )t V t x t    . The (i)s formally represent 

the shadow value of relaxing the constraint ( ) ( )
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m i e j


 . So, the (i)s are really the 

shadow values of less crowding to each visitor. Finally, the (i)s measure the shadow value 
of being allowed more than one visit.  

It is now straight-forward to verify that the optimal entry rule for a potential visitor i is:6 
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Needless to say, conditions (II.a) and (II.b) hold for all potential visitors, i=1,2…I. 

According to these conditions, it is likely that some of them should visit the site while others 
should not. Those that should visit are those who gain more utility from it, generate less 
costs, cause less environmental damage and less crowding.  

Comparing this socially optimal visiting rule with the tourists' private one, (I.a) and (I.b) 
in section 2.1, reveals:  

 
 The tourists' private decision rule is in general inappropriate. It is inappropriate 

because it ignores the natural feature externality (expressed by ( )Y i  ), the 

crowding externality (expressed by ( )
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 ), and the direct costs caused by each 
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6  According to Pontryagin's maximum principle (Pontryagon et al. 1962), the control variables, e(i) 

all i, should maximize the Hamiltonin equation at all times.  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 
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(i)s measure the shadow value of 

being allowed more than one visit. 
It is now straight-forward to verify that the optimal entry rule for a poten-

tial visitor i is:6
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Needless to say, conditions (II.a) and (II.b) hold for all potential visitors, i=1,2…I. 

According to these conditions, it is likely that some of them should visit the site while others 
should not. Those that should visit are those who gain more utility from it, generate less 
costs, cause less environmental damage and less crowding.  

Comparing this socially optimal visiting rule with the tourists' private one, (I.a) and (I.b) 
in section 2.1, reveals:  
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6  According to Pontryagin's maximum principle (Pontryagon et al. 1962), the control variables, e(i) 
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According to the optimal pricing rule expressed in (8), the entry price should 
vary across visitors. This is because it is derived by maximizing the sum of 
utilities across all the potential visitors. As a result individual marginal util-
ity of funds, λ(i), affects the optimal pricing. Those with a higher marginal 
utility of funds (because they have less funds or for other reasons) should be 
charged less than the others. In this way, the enjoyment of scarce tourist sites 
is allocated across the potential tourists so as to maximize the flow of total 
utilities from these sites. 

Other reasons why the optimal entry price in (8) differs across potential 
tourists are that they may have (i) differential negative effects on the natural 
features of the site measured by DY(i), (ii) lead to more crowing disutility 
measured by 
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and that all shadow values of less crowding are equal, (i)=(j) for all i and j and normalizing 
the shadow value of social funds to unity, i.e. =1 (equivalent to rescaling costs), the optimal 
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 *( ) ( )+( -1) ( )s i Y i m C i     , all i (9) 
 
Moreover, if all visitors have the same effect on the natural features and direct costs, the 

optimal pricing rule becomes identical for every visitor: 
 
 * +( -1)s Y m C       (10) 
 
The pricing rule expressed in (10) is easy to interpret. The entry price should equal the 

sum of the environmental costs, the crowding costs (remember m is to total number of 
visitors) and the direct costs caused by each visit. Of course, if visits generate other 
externalities not accounted for in the above, those should be included in the price as well.  

Pricing rule (10) although relatively simple is not easy to apply perfectly. To calculate s* 
requires knowledge of the shadow values of natural features, , and less crowding, , as well 
as the marginal impact of visitors on the natural features, Y, and costs, C. To work out , 
and crowding, , requires knowledge of all the components of the maximization problem (II) 
including the utility functions of potential visitors. Obviously, these problems apply even 
more so to the more complicated pricing rules (8) and (9). Therefore, in practice, optimal 
pricing rules can only be approximated. 

2.3 Profit maximization 
The great majority of the visitors to tourist sites in Iceland are foreign (see e.g. Geirsson og 
Jóhannesdottir 2013 and Jónsdóttir 2016). Therefore, instead of maximizing their utility, a 
more natural objective for Icelandic society and, of course site owners is to set access price so 
as to maximize the flow of net revenues or profits from the sites.7  

                                                      
7  Since some of the site visitors are Icelanders it would be even more in line with the national interest 

to maximize the total benefits to Iceland defined as net revenues from foreign tourists plus a 

 and (iii) cause more direct costs, DC(i). 



144  |  Ragnar Arnason : Efficient pricing of tourist sites

Assuming, as is common in policy analysis, that all marginal utilities of 
income are equal, in which case they can be set to unity (equivalent to re-scal-
ing the utility functions), and that all shadow values of less crowding are 
equal, 
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As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 

visit e(i)=1. The total number of visitors at each point of time, therefore, is 
1
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
 . For each 

potential visitor the degree of crowding is the number of other visitors at the site which may 
be denoted by ( ) ( )

j i
m i e j



 . Note that there is one m(i) for each visitor. In general there 

will be certain costs at the site associated with each visit. These costs, among other things, 
reflect resources spent on admission and to maintain trails, platforms, safety equipment and 

other facilities. In aggregate these costs may be represented by cost function C(
1

( )
I

i
e i


 ). 

Given these specifications, the social planner's problem may be expressed as:  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
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To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
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1 1 1 1 1
( ( ) ( , ( )), ( ); ) ( ( ) ( ) ( ( )) ( ( ) ( ( )))

                                                                             ( ) ( ( ) ( )) ( ) (1 ( )).

I I I I I

i i i i i
H U e i F x m i z i i u i i C e i G x Y e i

i m i e j i e i

 

 

    

         

     

    p z

1 1

I I

i j i i  
  

 
(i)=

54  Tímarit um viðskipti og efnahagsmál 

As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 
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(j) for all i and j and normalizing the shadow value of social 

funds to unity, i.e. λ=1 (equivalent to rescaling costs), the optimal pricing rule 
simplifies to: 
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According to the optimal pricing rule expressed in (8), the entry price should vary across 

visitors. This is because it is derived by maximizing the sum of utilities across all the 
potential visitors. As a result individual marginal utility of funds, (i), affects the optimal 
pricing. Those with a higher marginal utility of funds (because they have less funds or for 
other reasons) should be charged less than the others. In this way, the enjoyment of scarce 
tourist sites is allocated across the potential tourists so as to maximize the flow of total 
utilities from these sites.  

Other reasons why the optimal entry price in (8) differs across potential tourists are that 
they may have (i) differential negative effects on the natural features of the site measured by 
Y(i), (ii) lead to more crowing disutility measured by ( )j  and (iii) cause more direct 
costs, C(i).  

Assuming, as is common in policy analysis, that all marginal utilities of income are 
equal, in which case they can be set to unity (equivalent to re-scaling the utility functions), 
and that all shadow values of less crowding are equal, (i)=(j) for all i and j and normalizing 
the shadow value of social funds to unity, i.e. =1 (equivalent to rescaling costs), the optimal 
pricing rule simplifies to:  

 
 *( ) ( )+( -1) ( )s i Y i m C i     , all i (9) 
 
Moreover, if all visitors have the same effect on the natural features and direct costs, the 

optimal pricing rule becomes identical for every visitor: 
 
 * +( -1)s Y m C       (10) 
 
The pricing rule expressed in (10) is easy to interpret. The entry price should equal the 

sum of the environmental costs, the crowding costs (remember m is to total number of 
visitors) and the direct costs caused by each visit. Of course, if visits generate other 
externalities not accounted for in the above, those should be included in the price as well.  

Pricing rule (10) although relatively simple is not easy to apply perfectly. To calculate s* 
requires knowledge of the shadow values of natural features, , and less crowding, , as well 
as the marginal impact of visitors on the natural features, Y, and costs, C. To work out , 
and crowding, , requires knowledge of all the components of the maximization problem (II) 
including the utility functions of potential visitors. Obviously, these problems apply even 
more so to the more complicated pricing rules (8) and (9). Therefore, in practice, optimal 
pricing rules can only be approximated. 

2.3 Profit maximization 
The great majority of the visitors to tourist sites in Iceland are foreign (see e.g. Geirsson og 
Jóhannesdottir 2013 and Jónsdóttir 2016). Therefore, instead of maximizing their utility, a 
more natural objective for Icelandic society and, of course site owners is to set access price so 
as to maximize the flow of net revenues or profits from the sites.7  

                                                      
7  Since some of the site visitors are Icelanders it would be even more in line with the national interest 

to maximize the total benefits to Iceland defined as net revenues from foreign tourists plus a 

, all i	�  (9)
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As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 

visit e(i)=1. The total number of visitors at each point of time, therefore, is 
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potential visitor the degree of crowding is the number of other visitors at the site which may 
be denoted by ( ) ( )

j i
m i e j



 . Note that there is one m(i) for each visitor. In general there 

will be certain costs at the site associated with each visit. These costs, among other things, 
reflect resources spent on admission and to maintain trails, platforms, safety equipment and 

other facilities. In aggregate these costs may be represented by cost function C(
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Given these specifications, the social planner's problem may be expressed as:  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 

 

1 1 1 1 1
( ( ) ( , ( )), ( ); ) ( ( ) ( ) ( ( )) ( ( ) ( ( )))

                                                                             ( ) ( ( ) ( )) ( ) (1 ( )).

I I I I I

i i i i i
H U e i F x m i z i i u i i C e i G x Y e i

i m i e j i e i

 

 

    

         

     

    p z

1 1

I I

i j i i  
  

 
, as well as the marginal impact of visitors on the 

natural features, DY, and costs, DC. To work out σ, and crowding, 

54  Tímarit um viðskipti og efnahagsmál 

As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 

visit e(i)=1. The total number of visitors at each point of time, therefore, is 
1

( )
I

i
e i


 . For each 

potential visitor the degree of crowding is the number of other visitors at the site which may 
be denoted by ( ) ( )

j i
m i e j



 . Note that there is one m(i) for each visitor. In general there 

will be certain costs at the site associated with each visit. These costs, among other things, 
reflect resources spent on admission and to maintain trails, platforms, safety equipment and 

other facilities. In aggregate these costs may be represented by cost function C(
1

( )
I

i
e i


 ). 

Given these specifications, the social planner's problem may be expressed as:  
 

 
0 ( ) 1

 (0) ( ( ) ( , ( )), ( ); )
I

r t

all e i i
Max V U e i F x m i z i i e dt

  



    (II) 

 s.t.  
1 1 1 1

( ) ( ) ( ( ))
I I I I

i i i i
a A u i i C e i

   

       p z , 

 
1

( ) ( ( ))
I

i
x G x Y e i



   , 

  ( ) ( )
j i

m i e j


 , all i, 

  e(i)={0,1}, all i. 
 

The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 

 

1 1 1 1 1
( ( ) ( , ( )), ( ); ) ( ( ) ( ) ( ( )) ( ( ) ( ( )))

                                                                             ( ) ( ( ) ( )) ( ) (1 ( )).

I I I I I

i i i i i
H U e i F x m i z i i u i i C e i G x Y e i

i m i e j i e i

 

 

    

         

     

    p z

1 1

I I

i j i i  
  

 
, requires 

knowledge of all the components of the maximization problem (II) including 
the utility functions of potential visitors. Obviously, these problems apply 
even more so to the more complicated pricing rules (8) and (9). Therefore, in 
practice, optimal pricing rules can only be approximated.

2.3 Profit maximization
The great majority of the visitors to tourist sites in Iceland are foreign (see e.g. 
Geirsson og Jóhannesdottir 2013 and Jónsdóttir 2016). Therefore, instead of 
maximizing their utility, a more natural objective for Icelandic society and, 
of course site owners is to set access price so as to maximize the flow of net 
revenues or profits from the sites.7 

As explained in section 2.1, the aggregate demand function for visits to a 
particular site may be written as:

7	 Since some of the site visitors are Icelanders it would be even more in line with the 
national interest to maximize the total benefits to Iceland defined as net revenues from 
foreign tourists plus a monetary measure of the utility benefits gained by Icelanders 
visiting the sites. This, however, is a significantly more complicated exercise which 
cannot be accommodated within the confines of the current paper. 
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As explained in section 2.1, the aggregate demand function for visits to a particular site 
may be written as: 

 
 ( , )m M s x , 
 

where we have dropped explicit reference to the exogenous total assets, A. In section 2.1 and 
appendix 1, it is argued that for a significant number of potential visitors, this function may 
be taken to be approximately smooth in s. In what follows we will adopt this assumption. 
Note also that unless the derivative Ms=0 this demand function gives the maximizer (the site 
owner) a degree of monopoly power.8  

The maximization problem may now be written as:  
 

  
0

 ( , ) ( ( , ) r t

s
Max s M s x C M s x e dt

      (III) 

    s.t. ( ) ( ( , ))x G x Y M x s  . 

 
A necessary condition for solving this problem is the pricing rule:  
 
 ( , ) 0s m s m sM s x s M C M Y M          
 

provided that a positive number of visits is optimal. This necessary condition can be reduced 
to the more concise form:  
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
 

      
 (11) 

 
where s° is the net revenue maximizing entry price and E(m,s) is the elasticity of demand 
with respect to the entry price. Since this is negative and less than unity9, the last term of s°, 

i.e., 
( , )

1 ( , )
E m s

E m s
 
  

, must be greater than one.  

 
It is not easy to compare the pricing rule (11) with the overall optimal one given by (10) 

let alone its more involved versions, (8) and (9) in section 2.2. However, the overall optimal 
pricing rule of section 2.2 may be approximated by maximizing the sum of consumers' and 
producer's surpluses from the site. This, as demonstrated in appendix 2, generates the 
pricing rule:  

 

                                                                                                                                                                      
monetary measure of the utility benefits gained by Icelanders visiting the sites. This, however, is a 
significantly more complicated exercise which cannot be accommodated within the confines of the 
current paper.  

8  Since each site is unique, this may be regarded as a case of natural monopoly (see e.g. Mill 1848, 
book IV chapter 2, Varian 1987). This, however, does not imply that there may not be imperfect 
substitutes for any given site. If there are, which is likely, the optimal pricing issue, whcih now hast 
o take account of pricing responses at other sites, becomes considerably more complicated.  

9  Note that E(m,s)<-1 for s° to be a possible solution to problem (III).  
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site. This, as demonstrated in appendix 2, generates the pricing rule: 
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So, compared to pricing rule that maximizes net revenues from the site, i.e., (11), rule 

(12) drops the term sMs. Since this term is non-positive it is readily seen that maximizing net 
revenues from the site reduces the number of visitors compared to maximizing total benefits 
and, therefore, also implies higher access price.  

To apply the net revenue maximizing rule (11) requires knowledge of the site demand 
function, M(s,x), the natural features impact function, Y(m) and the cost function of visits, 
C(m) as well as the shadow value of the natural features, . Since the demand function is in 
principle estimable from market data, applying (11) or, for that matter (12), appears more 
feasible that to apply the pricing rules (8) to (10).  

3 Conclusions 

Tourist sites in Iceland, as well as around the world, are subject to scarcity for at least two 
reasons; (i) their natural features are negatively affected by visits (reducible resources) and 
(ii) the enjoyment of visits is negatively affected by the number of other visitors (crowding). 
The analysis of this paper shows that that, under these conditions, it is socially beneficial to 
restrict access by charging a positive access fee. If, in addition, visitors generate direct 
outlays, e.g. in terms of maintenance of site infrastructure and facilities, these should also be 
covered by the access fee.  

A simplified version of the socially optimal access fee derived in sections 2.2 is:  
 
 * +( -1)m ms C Y m      (13) 
 

where m denotes the number of visits, Cm, the marginal cost of each visit, Ym the marginal 
damage of visits to the site,  the shadow value of damage and  the shadow value of 
crowding at the site. More detailed versions of the same basic access pricing rule are derived 
in section 2.2.  

Equation (13) expresses the basic principles of optimal pricing of access to a given tourist 
site. The access price should cover the direct outlays, the damage to the natural features of 
the site and the crowding effect of marginal visits. Needless to say, if further dimensions of 
scarcity associated with visits to the site, further terms to cover these need to be added to the 
pricing rule.  

The optimal access price defined by equation (13) or its more advanced variants is not 
some number but a function. This function, and therefore the price, depends inter alia on the 
preferences (utility functions) of the potential visitors, their income and other consumption 
alternatives. It also depends on the number of visitors at each point of time and many other 
variables. Thus, generally the optimal access price may be expected to increase with the 
interest in the sites, income levels and the number of visitors. Moreover, even when these 
exogenous variables are constant, the optimal price will evolve time (usually increase) as the 
natural features of the site converge to their long term optimal equilibrium which will 
prevail in that case.  

� (12)

8	 Since each site is unique, this may be regarded as a case of natural monopoly (see e.g. 
Mill 1848, book IV chapter 2, Varian 1987). This, however, does not imply that there 
may not be imperfect substitutes for any given site. If there are, which is likely, the op-
timal pricing issue, whcih now hast o take account of pricing responses at other sites, 
becomes considerably more complicated. 

9	 Note that E(m,s)<-1 for s° to be a possible solution to problem (III). 
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As before, we consider a given site. Denote the number of potential visitors to the site by 
I. Obviously I can be a very large number. Each potential visitor, i, can stay away, e(i)=0, or 

visit e(i)=1. The total number of visitors at each point of time, therefore, is 
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will be certain costs at the site associated with each visit. These costs, among other things, 
reflect resources spent on admission and to maintain trails, platforms, safety equipment and 

other facilities. In aggregate these costs may be represented by cost function C(
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Given these specifications, the social planner's problem may be expressed as:  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 
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 the shadow value of crowding at the site. More detailed versions of the 
same basic access pricing rule are derived in section 2.2. 

Equation (13) expresses the basic principles of optimal pricing of access 
to a given tourist site. The access price should cover the direct outlays, the 
damage to the natural features of the site and the crowding effect of marginal 
visits. Needless to say, if further dimensions of scarcity associated with visits 
to the site, further terms to cover these need to be added to the pricing rule. 

The optimal access price defined by equation (13) or its more advanced 
variants is not some number but a function. This function, and therefore the 
price, depends inter alia on the preferences (utility functions) of the potential 
visitors, their income and other consumption alternatives. It also depends on 
the number of visitors at each point of time and many other variables. Thus, 
generally the optimal access price may be expected to increase with the in-
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terest in the sites, income levels and the number of visitors. Moreover, even 
when these exogenous variables are constant, the optimal price will evolve 
time (usually increase) as the natural features of the site converge to their 
long term optimal equilibrium which will prevail in that case. 

By the same token, the optimal access price will generally differ across 
sites. It will be highest for sites in high demand that are also sensitive to dam-
age of their natural features and crowding and lower for the others. Thus, it 
is entirely conceivable that there are sites for which the optimal access price 
is zero. 

It is crucial to appreciate that rule (13) and its more advanced variants 
represent the socially optimal price, i.e., the price that maximizes the present 
value of the flow of utilities from visiting the site. It immediately follows that 
free access, far from being a social virtue, is actually socially detrimental in 
many cases. It often leads to an excessive number of visits with the resulting 
excessive deterioration of natural features of the site and crowding which 
will reduce the present value of utilities obtainable from the site. Only in the 
cases where the optimal price is actually zero would free access actually be 
socially optimal. 

The pricing rule expressed by equation (13) and its more advanced vari-
ants maximizes the present value of utilities flowing from the site. It has noth-
ing to do with generating profits from the sites or even paying for the costs 
associated with entry. However, since parts of the pricing rule are charges 
for the impact on the natural features of the site and crowding it is likely, al-
though not certain, the entry fee revenues will be more than sufficient to pay 
for the direct outlays associated with visits to the site. 

If the objective is to maximize net revenues from tourist sites – a reasona-
ble objective for the owners of the sites and even the Icelandic government, 
the pricing rule is:
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will reduce the present value of utilities obtainable from the site. Only in the cases where the 
optimal price is actually zero would free access actually be socially optimal.  

The pricing rule expressed by equation (13) and its more advanced variants maximizes 
the present value of utilities flowing from the site. It has nothing to do with generating 
profits from the sites or even paying for the costs associated with entry. However, since parts 
of the pricing rule are charges for the impact on the natural features of the site and crowding 
it is likely, although not certain, the entry fee revenues will be more than sufficient to pay for 
the direct outlays associated with visits to the site.  

If the objective is to maximize net revenues from tourist sites – a reasonable objective for 
the owners of the sites and even the Icelandic government, the pricing rule is: 
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where E(m,s) is the elasticity of visits with respect to the access price. It can be shown that 
provided the entry price has an impact on visits, the entry price that maximizes the net 
revenues from the tourist sites exceeds the socially optimal one. Consequently it is also more 
conservative of the natural features of the sites.  

Applying pricing rules (13) or, for that matter, (14) is not easy. To apply the optimal one, 
(13), or its more advanced variants requires knowledge of all the ingredients entering the 
maximization problem (II) including the visitors' utility functions and their impacts on the 
natural features of the sites as well as the site renewal functions and, of course, the cost 
function, C(m). To apply equation (14) is slightly more feasible because the individual utility 
functions are reflected in the demand functions which are in principle observable in the 
market place.  
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Appendix 1
The aggregate demand function

Tourist’s i demand for a visit to a given place is a single step function of the 
access price which may be expressed as: 

	 e(i)=E(s(i);i), e(i)=0,1,

with the step occurring at a certain critical price s*(i), say. The graph of this 
function is illustrated in figure 2 in the main text. 

With I non-identical tourists the number of critical prices may be as high as 
I. It follows that the number of steps in the aggregate demand function will be 
equally numerous. Now the length of the step between prices may be regard-
ed as an inverse measure of the smoothness of the aggregate demand function 
– the shorter this length the more smooth the function. For more concreteness, 
let the highest critical price be smax and the lowest zero. Thus the average 
length of price steps is smax/I. It immediately follows that the average step 
length will be shorter and therefore the aggregate demand for visits smoother 
as the number of potential visitors increases. Figure A.1 attempts to illustrate 
this for six potential visitors. Obviously, the demand curve depicted is more 
smooth than the one for just one or two potential customers. 

Figure A.1. The aggregate demand of six potential visitors

On the basis of these arguments, it should now be clear that the smoothness 
of the aggregate demand function increases with the number of potential vis-
itors and in the limit where the number of potential visitors goes to infinity, 
aggregate demand will converge to a completely smooth function of access 
price. 
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Appendix 2
Maximizing total surplus

Total net surplus from a site is defined as: 
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where λ is the shadow value of the natural features of the site. 


