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ABSTRACT9

This paper focuses on the effect of temperature on the frequency response function (FRF) of three

different structural adhesives; namely a two component methylmethacrylate (HBM X60), a modified

silane (Terostat 939) and a cyanoacrylate (Loctite 454). The structural adhesives are commonly used in

vibration analysis to mount accelerometers on structures or machines. The stiffness of the adhesive can

influence the response function on large frequency band, affecting the proportional excitation between

the structure and the accelerometer. In the “system structure + adhesive + accelerometer”, the adhesive

may acts like a filter between the source and the sink of vibrations. A variation of the dynamic response

of the filter could lead to an erroneous analysis. The authors already investigated the relation between

the frequency response function and operating conditions of the test. This paper expands the research

by considering the temperature effect in order to depict a complete picture of the adhesive behavior

on dynamic response of an accelerometer. A design of experiments (DOE) approach was used to test

two bonded aluminium bases at different levels of temperature and frequency of the external sinusoidal

excitation, supplied by an electromagnetic shaker. The results clearly demonstrate that the adhesive is

not able to change the system response, therefore the signal transmission is good in the entire range of

temperature regardless the adhesive chosen.
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1 INTRODUCTION27

Accelerometers are widely used in reliability and maintenance services to perform analysis and condition28

monitoring of mechanical components and systems. Most common faults in machines are due to rotating29

components, such as bearings, gears and shafts. The coupling between the rotating part and the frame of30

the machine is subject to wear, to fatigue effects, poor lubrication or changing environmental conditions.31



As far as the wear increases the mechanical component breaks, causing unexpected stops of the machine32

and subsequent economic loss due to lack of production. The accelerometer is a sensor that detects33

and acquires vibrations of the component it is fixed to, allowing an early detection of the wear before it34

causes severe damage to the machine, avoiding unexpected stops. Among the so-called Non-Destructive35

Testing techniques [1], the vibration analysis has a relatively low costs for the sensor and an easy set-up36

on the machine. All the vibration measurements are normally performed by means of a piezoelectric37

accelerometer or based on Micro Electro-Mechanical Systems (MEMS) technology. The development of38

both MEMS and piezoelectric technology leads to better products, resistant to environmental agents, with39

small dimensions and a great bandwidth. The application of MEMS in many technological products, such40

as smartphones and gaming application makes these devices extremely low price and very interesting41

for the vibration monitoring. The introduction of the piezoelectric accelerometer was in the ‘50s while42

MEMS technology comes lately, thus a relevant amount of papers on signal processing can be found in43

technical literature, setting the state of the art on vibration analysis so far [2]. Despite the thousands of44

papers dealing with the problem of vibration signal processing, there are only few papers which focus on45

a correct setup of the vibration sensors, even though it is crucial for every accelerometer applications [3].46

This practical aspect is mainly based on the information retrievable in university courses on vibrations47

analysis, either on personal experience or to information given by the accelerometer suppliers [4–6]. The48

supplier’ guidelines usually focus on a specific aspects of the accelerometer setup, the mounting between49

the sensor and the surface of the component. The main solutions available are: screw mounting, stud50

mounting, magnetic mounting, adhesive mounting and probe mounting. Each method has a specific field51

of application depending on: the working temperature, the mounting surface conditions, the accessibility52

to the specific mounting point, etc. A detailed description of all the mounting techniques could be find in53

classic handbook on shock and vibration [7]. Among other techniques, the adhesive and the screw/stud54

mounting are the most typical. These mounting techniques result in a rigid connection with high stiffness55

and wide frequency range response. Compared to screw/stud mounting, structural adhesives are more56

reliable in the fastening of sensors and accelerometers, since they provide a simple and quick mounting57

without the need of permanent mechanical processing, such as threaded holes, on the chassis of the58

machine as stated by Harris [7] as well, while the stud/screw mounting allows a quicker setup on the59

sensor. In a previous work [8], the authors focuses on the adhesive mounting of accelerometers, assessing60

experimentally the dynamic response of three different adhesives which cover the most common type of61

structural adhesive used in on-field applications; namely a two component methylmethacrylate, HBM62

X60 [9], a cyanoacrylate, Loctite 454, [10] and a modified silane, Terostat 939 [11]. Often it is believed63

that ”soft and rubbery” adhesives, which works above their glass transition temperature, like the modified64

silane could not be used in this type of application. Secondary objective of the paper is to prove if this65

sentence, retrievable in literature but with little evidence, is true. By means of an electrodynamic shaker,66

a design of experiment approach was proposed consisting of three variables in the experimental plan:67

adhesive type, frequency and amplitude of the vibration signal. The main results proved that the transfer68
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function of the adhesive layer does not distort the signal regardless of the type of adhesive. In this paper,69

a further step of that research is proposed, investigating the influence of the temperature on dynamics70

response of the above-mentioned adhesives. The effect of temperature on the adhesives was studied in71

technical literature [12] and also by other authors [13–16], but scarce information is retrievable on their72

viscoelastic properties at different temperature when in thin films. The global information is related to73

their polymeric nature, therefore softer adhesive are more affected by temperature and tend to relax more74

than the stiffer ones when temperature increase. The aim of the paper is to estimate which is the effect75

of the adhesive film used to join the parts in terms of vibration monitoring and signal transmission. The76

adhesives are used to join two aluminium bases, the first one connected with a threaded coupling to an77

accelerometer and the second one coupled with the head of electromagnetic shaker. The specimens are78

placed in climatic chamber together with the shaker and the sensors. The description of the experimental79

procedure and the detailed experimental set up are shown in Section 2.3. The Materials and Method80

section describes as well the design of experiment approach used. It consists of four variables in the81

experimental plan: adhesive type, frequency, amplitude of the control signal and temperature of the82

climatic chamber. The amplitude and the frequency are chosen in order to explore the entire range of the83

electromagnetic shaker available in the laboratory, while the temperature spans the range available on the84

climatic chamber (23 �C - 80 �C). A finite element modal analysis, reported in Section 2.4, was carried out85

in order to estimate numerically the influence of the adhesive layer on the resonant modes of the structures.86

The results confirm the little influence of the adhesive layer, due to its very low thickness. The Section87

3.2 shows the detail of the post processing procedure carried out on the experimental data. The signal is88

post-processed through a LabVIEW environment and four significant output parameters are extracted:89

the spectral amplitude of the excitation frequency (Spectral Amplitude - SA), the percentage of signal90

energy stored at the excitation frequency (Stored Energy - SE), and their weight percent over a reference91

specimen (Spectral Amplitude Ratio - SAR - and Stored Energy Ratio - SER - respectively). These92

data are elaborated with a statistical software to evaluate which variable affects the system responses93

and which is the adhesive’s effect on the vibration monitoring. The Section 3.3 exploits the ANOVA94

(Analysis of Variance) technique to estimate which are the most significant effects on the responses95

by means of half normal plots and variable interactions diagrams. In the conclusions we present some96

interesting consideration about the adhesive bonding of the accelerometers and some practical hints useful97

in laboratory and industrial environment are presented.98

2 METHODS AND MATERIALS99

2.1 Design of Experimental plan100

The Design of Experiments (DoE) method was developed to optimize the experimental tests especially101

for multiple variables involved in a problem [17]. The same principles can be also stretched to numerical102

studies [18], treating each numerical analysis with a different set of levels and variables as a virtual103

experiment . In the present work the DoE technique was used to assess the effect of the temperature and of104
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the input excitation on the dynamic mechanical response of adhesive mounting accelerometers at different105

working conditions. Four factors were considered in the analysis, namely:106

1. Adhesive type, G107

2. Excitation amplitude, A108

3. Temperature, T109

4. Excitation frequency, f110

A previous paper of the authors [8], analyzed the effect of the frequency and the amplitude on different111

adhesive bonding, although the chosen levels were different. A cross-check of the results with the ones112

obtained in the previous work, will be still possible.113

The levels of the excitation frequency have been chosen based on a resonance test on a reference114

specimen at room temperature. The shaker was excited by a linear sine sweep signal in all the shaker115

frequency range, i.e. from 0 to 12kHz, with a rate of 1kHz/s. The acquired vibration in time domain is116

shown in the left part of Fig. 1, revealing the presence of a resonance peak at 7 seconds. The right part of117

Fig. 1 shows the corresponding frequency spectrum, fixing the resonance at 7485Hz. It is worth noting118

that the high amplitude at low frequency is not a resonance of the system, but a limit in the performances119

of the shaker, optimized to work at mid-high frequencies.120

Figure 1. Frequency sweep and resonant peak of the acquisition test rig

Based on the sweep test, the three levels of excitation frequency f are chosen viz. 15 Hz, 3500121

Hz, 10000 Hz in order to span the entire range of the accelerometer [19], taking into account also the122

non-linear behavior at low frequency. It was decided to consider the low frequency range even though the123

input signal is not clean for two main reasons. The first reason is that at low frequency we have an higher124

amount of energy and therefore is interesting to monitor these bandwidth. The second reason is that the125

desired behaviour of the adhesive should not be dependent on the input signal, no matter how bad or126

distorted is. The values chosen for the excitation amplitude are expressed as a percentage of the maximum127

amplitude provided by the shaker, i.e. 50% and 100%. The temperature is the core factor of this analysis,128

so four levels are chosen to better highlight its influence in the tests: 23 �C (room temperature), 40 �C,129
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60 �C, 80 �C. We decided not to exceed 80 �C since it is practical limit for many rotating machineries130

driven by electrical motors. Each specimen was stored in the climatic chamber for a proper time before131

the test, in order to heating up the aluminum specimen checking the surface temperature by means of a132

infrared thermometer. The adhesive type are the same four used in [8]: G1 is the commercial superglue133

(Loctite 454), the G2 is an elastic adhesive modified silane (Terostat 939), both produced by Henkel134

Adhesive, Cerano (NO), Italy. The G3 is a very stiff two components methylmethacrialte adhesive (HBM135

X60), produced by HBM, Milan, Italy and G4 is a reference configuration in which there is no adhesive136

but continuum material. A Dynamic Mechanical Analysis (DMA) on the selected adhesives would have137

been useful, but in literature we could not trace precise information about the viscoelastic behaviour of138

the adhesives chosen. Moreover the adhesive behaviour in bulk form and in thin film is pretty different139

[20–23] so the eventual information given by a DMA in bulk are not immediately applicable to thin140

adhesive layers. Qualitatively the adhesives have very different viscoelastic behaviour, as retrievable141

on the basis of the chemistry and on the datasheets of the polymers involved [12, 16, 24]. The stiffer142

adhesives, which works below the glass transition temperature which is 137 �C for G1 see [10] and about143

150 �C for G3, see [9] have limited viscous effect, while the softer one (G2) is quite viscoelastic, since it144

works in its rubbery state at room temperature [11]. A summary of the variable levels is reported in Table145

1. Each specimen is made by two cylindrical aluminium blocks, connected with a thin layer of adhesive,146

the lower one is screwed to the shaker, the upper one has a threaded connection for the accelerometer. In147

the reference configuration (level 4 of ”adhesive type” variable in Tab. 1), there is no adhesive between148

the two blocks but a unique aluminum cylinder with double mass of a single block, in order to keep the149

same nominal natural frequency. The authors decided to set the adhesive layer thickness at a constant150

value of 0.05mm and then to exclude it from the experimental plan even though it is important in the151

adhesive stiffness and strength [12–17]. The adhesive thickness is typically an uncontrolled parameter in152

a practical application of a bonded accelerometer and, the thickness is controlled by the surface roughness153

only. The description of the deposition of the adhesive layer and the curing process is reported in Section154

2.3.155

Variables Level 1 Level 2 Level 3 Level 4
Temperature, T 23 �C 40 �C 60 �C 80 �C
Frequency, f 15 Hz 3500 Hz 10000 Hz
Amplitude, A 50% 100%
Adhesive type, G Loctite 454 Terostat 939 HBM X-60 None (solid)

Table 1. Levels of the variables considered in the DOE

A full factorial plan is adopted, with two replicates for each experimental plan. This approach is156

combined with a blocking procedure to take into account the different bonding of the adherends. The157

blocking procedure is a useful tool, used in the DoE approach, in order to avoid any influence of the158

experimental set up or the operator, as described in [17, 18, 25]. Four different temperatures, three159

frequencies, two amplitudes, four adhesives and two replicates lead to a total amount of 144 experiments160
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on the bonded configuration, which can be used to estimate the influence of the primary variables and the161

interactions. Further 48 additional experiments on the reference configuration were carried out, leading162

to a total of 192 experiments. We exploited the software Design Expert in order to build the set of163

experimental test to be carried out and to randomize the order of the experiments. The software was also164

used to post process some of the results using mainly an analysis of variance technique (ANOVA).165

2.2 System response166

The statistical influence of the variables is evaluated in terms of four system responses. The shaker167

excitation is a sinusoidal wave at a given frequency, therefore the amplitude of the corresponding spectral168

component is the main output choice. The two main of the outputs of the experiments are:169

• Spectral amplitude at excitation frequency (SA)170

• Percentage of signal energy stored at excitation frequency (SE)171

The SA is obtained by applying the Fast Fourier Transform to the vibratory signal, considering the172

amplitude of the measured signal at the excitation frequency, the SE is the energy of the vibratory signal173

at the excitation frequency divided by the total energy of the system.174

Other two outputs are computed dividing the values of the experimental points by the value of the175

reference configuration (on average). The block with double mass and no adhesive is taken as reference176

configuration. These outputs are not dependent on the system configuration and allow the adhesive effect177

to be compared more efficiently. The two additional parameters are:178

• SAR = SA/SAno adhesive Spectral amplitude ratio (SAR)179

• SER = SE/SEno adhesive Stored energy ratio (SER)180

The four parameters (SA, SE, SAR, SER) were firstly proposed in [8].181

2.3 Experimental set-up182

The experimental set-up consists in the test specimens, a climatic chamber, a small electrodynamic shaker,183

a monoaxial accelerometer, a data acquisition board and a function generator. Table 2 summarizes the184

model and the characteristics of the components.185

Component Model Specifications
Climatic chamber homebuilt 2x600W fan heater - PT100 temperature sensor,

Ascon hysteresis controller, precision 23 �C
Shaker ModalShop K2004E01 20 N peak sine force, frequency up to 11 kHz
Accelerometer PCB 353B18 Monoaxial, freq. range 1-10 kHz (±5%), 10 mV/g
DAQ NI USB-9162 + NI-9233 50 kS/s per channel, 24-Bit IEPE
Function generator Rigol DG1022 2 channels, 20 MHz waveform generator

Table 2. Specifications of the components used in the experiment.

All the specimen blocks are built from a single aluminum bar, with a circular cross section of 10 mm186

of diameter. Each block is 20mm high, except the reference block that has a double height 40mm, being187
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negligible the adhesive weight. The size of the blocks is chosen to ensure space for the threaded hole,188

but still keeping enough mass in order to have a stiff specimen. All the blocks have been threaded to be189

coupled with the shaker head and the accelerometer by means of an adaptor. The blocks were bonded190

using a jig to maintain alignment between the upper and lower one and a small dead weight (0.1 kg)191

was used to apply a sufficient pressure to the entire adhesive layer. The adhesive fillet is removed with192

a cutter immediately after the applications, in order to avoid any extra mass and due to the very fast193

curing (few seconds) of the Loctite 454 and XBM X60. In order to achieve complete polymerization we194

kept all the joints at room temperature for 48h, to ensure a proper curing of all the three adhesives. The195

estimated nominal thickness is 0.05mm. The eight specimens (4 adhesive levels and 2 replications), the196

accelerometer and the acquisition board are shown in Fig. 2. The shaker is provided with an embedded197

amplifier, open-chain controlled with 0-1 VRMS signal supplied by a Rigol function generator. The198

shaker is equipped with an amplitude gain which can be selected by the user, but in this experiment199

we decided to keep it constant for all the tests. The accelerometer is acquired by means of a NI-9233200

board which is specifically designed for IEPE devices. The shaker is fixed to the ground of the climatic201

chamber, while the shaker body is connected to its fixed frame by vises. In each test the head of shaker202

moves harmonically with characteristics listed in Table 2. The amplitude is not measured in absolute203

“g” value, but it is expressed by a percentage of the maximum control voltage, i.e. with a Vpeak value204

of 1V for the 100% of amplitude and 0.5V for the 50% amplitude. The sampling frequency is 50 kHz205

and the acquisition time is 3 seconds. The acquisition system waits two seconds before starting to avoid206

acquisition of undesirable transient effects of the shaker. The climatic chamber is home built, made in207

PVC insulating panels (12mm thick) with two fan heater (600W each) controlled by an Ascon controller.208

The controller ensures the desired temperature by means of a PT100 thermocouple and implements209

a threshold control with a mean error of 0.5 �C. The fans, integrated in the heater ensure an uniform210

temperature distribution in the climatic chamber. Figure 3 shows the final setup of the shaker in the211

climatic chamber.212

213

2.4 Finite Element Model214

This section describes a preliminary analysis of the system carried out by means of a finite element modal215

analysis. The aim of the parametric analyses is to assess the theoretical influence of the adhesive layer on216

the natural frequencies of the system considered. Four different analyses were carried out: three different217

adhesives and the reference configuration are modelled. The finite element modal analyses are carried218

out by using Abaqus 6.141 FEA solver. The model is composed by two aluminum blocks with the exact219

dimensions of the specimen described in the previous sections, bonded by a 0.05mm thick adhesive layer.220

The mesh continuity guarantees that no contact elements disturb the transition between different materials.221

The model used for the reference configuration shares the same mesh with the other three bonded models.222

The accelerometer weight is considered and the threaded connection of the accelerometer is modelled as a223
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Figure 2. Experimental specimens, accelerometer and acquisition board

Figure 3. Experimental test rig with climatic chamber and mini shaker

perfect contact in each case. The model is implemented with linear hexahedral elements with standard224

formulation, 1223470 nodes and almost 3.5 million d.o.f. The need of having so much elements is driven225

by the very low thickness of the adhesive. In order to have undistorted elements in the adhesive layer,226

which is crucial for the analyses, we had to force a very refined mesh size in that region. This is a very227

common problem, as reported by many authors [26–28] The elastic moduli of the three adhesives are228

taken by the technical data sheets in literature and span from 100 MPa for the Terostat 939 to 800 MPa229
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for the Loctite 454 and 4000 MPa for the X60 - HBM adhesive. We considered room temperature for all230

the adhesives, leaving the evaluation of the temperature effect to the experimental part. The boundary231

condition applied is to prescribe at 0mm the nodal displacement of the basis, as shown using orange232

triangles in Figure 4 in order to be consistent with the experimental tests. The frequency domain is limited233

to 20kHz, in order to save computational time and do not exceed the experimental limit given by the234

mini-shaker. As output we can compare the natural frequencies of the bonded models with the frequency235

obtained using the reference and with the experimental results.236

Figure 4. Boundary conditions applied to the FE model and magnification of the mesh of the adhesive
layer

3 RESULTS AND DISCUSSION237

3.1 Finite element model results238

This section describes the finite element model results, showing the effect of the three materials and239

comparing the natural frequencies with the experimental results. The finite element model results can240

be qualitatively expressed by the modal form of the system and their natural frequencies. The modal241

forms of the systems are the same for all the four models and are reported, just for the Loctite 454 case, in242

Figure 5. It is important to note that with adopted linear perturbation analysis, the value of the magnitude243
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is not significant. The most important information is given by the frequencies of these three modal forms.244

We report in Table 3 the natural frequencies obtained in the four cases. The modal analysis confirms that245

the peak at nearly 7kHz is due to a natural resonance of the system, as shown in 1 and it is important to246

note that this peak is almost not affected by the presence of the adhesive. The softer one and the reference247

configuration differ only of less than 5%. This first result shows that the presence of the adhesive, thanks248

to its very low thickness, do not modifies substantially the harmonic behaviour of the system, and therefore249

confirms the previous authors’ finding [8]: choosing a general adhesive rather than a specific one does not250

affect the system behaviour. The experimental test will show whether or not the temperature will change251

this kind of behaviour.252

Figure 5. Modal forms of the system. From left to right, bending on first plane, bending on second
plane, torsion along the axis

Adhesive type E (MPa) ni rho (kg/m3) 1st (Hz) 2nd (Hz) 3rd (Hz)
Terostat 939 100 0.45 1500 6736.5 6736.6 17712
Loctite 454 800 0.3 1100 6738.3 6738.4 18262
HBM X60 4000 0.3 800 6889.7 6889.9 19046

None (reference) - - - 6926.8 6926.9 19234

Table 3. Natural frequencies of the finite element model.

3.2 Post-processing of the experimental data253

The post processing of the vibration data was done in National Instruments’ LabVIEW 2016 environment.254

In order to avoid transient effect on the acquisition, the tails of the vibration signal are removed, i.e. 0.5255

seconds at the beginning and at the end of the signal are removed from the 3 second of acquired data. The256

resulting 0.5 Hz of spectrum resolution allows to clearly match the excitation frequencies. The system257

response if computed by means of the power spectrum of the vibration data, as reported in equation1.258

PS( f ) =
FFT ⇤(x̄) ·FFT (x̄)

n2 (1)
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where FFT (x̄) is the fast Fourier transform (FFT) of vibration data, while the FFT ⇤ denotes the259

complex conjugate and n is the length of samples array. In an ideal condition, the sine input of the shaker260

— measured by the accelerometer — returns a single peak as output in the frequency domain, at the261

excitation frequency fex. An interesting comparison among different adhesive type is made on two scalar262

output parameters (despite connected):263

• The amplitude of the power spectrum at the excitation frequency (SA).264

• The ratio between the amplitude of the spectrum at the input frequency and the total energy of the265

acquired vibration signal (SE).266

The choice of these parameters follows a simple reasoning: SA is what is usually measured in267

experimental activity, i.e., it is a measure of absolute value depending of the energy at input source, while268

SE returns the quality of the acquired signal independently of the energy of input source. A further269

consideration is given by The Parseval’s theorem, regarding the choice of the power spectrum instead of a270

simple spectrum. In fact, the theorem states that the total energy contained in a time-domain waveform is271

equal to the total energy of the waveform’ spectrum. The equality is reported in Equation 2.272

Z +•

�•
|x(t)|2dt =

Z +•

�•
|X( f )|2d f (2)

It follows that the total energy of the signal can be computed as a simple sum of power spectrum273

components.274

Two other outputs are computed dividing the values of the experimental points by the value of the275

reference configuration (on average), as mentioned in Section 2.2. The two parameters are named SAR276

and SER since they are derived from the SA and SE values respectively.277

3.3 Statistical analysis of the results: Analysis of Variance278

There are many statistical methodologies to tackle the analysis of multivariate problems [29]. Among279

these we adopted the Design of Experiment (DoE) procedure, a powerful statistical technique based on280

the analysis of variance (ANOVA) that can be conveniently applied to these classes of problems. ANOVA281

is based on the variance calculation (standard deviation) of a response considering the single variable and282

also the global variance of the responses. The ratio between these two quantities is called the F-value283

[29]. When we consider a random process this F-value equals one, meaning that the variable under284

analysis has no tangible effect on the selected response, since it behaves the same way as the experimental285

noise for practical test or numerical error for parametric simulation. On the contrary a larger F-value286

means can be associated to a variable that influences the process. Among the several approaches typically287

used to represent the results graphically one of the most popular is the normal plot. It is used mainly288

to demonstrate which are the main consequences of the variables on the system response, estimating289

whether a certain set of data follows a Gaussian distribution or not. When the data are approximately290
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a straight line the response is statistically ”normal” i.e. follows a stochastic law. When the selected291

variable strongly affects the system response its effect, reported in the normal plot, will then fall outside292

the normal distribution line. This line, also called errors line is built up thanks to the replicates of the293

experimental tests which have the variability typical of the experiment considered and their effect has a294

normal distribution. The replicates of the experiments are therefore important because they are used to295

build the error line because they are ruled by a stochastic law by definition. The greater the deviation of296

the point from the normal line the larger the confidence interval (i.e. the probability that the variables are297

significant is higher). In this paper we adopted the half normal plot, which behaves in the same way as the298

normal plot, but considers only the absolute significance of the variables and not their sign.299

3.3.1 Half-normal plot of the response300

Figure 6 shows the half-normal probability plots from an ANOVA following [17]. The analysis was301

performed on two outputs of the problem (system response) described in the previous subsection. Figure302

6 shows the SA, Figure 7 the SE. In Figure 6 and 7 on the X-axis is represented the standardized effect303

linked to each factor considered. The higher the standardized effect, the greater the influence of the304

variable on the response. The Y-axis represents the half-normal probability associated with each effect.305

The greater the Y value the higher the probability that the effect has an influence on the problem. The306

solid line is the error line, which is obtained by interpolation of the replicates of the tests, represented307

by triangles, and also the high order interactions of the variables, represented by the squares, which do308

not play any role on the system response. The points that fall off the error line represent the factors that309

mainly affect each response. Figure 6 and 7 show that the frequency and the amplitude have the strongest310

influence both on SA and SE. The effect of the frequency is the most relevant both for SA and SE. It311

must be noted that we applied a transformation to the selected variables, in order to normalize the data.312

This linearization, called Box-Cox transformation, is strongly recommended [18] when there is the need313

of dealing with experimental set of data by means of ANOVA technique, which gives better prediction314

for linear problems. In Figure 6 the effect of the variables are reported applying an inverse square root315

transformation and in figure 7 we have SE raised to the power of 2.2. The amplitude is relevant in both316

cases, while the interaction between frequency and amplitude is more important for SE than SA. The half317

normal plots of the SAR and SER are reported in Figure 8 and Figure 9 respectively. These Figures show318

that dividing SA and SE by the reference configuration causes two different behaviors.319

The SAR chart Figure 8 shows a strong dependence on the temperature (D) and on the interaction320

between frequency (A) and temperature (AD). The amplitude of the signal disappears when compared321

with Figure 6. The SER chart Figure 9 shows a more complex situation. In this case the amplitude and322

the frequency are important as it happens for the SE as shown in Figure 7 and in addition the temperature323

plays a secondary but still relevant role.324
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Figure 6. Half normal plot of the SA, with an inverse square root transformation applied

Figure 7. Half normal plot of the SE, with a power law transformation applied
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Figure 8. Half normal plot of the SAR

Figure 9. Half normal plot of the SER
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3.3.2 Variable interactions and relevance325

Two main comments can be drawn by the graphs in Figure 6, 7, 8 and 9. The first one is that the adhesive326

type is not relevant compared with the other variables. This is the most important finding of this research327

since it tells us that no matter the adhesive stiffness and the adhesive strength the bond between the328

excitation base and the accelerometer base is enough to transmit a correct signal. Therefore we can choose329

the most suitable adhesive according to other consideration such as cost, simplicity, availability and ease of330

application. The second important consideration is that the temperature somehow is relevant for SAR and331

SER. This means that it could be important to monitor the temperature as well as the vibration if we want332

to be sure of taking into account all the possible sources of variations. In order to show the direct influence333

on the four system response of the selected variables we can take advantage of the following graphs.334

Figure 10 shows that the system has larger value of SA with increasing frequency and amplitude. These335

two variables present an interaction clearly visible due to the divergence of the two interpolating lines.336

The points in the graph represent the experimental results obtained and it is visible the good repeatably337

and the scarce significance of the other variables. Figure 11 shows a completely different situation. The338

main effect on SE is at the lower frequency, where we can see a difference due to the amplitude. It must339

be noted that the mini-shaker at 15 Hz shows some issues, as reported in Figure 1. We did not expect a340

behavior like that, therefore we are investigating on this problem, to see if the behavior is due to the noise341

at low frequency. The SE parameter describes how many portion of the system’s energy is transmitted at342

a given frequency with respect to the total one. Probably, the non linearities at low frequencies make the343

SE response sensible to the amplitude. It is worth noting that anyway no sign of a significant influence344

of the adhesive nor the temperature can be found as well. Disregarding the data at 15Hz would lead to345

a substantial independence of SE on the other variables. Figure 12 shows the effect of the temperature346

and of the frequency on the SAR. In this case, in order to show the actual values we did not apply the347

Box-Cox transformation as we did in Figure 8. The figure 12 shows three curves, as a function of the test348

temperature. The red squares represent the 15Hz tests, the green triangles depict the 3500Hz tests and the349

blue dots the 7000Hz tests. The adhesive and the amplitude have no effect, but they appear only as the350

error bars in the the three curves. As for the SE the SER results, shown in Figure 13 is affected by the351

results at 15Hz. We can easily spot a difference in the the two amplitude and frequencies as a function of352

the temperature, but it is much more evident at 15Hz rather than at the other frequencies. It is useful to353

highlight that, even though there is some noise at 15Hz, the experimental tests show a clear absence of the354

adhesive in each statistical analysis performed. This is the main outcome the authors wanted to find out355

and therefore the conclusion is that the bonding do not change the vibratory signal from the source to the356

sensor, even considering soft adhesive such as the Terostat 939 or when the test temperature increases up357

to 80 �C.358
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Figure 10. Effect of the main variables on SA

Figure 11. Effect of the main variables on SE
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Figure 12. Effect of the main variables on SAR

Figure 13. Effect of the main variables on SER
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4 CONCLUSION359

This paper focuses on the effect of temperature on the frequency response function (FRF) of three different360

structural adhesives, namely a stiff two component methylmethacrylate (HBM X60), a soft modified361

silane (Terostat 939) and a cyanoacrylate superglue (Loctite 454). The methylmethacrylate is commonly362

used in strain gauge application and accelerometers setup in on-field environments due to its stiffness.363

The cyanoacrylate is the most used in accelerometers setup for diagnostics purposes in laboratory due to364

its fast polymerization time. The silane is a general purpose adhesive chosen for its different structural365

characteristics compared to the other two. They have been used to joint two aluminium cylinders, one366

connected to an accelerometer and the other to the head of an electromagnetic shaker. A reference367

additional experiment has been carried on a double-weight aluminium base, simply obtained using a368

continuum block of double length without any adhesive. The experimental setup is placed inside a climatic369

chamber providing a selectable temperature up to 80 �C. The shaker provides a sinusoidal vibration in370

terms of acceleration at different combinations of frequency and amplitude, as summarised in Table 1. A371

monoaxial accelerometer is used to acquire the feedback vibration signal which has been processed to372

compute four different parameters assessing the dynamic response of the structure. The output parameters373

are all computed through the power spectrum of the vibratory signal.They are: SA, i.e the amplitude of374

the spectrum at the shaker excitation frequency , SE, i.e the ratio between SA and the total energy of the375

signal, SAR and SER i.e. the values of SA and SE for a given adhesive compared to the corresponding376

values in the reference condition. The numerical model developed shows that the presence or absence of377

the adhesive layer does not modify or disturb the natural frequency of the system.378

A design of experiments (DOE) approach was used to extract the main conclusions which are379

summarized as follows:380

• Frequency and amplitude have the strongest influence on both SA and SE381

• The temperature has a strong influence on SAR382

• The SER is influenced by the frequency, the amplitude and the temperature383

• The amplitude and temperature have an evident effect on the SA384

• No sign of a significant influence of the adhesive nor the temperature can be found on SE, SAR and385

SER386

Above them two results are can be used as design guidelines: no matter the adhesive stiffness and the387

adhesive strength the bond between the excitation base and the accelerometer base is enough to transmit a388

correct signal. Therefore the most suitable adhesive can be chosen according to other consideration such389

as cost, simplicity, availability and ease of application. The temperature somehow is relevant for SAR and390

SER. This means that it could be important to monitor the temperature as well as the vibration if we want391

to be sure of taking into account all the possible sources of variations.392
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