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Abstract

We prove existence of mild solutions to a class of semilinear fractional
differential inclusions with non local conditions in a reflexive Banach space.
We are able to avoid any kind of compactness assumptions both on the
nonlinear term and on the semigroup generated by the linear part. We
apply the obtained theoretical results to two diffusion models described by
parabolic partial integro-differential inclusions.
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1. Introduction

Due to the more flexibility given by the non-integer derivatives, frac-
tional calculus is an excellent tool for the description of memory and hered-
itary properties of various materials and processes. For instance, frac-
tional derivatives find interesting applications in variational principles, con-
trol theory as well as in fractional Lagrangian and Hamiltonian dynam-
ics. Among several different definitions we consider the Caputo fractional
derivative. It is especially suitable for physical applications. Unlike the
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ON GENERALIZED BOUNDARY VALUE PROBLEMS . . . 1425

Riemann-Liouville fractional derivative, the Caputo derivative of a con-
stant is zero and it allows a physical interpretation of the initial conditions
as well as of boundary conditions. For a survey on the subject see e.g.
[22, 25, 28]. We consider ultraslow processes, i.e. when the derivation or-
der α ∈ (0, 1). For results on intermediated processes, i.e. when α ∈ (1, 2),
see, e.g., [11].

Since the pioneering work of Byszewsky [10], nonlocal problems have
been extensively studied for their interest in several contexts. For instance,
Deng in [13] showed that the so called multipoint boundary value problem,
which allows measurements at t = ti ∈ [0, b], i = 1, . . . , n rather than
just at the initial time t = 0, gives better results in the description of the
diffusion phenomenon of a small amount of gas in a transparent tube. More
recent results in this topic are due to Benedetti, Malaguti and Taddei [6],
Benedetti, Taddei and Väth [8], Garćıa-Falset and Reich [17] and Paicu
and Vrabie [26].

In this paper we give existence results for the solutions of two diffusion
models driven by fractional parabolic differential equations with the non-
linearity depending on an integral term, precisely, for t ∈ [0, b] and x ∈ Ω,
a bounded domain in R

n with a sufficiently regular boundary:

CDα
t z = Δz + f

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
(1.1)

and

CDα
t z(t, x) ∈ γz(t, x)

+

[
f1

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
, f2

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)]
.

(1.2)
We consider equations (1.1) and (1.2) associated with several nonlo-

cal conditions, see Section 4 for the detailed problems description. These
kind of problems, coming from applied sciences, describe anomalous dif-
fusion in disordered materials or with memory effects. For instance, the
first equation is a perturbation by means of a nonlocal forcing term of the
diffusion of particles verifying a generalized Fick’s second law, for other
kind of perturbation we refer to [1] and [32]. Important applications in-
clude viscoelasticity and seismic-wave theory, diffusion in turbulent plasma,
fractal media and porous media (see, e.g., [19] and the references therein).
The second equation arises in population dynamics theory, it is a nonlinear
perturbation of fractional epidemic models in which contacts between indi-
viduals are spatially distributed, for fractional epidemic, predator-pray, or
birth-processing models see [3, 4, 14] and the references therein.
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1426 I. Benedetti, V. Obukhovskii, V. Taddei

We transform equations (1.1) and (1.2) into the following class of frac-
tional semilinear differential inclusions with non local conditions in abstract
space: ⎧⎨⎩

CDαy(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ [0, b],
Ly ∈M(y)
0 < α < 1,

(1.3)

where y is a function with values in a reflexive Banach space E,CDα

means the Caputo fractional derivative, A is the generator of a bounded
C0−semigroup {T (t)}t≥0; F : [0, b] × E � E is a multivalued map; L :
C([0, b];E) → E is a linear operator and M : C([0, b];E) � E is a non
necessarily linear multioperator.

The boundary condition considered is fairly general and obviously in-
cludes the initial valued problem, the periodic and anti-periodic problem
and more general two-point problems as well as several nonlocal conditions.
For instance, the following particular cases are covered by our general ap-
proach:

(i) M(y) =
1

b

∫ b

0
p(t)y(t) dt with p ∈ L1([0, b],R).

(ii) M(y) =

n∑
i=1

αiy(si) + y0, with y0 ∈ E, αi �= 0, si ∈ [0, b], i =

1, . . . , n.
(iii) M(y) ≡ B, with B ⊂ E a prescribed set.

In this paper we prove the existence of mild solutions to problem (1.3),
obtaining the corresponding existence of solutions to (1.1) and (1.2) with
z ∈ C([0, b], L2(Ω,R)). We extend to semilinear differential inclusions a
recent result obtained in [7] given for fully nonlinear inclusions. It is worth
noting that considering a semilinear inclusion instead of a fully nonlinear
one it is not a trivial generalization. In literature there exist several defi-
nitions of mild solutions to fractional semilinear differential inclusions. We
consider the one introduced in [15, 34], since it is satisfied by a possible
strong solution (for details see Section 2 and 3). For a different definition
see the survey [30].

Contrary to the case of fully nonlinear fractional differential equations
(or inclusions), see e.g. [2], few results are known for semilinear fractional
equations or inclusions with nonlocal conditions. Some papers concern non
local conditions for an equation (see [23]), others deal with a generalized
Cauchy condition for inclusions (see [12, 24, 31]). However, in all quoted
results and usually in literature in order to solve fractional differential prob-
lems of type (1.3) in an infinite dimensional framework some compactness
assumptions are required on the semigroup generated by the nonlinear part,
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ON GENERALIZED BOUNDARY VALUE PROBLEMS . . . 1427

or on the nonlinear term. For instance, a regularity assumption in terms
of measures of non compactness is required on the non linear term or the
linear part is assumed to generate a compact semigroup (or a compact
evolution operator).

Unlike all those results, by means of a technique based on weak topology
and developed in [6], we are able to prove the existence of at least a solution
of problem (1.3) avoiding any kind of compactness hypotheses both on the
nonlinear term F and on semigroup generated by the linear part.

2. Preliminaries

Let (E, ‖ · ‖) be a reflexive Banach space. We denote by Ew the space
E endowed with the weak topology and by B the closed unit ball in E. For
a set M ⊂ E, the symbol Mw

means the weak closure of M while

‖M‖ := sup{‖y‖ : y ∈ M}, (2.1)

denotes the norm of a bounded set M.
In the whole paper we denote by ‖ · ‖0 and ‖ · ‖p the C[0, b];E)-norm

and the Lp([0, b];R)-norm (p ≤ ∞) of a function respectively. We recall
(see [9, Theorem 4.3]) that a sequence {yn} ⊂ C([0, b];E) weakly converges
to an element y ∈ C([0, b];E) if and only if

1. {yn} is uniformly bounded, i.e., there exists a constant ‖yn(t)‖ ≤ N ,
for each n ∈ N and for each t ∈ [0, b];

2. yn(t)⇀ y(t) for every t ∈ [0, b].

For a function f : [0, b] → E, the definition of the Riemann-Liouville frac-
tional derivative with 0 < α < 1 is the following:

[Dαf ](t) =
1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds,

where Γ is the Euler function:

Γ(α) =

∫ ∞

0
xα−1e−x dx.

The Caputo fractional derivative is defined through the Riemann-Liouville
fractional derivative as

[CDαf ](t) = Dα[f(·)− f(0)](t).

Let us briefly recall that a multivalued map (multimap) Φ: X � Y of
topological spaces X and Y is a relation that assigns to every point x ∈ X
a nonempty set Φ(x) ⊂ Y . A multimap Φ of Banach spaces is called
weakly sequentially closed, provided the conditions xn ⇀ x0, yn ⇀ y0, and
yn ∈ Φ(xn), imply y0 ∈ Φ(x0). It is clear that this condition is equivalent to
the hypothesis that Φ has a weakly sequentially closed graph. A multimap

Auth
or'

s C
op

y



1428 I. Benedetti, V. Obukhovskii, V. Taddei

Φ: X � Y is said to be upper semicontinuous (u.s.c. for short), if the set
Φ−1(V ) := {x ∈ X : Φ(x) ⊂ V } is open for every open subset V ⊆ Y .

Finally, for sake of completeness, we recall some results that we will
need in the sequel. Firstly we state the Glicksberg-Ky Fan fixed point
theorem ([16], [18]).

Theorem 2.1. Let K a non-empty compact convex subset of a locally
convex topological vector space and G : K � K a u.s.c. multimap with
closed, convex values. Then G has a fixed point x∗ ∈ K : x∗ ∈ G(x∗).

We mention also a result contained in the so-called Eberlein-Smulian
theory.

Theorem 2.2. [21, Theorem 1, p. 219] Let Ω be a subset of a Banach
space X. The following statements are equivalent:

1. Ω is relatively weakly compact;
2. Ω is relatively weakly sequentially compact.

We assume that A : D(A) ⊂ E → E is a linear, not necessarily bounded
operator generating a bounded C0-semigroup T : R+ → L(E), i.e., a family
of bounded linear operators T (t) : E → E, for t ∈ R+ such that

(a) T (0) = I;
(b) T (t+ r) = T (t)T (r) = T (r)T (t) for every t, r ∈ R+;
(c) the function t ∈ R+ → T (t)x ∈ E is continuous for every x ∈ E.

Define the families of operators {Sα(t)}t∈[0,∞) and {Tα(t)}t∈[0,∞) in E by
the formulas

Sα(t)x =

∫ ∞

0
φα(s)T (t

αs)x ds,

where φα is the probability density function

φα(s) =
1

α
s−

α+1
α ψα(s

−1/α),

ψα(s) =
1

π

∞∑
n=1

(−1)n−1s−nα−1Γ(nα+ 1)

n!
sin(nπα),

and

Tα(t)x = α

∫ ∞

0
sφα(s)T (tαs) x ds.
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ON GENERALIZED BOUNDARY VALUE PROBLEMS . . . 1429

Remark 2.1. (See, e.g., [33]).∫ ∞

0
sφα(s) ds =

1

Γ(α+ 1)
;

∫ ∞

0
φα(s) ds = 1.

By Lemma 3.2 and 3.3 in [33] the next regularity result holds.

Lemma 2.1. The operator functions Sα and Tα possess the following
properties:

a) for every t ∈ [0,∞), Sα(t) and Tα(t) are linear and bounded oper-
ators. More precisely

‖Sα(t)‖ ≤ D

and

‖Tα(t)‖ ≤ Dα

Γ(1 + α)

where

D = sup
t∈[0,∞)

‖T (t)‖;

b) the operator functions Sα and Tα are strongly continuous, i.e., for
each x ∈ E, functions t ∈ [0,∞) → Sα(t)x ∈ E and t ∈ [0,∞) →
Tαx ∈ E are continuous.

According to [5], [33], [34] a function y ∈ C([0, b];E) is a mild solution
of the Cauchy problem⎧⎨⎩

CDαy(t) ∈ Ay(t) + f(t), for a.e. t ∈ [0, b],
y(0) = y0
0 < α < 1

(2.2)

with f ∈ Lp([0, b];E), p > 1
α , if it satisfies the integral formula

y(t) = Sα(t)y0 +

∫ t

0
(t− s)α−1Tα(t− s)f(s) ds.

Therefore, defining S : Lp([0, b];E) → C([0, b];E) as

S(f)(t) =
∫ t

0
(t− s)α−1Tα(t− s)f(s) ds, t ∈ [0, b], (2.3)

we see that a continuous function y is a mild solution of (2.2) if

y(t) = Sα(t)y0 + S(f)(t), t ∈ [0, b]. (2.4)

Hence, we can define the mild solution of (1.3) as follows.
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1430 I. Benedetti, V. Obukhovskii, V. Taddei

Definition 2.1. A continuous function y : [0, b] → E is amild solution
to problem (1.3) if and only if there exists a map f ∈ Lp([0, b];E), p > 1

α ,
with f(t) ∈ F (t, y(t)) for a.e. t ∈ [0, b] such that

y(t) = Sα(t)y(0) + S(f)(t), t ∈ [0, b]

and

Ly ∈M(y).

3. Existence result

We will study problem (1.3) under the following assumptions.

(A) A is the generator of a bounded C0−semigroup {T (t)}t≥0.

Concerning the multivalued nonlinearity F : [0, b]×E � E we will suppose
that it has closed bounded and convex values and, moreover, the following
conditions hold true:

(F1) the multifunction F (·, c) : [0, b] � E has a measurable selection for
every c ∈ E, i.e., there exists a measurable function f : [0, b] → E
such that f(t) ∈ F (t, c) for a.e. t ∈ [0, b];

(F2) the multimap F (t, ·) : E � E is weakly sequentially closed for a.e.
t ∈ [0, b];

(F3) condition of local integral boundedness: for every r > 0 there exists
a function μr ∈ Lp([0, b];R+) with p > 1

α such that for each c ∈
E, ‖c‖ ≤ r:

‖F (t, c)‖ ≤ μr(t) for a.e. t ∈ [0, b].

Notice that under conditions (F1) - (F3), by Proposition 3.1 in [7] the
superposition multioperator PF : C([0, b];E) � Lp([0, b];E), p > 1

α , given
as

PF (y) = {f ∈ Lp([0, b];E) : f(t) ∈ F (t, y(t)) a.e. t ∈ [0, b]}
is well defined.

Initially we assume that operators L and M satisfy the following con-
ditions.

(L) L : C([0, b];E) → E is a bounded linear operator;
(M1) M : C([0, b];E) � E is a weakly sequentially closed multioperator,

with convex, closed and bounded values, mapping bounded sets into
bounded ones.

To formulate the next conditions, consider the subspace C0 ⊂ C([0, b];E)
consisting of functions y(·) having the form

y(t) = Sα(t)y(0)

and denote L0 = L|C0 . We will assume that
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ON GENERALIZED BOUNDARY VALUE PROBLEMS . . . 1431

(Λ) there exists a bounded linear operator Λ: E → C0 such that for
every y ∈ C(0, b], E), w ∈M(y), and f ∈ PF (y),

(I − L0Λ)(w − LSf) = 0,

where the operator S is defined by (2.3).

Remark 3.1. To present an example when condition (Λ) is fulfilled,
consider the linear operator K : E → C0 defined as

K(y)(t) = Sα(t)y

and define the linear operator L̃ : E → E, L̃y = L0(K(y)). It is easy to

see that condition (Λ) holds true if L̃ has a bounded inverse L̃−1. Indeed,

in this case we may take Λ = KL̃−1. In the particular case of Ly = y(0)

the last condition is trivially satisfied being L̃ = I. Moreover, in the case
of a periodic problem (Ly = y(0) − y(b); My ≡ 0) the last condition takes
the form of the existence of a bounded inverse (I−Sα(b))−1 what is similar
to an usual condition used in the search of periodic solutions for semilinear
inclusions with classical derivative (see [20], Section 6.1, condition (A′)).

Now, consider the multioperator T : C([0, b];E) � C([0, b];E) defined
as

T (y) = ΛM(y) + (I − ΛL)SPF (y). (3.1)

Let y ∈ C([0, b];E), be a fixed point of T , i.e y ∈ T (y). Hence, there exist
w ∈M(y) and f ∈ PF (y), such that

y = Λw + (I − ΛL)S(f) = Λ(w − LS(f)) + S(f).
By condition (Λ) it follows

Ly = L(Λw + (I − ΛL)S(f)) = L0Λw + L(I − ΛL)S(f)
= w − (w − L0Λw) + LS(f)− L0ΛLS(f)
= w − (I − L0Λ)w + (I − L0Λ)LS(f)
= w − (I − L0Λ)(w − LS(f)) = w ∈M(y).

Moreover, denote z := w − LS(f). By the definition of the operator Λ we
have that Λz = ϕ ∈ C([0, b];E) defined as ϕ(t) = Sα(t)ϕ(0). Hence

y(0) = [Λz](0) = ϕ(0),

and

y(t) = [Λz](t) + [S(f)](t) = Sα(t)y(0) + [S(f)](t), t ∈ [0, b],

yielding that y satisfies (2.4). Therefore, we have proven that any function
y ∈ C([0, b];E) which is a fixed point of the multioperator T is a mild
solution of problem (1.3).
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1432 I. Benedetti, V. Obukhovskii, V. Taddei

We will assume, additionally, the following condition posed on the mul-
tioperator M

(M2) M satisfies the following asymptotic estimate

lim sup
‖u‖0→∞

‖M(u)‖
‖u‖0

= l with l <
1

‖Λ‖ . (3.2)

It is usual in literature to assume that the limit in (3.2) is equal to zero.
This is the case when the multimap M is bounded. On the contrary, we
are able to consider operator M satisfying a linear growth condition. For
our main result (see Theorem 3.1), instead of condition (F3), we need the
stronger assumption below:

(F3′) sup
‖x‖≤n

‖F (t, x)‖ ≤ ϕn(t), for a.a. t ∈ [0, b], with ϕn ∈ Lp([0, b];R), p >

1
α and such that

lim inf
n→∞

1

n

{∫ b

0
|ϕn(s)|p ds

} 1
p

= 0. (3.3)

In order to prove the existence of a fixed point of T , let us study its
properties.

Lemma 3.1. The operator S is linear and bounded.

P r o o f. The linearity follows from the linearity of the integral opera-
tor. We now prove that S is bounded. For every τ1, τ2 ∈ [0, b],(∫ τ2

τ1

(
(τ2 − s)α−1

) p
p−1 ds

) p−1
p

≤
[
p− 1

αp − 1

] p−1
p

(b)α−
1
p =: C.

Thus, denoted H := Dα
Γ(1+α)C, using Hölder inequality, we get for any f ∈

Lp([0, b];E) and t ∈ [0, b]

‖S(f)(t)‖ ≤
∫ t

0
(t− s)α−1‖Tα(t− s)‖‖f(s)‖ ds

≤ Dα

Γ(1 + α)
C‖f‖p = H‖f‖p.

(3.4)

�

Proposition 3.1. The multioperator T has a weakly sequentially
closed graph.
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P r o o f. Let {xm} ⊂ C([0, b];E) and {ym} ⊂ C([0, b];E) satisfying
ym ∈ T (xm) for all m and xm ⇀ x, ym ⇀ y in C([0, b];E); we will prove
that y ∈ T (x).

By the weak convergence of the sequence {xm} in C([0, b];E), it follows
that there exists a constant r > 0 such that ‖xm‖0 < r for every m ∈ N

and xm(t) ⇀ x(t) for every t ∈ [0, b]. Therefore, it follows that ‖x(t)‖ ≤
lim inf
m→∞ ‖xm(t)‖ ≤ r for all t. The fact that ym ∈ T (xm) means that there

exist a sequence {fm}, fm ∈ PF (xm) and a sequence wm ∈ M(xm) such
that

ym = Λ(wm − LSfm) + Sfm.
We observe that, according to (F3), ‖fm(t)‖ ≤ ηr(t) for a.a. t and ev-
ery m, i.e. {fm} is uniformly bounded and by the reflexivity of the space
Lp([0, b];E), we have the existence of a subsequence, denoted as the se-
quence, and a function g such that fm ⇀ g in Lp([0, b];E).

Lemma 3.1 and (L1) imply that Sfm ⇀ Sg in C([0, b];E) and LSfm ⇀
LSg in E. The operator M maps bounded sets in bounded sets and it is
weakly sequentially closed, hence, up to subsequence, wm ⇀ w in E, with
w ∈M(x). In conclusion, we have

ym ⇀ Λ(w − LSg) + Sg = y0,

thus, by the uniqueness of the weak limit in E, we obtain that y0 ≡ y.
Reasoning as [7, Proposition 4.1] it is possible to prove that g(t) ∈

F (t, x(t)) for a.a. t ∈ [0, b], i.e. that y ∈ T (x). �

Proposition 3.2. The multioperator T is weakly compact.

P r o o f. By Theorem 2.2 it is sufficient to prove that T is weakly
relatively sequentially compact.

Let {xm} ⊂ C([0, b];E) be a bounded sequence and {ym} ⊂ C([0, b];E)
satisfying ym ∈ T (xm) for all m. By the definition of the multioperator T ,
there exist a sequence {fm}, fm ∈ PF (xm), and a sequence wm ∈ M(xm)
such that

ym = Λ(wm − LSfm) + Sfm.
Reasoning as in Proposition 3.1, we have that there exists a subsequence,
denoted as the sequence, and a function g such that fm ⇀ g in Lp([0, b];E).
Moreover, since the multioperator M maps bounded sets into bounded sets
and {xm} is bounded, we obtain that, up to subsequence, wm ⇀ w ∈ E as
m→ ∞. Therefore

ym ⇀ Λ(w − LSg) + Sg
in C([0, b];E). �
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1434 I. Benedetti, V. Obukhovskii, V. Taddei

Proposition 3.3. The multioperator T has convex and weakly com-
pact values.

P r o o f. Fix x ∈ C([0, b];E) since F and M are convex valued, the
set T (x) is convex from the linearity of the involved operators. The weak
compactness of T (x) follows from Propositions 3.2 and 3.1. �

Theorem 3.1. Under assumptions (A), (F1), (F2), (F3′), (L), (Λ),
(M1) and (M2), problem (1.3) has at least a mild solution.

P r o o f. Fix n∈N, considerQn the closed ball of radius n of C([0, b];E).
We show that there exists n ∈ N such that the operator T maps the ball
Qn into itself.

Assume to the contrary, that there exist two sequences {xn} and {yn}
such that xn ∈ Qn, yn ∈ T (xn) and yn /∈ Qn for all n ∈ N. By the definition
of T , there exist a sequence {fn} ⊂ PF (xn) and a sequence wn ∈ M(xn)
such that

yn = Λ(wn − LSfn) + Sfn.
From the assumption yn /∈ Qn we must have, for any n,

n < ‖yn‖0 ≤ ‖Λ‖{‖wn‖0 + ‖L‖H‖fn‖p}+H‖fn‖p, (3.5)

where H is defined in (3.4). Moreover xn ∈ Qn implies, by (F3′), that
‖fn(t)‖ ≤ ϕn(t) for a.a. t ∈ [0, b], hence ‖fn‖p ≤ ‖ϕn‖p. Consequently

n < ‖Λ‖{‖M(xn)‖0 + ‖L‖H‖ϕn‖p}+H‖ϕn‖p.
Therefore

1

‖Λ‖ <
‖M(xn)‖0

n
+ ‖L‖H ‖ϕn‖p

n
+

H

‖Λ‖
‖ϕn‖p
n

.

Notice that if ‖xn‖0 ≤ H1 < +∞ for any n ∈ N then

lim
n→∞

‖M(xn)‖
n

= 0,

because M maps bounded sets into bounded sets.
If lim

n→∞ ‖xn‖0 = +∞ by hypothesis (M2) we have

lim
n→∞

‖M(xn)‖
n

≤ lim sup
n→∞

‖M(xn)‖
‖xn‖0

≤ lim sup
‖u‖0→∞

‖M(u)‖
‖u‖0

= l <
1

‖Λ‖ .

In both cases

lim
n→∞

‖M(xn)‖
n

<
1

‖Λ‖ .
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Moreover, according to (3.3), there exists a subsequence, still denoted as
the sequence, such that

lim
n→∞

1

n

{∫ b

0
|ϕn(s)|p ds

} 1
p

= 0. (3.6)

Hence

1

‖Λ‖ ≤ lim supn→∞

{
‖M(xn)‖

n
+ ‖L‖H ‖ϕn‖p

n
+

H

‖Λ‖
‖ϕn‖p
n

}
<

1

‖Λ‖
giving the contradiction.

The conclusion then follows from Theorem 2.1 as in [7, Theorem 4.1].
�

When considering the periodic problem, Theorem 3.1 turns into the
following assertion.

Corollary 3.1. Assume (A), (F1), (F2), (F3′) and suppose that the
operator I − Sα(b) has a bounded inverse. Then the periodic problem⎧⎨⎩

CDαy(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ [0, b]
y(0) = y(b)
0 < α < 1,

has at least a mild solution.

Remark 3.2. For a periodic problem, conditions (M1) and (M2) are
trivially fulfilled with l = 0.

4. Applications

4.1. Time-fractional diffusion model. Given a bounded domain Ω ⊂
R
n with C2-boundary, we consider the integro-differential equation⎧⎨⎩ CDα

t z = Δz + f

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
, t ∈ [0, b], x ∈ Ω

z(0, x) = z(b, x). x ∈ Ω

. (4.1)

The equation Dα
t z = zxx, known as time-fractional diffusion equation or

generalized diffusion equation, is a mathematical model of wide application
in science, due to anomalous diffusion effects in disordered materials where
the environment is constrained and trapping and binding of particles can
occur. It describes anomalous diffusion characterized by the mean square
displacement of particles from the original starting site, verifying a gen-
eralized Fick’s second law. Important applications include viscoelasticity
and seismic-wave theory, diffusion in turbulent plasma, fractal media and
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porous media (see, e.g., [19] and the references therein). We consider a
perturbed equation in the multidimensional case, like in [1] and [32], but
in our case the forcing term is nonlocal. A periodic condition is associated
to the system. We assume

(i) for all r ∈ R, f(·, ·, r) : [0, b] × Ω → R is measurable;
(ii) for a.a. t ∈ [0, b] and x ∈ Ω, f(t, x, ·) : R → R is continuous;
(iii) there exist ϕ ∈ Lp([0, b];R), with p > 1

α , and μ : [0,+∞) → [0,+∞)
increasing such that, for a.a. x ∈ Ω and every t ∈ [0, b] and r ∈
R, |f(t, x, r)| ≤ ϕ(t)μ(|r|) and

lim
r→+∞

μ(r)

r
= 0.

(iv) k : Ω×Ω → R is measurable with k(x, ·) ∈ L2(Ω;R) and ‖k(x, ·)‖2 ≤
1 for a.a. x ∈ Ω.

Let y : [0, b] → L2(Ω;R) be the map defined by y(t) = z(t, ·). We can
write the periodic problem (4.1) as the fractional inclusion with impulses
in the Hilbert space E = L2(Ω;R){

CDαy(t) ∈ Ay(t) + F (t, y(t)), t ∈ [0, b], y(t) ∈ E
y(b)− y(0) = 0

, (4.2)

where A : W 2,2 (Ω;R) ∩ W 1,2
0 (Ω;R) → L2 (Ω;R) is the linear operator

defined as Ay = Δy, F : [0, b]× E → E is the single valued map

F (t, y)(x) = f

(
t, x,

∫
Ω
k(x, ξ)y(ξ) dξ

)
and the maps L : C([0, b];E) → E and M : C([0, b];E) → E are respec-
tively defined as L = y(b)− y(0) and M(y) ≡ 0.

We show, now, that all the hypotheses of Corollary 3.1 are satisfied. It
is known that A generates a strongly continuous semigroup of contractions
T (t) on E (see e.g. [29], Theorem 4.1.3). Hence hypothesis (A) is satisfied.
Moreover, it is well known that

T (t)y =

∞∑
i=1

e−λit(y, ei)ei,

where {ei}i is an orthonormal basis of L2(Ω;R) formed by eigenvectors of
A corresponding to the eigenvalues λi.
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Given y ∈ L2(Ω;R) and denoted by L(g)(λ) the Laplace transform of
the function g, we get that

(I − Sα(b))y = y −
∫ ∞

0
Φα(s)T (b

αs)yds

=

∞∑
i=1

[
1−

∫ ∞

0
Φα(s)e

−λi(b
αs)ds

]
(y, ei)ei

=

∞∑
i=1

[1− L(Φα)(λib
α)](y, ei)ei.

Now, since λi > 0 for every i and Φα is a probability density function, it
follows that L(Φα)(λib

α) �= L(Φα)(0) = 1 for every i, i.e. that I−Sα(b)y =
0 if and only if y = 0. Hence I − Sα(b) is injective. Moreover the operator
Sα(b) : E → E is compact. In fact, take {yn}n ⊂ E bounded. Since
E is reflexive, there exists a subsequence still denoted as the sequence
such that yn weakly converges to y0 ∈ E. Denote now L(Φα)(λib

α) = ci.
Then Sα(b)yn =

∑∞
i=1 ci(yn, ei)ei. By the weak convergence, we get that

(yn, ei) → (y0, ei) for every i. Since {ei} is an orthonormal basis for E, it
follows that

∑∞
i=1 ci(yn, ei)ei →

∑∞
i=1 ci(y0, ei)ei, hence the compactness of

Sα(b). According to the Fredholm alternative it follows that I − Sα(b) is
also surjective, thus invertible.

We prove, now, that the map F verifies condition (F1),(F2) and (F3′).
Notice first of all that Pettis measurability theorem (see [27, p. 278]),
the separability of L2([0, T ];R) and conditions (i) and (ii) imply that F is
globally measurable (see [20, Corollary 1.3.1]), hence, being single-valued,
it satisfies condition (F1).

We now prove that F (t, ·) is weakly sequentially continuous for a.a.
t ∈ [0, b]. To this aim take yn ⇀ y in L2(Ω,R). From (iv) we get that∫

Ω
k(x, ξ)yn(ξ)dξ →

∫
Ω
k(x, ξ)y(ξ)dξ

for a.a. x ∈ Ω, thus (ii) implies that

f(t, x,

∫
Ω
k(x, ξ)yn(ξ)dξ) → f(t, x,

∫
Ω
k(x, ξ)y(ξ)dξ)

for a.a. x ∈ Ω. Moreover, according to (iv), we have, for a.a. x ∈ Ω and
every y ∈ L2(Ω;R),∣∣∣∣∫

Ω
k(x, ξ)y(ξ)dξ

∣∣∣∣≤ ∫
Ω
|k(x, ξ)||y(ξ)|dξ ≤ ‖k(x, ·)‖2‖y‖2 ≤ ‖y‖2,
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thus (iii) implies, for a.a. t ∈ [0, b] and every y ∈ L2(Ω;R),∣∣∣∣f (t, x,∫
Ω
k(x, ξ)y(ξ)dξ

) ∣∣∣∣≤ ϕ(t)μ

(∣∣∣∣∫
Ω
k(x, ξ)y(ξ)dξ

∣∣∣∣) ≤ ϕ(t)μ(‖y‖2).

(4.3)
Since the weak convergence implies the boundedness in norm, (4.3) implies
the existence of a positive constant L such that |f

(
t, x,

∫
Ω k(x, ξ)yn(ξ)dξ

)
| ≤

ϕ(t)μ(L) for a.a. x ∈ Ω and every n ∈ N, and (F2) follows from the
Lebesgue’s dominated convergence theorem.

Finally, (4.3) yields

‖F (t, y)‖2 =

√∫
Ω

[
f

(
t, x,

∫
Ω
k(x, ξ)y(ξ)dξ

)]2
dx ≤ ϕ(t)μ(‖y‖2)

√
|Ω|,

and so also the growth condition (F3′) is satisfied with ϕn(t) = ϕ(t)μ(n)
√

|Ω|,
with

lim inf
n→∞

1

n

∫ b

0
ϕn(t)dt = lim inf

n→∞
μ(n)

n
‖ϕ‖1

√
|Ω| = 0.

The solvability of problem (4.1) then follows from Corollary 3.1.

Remark 4.1. Similarly as before it is possible to show that also the
multipoint boundary value problem⎧⎨⎩ CDα

t z = Δz + f

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
, t ∈ [0, b], x ∈ Ω

z(0, x) =
∑n

i=1 αiz(si, x) + z0(x) x ∈ Ω

with z0 ∈ L2(Ω;R), αi �= 0, si ∈ [0, b], i = 1, . . . , n, or the weighted bound-
ary value problem⎧⎪⎪⎨⎪⎪⎩

CDα
t z = Δz + f

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
, t ∈ [0, b], x ∈ Ω

z(0, x) =
1

b

∫ b

0
p(t)z(t, x) dt x ∈ Ω

with p ∈ L1([0, b],R), are solvable, provided respectively that
∑n

i=1 |αi| and
‖p‖1
b are sufficiently small.

Indeed, introducing as before the auxiliary map y : [0, b] → L2(Ω;R)
defined as y(t) = z(t, ·), in both cases Ly = y(0) and condition (Λ) is
trivially satisfied, see Remark 3.1. Moreover, in the first case M(y) =∑n

i=1 αiy(ti)+y0, with y0 = z0(·), is the translation of a linear and bounded
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single valued operator, hence it is a weakly sequentially closed multiopera-
tor. Furthermore

‖
∑n

i=1 αiy(si) + y0‖
‖y‖0

≤
∑n

i=1 |αi||y(si)|+ ‖y0‖
‖y‖0

≤ ‖y‖0
∑n

i=1 |αi|+ ‖y0‖
‖y‖0

=

n∑
i=1

|αi|+
‖y0‖
‖y‖0

.

Hence

lim
‖y‖0→∞

‖
∑n

i=1 αiy(si) + y0‖
‖y‖0

≤
n∑

i=1

|αi|.

In the second case M(y) = 1
b

∫ b
0 p(s)y(s)ds is a weakly continuous single

valued operator, thus it is a weakly sequentially continuous multioperator.
Moreover we have

‖1
b

∫ b
0 p(t)y(t) dt‖
‖y‖0

≤ ‖p‖1
b
.

Hence

lim
‖y‖0→∞

‖1
b

∫ b
0 p(t)y(t) dt‖
‖y‖0

≤ ‖p‖1
b
.

Notice that by Lemma 2.1‖Λ‖ ≤ 1. So if we respectively assume that
n∑

i=1

|αi| < 1

and
‖p‖1
b

< 1,

we get that also condition (M2) holds and all the hypotheses of Theorem
3.1 are satisfied also by the multipoint and the weighted boundary value
problems.

4.2. Fractional integro-differential model. This application concerns
the integro-differential equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CDα
t z(t, x) ∈ γz(t, x)+[
f1

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)
, f2

(
t, x,

∫
Ω
k(x, ξ)z(t, ξ) dξ

)]
,

t ∈ [0, b], x ∈ Ω,

z(b, x) ∈ B(z(0, x)) x ∈ Ω,
(4.4)

where Ω is a bounded domain in R
n with a sufficiently regular boundary.

We assume the following hypotheses:

(i) for all r ∈ R, i = 1, 2, fi(·, ·, r) : [0, b] × Ω → R is measurable;
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1440 I. Benedetti, V. Obukhovskii, V. Taddei

(ii) for a.a. t ∈ [0, b] and x ∈ Ω, f1(t, x, ·) : R → R is lower semicontin-
uous and f2(t, x, ·) : R → R is upper semicontinuous;

(iii) f1(t, x, r) ≤ f2(t, x, r) in [0, b]× Ω× R;
(iv) there exist ϕ ∈ Lp([0, b];R), with p > 1

α , and a non decreasing
function μ : [0,∞) → [0,∞) such that, for a.a. x ∈ Ω and every
t ∈ [0, b], r ∈ R and i = 1, 2, we have |fi(t, x, r)| ≤ ϕ(t)μ(|r|) with

lim inf
r→∞

μ(r)

r
= 0; (4.5)

(v) k : Ω×Ω → R is measurable with k(x, ·) ∈ L2(Ω;R) and ‖k(x, ·)‖2 ≤
1 for all x ∈ Ω;

(vi) γ < 0;
(vii) B : R � R is bounded, convex, i.e. for any x, y ∈ R and any

λ ∈ [0, 1] it holds

λB(x) + (1− λ)B(y) ⊂ B(λx+ (1− λy),

upper semicontinuous and with closed values.

Problem (4.4) can be represented in the form of the following abstract
system in the Hilbert space E = L2(Ω;R){

CDαy(t) ∈ Ay(t) + F (t, y(t))

y(b) ∈ M̃(y(0)),
(4.6)

where y : [0, b] → E is defined as y(t) = z(t, ·), F : [0, b] × E � E is the
multimap

F (t, y)(x) =

[
f1

(
t, x,

∫
Ω
k(x, ξ)y(ξ)dξ

)
, f2

(
t, x,

∫
Ω
k(x, ξ)y(ξ)dξ

)]
and A is a bounded linear operator in E generating the non-compact semi-
group of contractions

T (t)y(x) = eγty(x).

System (4.6) reads as an attainability problem, i.e. the study of the ex-
istence of at least a trajectory of the system reaching a given set at the
final time. The attainability problem (4.6) can be written as (1.3) with

L(y) = y(b) and M(y) = M̃ ◦ θ, where θ is the evaluation operator, i.e.
the linear and bounded operator θ : C([0, b];E) → E, θ(y) = y(0), and

M̃ : E → E is the multimap defined as M̃(y)(x) = B(y(x)) for a.a. x ∈ Ω.
Let us show that Theorem 3.1 can be applied to the abstract formulation

of the system (4.4). Given y ∈ L2(Ω;R), recalling that Φα is a probability
density function, we get that

LKy = Sα(b)y =

∫ ∞

0
Φα(s)T (b

αs)yds = y

∫ ∞

0
Φα(s)e

γbαsds,
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i.e. LK = βI, where β denotes the real number
∫∞
0 Φα(s)e

γbαsds �= 0.
Hence we have that LK is invertible and so condition (Λ) is satisfied.

Reasoning as in Subsection 4.1 and using Pettis measurability Theorem,
it is possible to show that the maps t �→ fi(t, ·,

∫
Ω y(s)ds), i = 1, 2 are

measurable selections of F (·, y) for every y ∈ L2(Ω;R); hence condition
(F1) is satisfied. Moreover, from (v), we easily get that for a.a. x ∈ Ω and
y ∈ L2(Ω,R) ∣∣∣∣∫

Ω
k(x, ξ)y(ξ)dξ

∣∣∣∣ ≤ ‖y‖2

thus from (iv) that∣∣∣∣fi(t, x,∫
Ω
k(x, ξ)y(ξ)dξ

)∣∣∣∣ ≤ ϕ(t)μ(‖y‖2)

for i = 1, 2. Therefore the growth condition (F3′) is fulfilled with ϕn(t) =

ϕ(t)μ(n)
√

|Ω|.
Now we verify condition (F2). Fix t ∈ [0, b] and consider the sequences

{yn}, {βn} ⊂ L2(Ω;R) satisfying yn ⇀ y, βn ⇀ β in L2(Ω;R) and βn ∈
F (t, yn) for all n ∈ N. Since βn ⇀ β, applying Mazur’s convexity lemma,
we have the existence of a sequence

β̃n =

kn∑
i=0

δn,iβn+i δn,i ≥ 0,

kn∑
i=0

δn,i = 1

such that β̃n → β in L2(Ω;R) and up to a subsequence denoted as the

sequence β̃n(x) → β(x) for a.a. x ∈ Ω. By definition we have, for a.a.
x ∈ Ω,∑kn

i=0 δn,if1
(
t, x,

∫
Ω k(x, ξ)yn+i(ξ)dξ

)
≤ β̃n(x)

≤
∑kn

i=0 δn,if2
(
t, x,

∫
Ω k(x, ξ)yn+i(ξ)dξ

)
.

Reasoning again as in Subsection 4.1 and taking the limit as n → ∞,
according to (ii), we obtain that

f1

(
t, x,

∫
Ω
k(x, ξ)y(ξ)dξ

)
≤ β(x) ≤ f2

(
t, x,

∫
Ω
k(x, ξ)y(ξ)dξ

)
,

i.e. that β ∈ F (t, y). We have showed that F (t, ·) has weakly sequentially
closed graph.

It remains to prove conditions (M1) and (M2). From (vii) we obtain
thatM has convex and closed values and it is bounded. Moreover, since θ is

linear and bounded, it is sufficient to prove that M̃ is weakly sequentially
closed. Consider the sequences {yn}, {ζn} ⊂ L2(Ω;R) satisfying yn ⇀
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y, ζn ⇀ ζ in L2(Ω;R) and ζn ∈ M̃(yn) for all n ∈ N. Since ζn ⇀ ζ,
applying Mazur’s convexity lemma, we have the existence of a sequence

ζ̃n =

kn∑
i=0

δn,iζn+i δn,i ≥ 0,

kn∑
i=0

δn,i = 1

such that ζ̃n → ζ in L2(Ω;R) and up to a subsequence denoted as the

sequence ζ̃n(x) → ζ(x) for a.a. x ∈ Ω. By definition, ζn(x) ∈ B(yn(x))

for a.a. x ∈ Ω, thus the convexity of B yields ζ̃n(x) ∈ B(ỹn(x)) for a.a.

x ∈ Ω, with ỹn =
∑kn

i=0 δn,iyn+i. Taking the limit as n → ∞, from the
upper semicontinuity of B we obtain ζ(x) ∈ B(y(x)) for a.a. x ∈ Ω, i.e.

ζ ∈ M̃(y). We have proved the weakly sequentially closedness of M̃, i.e.
condition (M1).

Finally, since B is bounded, there exists a constant L > 0 such that

|ζ(x)| ≤ L for every y ∈ E, ζ ∈ M̃ (y) and a.a. x ∈ Ω. Therefore, we have

‖ζ‖2 =
√∫

Ω
ζ(x)2dx ≤ L

√
|Ω|

which implies

lim sup
‖y‖2→∞

‖M̃(y)‖2
‖y‖2

≤ lim sup
‖y‖2→∞

L
√
|Ω|

‖y‖2
= 0.

We conclude that (M2) is satisfied with l = 0, thus all the assumptions
of Theorem (3.1) are satisfied and the existence of a solution of (4.4) is
proved.

Remark 4.2. Typical examples of multimap B trivially satisfying
condition (vii) of the application above are B(x) = [0, L] for every x ∈ R

or B(x) = [0,min{x,L}], for every x ∈ R.
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