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Abstract—Every year over 75 000 firefighters are injured and
159 die in the line of duty. Some of these accidents could be
averted if first responders had better information about the
information on the ground. The SAFESENS project is developing
a novel monitoring system for first responders designed to provide
response team leaders with timely and reliable information about
their firefighters’ status during operations, based on data from
wireless inertial measurement units. In this paper we investigate
if Gradient Boosted Trees (GBT) could be used for recognising
17 activities, selected in consultation with first responders, from
inertial data. By arranging these into more general groups
we generate three additional classification problems which are
used for comparing GBT with k-Nearest Neighbors (kNN) and
Support Vector Machines (SVM). The results show that GBT
outperforms the other two approaches for three of these four
problems, and that it leads to a generalisation error that is more
balanced across the target activities than SVM.

I. INTRODUCTION

Every year over 75 000 firefighters are injured and 159
die in the line of duty [1]. Some of these accidents could
be averted, and many ameliorated, if firefighters (and other
first responders) had better information about the situation on
the ground as it unfolds. The SAFESENS (Sensor Technolo-
gies for Enhanced Safety and Security of Buildings and its
Occupants) project [2] is developing a location-tracking and
monitoring system for firefighters and other first responders
which will make that information available to them.

The system monitors firefighters via wireless inertial mea-
surement units (WIMU), integrated into the self-contained
breathing apparatus’ (SCBA) straps. Data are streamed from
the WIMU to a smartphone, carried by each firefighter, where
an application buffers the data for 10 seconds before trans-
mitting them as one batch to the command & control center
(CCC). In the CCC the data are used to show the officers
where their firefighters are and timely clues about what they
are doing. The system is designed to work reliably in the harsh
and unpredictable conditions of emergency situations, and be
resilient if pre-deployed infrastructure fails.

In this paper, we investigate the use of Support Vector
Machines (SVM), k-Nearest Neighbors (kNN) and Gradient
Boosted Trees (GBT), for recognising up to 17 different
activities relevant for monitoring first responders during emer-
gency response operations. To our knowledge, this is the first
application of GBT to a human activity recognition (HAR)
problem. We show that GBT are able to distinguish among
these activities, using gyroscope and accelerometer data from

a single IMU, with subject-dependent and -independent mean
absolute errors of less than 1% and 4%, respectively.

II. RELATED WORKS

Human activity recognition based on inertial data has been
a fruitful line of enquiry for more than a decade [3], [4].
Although much of the work during this time has been ded-
icated to recognising activities associated with daily living,
especially for monitoring the elderly or other populations at
risk, there have been attempts to extend HAR to more dynamic
activities and environments. Zhang et al. [5], for example,
present an indoor location tracking system for emergency first
responders, each of whom is required to wear six IMUs, that
maintains a model (based on Kalman filters) of the tracked
bodies. Williamson et al. [6], instead, use Gaussian Staircase
and Partial Least Squares regression to estimate the loads
carried by first responders and soldiers from IMU data.

Statistical and machine learning techniques have been used
widely in HAR applications. Among the most popular and
successful are SVM and kNN, both of which are frequently
used as a baseline when evaluating other learning algorithms.
GBT [7] is a learning algorithm that combines many simple
decision or regression trees—known as base learners in this
context—into a powerful ensemble through a flexible and
widely used technique known as boosting [8]. Although HAR
algorithms that use the boosting technique exist [9], [10], the
GBT algorithm itself has not been evaluated in this context.

III. METHODS

To investigate if kNN, SVM, and GBT could be effective for
monitoring firefighters we selected 17 activities in consultation
with collaborating firefighters: two types of crawling (on hands
& knees, and military style on one’s stomach), duck walking,
falling, two types of jumping (on and off a chair), three types
of running and walking (horizontally, and up and down the
stairs) and five static postures: being on one’s hands and knees
(all fours), standing, sitting, crouching, and lying down (e.g.,
after falling). These are used to form three additional HAR
problems of decreasing complexity. The first of these, the
“move-type/lie” problem, consists of seven target classes (ac-
tivities): Crawling, duck walking, falling, lying down, running,
walking, and the static postures. The next problem, the “move-
type” problem, differs from the move-type/lie problem in that



lying down is used as an additional static posture. The fourth
problem is discriminating between falls and non-falls.

A. Experimental design and data acquisition

We recruited 11 volunteers (all male, age: 20–34) via email
and word of mouth, each of whom met the firefighter eligibility
criteria: aged between 18 and 37, height of at least 166 cm,
a body-mass index (BMI) of 20–30, no problems with eyes,
ears or teeth, and of healthy and robust physical constitution.
Volunteers were invited, one at a time, to our lab in the
buildings of the Tyndall National Institute, where we instructed
them to perform several supervised trials of each activity.

To simulate some of the constraints imposed by the fire-
fighting gear we asked participants to wear heavy boots, and
carry 13 litres of water in a backpack to simulate the weight
of the SCBA that firefighters carry during operations. One
of the backpack’s shoulder straps served to hold the WIMU
in place. The WIMU, developed as part of the SAFESENS
project, is equipped with sensors for barometric pressure,
humidity, temperature (both internal and external), and a tri-
axial accelerometer, gyroscope and magnetometer. The sensor
data can be transmitted wirelessly (via BLE), or written to an
SD card. We recorded our data to the SD card at a sampling
rate of 30 Hz. Other materials used were a chair for jumping
on and off, a treadmill, and an inflatable mattress for falling
and lying down.

To aid with labelling the data, trials were timed by the
experimenter, and participants instructed to tap the WIMU
before and after each trial. To avoid potential bias in the
data, the sequence in which the tasks were performed by
each participant was randomised. For each repetition (trial),
participants were further instructed to enact a (randomly
chosen) variant of the task.

1) Falling: Participants were instructed to stand beside the
mattress, then fall onto it, lay still for a moment, get up, and
assume the starting position. For each trial, participants were
instructed to fall either forward, or to the side.

2) Jumping: Participants were instructed to stand in front
of (or on) the chair, jump onto (or off) it, pause for a moment,
and finish by getting back in the starting position.

3) Horizontal walking, crawling, and duck-walking: Partic-
ipants were instructed to move around the hallway and room
in the specified manner for one minute per trial, or until they
felt exhausted. For each walking trial they were instructed to
walk at either slow, regular, or fast speed.

4) Horizontal running: Represented through two trials:
running on the treadmill (to capture running at a steady ve-
locity), and in the hallway (to capture turns and more realistic
accelerations). For treadmill running, participants were asked
to run at slow (7 km/h), regular (10 km/h) or fast (12 km/h)
speed for 90 seconds. For hallway running, participants were
instructed to run from one end of the hallway to the other at
either slow, regular or fast speed. As many hallway running
trials as needed were performed to obtain a total of 90 seconds
of data from each participant.

5) Walking, and running, up and down the stairs: Partic-
ipants were instructed to position themselves at the top or
bottom of the staircase, then walk (or run) down (or up) the
stairs, stop, and return to the starting position. We performed
as many trials as necessary to obtain 90 seconds of data from
each participant who were instructed to ascend or descend at
either slow, regular, or fast speed.

6) Static: The static tasks, or postures, are standing, sitting,
crouching, being on ones hands and knees (all 4s), and lying
down. For these tasks participants were instructed to assume
the specified position for one minute per trial. All the static
tasks, with the exception of crouching and being on all fours,
had designated variants. For standing they were to either stand
upright, bent forward with hands on knees, or leaning against
the wall (with shoulder or back). For sitting the variants were
to either sit in normal position on a chair, upright on the floor,
or on the floor with the back or shoulder(s) leaning against the
wall. Finally, for lying the variants were to lie either face-down
on one’s front, or on the side.

B. Data pre-processing

The collected data was prepared as follows. First, the coor-
dinate systems are aligned to conform to the same notion of
up and down. Then a median-filter with a window size of 3 is
applied to smooth the signal. Next, the (median-filtered) signal
is resampled to a constant (its mean) sampling frequency. If the
original signal is not sampled with a constant frequency due to
potential hardware limitations, then the resampled signal will
contain gaps. These gaps were filled by linear interpolation,
which is a reasonable approximation in the absence of further
information.

In the next step, we replace each of the accelerometer
signal’s channels (x, y, z) with two derived features, namely
its gravity and body component. The accelerometer captures
acceleration from two sources: the earth’s gravitation, and the
movement of the IMU and its wearer. Because it is those
movements we are interested in, it is a good idea to separate
the two components. This is achieved following the approach
described in [11]. The original signal contains no additional
information and is not used further. Finally, the signal is
segmented into 3-second sliding windows with one second
overlap. The resulting data-set consists of 16 621 windows
(instances), distributed as follows: on all fours: 5.8%, crouch:
4.4%, sit: 9.8%, stand: 8.6%, lie: 6%, crawl (hands & knees):
6.1%, crawl (mil.): 5%, duck walk: 4%, fall: 0.6%, jump off/
on: 0.9% each, run hallway: 2.9%, run treadmill: 9.4%, run up:
5.6%, run down: 5.7%, walk horizontally: 5.9%, walk down:
8.2%, and walk up: 10.2%.

C. Feature extraction

We selected seven time-domain (mean, sample standard de-
viation, skew, kurtosis, inter-quartile range, signal magnitude
area, and pairwise correlations between each sensor’s x, y,
and z channels) and two frequency-domain (spectral power
entropy and peak power frequency) features that have proven
useful in previous HAR applications, and extracted these from



the gyroscope, and the gravity and body acceleration. Most of
these features are statistical (e.g., mean, skew) and follow their
usual definitions.

The signal magnitude area (SMA) combines multiple chan-
nels into a single measure of the signal’s cumulative magnitude
relative to the signal’s duration. It has proven useful in
previous HAR work, particularly for distinguishing between
periods of activity and rest [11]. The SMA was extracted from
the gyroscope, and the body and gravity acceleration signals.

Both the Spectral Power Entropy (SPE) and the Peak Power
Frequency (PPF) are popular frequency-domain features. Both
rely on a uniform sampling rate, and an estimate of the power
spectral density (PSD). For the SPE this was estimated via the
periodogram, for the PPF via Welch’s method. The SPE was
then calculated following [12].

D. Algorithm tuning

We used the same procedure to separately tune each al-
gorithm for each of the four problems. The procedure has
been designed, following current best practices from the HAR
and machine learning literature, to minimise the likelihood
of setting an algorithm’s parameters to a set of values that
leads to a large generalisation error. It requires us to define
a resampling method for estimating the generalisation error,
and an objective function (metric) that measures it. We used
the mean absolute error (MAE) as the metric to be minimised
and leave-one-subject-out cross-validation (LOSO-CV) as the
resampling method for estimating it. We chose the MAE
because, unlike performance metrics such as Accuracy, it does
not depend on the misclassification costs. We further have to
specify the parameters and corresponding set of values that
should be searched by the procedure.

The procedure’s first step is to randomly split the data-set
into a 70% development set, and a 30% validation set. Then,
using the development set only, it estimates the train and
test error using the chosen resampling method (LOSO-CV)
and metric (MAE). These estimates are then used to choose
the best parameter settings following a minimax approach:
the parameter settings with the lowest upper 95% confidence
interval (C.I.) are selected. The selected settings are then used
to train the algorithm on the full development set, and calculate
its MAE on the validation set. This quantity is then compared
against the C.I. to validate the parameter settings for the
algorithm.

IV. RESULTS AND DISCUSSION

For kNN, the tuning procedure was applied over the values
2, 5, 10, 20, 40, 80, and 160 for k, the size of the neigh-
borhood, and both weighted (by the inverse distance) and
unweighted voting was considered. The procedure leads to
k = 2 and weighted voting regardless of the problem. For
SVM, the tuning procedure was applied over the values 10−9,
10−6, 0.001, 1, and 1000 for γ, the coefficient for the Radial
Basis Function (RBF) kernel, and 0.01, 1.778, 316, 56 234, and
107 for C, the penalty term. The procedure leads to γ = 0.001
regardless of the problem, and to C = 107 for the move-type

and move-type/lie problem, C = 316.228 for the 17-activity
problem, and C = 1.778 for fall detection.

The GBT is an ensemble of trees and as such depends
on a tree induction algorithm. We use the Classification and
Regression Tree (CART) algorithm [13, chap. 9] for this
purpose. Other tree-induction algorithms, namely C4.5 and
C5.0, exist, but if trees are shallow (which generally leads
to better results in boosted ensembles), their ability to prune
trees is unlikely to make a significant impact. Trees are kept
simple by imposing a maximum of 16 leafs per tree, 9 features
per split, and a minimum of 11 samples per leaf. To further
safeguard against overfitting, each tree is restricted to a 30%
sample.

For GBT, the tuning procedure was applied over the values
0.02, 0.04, 0.06, 0.08, and 0.1 for α, the learning rate, and
over values 50–1600 for M , the number of boosting iterations.
The procedure leads to α = 0.02 for the fall detection and the
17-activity, and α = 0.1 for the move-type and move-type/lie
problem. The procedure suggests 1600 iterations regardless
of the problem but we found that the loss gradient flattens
considerably after about 200 iterations. Beyond 600 iterations
the improvements are marginal at best and no longer justify
the additional computing time. We used 750 iterations in our
final GBT.

Using these settings, we estimated each algorithm’s
subject-dependent/-independent performance via 11-fold
cross-validation (CV), and LOSO-CV, respectively. The
results for the three multi-class problems are listed in tables
I–III. The results for the fourth problem (fall detection) are
as follows: the subject-dependent (CV) MAE (and Accuracy)
scores for GBT, SVM and kNN are 0.06% (99.96%),
0.05% (99.98%), and 0.02% (99.99%), respectively. The
corresponding subject-independent (LOSO) scores are 0.17%
(99.86%), 0.12% (99.92%), and 0.1% (99.92%).

Looking at these results in combination, we note that all
three classifiers are able to discriminate among the targeted ac-
tivities accurately, with the class-wise subject-dependent MAE
ranging from 0.02% to 5.57%, and the subject-independent
MAE from 0.1% to 11.76%. GBT performs the best on
the three multi-class problems, followed closely by SVM.
However, despite the small difference (0.2–1%) between their
average scores, GBT’s class-wise MAEs are more balanced
across the target classes. For fall detection, the order is
reversed and kNN outperforms SVM by about 0.02%, GBT
by about 0.05%. However, falls are difficult to simulate, and
this may be an artefact of the experimental design.

V. CONCLUSION

We showed that Gradient Boosted Trees (GBT) can be
used to recognise up to 17 human activities for monitoring
first responders during operations, with subject-independent
and -dependent accuracy of over 73% and 97%, respectively.
By merging the 17 activities into more general groups we
obtained four classification problems which we used for tuning
and benchmarking three popular machine learning algorithms,
namely GBT, kNN and SVM. The results show that GBT tends



TABLE I
MAE AND OVERALL ACCURACY (%) FOR THE 17-ACTIVITY PROBLEM

LOSO CV
GBT SVM kNN GBT SVM kNN

All 4s 4.04 4.74 5.99 0.26 1.60 2.51
Crawl H & K 1.69 1.43 1.88 0.10 0.27 0.25
Crawl Mil. 2.12 1.74 2.17 0.19 0.39 0.41
Crouch 6.16 5.77 7.22 0.33 2.57 3.42
Duck walk 1.59 1.27 1.04 0.08 0.23 0.11
Fall 0.21 0.25 0.10 0.05 0.10 0.02
Jump off 0.81 1.06 0.84 0.35 0.48 0.26
Jump on 0.60 0.76 0.58 0.23 0.29 0.13
Lie 2.65 3.24 3.82 0.10 1.05 1.24
Run 5.18 5.38 5.58 1.41 1.84 1.26
Run down 4.05 4.21 4.44 1.08 1.52 1.31
Run up 3.24 3.98 4.39 1.00 1.22 0.94
Sit 6.84 8.47 9.74 0.30 4.25 4.35
Stand 8.53 10.45 11.76 0.43 5.55 5.57
Walk 4.78 4.80 6.03 0.71 1.25 1.53
Walk down 6.07 5.17 7.54 1.24 1.72 2.33
Walk up 3.78 3.89 6.01 0.61 0.91 1.17

Mean MAE 3.67 3.92 4.65 0.50 1.48 1.58
Accuracy 73.29 72.46 61.49 97.68 93.23 88.77

TABLE II
MAE AND OVERALL ACCURACY (%) FOR THE MOVE-TYPE/LIE PROBLEM

LOSO CV
GBT SVM kNN GBT SVM kNN

Crawl 1.48 1.10 2.00 0.10 0.23 0.33
Duck walk 1.51 0.92 1.04 0.06 0.16 0.11
Fall 0.17 0.17 0.1 0.05 0.07 0.02
Jump 0.75 0.80 0.83 0.29 0.41 0.27
Lie 3.10 3.45 3.82 0.11 1.19 1.24
Run 3.84 5.76 6.77 1.02 2.05 1.98
Static 3.81 4.49 5.34 0.15 1.32 1.71
Walk 4.18 5.89 7.45 0.87 1.85 2.31

Mean MAE 2.35 2.82 3.42 0.33 0.91 1.00
Accuracy 90.99 90.8 86.74 98.9 97.92 96.79

TABLE III
MAE AND OVERALL ACCURACY (%) FOR THE MOVE-TYPE PROBLEM

LOSO CV
GBT SVM kNN GBT SVM kNN

Crawl 1.38 1.08 2.00 0.10 0.22 0.33
Duck walk 1.48 0.91 1.04 0.06 0.15 0.11
Fall 0.16 0.17 0.10 0.04 0.07 0.02
Jump 0.75 0.79 0.83 0.29 0.40 0.27
Run 4.00 5.74 6.77 0.99 2.04 1.98
Static 0.71 1.10 1.65 0.04 0.18 0.51
Walk 4.35 5.79 7.45 0.85 1.83 2.31

Mean MAE 1.83 2.23 2.83 0.34 0.70 0.79
Accuracy 94.03 93.86 90.41 99.02 98.62 97.74

to fewer misclassifications, distributed more evenly among the
target classes, than kNN or SVM.
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