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Abstract— With the continuous developments in vision sensor 

technology, highly miniaturized low-power and wearable vision 

sensing is becoming a reality. Several wearable vision applications 

exist which involve point tracking. The ability to efficiently detect 

points at a sub-pixel level can be beneficial, as the accuracy of 

point detection is no longer limited to the resolution of the vision 

sensor. In this work, we propose a novel Simplified 

Linear Interpolation (SLI) algorithm that achieves high 

computational efficiency, which outperforms existing algorithms 

in terms of the accuracy under certain conditions. We present the 

principles underlying our algorithm and evaluate it in a series of 

test scenarios. Its performance is finally compared to 

similar algorithms currently available in the literature. 

Keywords—sub-pixel; point detection; low power; wearable; 

vision; approximation 

I.  INTRODUCTION 

Visual point detection is an important task in the field of 

digital image processing. The ability to accurately and precisely 

estimate the position of a given point of interest is fundamental 

in point tracking as well as many other image processing 

applications, including: object detection (template matching), 

pattern recognition, etc. The success of such applications in 

meeting their objectives relies on the performance of the 

underlying lower-level algorithms, such as image segmentation 

and feature detection, of which point detection is an integral 

part [1]. A variety of interesting application spaces emerge for 

visual point tracking with the continuous developments in 

sensor technology. Some of the recent advances in lens-less 

vision sensor technologies show that the dependency on 

traditional lenses, often the largest component of a typical 

vision sensor system, can be eliminated, thus significantly 

reducing the physical size while achieving an equivalent 

performance level [2, 3]. Although such camera systems do not 

perform to the same optical level as traditional cameras do, 

these can still be suitable for applications that involve point 

detection and tracking. This can be particularly significant in 

the context of low-power, miniaturized and connected wearable 

motion tracking devices. 

Low-power wearable vision systems, however, face several 

challenges. Digital image processing, for example, can be 

computationally intensive. Whereas it is not a limiting factor in 

traditional image processing applications that utilize virtually 

unlimited resources, as far as the application designer is 

concerned, it can be very significant if the processing is carried 

out on miniaturized low-power wearable platforms. 

There are several factors that contribute to the 

computational complexity of an algorithm. One of the most 

challenging situations is the fact that many applications require 

the system to process the image frames at interactive rates, e.g. 

25 frames pes second or more. This can be extremely 

challenging when tens of frames must be processed each 

second. Moreover, it is often the case that image processing 

algorithms comprise multiple stages, therefore a given input 

frame must be processed more than once before proceeding to 

the following frame. Furthermore, the resolution of the imaging 

sensor has a major impact on image processing speed. Although 

a higher resolution helps capture more information from the 

environment, it occurs at the expense of either increasing the 

processing power of the hardware or decreasing the frame rate 

of the output. On the other hand, lower resolution image frames 

can help to increase the frame rate, but the accuracy and 

precision of the output are often compromised.  

One of the possible ways to resolve these challenges can be 

to assume a semi-controlled ambient environment to eliminate 

unnecessary sources of noise. In a typical point tracking 

application, the point detection algorithm is focused on finding 

the coordinates of blobs that represent the points in the image. 

The blobs can be extracted from an image by assuming that the 

points to be tracked are specific sources of light, e.g. infrared 

LEDs, and the vision sensor is fitted with an appropriate optical 

filter. This net result being that only the sources of light that 

represent the points are captured by the sensor. Thus, the noise 

floor in the image should be low and uniform, and the 

magnitude of the blobs’ peaks should be well above the noise 

floor, making them easily identifiable. The intensity of the 

sources of light can be controlled in such a way that no pixels 

in the sensor are saturated. Moreover, the Field-of-View (FOV) 
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of the imaging sensor can be reduced to pixels that lie within 

such a radius that the geometric distortions can be neglected [4]. 

Under these conditions, the sources of light should appear as 

Point Spread Functions (PSF) with Gaussian characteristics [5], 

over an area between 3x3 and 6x6 pixels. Coupling the sensor 

with the ambient environment can significantly increase the 

efficiency of point detection algorithms at pixel level. Indeed, 

the pixel-level point finding algorithms can be limited to 

finding the local maxima in the image. Secondly, the resolution 

of the sensor can be decreased to reduce the number of pixels 

to be processed in each frame, thus further increasing the speed 

of pixel-level point detection algorithms. 

However, in most point tracking applications, a lower 

resolution image decreases the accuracy of point detection to an 

unacceptable level at the pixel level. This limitation can be 

overcome by finding the coordinates of the points at sub-pixel 

level. The true coordinates of the points are located about the 

detected peaks at the pixel level. The coordinates of the points 

can be refined to sub-pixel level by inspecting the 

neighbourhood of the peak pixel intensity, thus overcoming the 

limitations of the pixel resolution of the imaging sensor. The 

neighbouring pixel intensities contain the necessary 

information required to help estimate the location of the true 

intensity peak at the sub-pixel level. Fig. 1 depicts a typical 

pixel-level and sub-pixel level intensity peak sampled along the 

x-dimension. The super-resolution methods for sub-pixel point 

detection are well documented in literature [5, 6]. Historically, 

the ratio of the time taken by a computer program to detect a 

point at pixel level was much higher than the time taken to 

detect the point at sub-pixel level. Therefore, more attention 

was usually paid to the accuracy of the sub-pixel detection 

algorithms than the time requirements of the computation as 

this was seen to be negligible due to high processing power of 

the computing platform. This is not always the case in the 

context of ultra-low-power wearable platforms. Such resource 

constrained systems by their nature have limited resources. This 

is particularly the case for those that rely on the intelligent 

coupling of the sensor with the ambient environment as 

described above. In this case, the point detection at pixel level 

can be simplified to such a degree that the timing of a given 

sub-pixel detection algorithm may become as important as its 

accuracy; thus, this work considers these two criteria as equally 

important.  

The goal of this work is to compare and contrast the state-

of-the-art algorithms in this field to a proposed novel approach 

that could both accurately and efficiently estimate the peak 

intensities at sub-pixel level. This paper is structured around 

three main stages. Firstly, the Simplified Linear Interpolation 

(SLI) algorithm for sub-pixel point detection is proposed. Then 

its performance is evaluated and compared to two similar and 

well established algorithms in literature. Finally, the work is 

concluded with the analysis of the major findings and 

suggestions for future works. 

II. METHODOLOGY 

State-of-the-Art 

Linear interpolation methods assume that a linear 

relationship exists between the points surrounding the 

interpolated value. It is one of the simpler and often most 

efficient ways to perform the interpolation, such as that based 

on the 1st order Newton’s Divided Difference method [7].  

However, it cannot be directly applied to sub-pixel peak 

detection. The identification of the sub-pixel point source is 

different from the typical problems that use linear interpolation. 

Whereas a typical interpolation problem involves finding the 

intensity value at a specific and known location, the sub-pixel 

peak detection is aimed at finding the coordinates of the true 

intensity peak, where neither the coordinates nor the intensity 

of the true peak are known. Therefore, the detection algorithms 

may only rely on the intensity values of the pixels that surround 

the true peak, as in Fig. 1. The coordinates of the intensity peak 

at sub-pixel level are defined by x and y, as in (1), where X and 

Y are the pixel-level x-y coordinates, and 𝛿𝑥 and 𝛿𝑦 represent 

the displacements, or sub-pixel offset, of the true peak from the 

detected pixel-level peak at the coordinates X-Y. Thus, the 

pixel-level point coordinates are refined to sub-pixel level by 

finding the values of 𝛿𝑥 and 𝛿𝑦. Fig. 1 shows a typical 1-

dimensional (1D) scenario with the Gaussian PSF sampled at 

the pixel resolution with the peak coordinate refined to the sub-

pixel level.   

 

𝑥 = 𝑋 + 𝛿𝑥;  𝑦 = 𝑌 + 𝛿𝑦   (1) 

 

 
Figure 1: Typical 1D Gaussian PSF with peak at mean 𝜇 = 𝑋 + 𝛿 and std. 

dev. σ=1, sampled at pixel intervals: 𝑋 − 1, 𝑋, 𝑋 + 1 

One of reference algorithms covered in the literature is the 

Linear Interpolation (LI), as described in [6]. It is 

computationally efficient when compared to other comparable 

algorithms. It leverages the assumption that the spread of pixel 

intensity values around the peak is defined by a linear 

relationship. Therefore, it defines 𝛿𝑥 as half the ratio of the 

difference between the preceding and the following pixel 

intensities (a in Fig. 1) to the difference between the peak pixel 

intensity and the lower peak of the two surrounding pixels (the 

peak located at X-1 in Fig. 1). Its accuracy is lower when 

compared to slower methods, such as the Gaussian 



 

 

Approximation (GA), [6]. The GA, similarly to the LI, exploits 

the pixel around the observed intensity peak, but instead of 

assuming a linear relationship, it assumes a Gaussian spread of 

the intensities around the observed peak. It defines the sub-pixel 

offset 𝛿𝑥 in a similar way to that of the LI, but it differs in that 

it is based on a ratio of natural logarithms of the pixel intensities 

around the observed peak intensity. 

There exists a range of other algorithms for super-resolution 

point detection. Some of these algorithms demonstrate very 

good accuracy and robustness in the presence of noise, but they 

are too complex from computational requirements’ point of 

view. It makes them unsuitable in the context of the considered 

application space. For this reason, we decided to focus on the 

LI and GA. The LI was chosen, because it was mathematically 

the closest to the proposed SLI. The GA was chosen because it 

achieved the best performance in terms of accuracy. 

SLI Algorithm  

The proposed SLI algorithm achieves a faster calculation of 

the sub-pixel offset 𝛿𝑥, compared to other methods. This section 

discusses the SLI algorithm in detail. The approach is based on 

linear interpolation but it uses the assumption of a linear 

relationship differently to methods described in the State-of-

the-Art section. The underlying principles of the SLI algorithm 

can be explained using the trigonometric properties of similar 

triangles, as shown in Fig. 2. The pixel-level intensities of the 

peak and the two surrounding pixels, from Fig. 1, are 

approximated to the sides a and b of the two similar triangles.  

Similarly, the unknown sub-pixel offset from the observed 

pixel-level peak, δ, forms the horizontal side of the smaller 

triangle. The uncertainty area, i.e. the distance between X and 

X±0.5, as shown in Fig. 1, is equal to one, because this is the 

maximum absolute value that the sub-pixel offset 𝛿𝑥 may have 

around the given observed peak without having an error at 

pixel-level. Indeed, 𝛿𝑥 lies within ±0.5, as depicted in Fig. 1 and 

Fig. 2. 

 

 
Figure 2: Pixel Intensity Approximation to Similar Triangles 

 

The SLI relates the pixel intensities at and around the 

observed peak to the sub-pixel offset 𝛿𝑥 as a ratio of the 

difference between the pixel intensities of the two pixels 

surrounding the observed peak to the pixel intensity of the 

observed peak, as in (2): 

 

𝛿𝑥 =
𝑎

𝑏
=

𝑓(𝑋+1)−𝑓(𝑋−1)

𝑓(𝑋)
;     𝛿𝑥 ∈< −0.5,0.5 > (2) 

 

The maximum value of the computed 𝛿𝑥 is capped to 𝛿𝑥 =
±0.5 pixel. Moreover, due to the way the numerator of SLI is 

constructed, the sign of the resultant sub-pixel offset 𝛿𝑥 is 

determined intrinsically. It is clear that this approach can help –

reduce the amount of required computations, thus increasing the 

speed of the execution, but it can likely compromise the mean 

accuracy of the measurement. There may exist such 

circumstances under which the SLI’s performance may be 

comparable to that of the more complex algorithms, as 

described in sections III-IV. 

III. SIMULATIONS 

The performance of the SLI algorithm has been evaluated 

against the GA and LI algorithms using two criteria, i.e. the 

Root Mean Square Error (RMSE) and relative time of 

execution. The RMSE criterion was chosen to estimate the error 

over a large set of statistically random input parameters. The 

PSF was modelled using a 1D Gaussian distribution with 

generic centre. The two input parameters were the mean µ and 

standard deviation σ that vary randomly within specific 

intervals, as in (3): 

 

µ = X +  𝛿µ;  𝛿µ ∈< 0, 0.5 >;  σ ∈< 0.5, 3 > (3) 

 

The choice of the centre of the observed peak at pixel level was 

arbitrary as it does not affect the results. The range of values of 

𝛿µ was chosen to simulate every possible positive sub-pixel 

offset that may occur. The negative values of 𝛿µ were ignored 

as the results would have been the mirror of the results obtained 

with the positive 𝛿µ due to the assumption of the symmetry of 

the PSF. The range of the standard deviation values was 

selected to simulate the most likely variations in the spread of 

the PSF, detected by the vision sensor, typically caused by the 

changes in the properties of the ambient light sources, such as 

the changes in the intensity or the distance from the vision 

sensor. 

The simulations were carried out as follows:  

• For each pair of <µ, σ> input parameters, the related 

PSF model was generated depending on the scenario: 

both input parameters were random, one parameter was 

set to a specific value while the other was random;  

• The pixel intensity values were sampled at the integer 

pixel locations around the observed peak;  

• The sampled intensity samples were passed to the GA, 

LI and SLI algorithms to compute the sub-pixel offset 

𝛿𝑥; 

• The error in the algorithms’ output was computed, 

which is defined as the difference between 𝛿𝑥 and 𝛿µ, 

from (1) and (3), as in (4): 

 

𝑒𝑟𝑟𝑜𝑟 = 𝛿µ − 𝛿𝑥    (4) 

 

The Root Mean Square Error (RMSE) is then defined as in (5), 

where N is the number of iterations: 

 

 
δ 1-δ 

b 

a 



 

 

𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑟𝑟𝑜𝑟2

𝑁
;   𝑁 = 106  (5) 

 

The value of N was chosen to be relatively large to establish the 

mean performance over a large set of input parameter pairs. 

The relative time of execution was defined as the mean time 

taken by each algorithm to return the result, i.e. as the mean of 

the execution times 𝑡𝑖 of each iteration i over all N iterations, 

(6): 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 =
∑ 𝑡𝑖

𝑁
𝑖=1

𝑁
  (6) 

 

IV. RESULTS AND DISCUSSION 

Each algorithms’ performance was evaluated under three 

main scenarios: 

1. Both the mean µ and std. dev. σ were random, and 

contained in intervals defined in (3); 

2. Worst case scenario for std. dev. σ=3 and random 

mean µ, as defined in (3); 

3. Worst case scenario for mean, i.e. 𝛿µ = 0.5  and 

random std. dev. σ, as defined in (3); 

All results of the simulations are tabulated in Table 1. The 

SLI achieved the shortest relative mean execution time of all 

methods. It was the least accurate method of the three 

algorithms in all scenarios. The LI outperformed it by a factor 

of approximately three, given the mean performance of the 

Scenario 1. Although, the SLI achieved the shortest relative 

execution time in these three scenarios, the accuracy was 

significantly lower compared to the other methods.  

It is worth noting that the RMSE of the GA was consistently 

low in all scenarios. This result is achieved for two reasons. 

Firstly, the GA assumes a Gaussian spread of pixel intensity 

values and the way the simulated PSF was modelled was very 

close to it. Secondly, we decided to not superimpose any white 

noise on the simulated PSF, which would have altered its 

performance [6]. Instead, the relative execution time of the GA 

was in the main focus and was used in the evaluation while the 

RMSE values were added to the table for consistency reasons. 

While the GA was the most accurate method under these 

scenario, it had the highest relative execution time; notably, its 

execution time was approximately twice as long as that of the 

SLI. 

 
Table 1: Performance Evaluation Results 

 
 

SLI LI GA 

RMSE Time 

[𝟏𝟎−𝟔] 
RMSE Time 

[𝟏𝟎−𝟔] 
RMSE Time 

[𝟏𝟎−𝟔] 

1 0.1462 0.717 0.0483 1.21 0.0010 1.69 

2 0.2279 0.686 0.0589 1.17 0.0010 1.68 

3 0.2433 0.716 0.0008 1.18 0.0010 1.67 

 

A set of preliminary simulations revealed an interesting 

behaviour of the SLI around 𝜎 = 1.2. Therefore, an additional 

scenario was included in the evaluation process. The SLI 

demonstrated excellent performance in this scenario, wherein it 

outperformed the LI with respect to both selection criteria; the 

RMSE was 0.0026 and the relative time was 0.705. Results of 

the simulations are shown in Fig. 3 and Fig. 4. Fig. 3 

demonstrates how the error in SLI’s output varies as a function 

of the standard deviation 𝜎 for four fixed values of 𝛿µ; one with 

the extreme value of 𝛿µ = 0.5 for which the error is expected to 

be the largest and three others for which the error should be 

closer to the RMSE value. A marker in Fig. 3 is set at 𝜎 = 1.2 

to emphasize the error for the different values of δµ. It is clear 

that the error is limited and that all four curves intersect at this 

value of 𝜎. Fig. 4 further supports this observation by showing 

the relationship between the true 𝛿µ and the computed 𝛿𝑥, over 

the full range of the sub-pixel offset values. This figure suggests 

that there is a linear relationship between 𝛿µ and 𝛿𝑥 at 𝜎 = 1.2; 

which means that the error is not only small but also uniform 

across the entire range of 𝛿µ. 

 

 
Figure 3: Additional Scenario: error for four values of 𝛿µ as a function of σ 

 
Figure 4: Additional Scenario: True 𝛿µ vs computed 𝛿𝑥 by the SLI at constant 

σ=1.2 

The results of this additional scenario indicate that, despite 

the simplicity of SLI, this method presents an operating point, 

at which the error would be low and uniform. It may be possible 

to recreate such conditions (by coupling the vision system and 



 

 

the ambient environment) so that this performance level may be 

achievable also with a real-world setup. 

A mathematical explanation for such performance is 

suggested by the comparison of the denominators of the LI and 

SLI. These values can be approximated under specific 

circumstances. Thus, it could be considered a simplified 

approximation of the LI, as in (7): 

 

2(𝑓(𝑋) − 𝑓(𝑋 − 1)) ≅ 𝑓(𝑋)  (7) 

 

Fig. 5 shows a simulated Gaussian distribution that reproduces 

these conditions on a specific example with |𝛿𝜇| = 0.5, 

2(𝑓(𝑋) − 𝑓(𝑋 − 1)) ≅ 𝑓(𝑋) ≅ 0.3048. At this value of 𝜎 and 

𝛿𝜇, the ratio (R) of 𝑓(𝑋 − 1) to 𝑓(𝑋) is equal to approximately 

a half, as shown in Fig. 5.  

 
Figure 5: Peak of a Normal Distribution with sub-pixel offset 𝛿µ = 0.5 and 𝜎 =

1.2 

Although, this relationship exists only at |𝛿𝜇| = 0.5, it could 

be possible to apply it to the complete range of values of 𝛿𝜇 over 

all values of standard deviation 𝜎 in the range. This possibility 

was investigated by modifying the denominator of SLI with a 

parameter 𝛼 whose value depends on 𝜎, as in (8)-(9): 

 

2(𝑓(𝑋) − 𝑓(𝑋 − 1)) =  𝛼(𝜎)𝑓(𝑋)   (8) 

 

𝛼(𝜎) = 2 (1 −
𝑓(𝑋−1)

𝑓(𝑋)
)                                             (9) 

 

An algorithm was developed to evaluate this approach 

(SLI_A). Initially, a look-up table was generated using a 

constant 𝛿𝜇 = 0.25, for which the error was expected to be the 

largest. A set of Normal Distributions was generated for each 

value of 𝜎, as in (3), except for the constant 𝛿𝜇 = 0.25. The 

value of 𝜎 was estimated by computing the ratio R from the 

generated PDF, which was one of the most efficient methods. 

Therefore, for each value of 𝜎, the ratio R and the parameter 𝛼 

were computed, quantized and saved in the look-up table. The 

resultant SLI_A algorithm had two additional stages, when 

compared to the original SLI: the computation of the ratio R and 

a search procedure through the quantization steps in the look-

up table. Subsequently, the performance of the SLI_A was 

compared to the original version, SLI, using Scenario 1. The 

RMSE of the SLI_A was almost identical to that of the SLI, 

thus no decrease in RMSE to justify the increased 

computational complexity. The SLI_A was further investigated 

to try to estimate conditions under which it could out-perform 

the SLI; by assuming the value of 𝛼 depended on both 𝛿𝜇 and 

𝜎. The Scenario 3 was used to validate it, with the exception for 

the constant 𝛿𝜇 = 0.25. These results are shown in Table 2; the 

asterisk implies Scenario 3 with 𝛿𝜇 = 0.25. In this scenario, the 

SLI_A outperformed the SLI. Moreover, its RMSE approached 

that of the LI, shown in Table 1. However, while it did achieve 

low RMSE, it was impractical because 𝛼 depends on the 

variable that the algorithm is aimed to compute. A more 

complex approach to solving this problem can be based on a 

recursive set-up which relies on past value(s) of 𝛿𝑥 to compute 

the current value of 𝛿𝑥. However, this may be challenging, as, 

even though the best performance of the SLI_A could approach 

LI’s accuracy, the computational complexity associated with it 

would be far greater, thus making it impractical.  

 
Table 2: Performance Evaluation of SLI_A 

 

 
SLI_A SLI 

RMSE Time 

[𝟏𝟎−𝟔] 
RMSE Time 

[𝟏𝟎−𝟔] 

Scenario 1 0.1347 2.24 0.1464 0.674 

Scenario 3* 0.0782 2.26 0.1318 0.627 

 

V. CONCLUSIONS AND FUTURE WORKS 

In this work, a novel sub-pixel point detection algorithm 

was proposed. It was derived to show how a Gaussian PSF 

could be approximated to a linear interpolation in a simplified 

way using the trigonometric principles of similar triangles, with 

the aim of achieving higher computational efficiency. The 

performance of the algorithm was evaluated and compared 

against two existing methods in a series of simulations. These 

three algorithms were subjected to different test scenarios. The 

performance criteria were the RMSE and relative execution 

time. The SLI was the fastest method in all cases. It 

underperformed the other two methods in the first 3 scenarios 

in terms of the RMSE. However, it yielded excellent results in 

the last scenario where it provided a better accuracy than the 

slower but generally more accurate LI algorithm. 

This simulation comparison revealed that SLI can perform 

very well under specific conditions, i.e. when the standard 

deviation σ≈1.2. This could be a realistic scenario in a set-up 

where a wearable vision sensing platform is intelligently 

coupled with the ambient environment to ensure that the 

ambient conditions in vision sensor’s FOV are close to those 

simulated ones. If these conditions are met, then an accurate 

point detection at sub-pixel level should be possible in the low-

power wearable setup using the more computationally efficient 

SLI algorithm. 

The future works will involve the validation of these 

simulations in an experimental setup that will resemble the 

assumed conditions in this work.  
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