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ABSTRACT 

 
ASPECTS OF THE LIFE HISTORY AND TAXONOMY OF DEEP-SEA 
CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN 

 
by Paul J. Clerkin 

 
During the last quarter of a century, the conservation and management of 

chondrichthyans (collectively, sharks, rays, and chimaeras) has received considerable 

focus. This is especially true for deep-sea chondrichthyans. As technologically advanced 

fisheries expand into deeper waters of the high seas, new chondrichthyan species are 

being discovered and described at an increasing rate. The objectives of this study were to 

investigate the deep-sea chondricthyan fauna in a remote region of the Southwestern 

Indian Ocean Offshore and provide descriptions of three species of Chimaeridae 

previously unknown to science, and collect and analyze biological parameters relating to 

the life histories of all shark species encountered. Specimens were collected as bycatch in 

deep-sea fisheries from 46 sites along deepwater seamounts of the Southwest Indian 

Ocean Ridge and the Madagascar Ridge. Among the species encountered were three 

relatively large chimaeroids which, upon closer examination, were determined to be 

distinct from all other known members of the family. A description these three new 

species is presented. A total of 4009 specimens were examined and sex ratios, size range, 

smallest mature, largest immature, and length at 50% maturity (LT50) calculated. Detailed 

information is presented on the reproductive biology, life history, and distribution of 31 

species representing 14 genera. 
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General Introduction 
 

Chondrichthyans are among our oceans’ most successful groups of fishes, and are 

widespread as top predators in virtually every marine ecosystem (Ebert and Winton, 

2010; White and Kyne, 2010; Ebert, 2013). Almost half (46.3%) of all known 

chondrichthyans inhabit coastal waters of continental shelves, but only 3.7% populate the 

neritic zone, where light penetrates to the sea floor, and epipelagic zone, where light is 

sufficient to sustain photosynthesis (Ebert and Winton, 2010; Steven, 2010; Dulvy et al., 

2014). Fewer than 1% of chondrichthyans live in the twilight of the mesopelagic zone, 

and 3.2% are freshwater obligate (Ebert and Winton, 2010; Stevens, 2010; Dulvy et al., 

2014; Kyne & Simpfendorfer 2010). Chondrichthyans also have penetrated into the harsh 

conditions of the deep-sea, with virtually half (46.0%) of known species occurring below 

the photic zone of continental and insular slopes as well as on the abyssal plains and 

associated canyon ridges and seamounts (Kyne and Simpfendorfer, 2010; Dulvy et al., 

2014; Rigby and Simpfendorfer, 2014). 

 Twelve of the 14 orders of chondrichthyans are represented in the deep-sea, a region 

defined by Rigby and Simpfendorfer (2014) as depths beyond the photic zone, and 

commonly estimated to begin 200 m below the ocean surface (Kyne and Simpfendorfer, 

2010).  The deep-sea is habitat to 52.7% of known shark species, 38.2% of batoid 

species, and 88.9% of holocephalan species (Kyne and Simpfendorfer, 2010; Dulvy et 

al., 2014). These deepwater chondrichthyans represent 85.7% of chondrichthyan orders, 

36 (60.0%) chondrichthyan families, and 58 (56.1%) known chondricthyan genera (Kyne 
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and Simpfendorfer, 2010; Ebert, 2013, 2014; Rigby and Simpfendorfer, 2014; Eschmeyer 

et al., 2016).  

 Presently, there are over 1200 described species of extant chondrichthyans, a figure 

that includes ~516 sharks, 633 valid batoids (Kyne and Simpfendorfer, 2010; Ebert et al., 

2013; Ebert, 2013; Eschmeyer et al., 2016; Last et al., 2016), and 51 holocephalans 

(Eschmeyer and Fong, 2014; Last et al., 2016; Eschmeyer et al., 2017; Walovich et al., 

2017). The number of valid chondrichthyan species is constantly increasing as new 

species are described. In 2016, a total of 37 new species of Chondrichthyans were 

described, and as of June 2017, nine more new species, including a new holocephalan 

have been named. Notably, many new chondrichthyan species are being discovered in 

remote, deep-sea habitats (Compagno, 1990; White and Last, 2012).  

A recent study by Dulvy et al. (2014) assessed the conservation status of 1,041 

chondrichthyan species as designated by the International Union for Conservation of 

Nature (IUCN). That study revealed that nearly one-quarter (249 species or 24%) of all 

assessed chondrichthyans were Threatened, and nearly half (487 species or 46.8%) were 

categorized as Data Deficient (Heupel and Simpfendorfer, 2010; Simpfendorfer et al., 

2011; Dulvy et al., 2014). More than half (56.7%) of these Data Deficient species inhabit 

the deep-sea.  

The large number of chondrichthyans designated as Data Deficient by IUCN criteria 

highlights the extent to which basic biological knowledge as well as a fundamental 

understanding of life-history characteristics is lacking for these species (White and Last, 

2012; Rigby and Simpfendorfer, 2014). The evaluation of species productivity is heavily 
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based on life-history traits (Simpfendorfer et al., 2011; White and Last, 2012), and the 

absence of such data for deep-sea sharks results in the majority of knowledge being 

sourced from near-shore and pelagic chondrichthyan species (Rigby and Simpfendorfer, 

2014).   

Concern for the conservation and management of chondrichthyans, especially deep-

sea forms, has emerged over the past two decades (Stevens et al., 2000; Simpfendorfer 

and Kyne 2009; Kyne and Simpfendorfer, 2010). Although large variation in the group 

exists, cartilaginous fishes typically exhibit slower life histories compared to other 

vertebrate groups (Holden, 1974; White and Kyne, 2010; Hutchings et al., 2012) with 

many members characterized by slow growth, large body size, late onset of maturity, and 

few, well-developed offspring, each of which has a relatively high survivorship of 

reaching adulthood (Cortes, 2000; Stevens, 2000; Garcia et al., 2008; Simpfendorfer and 

Kyne, 2009; White and Last, 2012). 

Recent awareness of the high potential extinction risk of chondrichthyan species has 

sparked an international effort for the sustainable management of these fishes (Garcia et 

al., 2008; Rigby and Simpfendorfer, 2014). The Food and Agriculture Organization 

(FAO) of the United Nations highlighted this concern with the publication of the 

International Plan of Action (FAO-IPOA, 1999). In an attempt to fill in major gaps in our 

knowledge of the life-history traits of cartilaginous fishes, the United Nations Food and 

Agriculture Organization (FAO) has encouraged voluntary participation by all states 

involved in shark catches (as target or bycatch) in its International Plan of Action for the 

Conservation and Management of Sharks (IPOA-Sharks) (FAO, 2010-2014). Informed 
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management practices must rest on sound taxonomy and accurate life-history data 

(Simpfendorfer et al., 2011; White and Last, 2012).  

 A major threat confronting chondrichthyans emanates from increased fishing 

pressure for both targeted catch and bycatch (Stevens, 2000; Dulvy et al., 2014). The 

harvest of marine fish provides 20 percent of the animal protein consumed worldwide by 

roughly 3 billion people with an annual wild capture that averages about 90 million 

metric tons (FAO, 2012). Motivated by high demand and faced with the progressive 

depletion of coastal fisheries, commercial fishing operations have probed deep offshore 

waters in search of new, exploitable fish stocks (Morato et al., 2006; Garcia et al., 2008; 

Simpfendorfer and Kyne, 2009). Deep-sea chondrichthyan fauna are poorly understood, 

and little to nothing is known about the influence that bycatch attrition associated with 

commercial fishing has on their populations (Simpfendorfer and Kyne, 2009).  

Concurrent with recent fisheries expansion, new chondrichthyan species are being 

discovered and described at a rate that exceeds any previous period of time since the 

advent of the Linnaean binomial nomenclature in the mid-18th century (White and Last, 

2012). However, although more than 200 species have been described in the last decade, 

there are an estimated 70 to 100 recently discovered species still awaiting formal 

description (Ebert et al., 2013). This figure illustrates the deficiencies in our taxonomic 

knowledge and documentation of chondrichthyans as a whole, especially those inhabiting 

the deep-sea (Last, 2007; Ebert et al., 2013). As a result, our understanding of the life 

histories of deep-sea chondrichthyans is often exacerbated by taxonomic confusion, 

complexity, and misidentification of species. 
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Studies on deep-sea chondrichthyans until recently have been inhibited by 

technological difficulties associated with sampling at great depths. However, 

technological advancements have enabled the expansion of deep-sea fisheries to probe 

this previously little explored environment (Haedrich et al., 2001). Also critical to an 

understanding of deepwater chondrichthyans has been the collaboration between 

commercial deep-sea fishing corporations and chondrichthyan researchers. Prior to this 

development, deepwater sharks and rays landed as bycatch were rarely retained and were 

often misidentified, thereby providing limited or incorrect information on these species 

and the influence of the fisheries on their populations (Kyne and Simpfendorfer, 2010). 

Unfortunately, misidentification is a common challenge associated with demographic and 

population assessments of deep-sea chondrichthyans, and taxonomic uncertainties, along 

with undescribed species are contributing factors in limiting our knowledge of these 

poorly known deep-sea sharks and rays (White and Last, 2012).  

Effective and sustainable ecosystem-based management requires accurate 

identification of regional species.  As the foundation upon which biological sciences rest, 

accurate and universal taxonomy is essential to this management goal (Simpfendorfer et 

al., 2011). The history of marine science, however, has seen examples of misdirected 

management efforts based on unclear taxonomy. Thunnus albacares (Yellowfin Tuna), a 

single species with global distribution, was originally known by 27 different identities 

around the world (Gibbs and Collette 1967). Conversely, Scomberomorus (the Spanish 

mackerel), actually two species, S. maculatus (Atlantic Spanish mackerel) and S. 
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brasiliensis (Serra Spanish mackerel) with very different sizes of maturity, was for many 

years classified as a single species (Collette et al., 1978). 

Sharks and rays are no exception to the dilemma of taxonomic uncertainty. There 

have been similar cases where a single chondrichthyan species has been represented by 

different names, e.g., Centrophorus granulosus (Gulper Shark) (White et al., 2013) and 

Etmopterus granulosus (Southern Lantern Shark) (Straube et al., 2015), and where 

multiple species have been thought to be a single species, as exemplified by the critically 

endangered Dipturus batis (Common Skate ) (Griffiths et al., 2010). This once prolific 

skate was fished to near extinction and was listed as critically endangered by the IUCN 

(Dulvy et al., 2006). The Common Skate has since been shown to be composed of two 

distinct species with different sizes at maturation. Therefore, the population size of each 

individual species is smaller than previously estimated and is likely more endangered 

than assessed together as a complex (Iglesias et al., 2010). This example highlights the 

importance of accurate taxonomy and valid life-history studies. Cases such as this 

confound management efforts and call into question earlier life-history studies (Griffiths 

et al., 2010; Iglesias et al., 2010). 

The Squalus acanthias (Spiny Dogfish) species complex is another example of 

taxonomic confusion. Once considered underutilized, S. acanthias is currently assessed 

as Vulnerable globally by the IUCN due to pressure from overfishing. A widespread 

species, S. acanthias has populations in the Atlantic, Indian, and Pacific Oceans. After 

the European stocks decreased due to overexploitation, S. acanthias was commercially 

targeted off the east and west coasts of North America (White and Last, 2012). However, 

http://apps.webofknowledge.com/OneClickSearch.do?product=ZOOREC&search_mode=OneClickSearch&colName=ZOOREC&SID=4DqzlMcyYrknMcq4K3i&field=AU&value=Griffiths,%20Andrew%20M.&ut=ZOOREC:ZOOR14609059802&pos=1&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=ZOOREC&search_mode=OneClickSearch&colName=ZOOREC&SID=4DqzlMcyYrknMcq4K3i&field=AU&value=Griffiths,%20Andrew%20M.&ut=ZOOREC:ZOOR14609059802&pos=1&excludeEventConfig=ExcludeIfFromFullRecPage
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North Pacific and western Atlantic populations previously thought to be a single species 

have recently been shown to represent two distinct species: Squalus acanthias, with a 

global distribution in temperate regions except for the North Pacific where it is absent, 

and Squalus suckleyi (Pacific Spiny Dogfish), now known only to occur in the North 

Pacific, was recently resurrected by Ebert et al. (2010). These look-alike species, S. 

acanthias and S. suckleyi, were managed similarly even though each species has 

distinctly different life histories. The northwest Atlantic species (S. acanthias) matures at 

12 (females) and six (males) years old compared to the North Pacific species (S. 

suckleyi), which doesn’t mature until 35.5 (females) and 18.5 (males) years (Ebert et al., 

2010; Bigman et al., 2016). In addition, S. acanthias has a faster growth rate and a larger 

litter size of up to 25 pups compared to S. suckleyi that has a slower growth rate and a 

maximum litter size of 17 (Ketchen, 1972; Ebert et al., 2010). As a result, the east and 

west coastlines of North America require different management strategies since each 

species has a very different resilience to fishing pressure. This is a clear example of the 

importance of taxonomic understanding and its practical application in fisheries 

management. 

The chimaeroids (Chondrichthyes: Holocephali) are among one of the most poorly 

known groups of cartilaginous fishes. The Chimaeriformes form a small group of 

cartilaginous fishes that for the most part reside in deep-sea habitats along the benthic 

continental shelf (Barnett et al., 2006; Didier et al., 2012). The order comprises three 

families, six genera, and 49 recognized species (Weigmann, 2016; Eschmeyer and Fong, 

2017). The family Callorhinchidae is commonly referred to as the plow-nose chimaeras 
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since a soft plow-shaped snout characterizes members of this family. This family is the 

least diverse of the chimaeroids with only one genus and three shallow water species 

(Didier et al., 2012; Nelson, 2016). The family Rhinochimaeridae is referred to as the 

long-nose chimaeras, with members identifiable by their very elongated snout. This 

family has three genera: Harriotta (two species), Neoharriotta (three species), and 

Rhinochimaera (three species) (Didier et al., 2012; Nelson, 2016). The family 

Chimaeridae is referred to as the short-nose chimaeras, with its members characterized by 

a short, blunt, conical snout. This family Chimaeridae is globally distributed with the 

exception of polar waters (Ebert and Winton, 2010), and displays a high degree of 

endemism (Didier et al., 2012). It is the most speciose family of chimaeroids, represented 

by two genera, Chimaera, and Hydrolagus, with 14 and 23 species, respectively (Didier 

et al., 2012; Angulo et al., 2014; Eschmeyer and Fong, 2014). The number of species has 

increased by 20 since 2002 and is likely to increase further with several undescribed 

species known to exist, but awaiting formal descriptions (Kemper et al., 2015; 

Eschmeyer and Fong, 2017; Walovich et al., 2017). 

Despite the fact that commercial fisheries are active in the Southwestern Indian 

Ocean (SWIO), very little research exists addressing the deep-sea chondrichthyans from 

this large ecosystem. In order to predict the vulnerability of deep-sea chondrichthyans to 

the overharvesting and/or bycatch attrition associated with commercial exploitation of 

deep-water resources, researchers must know the maturation and growth characteristics 

of these fauna. Species-specific life-history information and taxonomic clarity are needed 
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to generate models with which to monitor deep-sea shark populations within deep-sea 

fisheries. 

The goal of this study is to catalogue the chondrichthyans fauna of the SWIO along 

the Madagascar Ridge and Southwest Indian Ocean Ridge, and to build a baseline of life 

history and population data. Chapter 1 is a taxonomic study describing three species of 

chimaeroids that appear to be morphologically distinct from any currently known species. 

Chapter 2 catalogues all the chondrichthyan species encountered from two field seasons 

(totalling 113 days) on board a deep-sea commercial trawler in the SWIO, and compiles 

an overview of associated life history information collected, e.g. general biology, length 

data, maturity, reproduction, distribution, and diet. Additionally, this chapter examines 

species abundance and species richness between the major ecosystems studied within the 

SWIO.  

The broader objective of this project aims to provide qualitative and quantitative 

descriptions on the life history characteristics of deep-sea sharks to inform policy makers. 

Informative data is required for improved development of ecosystem-based management 

strategies for the conservation of deep-sea chondrichthyan fauna. Such strategies could 

guide policy decisions that promote sustainable fisheries and conserve deep-sea 

ecosystems.  

 
 
 
 
 
 
 
 



10 
 

General Materials and Methods 
 

Survey Region 

Submarine Topology. High-relief mountains and canyons characterize the topography 

of the SWIO sea floor (Clark, 2009). One of the more prominent features, the 

Madagascar Ridge, extends 1300 km south of Madagascar as a massive plateau dividing 

the largest ecosystems in the region—the Southwest Indian Ocean Offshore—into two 

deep ocean basins (Goslin et al., 1980; Sinha et al., 1981; Collette and Parin, 1991). To 

the west of the Madagascar Ridge is the Mozambique Basin and to the east is the 

Madagascar Basin (Figure 1); both basins descend to a depth of >5,000 m. By 

comparison, the Madagascar Ridge is relatively shallow (1,500 to 2,000 m depth) (Goslin 

et al., 1980; Sinha et al., 1981; Collette and Parin, 1991). 

The Madagascar Ridge is punctuated by a series of seamounts (Goslin, 1980). These 

steeply sloped topographical features function as isolated underwater islands, supporting 

high abundance, diversity, and endemism of fish species (Clark, 2009). The shallowest of 

these seamounts, Walters Shoal, is located on the southwest part of the Madagascar 

Ridge (33°9—16'S, 43°49—56'E) (Figure 1). Rising to within 18 to 20 m of the ocean’s 

surface, this isolated cluster of submerged mountains serves as habitat for a diverse and 

unique composition of species, including a diverse group of apex predators, such as 

sharks (Hearn et al., 2010). 
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Figure 1. Map of the Southwestern Indian Ocean showing a) Madagascar Ridge, with b) 
the northern region, c) southern region (Walters Shoal), and d) the Southwest Indian 
Ocean Ridge. Trawl locations indicated by green circles; 1 March to 23 April 2012 and 
10 April to 7 June 2014. Map data: Google, Image © 2017 DigitalGlobe.  
 

Previous Exploration. Initial research efforts in the offshore area of the SWIO 

occurred around Walters Shoal in 1964 when the U.S. R/V Anton Bruun collected bottom 

samples via rock dredge that resulted in the description of seven species of invertebrates 

(Clark, 1972; Kensley, 1975).  However, before the establishment of the 200-mile 

Exclusive Economic Zones (EEZ) by several Indian Ocean coastal countries in the mid-
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1970s, little was known about the offshore fauna of the SWIO. With the restrictions 

imposed by EEZs, several countries, notably, the Union of the Soviet Socialist Republic 

(USSR) began prospecting for exploitable fisheries resources in the deep-sea of the 

Southwest Indian Ocean Offshore ecosystem (Romanov, 2003).  

Between 1973 and 1978, USSR exploratory cruises worked at Walters Shoal and 

provided some information on fish species of the area including data from a large 

collection of sharks (Gubanov, 1985; Gubanov, 1988; Collette and Parin, 1991).  In 1976, 

the French trawler, Cape-Horn, collected sharks, rockcod, and lobsters from the Walters 

Shoal area (Collette and Parin, 1991). Since the mid-1980s, there has been little research 

activity in the SWIO offshore region.  

Field Sampling 

Study Site and Field Seasons. A suite of natural and life history data (species, sex, 

length, maturity, reproduction, location, depth, and diet) from captured chondrichthyans 

were collected from 1 March to 23 April 2012 during a 54-day expedition, and again 

from 10 April to 7 June 2014 during a 59-day trip aboard the New Zealand-based deep-

sea commercial trawler F/V Will Watch. The survey area extended over the Southwest 

Indian Ocean Ridge and the Madagascar Ridge in a remote region of the SWIO described 

by 29o34’–40o40’S; 43o10’—55o15’E (Figure 1). All animals involved in this study were 

sampled in accordance with Institutional Animal Care and Use Committees (IACUC) 

protocol #801 and 2014-D.  

Specimen Collection. Otter trawl nets were deployed at 40 stations and towed 

downward along the slopes of seamounts at an initial minimum depth of 200 m to a final 
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maximum depth of 1,400 m. Roller-equipped bottom trawls with a 15 m mouth width, 50 

m wing span, and 5 m height were towed forward while making contact with the slopes 

of the seamounts. Mid-water trawls were towed approximately 2 m off slope surfaces, 

and utilized an 80-100 m wingspan and a 35 m height.  

Following net retrieval, bycatch was sorted and processed in the ship’s factory.  A 

census of species and sex data was taken to ensure integrity of species distribution and 

sex ratios. A total of 4009 individual sharks including 31 species from 14 genera were 

identified, sorted, counted, and photographed, and a suite of biological parameters were 

recorded. A list of species encountered is included in Table 1 (in Chapter two). 

Voucher specimens were shipped to Moss Landing Marine Laboratories for further 

study. Post-preservation morphometric data were taken point-to-point to the nearest 

millimeter using a slide caliper and measuring tape modified from Didier and Séret 

(2002) for chimaeroid specimens, and depending on the shark taxa, modified from 

Compagno (2001) with the following references to provide taxa specific details for the 

groups Centrophorus (White et al., 2013) Etmopterus (Ebert et al., 2011) and for 

Apristurus (Nakaya et al., 2008), and Bythaelurus (McCosker et al., 2012). Specimens 

were deposited into museum collections at the California Academy of Sciences (CAS), 

Museum of Comparative Zoology (MCZ), National Museum of Natural History, 

Smithsonian (USNM), Natural History Museum (BMNH), Scripps Institution of 

Oceanography, Marine Vertebrate Collection (SIO), South African Institute for Aquatic 

Biodiversity (SAIAB), and Iziko-South African Museum (iSAM MB). Comparative 

material was examined from the following institutions: American Museum of Natural 
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History (AMNH), Academy of Natural Science of Philadelphia (ANSP), CAS, 

Commonwealth Scientific & Industrial Research Organization, Division of Marine & 

Atmospheric Research, Hobart, Tasmania (CSIRO), Field Museum of Natural History, 

Zoology Department, Chicago, Illinois (FMNH), Hokkaido University Museum, 

Fisheries Science Center, Hakodate, Hokkaido (HUMZ), iSAM MB, MCZ, Natural 

History Museum of Los Angeles County, Los Angeles, California (LACM), Museo 

Nacional de Historia Natural, Montevideo (MNHN), SAIAB, SIO, and USNM. 

Institutional accession numbers will be assigned to all specimens deposited in 

ichthyology collections. Institutional acronyms follow Sabaj (2016). 
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Chapter One: New species of Chimaera (Chondrichthyes: Holocephali: 
Chimaeriformes: Chimaeridae) from the Southwestern Indian Ocean 

 
Introduction 

The Chimaeriformes (Chondrichthyes: Holocephali) are a small group of 

cartilaginous fishes that mostly reside in deep-sea benthic habitats along continental 

shelves and seamounts (Didier et al., 2012). The order comprises three families, 

Callorhinchidae Garman, 1901  (plow-nose chimaeras), Rhinochimaeridae Garman, 1901 

(long-nose chimaeras), and Chimaeridae Bonaparte, 1831 (short-nose chimaeras), with 

the latter family being the most species-rich with two genera and 39 described species 

(Didier et al., 2012; Kemper et al., 2015; Weigmann, 2016; Eschmeyer et al., 2017; 

Walovich et al., 2017). The two genera, Chimaera Linnaeus 1758 and Hydrolagus Gill 

1862, are morphologically very similar, both being characterized by a short, blunt, fleshy 

snout and an elongated body that tapers to a filamentous, whip-like tail (Kemper et al., 

2010a; Didier et al., 2012). The genera can be distinguished by the presence (Chimaera) 

or absence (Hydrolagus) of an anal fin (Gill, 1862). The genus Chimaera currently has 16 

valid species, with possibly four or more undescribed species, while Hydrolagus has 24 

valid species with five or six undescribed species (Kemper et al., 2015; Walovich et al., 

2017; D.A. Ebert, pers. database). Since 2002, 10 new Chimaera species, and 10 new 

Hydrolagus species have been described (Didier et al., 2012; Angulo et al., 2014; 

Kemper et al., 2015; Weigmann, 2016; Eschmeyer et al., 2017; Walovich et al., 2017).  

The Chimaeridae has a global distribution, occurring in most seas except for polar 

waters (Ebert and Winton, 2010). Because many species are deep-sea inhabitants in 

remote regions, the family is difficult to sample and consequently, remains poorly 
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understood (Didier et al., 2012). For example, the taxonomic status of Western Indian 

Ocean chimaeroid species is unsettled, with only the poorly known Hydrolagus africanus 

(Gilchrist, 1922) having been confirmed from this region (Ebert, 2014). Hydrolagus 

africanus was originally described from a specimen collected off Durban, South Africa, 

but has been reported as occurring from Angola to Kenya, and possibly from India 

(Compagno et al., 1989; Walovich et al., 2015).  Hydrolagus africanus has also been 

reported from off seamounts in the Southwestern Indian Ocean (SWIO), but without 

confirmation (Novikov, 2002), while Chimaera notafricana Kemper, Ebert, Compagno, 

& Didier 2010 was described from southern Africa, and has a restricted distribution from 

Algoa Bay, Eastern Cape Province, South Africa to Lüderitz, Namibia (Kemper et al., 

2010a; Ebert, 2014).  

Two surveys were recently conducted (2012 and 2014) in the SWIO, in the same 

general area where Novikov (2002) reported finding H. africanus, but no specimens of 

that species were collected or observed. However, three relatively large Chimaera species 

were collected from very deep water and retained. Upon closer examination, it was 

determined that all three species were distinct from all other known members of the 

family. Here we describe these three new species from the SWIO (currently in press). 

This paper is part of a series describing new species and revising chondrichthyan taxa 

from the SWIO. 

Materials and Methods  

Study Location. The survey area extended over a remote region of the SWIO 

encompassing an area described approximately by 33o50’ to 40o40’S, 43o10’ to 55o15’E 
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(Figure 1). The SWIO sea floor topography is characterize by mountains of high relief 

and submerged canyons (Clark, 2009). One of the more prominent of these features is the 

Madagascar Ridge that extends 1300 km south of Madagascar as a massive plateau 

dividing the largest ecosystems in the region, the Southwest Indian Ocean Offshore 

(Goslin et al., 1980; Sinha et al., 1981; Collette and Parin, 1991). The northern half of the 

Madagascar Ridge is relatively shallow (1,500 to 2,000 m depth) and characterized by 

steeply sloped topographical and complex habitat (Goslin, 1980; Clark, 2009). To the 

south is a series of shallow, flat-topped seamounts. The shallowest of these seamounts, 

Walters Shoal, rises to within 18 to 20 m of the sea surface. To the southeast, the 

Southwest Indian Ocean Ridge bisects the ocean between Africa and Antarctica. Rifted 

crests, and rugged mountainous flanks characterize this enormous, and continuous, ridge, 

which supports a diverse and unique composition of species (Hearn et al., 2010). These 

three distinct ecosystems were surveyed during two expeditions, the first from 1 March to 

23 April 2012 (54 days total) and a second from 10 April to 7 June 2014 (59 days total), 

aboard the New Zealand-based deep-sea commercial trawler F/V Will Watch.  

Specimen Collection. Specimens were collected as bycatch, identified, measured, and 

sexed. Specimens of each species were photographed fresh, tissue samples were removed 

and stored in 100% ethanol for later genetic studies, frozen for the duration of the cruise, 

and retained for further study. Upon returning to port all specimens retained were initially 

preserved in 10% buffered formalin and later transferred to 70% ethanol for storage.  

Measurements/Meristics. Morphometric measurements have traditionally been the 

standard parameter for separating species based on measureable factors between 
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consistently identifiable homologous points in order to compare geometric form 

differences (Bookstein et al., 1985). Morphometric measurements, while low tech, are 

compatible with the scientific records predating the use of genetic information and, 

unlike more sophisticated methods, are immediately applicable for use in the field. 

Detailed morphometric measurements were taken on preserved specimens and 

normalized as a ratio of body length, and are expressed as a proportion for comparison. 

Body measurements and lateral line canal measurements were taken point-to-point to the 

nearest millimeter (mm) following Didier and Séret (2002), and were modified with the 

addition of 53 new measurements (Figures 2–5). These new measurements were added to 

quantify previously qualitative characteristics (e.g. rate of tapering from body to tail, 

blockiness of head, breadth of fins). In total 91 (69 body, 11 clasper and tenaculum, 3 

post anal pad, and 8 lateral line canal) measurements were recorded (see Appendix A for 

definition and explanation of abbreviations).  

Two of the new species are described from a single specimen, but the third Chimaera 

species had a total of 57 specimens (38 females, 19 males) that were collected. Based on 

these 57 specimens with a body length (BDL) range of 118–645 mm, and using the 

morphological measurements referred to above, we examined possible ontogenetic 

changes associated with growth in this new species. A linear regression was used to study 

ontogenetic shifts with the null hypothesis that measurements (as a ratio of BDL) were 

consistent over BDL. Measurements with a slope that varied significantly from zero (p-

value < 0.05) were considered to vary significantly with growth and ontogeny.  
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Figure 2. Diagram of lengths (blue) and paired fin measurements (red). Illustration by 
P.J. Clerkin. See Appendix A for definition and explanation of abbreviations.  
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Figure 3. Diagram of measurements: a) across body (blue), inter fin spaces (red), b) body 
heights (blue), unpaired fin heights and margins (red), and overlap (green). Illustration by 
P.J. Clerkin. See Appendix A for definition and explanation of abbreviations. 
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Figure 4. Diagram of head measurements: lengths (blue), widths (red), direct distance 
(green), eyes (yellow), height (purple). Illustration by P.J. Clerkin. See Appendix A for 
definition and explanation of abbreviations. 
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Figure 5. Diagram of canals of the head (blue) and canal measurements (red). Illustration 
by P.J. Clerkin. See Appendix A for definition and explanation of abbreviations. 
 

Cluster Analysis. Ordination analysis was run in PRIMER to cluster related 

morphometric features of the holotype, paratypes (both large and small size classes), 

nontypes, and comparative material (comprised of 98 specimens, 10 species, two genera, 

and 29 parameters) to test for significant differences between species and their congeners. 

Non-metric multidimensional scaling (nMDS) scores were plotted to illustrate 
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morphological dissimilarity between the chimaeroid species of this study. SIMPER 

pairwise comparisons of morphometric measurements were used to quantify the top five 

traits defining Chimaera willwatchi (the only species description with multiple type 

specimens) from each species compared. Additionally, the overall 15 most defining 

characters were calculated for diagnostic purposes.  

Genetic Analysis. The last two decades has seen an explosion of molecular-based 

studies, which, by using molecular markers in combination with morphometric 

measurements can be a useful tool to distinguish species (White and Last, 2012; Kemper 

et al., 2015). Total DNA was extracted from muscle tissue using the EZNA® Tissue DNA 

Kit (Omega Bio-Tek) and stored at -20ºC. The complete coding sequence for the 

mitochondrial NADH dehydrogenase subunit 2 (NADH2) gene was PCR amplified and 

sequenced according to Kemper et al. (2015). The program Geneious (version 6.1.7) was 

used to read chromatograms, view and correct nucleotide base calls, and align nucleotide 

and translated sequences. No sequences contain missing data. The complete dataset 

included 53 nucleotide sequences from ten chimaeroid species, with an alignment length 

of 1044 base pairs.  Hydrolagus africanus was chosen as an outgroup taxon. RAxML 

v8.1.22 (Stamatakis 2014) was used to perform a maximum likelihood search (1,000 runs 

on distinct starting trees) using the rapid hill-climbing algorithm on the aligned 

nucleotide sequences under the general-time reversible (GTR) nucleotide substitution 

model and gamma distribution for among-site rate heterogeneity, with subsequent non-

parametric bootstrapping of 1,000 replicates. NADH2 sequences were deposited in 

GenBank (see Appendix B). 
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Chimaeroid species identification is very challenging because of morphological and 

color similarities between species and variation within species (Kemper et al., 2015). 

This study uses both morphological and molecular techniques to evaluate and describe 

new species encountered during the surveys.  

Institutional Acronyms. Institutional acronyms follow Sabaj (2016). Type specimens 

were deposited into the California Academy of Sciences (CAS), Museum of Comparative 

Zoology (MCZ), National Museum of Natural History, Smithsonian (USNM), Natural 

History Museum (BMNH), Scripps Institution of Oceanography, Marine Vertebrate 

Collection (SIO), South African Institute for Aquatic Biodiversity (SAIAB), and Iziko-

South African Museum (iSAM MB). Comparative material was examined from the 

following institutions: American Museum of Natural History (AMNH), Academy of 

Natural Science of Philadelphia (ANSP), CAS, Commonwealth Scientific & Industrial 

Research Organization, Division of Marine & Atmospheric Research, Hobart, Tasmania 

(CSIRO), Field Museum of Natural History, Zoology Department, Chicago, Illinois 

(FMNH), The Hokkaido University Museum, Fisheries Science Center, Hakodate, 

Hokkaido (HUMZ), iSAM MB, MCZ, Natural History Museum of Los Angeles County, 

Los Angeles, California (LACM), Museo Nacional de Historia Natural, Montevideo 

(MNHN), SAIAB, SIO, and USNM. 

Chimaera willwatchi, sp. nov., Seafarer’s Ghost Shark 

Holotype. CAS 242336, 834+ mm TL, 492mm BDL, mature male, Southwestern 

Indian Ocean, Southwest Indian Ocean Ridge, 33o55’S, 55o16’E, bottom trawl between 

850 m–1075 m, collected by P.J. Clerkin, 24 May 2014. 
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Paratype. − 9 male, 9 female specimens − CAS 242337, mature male, 823+ mm TL,  

456 mm BDL, Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 33o56’S, 

55o17’E, midwater trawl between 1008 m–1190, collected by P.J. Clerkin, 28 April 2014; 

CAS 242339, immature male, 843+ mm TL, 466 mm BDL, Southwestern Indian Ocean, 

Southwest Indian Ocean Ridge, 35o08’S, 55o17’E, bottom trawl between 89 m–1240 m, 

collected by P.J. Clerkin, 30 April 2014; CAS 242354, mature male, 694+ mm TL, 369 

mm BDL, Southwestern Indian Ocean, Walters Shoal, 29o51’S, 46o03’E, bottom trawl 

between 1003 m–1200 m, collected by P.J. Clerkin, 31 April 2014; USNM 440273, 

immature male, 667+ mm TL, 461 mm BDL, Southwestern Indian Ocean, Southwest 

Indian Ocean Ridge, 35o43’S, 53o43’E, bottom trawl between 860 m–1110 m, collected 

by P.J. Clerkin, 23 April 2014; MCZ 171972, mature male,  782+ mm TL, 490 mm BDL, 

Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 38o24’S, 48o22’E, bottom 

trawl between 680 m–970 m, collected by P.J. Clerkin, 18 March 2012; SIO 16-67, 

mature male, 739+ mm TL, 403 mm BDL, Southwestern Indian Ocean, Southwest Indian 

Ocean Ridge, 35o08’S, 53o42’E, bottom trawl between 825 m–1180 m, collected by P.J. 

Clerkin, 17 March 2014; CAS 242338, mature female,  913+ mm TL, 587 mm BDL, 

Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 35o08’S, 53o42’E, bottom 

trawl between 874 m–1118 m, collected by P.J. Clerkin, 26 March 2014; CAS 242337, 

female,  804+ mm TL, 525 mm BDL, Southwestern Indian Ocean, Southwest Indian 

Ocean Ridge, 33o56’S, 55o17’E, midwater trawl between 1008 m–1190 m, collected by 

P.  J. Clerkin, 28 April 2014; CAS 242343, female, 770+ mm TL, 455 mm BDL, 

Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 39o02’S, 46o33’E, bottom 
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trawl between 777 m–1178 m, collected by P.  J. Clerkin, 17 March 2012; CAS 242367, 

female, 920+ mm TL, 522 mm BDL, Southwestern Indian Ocean, Walters Shoal, 

34o44’S, 43o44’E, bottom trawl between 1090 m–1180 m, collected by P. J. Clerkin, 4 

April 2014; USNM 440274, mature female, 948+ mm TL, 604 mm BDL, Southwestern 

Indian Ocean, Southwest Indian Ridge, 35o08’S, 53o42’E, bottom trawl between 89 m–

1240 m, collected by P.J. Clerkin, 30 April 2014; SAIAB 203575, mature female, 826+ 

mm TL, 576 mm BDL, Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 

35o09’S, 53o43’E, bottom trawl between 880 m–1200 m, collected by P.J. Clerkin, 23 

April 2014; SIO 16-68, mature female, 821+ mm TL, 519 mm BDL, Southwestern Indian 

Ocean, Southwest Indian Ocean Ridge, 35o08’S, 53o42’E, bottom trawl between 89 m–

1240 m, collected by P.J. Clerkin, 30 April 2014; MB-F035527, immature male, 661+ 

mm TL, 397 mm BDL, Southwestern Indian Ocean, Southwest Indian Ocean Ridge, 

38°22’ S, 47°35’ E, bottom trawl between 700 m–960 m, collected by B. Walkins, 17 

January 2000;  MB-F035739, female, 845+ mm TL, 478 mm BDL, Southwestern Indian 

Ocean, Prince Edward Islands, 39° 50' S, 45° 47' E, trawl between 700 m–982 m, 

collected by B. Walkins, 3 May 2001; MB-F035739, mature male, 546+ mm TL, 519 

mm BDL, Southwestern Indian Ocean, Prince Edward Islands, 39° 50' S, 45° 47' E, trawl 

between 700 m–982 m, collected by B. Walkins, 3 May 2001; MB-F035814, female, 

872+ mm TL, 545 mm BDL,  Southwestern Indian Ocean, Prince Edward Islands, 39° 

26' S, 41° 20' E, trawl between 700 m–890 m, collected by B. Walkins, 6 May 2001; MB-

F035815, immature male, 730+ mm TL, 399 mm BDL, Southwestern Indian Ocean, 
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Prince Edward Islands, 39° 26' S, 41° 19' E , trawl between 700 m–888 m, collected by 

B. Walkins, 5 May 2001.   

Non-type. − 9 male, 29 female specimens – CAS 242355, 242340, 242342, 242344, 

242345, 242346, 242347, 242348, 242349, 242350, 242351, 242352, 242353  ̧ 242356, 

242357, 242358. Males ranged from 479+ to 810+ mm TL, 450 to 152 mm BDL, 

Southwestern Indian Ocean, 29o51’S to 39o32’S, 44o03’E to 53o42’E, bottom and 

midwater trawl between 715 m–1328 m, collected by P.J. Clerkin from 6 March to 3 

April 2012 and 23 April to 31 May 2014, and R. Downie between 23 March to 2 April 

2014. Females ranged from 290+ to 971+ mm TL, 118 to 645 mm BDL, Southwestern 

Indian Ocean, 29o51’S to 39o02’S, 44o03’E to 55o16’E, bottom and midwater trawl 

between 752 m–1340 m, collected by P.J. Clerkin from 5 March to 13 April 2012 and 18 

April to 31 May 2014, and R. Downie between 23 March to 2 April 2014. 

Diagnosis. Chimaera willwatchi, sp. nov. is a large species at maturity (971 mm TL, 

645 mm BDL) distinguished from all other chimaeroids by the following combination of 

characters: head blocky, large followed by stocky trunk, body height fairly constant from 

trunk (pectoral fin origin) to abdomen (pelvic fin origin) before tapering rapidly into long 

tail; large eyes, and well-defined, blocky suborbital ridge; blunt, distinctly squared snout 

(Table 1). Paired claspers externally trifurcate, forked distal one-third of length, prepelvic 

tenacula each with 4 large, tooth-like denticles tightly spaced along medial edge. 

Brownish skin with iridescent wash; brown and white marbled marking around snout, 

mouth, and ventral half of trunk; posterior margin of first dorsal fin very distinctly white, 

with white distal margins on anterior half of second dorsal fin, and posterior margins of 
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pelvic fins; dorsal spine, exceeds the apex of the first dorsal fin and, when depressed, 

slightly overlaps the origin of the second dorsal fin, large second dorsal fin not obviously 

undulating; caudal fin very large and paddle-shaped. Structure of the NADH2 gene. 

Chimaera willwatchi, sp. nov. can be distinguished from its closest congeners, Chimaera 

lignaria Didier 2002, Chimaera macrospina Didier et al. 2008, and Chimaera orientalis 

Angulo et al. 2014, by a combination of characters: large dorsal spine exceeding apex of 

first dorsal fin, long, trifurcated claspers, prepelvic tenacula with 4 spines, robust body, 

large caudal fin, large pelvic fin anterior margin, and coloration. 

Table 1. SIMPER analysis of morphometric measurements defining Chimaera 
willwatchi. Displayed are the top fifteen ranked morphometric measurements (all with 
contributing percentages above 3.00) which distinguish Chimaera willwatchi as a species. 
The contributing percentages are expressed as %. 
 

Morphometric Measurement Contributing % 
Tail length 7.96 
Trunk length 6.48 
Pectoral fin anterior margin 6.06 
Max Trunk height 5.30 
Head height 5.05 
Head length 5.05 
Pelvic anterior margin 4.88 
Pelvic anterior margin 4.68 
Pectoral fin width 3.88 
Head width at suborbital ridge 3.81 
Tail height 3.76 
Pelvic fin width 3.68 
Trunk width 3.15 
Abdominal Width 3.12 
preopercular to main trunk 3.10 
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Description. Morphometric proportions for the holotype, with ranges for large (> 519 

mm BDL) paratypes (male and female separate), and ranges of small non-types (< 300 

mm BDL; male and female combine) are presented in Table 2. The following description 

proportions include the holotype followed by paratypes of large specimens with sexes 

combined in parentheses. Additional descriptive information of small specimens 

highlighting ontogenetic differences is also provided. 

A large-bodied species reaching up to 519 mm BDL in males and 645 mm BDL in 

females. Head huge, blocky with prominent subocular ridges, head height 26.6% 

(23−26.7%) BDL, length about one-fifth (20.6%) precaudal length; snout short, blunt, 

length about one-half head length; nostrils and mouth below ventral contour of snout; 

prenarial length 4.0% (3.0−7.7%) BDL. Trunk slightly compressed, body depth similar to 

head height, maximum depth occurs mid trunk, height 30.3% (22.7−30.7%) BDL, 

gradually tapering to pelvic girdle, abdomen height 26.8% (18.4−24.9%) BDL, tapering 

rapidly to relatively thin tail, 16.6% (12−24.5%) BDL, and continuing to a caudal 

peduncle height 3.2% (2.4−3.0%) BDL. Tail long, making up about one-half (49.5%) 

precaudal length, relative to trunk length (34.3% of the precaudal length) and head length 

(22.0% precaudal length). Eyes large, rounded, length about one-third head length, 8.5% 

(7.6−9.2%) BDL, height about one-fourth head length, 6.5% (5.1−7.0%) BDL; preorbital 

length 28% head length. Interdorsal space short to moderately long, 3.3% (4.6−10.1%) 

BDL. Pectoral-pelvic space 34.9% (30.0% −36.2%) BDL, 1.2–1.4 times head length, and 

shorter than pelvic-caudal space. Pelvic-caudal space 52.3% (49.3–54.5%) BDL, about 
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1.7–2.2 times head length, and shorter than snout-vent length 67.1% (58.2–67.1%) BDL, 

2.2–2.5 times head length. Skin somewhat deciduous, smooth without denticles.   

 
Figure 6. Full body lateral view of Chimaera willwatchi, sp. nov., holotype CAS  
242336, mature male 834 mm TL, 492 mm BDL, A) Photograph, B) Illustration. Photo 
and illustration by P.J. Clerkin. 
 

Pectoral fins large, broad, width 22.1% (19.6−23.2%) BDL, anterior margin 36.8% 

(33.2−40.2%) BDL, relatively straight, gradually rounding towards distal tip, posterior 

margin straight, inner margin rounded; when depressed posteriorly against body, pectoral 

fin slightly overlaps origin of pelvic fins; pectoral fin base off-round, somewhat angular 

in shape. Pelvic fins large, very broad, width 16.0% (11.4−16.7%) BDL, tear-shaped, 

anterior margin 25.0% (22.9−26.8%) BDL, about two-thirds (66%) size of pectoral fin, 
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distal two-thirds of anterior margin convex, inner and posterior margins rounded with 

fleshy base.  
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Table 2. Raw measurements (in mm) and body length proportions (%BDL) of 
Chimaera willwatchi sp. nov. holotype, paratypes, and nontypes.  Min = minimum; 
Max = maximum. 
   
                

Chimaera willwatchi sp. nov.          
Holotype Paratype Paratype Nontype  

n = 1 n = 8 n = 7 n = 40  
Adult 
Male 

Male Female (10 males, 30 
females)   

Min Max Min Max Min Max 
Body length (mm) 492  403  519  519  604  118  285  
Measurement (%BDL) 

    

Total Length 158.9 138.8 183.4 142.5 172.6 172.8 219.4 
Pre-caudal length 122.8 120.8 126.1 119.6 123.2 120.0 129.6 
Snout to vent length 67.1 58.2 67.1 59.0 63.9 61.9 71.2 
Tail length 57.3 57.3 64.5 60.8 62.6 57.9 61.8 
Trunk length 43.1 36.4 42.8 37.4 44.4 40.0 51.7 
Head length 27.0 23.6 28.5 23.0 28.9 22.3 29.3 
Pre-first dorsal fin 
length 

30.3 27.9 31.1 27.9 31.3 23.8 36.9 

Pre-second dorsal fin 
length 

46.3 46.9 51.8 45.9 53.4 50.5 59.2 

Pre-pectoral fin length 29.1 24.0 35.2 24.7 34.7 29.8 33.4 
Pre-pelvic fin length 70.9 60.6 69.1 62.4 70.0 64.3 73.0 
Pre-orbital length 12.7 11.8 14.0 12.3 13.1 11.2 15.5 
Pre-orbital distance 12.9 12.5 14.4 13.0 13.6 12.3 16.1 
Pre-narial length 4.0 4.9 7.7 3.0 6.3 4.5 8.3 
Pre-narial distance 11.1 9.1 11.8 7.7 10.7 9.3 12.2 
Pre-oral length 6.2 6.5 9.6 4.7 8.0 5.4 8.7 
Pre-oral distance 14.9 11.5 16.4 11.8 12.9 12.3 14.4 
Snout length 12.7 9.2 11.7 7.9 11.1 10.8 12.3 
Eye Length 8.5 7.7 9.2 7.6 8.7 10.5 11.7 
Eye Height 6.5 5.8 7.0 5.1 6.2 6.2 9.2 
First dorsal to pectoral 18.1 17.3 24.2 17.5 28.5 17.5 25.5 
First dorsal to pelvic 44.7 37.3 50.8 41.3 45.0 38.9 45.8 
Second dorsal to 
pectoral 

29.2 27.1 38.5 26.4 44.6 33.9 39.7 

Second dorsal to pelvic 28.3 19.8 28.5 22.8 27.1 20.6 28.5 
Snout width at base  2.3 2.5 3.5 2.0 3.9 1.9 5.2 
Snout anterior width 7.7 6.9 8.6 6.7 7.9 5.8 9.6 
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Head width at 
suborbital ridge 

15.8 14.7 16.9 13.9 15.4 12.0 16.0 

Trunk width 10.0 12.3 15.0 9.0 15.8 11.6 16.2 
Abdominal Width 10.8 8.5 11.2 8.6 12.3 7.5 9.9 
Tail width 8.5 7.2 10.2 6.3 9.0 4.3 6.6 
Caudal peduncle width 2.3 1.6 2.2 1.6 2.0 1.7 2.0 
Snout height at base 8.1 6.9 9.5 6.8 8.2 6.9 10.5 
Head height 26.6 23.0 26.7 23.0 28.5 22.5 27.3 
Trunk height 30.3 22.7 30.7 25.6 28.4 24.1 31.6 
Max Trunk height 30.8 23.3 31.1 26.6 31.8 21.1 29.4 
Abdomen height 26.8 18.4 24.9 21.1 25.1 18.9 21.9 
Tail height 16.6 12.0 24.5 13.1 16.4 12.0 16.3 
Caudal peduncle height 3.2 2.5 3.0 2.4 2.8 2.9 3.7 
Interdorsal space 3.3 4.6 7.2 5.0 10.1 4.0 6.8 
Dorsal-caudal space  0.0 0.5 2.2 0.0 1.0 1.0 2.0 
Pectoral-pelvic space 34.9 30.0 35.9 33.3 36.2 34.1 39.3 
Pelvic-anal space 45.0 43.8 48.6 44.7 48.3 38.9 49.6 
Pelvic-caudal space 52.3 52.2 54.5 49.3 53.4 49.8 54.7 
Pelvic-ridge space 24.3 21.5 23.6 20.9 26.3 16.2 26.4 
Pectoral fin anterior 
margin 

36.8 33.7 40.2 33.2 36.2 37.3 45.7 

Pectoral fin width 22.1 20.8 23.0 19.6 23.2 19.6 24.9 
Pectoral fin base width 12.7 10.5 12.4 9.5 12.1 9.5 12.9 
Pectoral fin base height 16.3 10.7 13.0 10.4 14.5 11.3 15.1 
Pelvic anterior margin  25.0 22.9 26.8 22.9 23.6 21.5 26.3 
Pelvic fin width 16.0 15.2 16.7 11.4 15.2 11.8 15.3 
Pelvic fin base width 7.2 5.1 7.1 6.0 7.1 5.2 7.2 
pelvic fin base height 8.9 8.5 9.9 8.2 10.0 6.7 9.4 
Dorsal spine length 27.3 24.8 24.9 22.9 24.9 24.3 26.4 
Dorsal spine ridge to 
origin 

3.0 2.9 3.8 2.6 3.8 3.0 5.1 

First dorsal fin base 17.6 14.2 17.9 14.5 16.9 15.5 22.1 
First dorsal fin height 20.3 18 19.1 16.2 18.6 15.6 20.8 
Second dorsal fin base 74.8 73.2 77.5 70.1 75.2 68.8 74.8 
Second dorsal fin 
anterior height 

6.6 3.8 7.2 3.9 6.4 4.9 7.2 

Second dorsal fin 
posterior height 

5.5 4.1 6.6 4.7 6.3 5.2 6.4 

Second dorsal fin mid 
height  

5.9 3.7 6.6 4.2 5.6 5.4 7.3 

Dorsal caudal margin  26.6 29.1 33.2 25.1 29.8 23.2 31.1 
Dorsal caudal height  4.1 3.1 3.7 2.6 3.5 2.5 4.5 
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First dorsal fin of moderate height, 20.3% (16.2−19.1%) BDL, triangular in shape, 

posterior margin slightly falcate, becomes strongly concave towards insertion into web-

like interdorsal ridge and confluent to second dorsal fin. First dorsal fin proceeded by 

thick, fairly straight spine with slight posterior curve distally, extending past the apex of 

first dorsal fin, and extending to or slightly overlapping second dorsal fin origin when 

depressed against the body, overlap 7.9% (0.7−6.4%) BDL; spine anterior edge keeled, 

strongly trenchant, and marked with a dark brown line; two columns of serrations present 

Ventral caudal margin 36.0 43.3 57.3 39.2 39.2 24.9 35.2 
Fleshy ridge to caudal 
insertion 

64.4 75.2 91.8 72.2 72.2 65.7 79.2 

Ventral caudal height 4.1 3.2 4.4 3.2 4.1 2.5 5.1 
total caudal length 36.7 3.2 70.7 50.3 50.3 52.5 90.6 
Spine to second dorsal 
fin 

7.9 3.2 6.4 0.7 3.3 2.8 3.3 

Pectoral to pelvic 1.1 -1.7 6.3 -2.4 2.9 0.7 3.4 
Spine to first dorsal fin 3.2 2.6 4.9 -2.5 2.7 -9.8 4.8 
Clasper length total 20.4 8.6 24.9 NA NA 7.4 10.5 
Clasper length medial 
branch 

5.8 1.3 6.6 NA NA 0.8 2.0 

Clasper length lateral 
branch 

7.4 1.5 8.3 NA NA 0.9 3.6 

Clasper length outer 16.3 1.8 18.2 NA NA 2.9 3.0 
Clasper length inner 19.1 6.1 21.3 NA NA 5.3 5.8 
Clasper width at base 4.0 1.8 4.8 NA NA 0.9 1.1 
Frontal tenaculum 
length 

5.7 4.2 5.6 NA NA 4.2 6.6 

Frontal tenaculum bulb 
height 

1.7 0.0 1.9 NA NA NA NA 

Frontal tenaculum bulb 
length 

2.3 0.0 2.1 NA NA NA NA 

Frontal tenaculum bulb 
width 

2.2 1.6 1.9 NA NA 1.2 1.6 

Frontal tenaculum stalk 
width 

N/A 1.2 1.2 NA NA 1.6 1.6 
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on the distal one-third to one-half of the posterolateral edges of spine in mature 

individuals and entire length in smaller, immature specimens. Second dorsal fin about 

one-third height of first dorsal, elongated, base 74.8% (70.1−77.5%) BDL, without any 

distinct undulation mid-fin, anterior height 6.6% (3.8−7.2%) BDL slightly greater than 

middle height 5.9% (3.7−6.6%) BDL, and posterior height 5.5% (4.1−6.6%) BDL; fin 

inserts abruptly, rounding into a small lobe attached to caudal fin by a fleshy web; second 

dorsal fin somewhat feathery in appearance, easily splitting along radials.  

Caudal fin very large, paddle-shaped, height approximately equal in upper and lower 

margins, dorsal caudal height 4.1% (2.6−3.7%) BDL, and ventral caudal height 4.1% 

(3.2−4.4%) BDL, weakly raked from dorsal origin, tapers into a filament, often damaged 

in larger specimens; origin of caudal ventral margin is slightly anterior to origin of dorsal 

margin, connected to a small tab-like anal fin, which is proceeded by a fleshy ridge, 

dorsal caudal margin 26.6% (25.1−33.2%) BDL, and ventral caudal margin 36.0% 

(39.2−57.3%) BDL. 

Frontal tenaculum well developed on mature males, located medially on head, 

anterior and slightly dorsal to eyes; club-like, thick stalk length greater than one-half eye 

length, slightly curved, increasing in width distally, terminating in a bulbous tip. Bulb 

bearing spine-like denticles located on ventral distal surface of tip, varying in size, not in 

distinct rows, angled posteriorly (Figure 7a). Mature male with externally trifurcate, 

paired pelvic claspers, originating from muscular fin-base, transitioning distally into 

cartilaginous rod, total length 24.9% (2.7−24.9%) BDL, forked for at least distal one-

third of length; pelvic claspers nearly reaching posterior margin of pelvic fins but not 
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exceeding distal tip; intermediate branch thin, rod-like, surrounded by broad, soft, fleshy, 

dilated tip; two lateral branching arms broader, more robust, not widely separated, each 

with distal fleshy bulbous tip, soft with small denticles giving it a shagreen appearance 

(Figure 7b). Prepelvic tenacula paired, spatulate, with distal margin of hard structure 

deeply indented, and concealed within a slit-like pocket on ventral body surface just 

anterior to pelvic fins; each prepelvic tenacula with 4 large, tooth-like denticles tightly 

spaced along medial edge; numbered 1 through 4 distally, the second denticle is the 

largest, 1 and 3 of equal medium size, and 4 being the smallest (Figure 7c). Mature 

females with fleshy postanal pad, absent in males. 

 
Figure 7. Chimaera willwatchi, sp. nov., holotype CAS 242336, mature male 834 mm 
TL, 492 mm BDL illustrations of a) Frontal tenaculum, b) Lateral view of pelvic 
claspers, c) Pre-pelvic tenacula, d) Tooth plates, and e) Skeletonized skull. Illustrations 
by P.J. Clerkin. 
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Lateral lines of head open, narrow grooves, those on snout with wide regularly spaced 

dilations (Table 3). Preopercular and oral lateral line canals branching varies and is non-

descriptive. Lateral line dips strongly just anterior of the spine origin, runs fairly straight 

along the length of the body and head (Figure 8). 

       
Table 3. Lateral line canals of the head expressed as proportion of 
body length (%BDL) of Chimaera willwatchi sp. nov.   
                

Chimaera willwatchi sp. nov.         
 

Holotype Paratype Paratype Nontype  
n = 1 n = 5 n = 5 n = 45  
Adult 
Male 

Male Female (13 males, 32 
females)   

Min Max Min Max Min Max 
Body length (mm) 492  403  490  519  604  118  285  

 
Measurement 
(%BDL) 

    

Oronasal to nasal 
canal 

2.6 2.3 2.8 2.3 3.0 2.2 3.1 

Length of the rostral 
canal  

1.5 1.1 1.5 0.9 1.0 1.3 2.0 

Length across nasal 
canal 

6.6 6.4 8.1 4.5 8.2 6.2 7.6 

Infraorbital to angular 
canal  

4.6 4.1 5.3 4.5 5.3 4.4 6.8 

Preopercular to main 
trunk  

10.8 8.6 11.6 9.9 11.3 9.4 13.1 

Orbital canal length 5.0 1.4 5.9 4.1 5.2 4.1 6.3 
Supratemporal canal 
length 

6.7 4.9 6.9 5.2 6.4 4.5 6.2 

Spine to 
supratemporal canal  

4.3 3.7 4.8 4.0 5.2 4.2 7.0 
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Figure 8. Illustration of Chimaera willwatchi, sp. nov., lateral lines of head showing: 
infraorbital to angular canal (IOA), junction of the oral-infraorbital canal to junction of 
the oral and angular canal, preopercular to main trunk (OTM), preopercular canal (POP), 
and oral canal (O). Illustration by P.J. Clerkin. 
 

Ontogenetic Differences Between Large and Small Specimens. Chimaera willwatchi, 

sp. nov.  appears to exhibit morphogenesis with immature differing from mature 

specimens in the following characteristics: greater total length (131.3% vs 216.4% BDL), 

larger eye length (7.0% vs 11.7% BDL) and eye height (5.1% vs 9.2% BDL), thinner 

snout base width (1.8% vs 7.4% BDL), thinner snout anterior width (5.8% vs 9.6% 

BDL), thinner head width at suborbital ridges (5.8% vs 9.6% BDL), thinner trunk width 
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(9.0% vs 16.2% BDL), thinner tail width (4.3% vs 8.7% BDL), longer abdomen (28.8% 

vs 39.3% BDL) and tail lengths (46.8% vs 56.3% BDL), smaller abdomen height (18.4 vs 

26.8% BDL) and tail heights (12.0% vs 24.9% BDL), relatively larger pectoral fins 

(32.2% vs 45.7% BDL), thicker spines, and longer first dorsal fin base (12.9% vs 22.1% 

BDL). The smallest free-swimming individuals were white with translucent abdomens, 

but appear to gain pigmentation with growth (Figure 10c).  

Dentition. Upper anterior tooth plates (vomerine) moderate, incisor-shaped, with 5 

tridors per side, slightly overlapping mandibular tooth plates; posterior upper tooth plates 

(palatine) moderately large, flat, and ovular in shape; lower tooth plate (mandibular), 

moderately large, incisor-like, double cusps, transitions posteriorly into concave ridge 

resulting in 4 and 5 grinding surfaces and 11 tridors per side (Figure 8d).  

Coloration. Three distinct color morphotypes were observed and each appears to 

separate spatially within the SWIO by major submarine geographical features (Figure 9); 

each color morph, here designated morphs A, B, and C, and its associated location are 

provided in the distribution section below (Tables 4 and 5).  
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Figure 9. Map of study area denoting where Chimaera willwatchi, sp. nov., specimens 
were collected, with subpopulations represented by circles (morph A), star (morph B), 
and triangles (morph C). Map data: Google, Image © 2017 DigitalGlobe. 
 

Morph A specimens prior to preservation are brownish-purple with iridescent-opal, 

oil-like sheen, brown and white mottling noticeably on snout, around mouth, white 

labials, and ventral half of trunk; tail brownish-purple, more uniform in color, with light 

and dark longitudinal striations (Figure 10). Fins purplish with a slightly grayish-brown 

and black speckling, dark radials, light basal border; thin dark shading where fin attaches 

to body; thick white margins very distinct on posterior margin of first dorsal fin and 

posterior margin of pelvic fins; a thin distinct white marking along anterior edge of 

second dorsal fin, extending up to one-half of fin margin length; white marking present, 
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less distinct along posterior tips of dorsal caudal and ventral caudal fin margins. Lateral 

lines light in color and bordered by dark shading, running length of head and trunk. After 

preservation, colors fade, with purple luster and iridescence becoming diminished or lost.  

 
Figure 10. Chimaera willwatchi, sp. nov., morph A: a) holotype CAS 242336,  mature 
male 834 mm TL, 492 mm BDL, b) paratype, immature male, 620 mm TL, 323 mm TL, 
c) paratype, newly hatched female, CAS 242351, 290 mm TL, 117.58 mm BDL. Photos 
by P.J. Clerkin. 
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Morph B specimens are a uniform dark brown, with a slightly darker snout and dark 

lateral striations along tail, but lacking any distinctive markings, mottling, or speckles; 

fins dark brown-black, lacking white margins (Figure 11).  

 

Figure 11. Chimaera willwatchi, sp. nov., morph B: a) non-type CAS, immature  male, 
694 mm TL, 369 mm BDL, b) non-type CAS 242354, immature female, 477 mm TL, 
252mm BDL. Photos by P.J. Clerkin. 
 
Table 4. Raw measurements (in mm) and body length proportions (%BDL) of Chimaera 
willwatchi sp. nov. morphotypes B and C.  
  

Morphotype B Morphotype C  
n = 2 n = 6  

Min Max Min Max 
Body length (mm) 252  369  267  487  

 
Measurement (%BDL) 

  

Total Length 172.9 189.9 162.4 186.5 
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Pre-caudal length 53.5 123.8 119.3 126.1 
Snout to vent length 61.9 63.7 60.8 66.7 
Tail length 61.1 61.8 57.9 63.4 
Trunk length 40.0 43.8 41.1 44.7 
Head length 25.5 27.6 17.8 28.8 
Pre-first dorsal fin 
length 28.8 31.3 23.8 32.6 
Pre-second dorsal fin 
length 51.0 54.5 49.7 53.5 
Pre-pectoral fin length 29.8 29.8 6.1 34.6 
Pre-pelvic fin length 64.3 67.5 61.4 70.7 
Pre-orbital length 13.2 14.0 11.2 15.5 
Pre-orbital distance 13.6 15.2 12.3 16.1 
Pre-narial length 5.5 7.3 4.6 6.7 
Pre-narial distance 9.3 10.5 6.2 12.9 
Pre-oral length 5.1 7.2 5.4 9.0 
Pre-oral distance 12.8 13.7 9.2 14.5 
Snout length 10.8 11.2 5.2 11.9 
Eye Length 8.2 11.2 7.6 11.7 
Eye Height 6.3 8.1 5.5 9.2 
First dorsal to pectoral 18.7 25.5 15.3 25.5 
First dorsal to pelvic 38.9 42.9 39.5 43.4 
Second dorsal to 
pectoral 28.3 33.9 29.9 41.9 
Second dorsal to pelvic 27.1 28.5 20.4 35.8 
Snout width at base  2.4 3.1 1.9 22.9 
Snout anterior width 9.5 9.6 5.8 8.2 
Head width at suborbital 
ridge 14.4 16.0 10.2 15.8 
Trunk width 15.3 16.2 10.9 16.0 
Abdominal Width 9.9 10.4 7.5 10.3 
Tail width 6.1 7.1 5.6 8.7 
Cauldal peduncle width 1.9 2.0 1.4 2.2 
Snout height at base 8.5 10.5 5.0 9.4 
Head height 24.7 27.3 22.5 26.7 
Trunk height 27.0 31.6 24.1 29.9 
Max Trunk height 21.1 28.4 22.9 29.1 
Abdomen height 14.4 21.8 18.4 23.0 
Tail height 15.9 15.9 12.0 16.3 
Caudal peduncle height 3.1 3.7 2.2 3.3 
Interdorsal space 6.2 7.6 4.7 10.0 
Dorsal-caudal space  0.8 1.3 0.6 2.0 
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Pectoral-pelvic space 33.5 34.6 30.0 38.3 
Pelvic-anal space 47.5 48.3 38.9 49.8 
Pelvic-caudal space 52.9 54.7 46.8 54.5 
Pelvic-ridge space 20.9 22.3 16.2 23.6 
Pectoral fin anterior 
margin 36.2 40.1 32.2 39.4 
Pectoral fin width 23.6 23.6 19.1 24.9 
Pectoral fin base width 11.7 12.9 9.1 11.0 
Pectoral fin base height 12.3 12.5 10.1 13.2 
Pelvic anterior margin  23.2 24.8 20.2 24.3 
Pelvic fin width 14.3 14.5 11.8 15.1 
Pelvic fin base width 5.5 6.7 5.2 6.7 
pelvic fin base height 7.8 9.3 7.2 9.6 
Dorsal spine length 25.3 27.6 13.5 22.6 
Dorsal spine ridge to 
origin 3.9 4.0 2.7 3.9 
First dorsal fin base 16.7 19.2 14.5 17.5 
First dorsal fin height 18.3 18.4 15.6 20.4 
Second dorsal fin base 71.7 74.7 67.2 76.4 
Second dorsal fin 
anterior height 5.3 7.2 3.1 6.2 
Second dorsal fin 
posterior height 5.5 5.9 3.7 6.4 
Second dorsal fin mid 
height  6.3 7.3 4.4 6.9 
Dorsal caudal margin  27.7 31.2 21.9 30.2 
Dorsal caudal height  3.2 3.9 2.7 4.6 
Ventral caudal margin 33.9 44.9 29.4 40.5 
Fleshy ridge to caudal 
insertion 65.7 78.3 58.8 73.0 
Ventral caudal height 3.5 4.9 2.9 5.1 
total caudal length 49.8 63.0 40.9 60.8 
Spine to second dorsal 
fin 2.9 6.8 -2.0 0.4 
Pectoral to pelvic 1.1 1.6 -6.6 4.0 
Spine to first dorsal fin 2.4 2.6 -1.4 0.0 
Clasper length total 7.8 10.5 0.0 12.4 
Clasper length medial 
branch 1.4 1.8 0.0 2.2 
Clasper length lateral 
branch 1.6 1.8 0.0 3.9 
Clasper length outer 2.5 3.0 0.0 6.1 
Clasper length inner 5.0 5.8 0 5.3 
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Clasper width at base 1.1 1.2 0.0 1.2 
Frontal tenaculum 
length 4.3 6.6 0.0 4.2 
Frontal tenaculum bulb 
height NA NA NA NA 
Frontal tenaculum bulb 
length NA NA NA NA 
Frontal tenaculum bulb 
width 1.5 1.6 0.0 1.6 
Frontal tenaculum stalk 
width 1.5 1.6 0.0 0.0 

 
 
Table 5. Lateral line canals of the head expressed as proportion of body length (%BDL) 
of Chimaera willwatchi sp. nov. morphotype B and C.  
  

     Morphotype B       Morphotype C 
 

        n = 2         n = 6 
 

          Min Max      Min Max 

Body length (mm)            252 369      267 487  
 

Measurement (%BDL)                            

Oronasal to nasal canal 
3.1 4.6 2.2 2.4 

Length of the rostral canal  
1.4 10.6 1.2 2.0 

Length across nasal canal 
5.2 7.6 5.7 8.0 

Infraorbital to angular canal  
5.2 5.7 4.0 9.3 

Preopercular to main trunk  
4.0 11.5 4.0 10.6 

Orbital canal length 
6.3 6.3 3.7 5.6 

Supratemporal canal length 
5.8 5.8 4.2 5.9 

Spine to supratemporal canal  5.6 5.6 4.2 5.1 
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Morph C is light beige in body color, speckled, and lighter ventrally, with fins black-

purple or light purple in color with dark margins (Figure 12).  

  

Figure 12. Chimaera willwatchi, sp. nov., morph C a) non-type CAS 242358, immature 
female, 975 mm TL, 542 mm BDL, b) Non-type CAS 242342, immature female, 620mm 
TL, 323 mm BDL. Photos by P.J. Clerkin. 
 
 

Morph A was collected at all stages of development, whereas for morphs B and C 

only immature specimens were collected. However, similar-sized specimens from each 

morphotype were compared, and these coloration differences do not appear to be a 

function of ontogeny. Additionally, color pattern variation correlates strongly by region, 

and DNA sequence data group based on these locations (Figure 13).    



47 
 

 
Figure 13. Maximum likelihood tree topology based on a general-time reversible (GTR) 
substitution model + gamma distribution for Chimaera willwatchi, sp. nov., Chimaera 
didierae, sp. nov., Chimaera buccanigella, sp. nov., and comparative species based on 
aligned NADH2 DNA sequences. GenBank accession numbers follow species (see 
Appendix B). Bootstrap support values of main clades shown on tree.  Specimens 
indicated in bold are designated holotypes. 
 



48 
 

Etymology. The new species is named in honor of the hard-working fishers onboard 

the Sealord fishing vessel Will Watch, on which the type specimens were collected. 

Vernacular: Seafarer’s Ghost Shark.   

Size. Maximum length for females is 645 mm BDL, 971+ mm TL, and for males 519 

mm BDL, 834+ mm TL. Smallest free swimming individual 118 mm BDL, 258 mm TL. 

Females mature at 519 mm BDL, 767 mm TL, and males mature at 369 mm BDL, 638 

mm TL.  

Distribution. Chimaera willwatchi was encountered on all three main topographic 

features of the SWIO (Figure 9): Southwest Indian Ocean Ridge, northern portion of the 

Madagascar Ridge, and Walters Shoal of the Madagascar Ridge, 34o30’S – 41o19’E and 

39o50’S – 58o15’E; these areas are separated by roughly 600 km and 700 km, 

respectively. However, each of these areas is represented by a different color morph of 

the species, which appears to be strongly spatially isolated by sub-region within the 

SWIO (Figure 9). Morph A was encountered most frequently, but only along the 

Southwest Indian Ocean Ridge, Morph B was taken from a single location in the northern 

part of the Madagascar Ridge, and Morph C was taken from seamounts around Walters 

Shoal on the southern part of the Madagascar Ridge. There was no overlap in the 

geographic ranges of each morph type.  

Biological Notes. Specimens were collected from a wide depth range, 89 m − 1365 m, 

and encountered in both mid water and bottom trawls. However, there was no trend 

between depth range and morphotypes, perhaps due to confounding factors resulting from 

the large depth range within trawls. 
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Comparisons. All comparisons of Chimaera willwatchi were made with specimens > 

400 mm BDL, representing mature and larger immature individuals. Chimaeroids exhibit 

considerable allometric changes with growth, with smaller immature specimens having 

proportionally different body dimensions than larger immature and mature specimens 

(Kemper et al., 2015). Therefore, removal of smaller immature individuals, those <400 

mm BDL, allows for comparisons among similar sized individuals to better discern 

morphological differences across species; differentiation between species is indicated by 

either no overlap in a character range or a considerable difference in the minimum or 

maximum range of the character (Kemper et al., 2015). Morphometric data from 98 

specimens, 10 species, two genera, and 29 parameters was analyzed in PRIMER to study 

morphometric features different between species (Table 6).  

Chimaera willwatchi is mottled, but lacks strongly defined patterning of spots or 

reticulations, distinctly separating it from C. monstrosa, C. owstoni and C. panthera that, 

depending on the species, have distinct reticulations or spotting (Tanaka, 1905; Didier, 

1998; Didier, et al., 2012; Ebert et al., 2013; Kemper et al., 2015). Chimaera willwatchi, 

although slightly iridescent, lacks any silvery body coloration, usually found in C. 

argiloba, C. cubana, C. fulva, and C. phantasma (Jordan and Snyder, 1900; Didier et al., 

2002, 2012).  

Chimaera willwatchi is a large-bodied species (645 mm BDL), having a blocky head 

with well-defined suborbital ridges, blunt snout, and strong dorsal spine exceeding first 

dorsal apex. This combination of characters separates C. notafricana (its closest 

geographic congener) from C. willwatchi by its smaller head length, 21.5% (20.7–23.0%) 
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BDL vs 27.0% (23.0−28.9%) BDL, shorter spine, 15.9−22.1% BDL vs 22.9−27.3% 

BDL, and shorter eye length, 6.3%–6.5% BDL vs. 8.5% (7.6−9.2%) BDL. Chimaera 

obscura is a smaller-bodied species (531 mm BDL), with a smaller head length, 

24.5−25.0% BDL vs 27.0% (23.6−28.5%) BDL, smaller eye length, 6.1−7.3% BDL vs 

8.5% (7.7−9.2%) BDL, less developed suborbital ridge, and a greater first dorsal fin 

height, 23.0−23.8% vs 20.3 (18.0−19.1%) BDL that unlike C. willwatchi exceeds its 

dorsal spine height. Chimaera opalescens has a larger eye length to head ratio (42.2% 

head length vs 31.6% head length), shorter dorsal spine, 12.4−20.2% vs 27.3% 

(22.9−24.9%) BDL, spine height not exceeding first dorsal fin (81.8−100% first dorsal 

fin height vs 133.9−173.1% first dorsal fin height). Chimaera bahamaensis is 

distinguished by its more pronounced snout, prenarial length 48.0% head length vs 14.8% 

(10.0−16.6%) head length, preorbital length 62.0% head length vs 22.9% (16.1−31.8%) 

head length. Chimaera carophila is distinguishable by having a smaller head length, 

22−24% BDL vs 27.0% (23.0−28.9%) BDL, greater eye length to head length ratio 

(32−39% head length vs 26.2−31.6% head length), and shorter spine length, 18−20% 

BDL vs 27.3% (22.9−24.9%) BDL. Chimaera jordani is similar to C. willwatchi, but has 

a smaller head length, 22.8% BDL vs 27.0% (23.6−28.5%) BDL, smaller head height 

21.6% BDL vs 26.6% (23.0−26.7%) BDL, and a longer trunk, 52.8% BDL vs 43.1% 

(36.4−42.8%) BDL, and smaller eye length, 6.6% BDL vs 8.5% (7.7−9.2%) BDL.  

The species most similar to C. willwatchi are C. lignaria, C. macrospina, and C. 

orientalis. Chimaera lignaria is most similar to C. willwatchi, having a huge blocky 

head, robust, stocky body quickly tapering to a long tail, and large fins. However, C. 
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lignaria is known only from the Southwestern Pacific Ocean in the deep waters off New 

Zealand and Tasmania and is distinguishable from C. willwatchi in having a spine equal 

to or shorter than first dorsal fin, second dorsal fin rubbery in texture and not easily split, 

thin pectoral fins (broad in C. willwatchi), and rounded pelvic fins not pointed at the 

leading edge compared to the broad distally pointed pelvic fins of C. willwatchi. 

Chimaera lignaria is further separated from C. willwatchi by secondary sexual 

characters, having stout pelvic claspers reaching 17% BDL vs 24.9% BDL, bifurcate vs 

trifurcate, and prepelvic tenacula with 6 spines vs 4 in C. willwatchi. Chimaera 

marcospina has a less robust body, generally longer dorsal fin spine, and less broad; 

caudal fin shorter, ventral caudal margin 27.5−36% BDL vs 39.2−57.3% BDL, dorsal 

caudal fin height 1.7−3.2% BDL vs 2.6−4.1% BDL. Chimaera orientalis has a large head 

and body similar to C. willwatchi, but its fin proportions differ: pectoral fin anterior 

margin longer, 43.5% (40.0−41.0%) BDL vs 36.8% (33.7−40.2%) BDL, pelvic fin 

anterior margin smaller, 22.2% (20.0−20.8%) BDL vs 25.0% (22.9−26.8%) BDL; first 

dorsal fin similar in height but with shorter base, 10.3−12.5% BDL vs 17.6% 

(14.2−17.9%) BDL, a longer second dorsal fin base, 80.2% (79.2−81.3%) BDL vs 74.8% 

(73.2−77.5%) BDL; interdorsal fin space longer, 10.2% (8.1−9.7%) BDL vs 3.3% 

(4.6−7.2%) BDL; claspers bifurcate, comparatively smaller, 17.5−17.7% BDL vs 

20.4−24.9% BDL, and with smaller frontal tenaculum, 4.7−4.6% BDL vs 5.6−5.7% 

BDL. 
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Table 6. SIMPER pairwise comparison of morphometric measurements. Displayed are 
the top five ranked morphometric measurements for each species comparison; the 
contributing and cumulative percentages are expressed as %. 

Species Comparisons Measurement Contributing 
Percent (%) 

Cumulative 
Percent 
(%) 

C. willwatchi and C. 
notafricana 

Pelvic anterior 
margin 

   6.87   
 

Head width at 
suborbital ridge 

   6.44 
 

 
Pectoral fin width    6.08 

 
 

Pelvic fin width    5.43 
 

 
Preopercular to main 
trunk 

   5.22 30.76 

C. willwatchi and C. 
opalescens 

Supratemporal canal 
length 

8.53   
 

Trunk width 7.47 
 

 
Snout length 7.47 

 
 

Dorsal caudal height 6.51 
 

 
Length of the rostral 
canal 

5.50      35.48 

C. willwatchi and C. 
opalescens 

Supratemporal canal 
length 

        8.53   
 

Trunk width         7.47 
 

 
Snout length         7.47 

 
 

Dorsal caudal height         6.51 
 

 
Length of the rostral 
canal 

        5.50       35.48 

C. willwatchi and C. 
phantasma 

Ventral caudal height 12.84 
 

 
Trunk length 9.20 

 
 

Pectoral fin width 7.70 
 

 
Pectoral fin anterior 
margin 

7.22 
 

 
Length of the rostral 
canal 

5.84 42.80 

C. willwatchi and H. affinis Eye Length 7.32 
 

 Oronasal to nasal 
canal 

5.68  

 Second dorsal fin 
anterior height 

4.99  
 

Ventral caudal height 4.82 
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Tail width 4.79 

 
 

Max Trunk height 4.67 32.27 
C. willwatchi and H. 
africanus 

Head height 7.72 
 

 
Tail width 6.89 

 
 

Tail height 6.63 
 

 
Snout width at base 5.61 

 
 

Second dorsal fin 
anterior height 

5.51 32.36 

C. willwatchi and H. 
erithacus  

Infraorbital to angular 
canal 

6.61 
 

 
Eye Length 5.61 

 
 

Trunk width 5.05 
 

 
Orbital canal length 4.88 

 
 

Snout length 4.80 26.95 
C. willwatchi and H. 
mirabilis 

Pelvic anterior 
margin 

15.36 
 

 
Pectoral fin anterior 
margin 

12.15 
 

 
Dorsal caudal height 9.38 

 
 

Infraorbital to angular 
canal 

8.96 
 

 
Trunk length 5.62 51.50 

C. willwatchi and H. 
purpurescens 

Length across nasal 
canal 

7.69 
 

 
Abdominal Width 7.67 

 
 

Head length 7.66 
 

 
Tail width 6.89 

 
 

Oronasal to nasal 
canal 

5.95 35.86 

C. willwatchi and H. trolli  Tail length 12.15 
 

 
Pelvic fin width 6.27 

 
 

Pelvic anterior 
margin 

4.38 
 

 
Infraorbital to angular 
canal 

4.28 
 

 
Preopercular to main 
trunk 

4.22 31.30 
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Chimaera willwatchi is the sixth species of chimaera known from the Indian Ocean, 

but only the second species known to occur in the Western Indian Ocean; this total 

excludes the two new species described below. The only other Chimaera species known 

to occur in the Western Indian Ocean is C. notafricana, which just barely ranges into the 

Southwestern Indian Ocean, to Algoa Bay, Eastern Cape Province, South Africa; this 

species is most common in the Southeastern Atlantic off the west coast of South Africa 

and Namibia (Kemper et al., 2010a; Ebert, 2014, 2015). All the other four species, C. 

argiloba, C. fulva, C. lignaria, and C. macrospina, are only known from the Eastern 

Indian Ocean and Southwestern Pacific Ocean (Ebert, 2014).  

In addition to its morphometric and meristic distinction, C. willwatchi is the only 

Chimaera species with the unique combination of iridescent sheen when fresh, distinct 

mottling around mouth, and ventral trunk, very conspicuous white marking on posterior 

margin of first dorsal fin, anterior edge of second dorsal fin, and posterior margin of 

pelvic fins. Mottling and white margins are only found in certain geographic populations, 

and while they are useful to positively identify the species, their absence cannot be relied 

upon to discount a specimen as C. willwatchi, and should be used in combination with 

morphometric measurements (Figure 14). 
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Figure 14. Normalized Euclidean distances illustrating morphometric dissimilarities 
between 10 chimaeroid species.  
 

Chimaera didierae, sp. nov., The Falkor Chimaera  

Holotype. CAS 242334, 825 mm TL, 533 mm BDL, female, Southwestern Indian 

Ocean, Madagascar Ridge, 34o30’S, 43o10’E, bottom trawl between 1000 m–1100 m, 

collector P.J. Clerkin, 10 March 2012. 

Diagnosis. Chimaera didierae, sp. nov., is the seventh species of chimaera known 

from the Indian Ocean, and is distinguishable from other members of the genus by the 

following combination of characters: medium-bodied slender species, short trunk, long 

tail, with moderately sized head, large eyes, without well-defined suborbital ridge; short 
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thin snout; uniform light toffee-tan color, not iridescent, without defined patterning, 

spots, reticulations, or mottling, dark, sooty brown on snout, white blotching around 

mouth; pectoral fins long and thin, anterior margin 33.7% BDL, pectoral fin width 16.7% 

BDL; dorsal spine height >21.6% BDL, equal or subequal to height of first dorsal fin; 

second dorsal fin very long and low, anterior height 2.7% BDL, not undulating; caudal 

fin small and slender, dorsal caudal height 1.8% BDL, ventral caudal height 1.1% BDL. 

Structure of the NADH2 gene. Chimaera didierae, sp. nov. can be distinguished from its 

morphologically similar congeners, Chimaera obscura Didier et al. 2008, and Chimaera 

opalescens Luchetti et al. 2001, by the combination of characters: relatively short dorsal 

spine, short first dorsal fin height, short second dorsal fin, small pectoral fin, moderately 

large eye length, abdomen tapering rapidly into tail, relatively long snout length, and 

coloration.  

Description. Morphometric proportions of holotype are provided in Table 7. A 

medium-bodied species, moderate sized head length 24.2% BDL, relatively tall head 

height, 20.5% BDL, suborbital ridge not well-defined; snout moderately long relative to 

head, 40.3% head length, and thin, width 2.0% BDL and 8.2% head length. Trunk 

slightly compressed, trunk height 25.7% BDL, tapering slightly to abdomen, height 

19.9% BDL, before tapering somewhat rapidly into tail, height 12.4% BDL, continuing 

into caudal filament. Tail long making up 52.6% precaudal length, short trunk, 33.2% 

precaudal length, relatively long head, 20.0% precaudal length. Eyes large 8.3% BDL 

making up one-third (33.9%) of head length, and ovoid, located in posterior half of head, 

preorbital length 52.4% head length. Interdorsal space moderate, 8.3% BDL, pectoral-
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anal space 32.1% BDL, a little more than half (60%) pelvic anal space, 53.8% BDL. 

Pectoral-pelvic space 32.0% BDL, 1.3 times head length, and is shorter than pelvic 

caudal space. Pelvic-caudal space 57.3% BDL, about 2.3 times head length, and is 

approximately equal to snout-vent length 59.4% BDL, 2.5 times head length. Skin 

smooth without denticles, strongly deciduous.   
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Table 7. Body length proportions (%BDL) of Chimaera didierae sp. Nov 
and Chimaera buccanigella sp. nov.  
      

 
Chimaera didierae 
sp. nov 

Chimaera buccanigella 
sp. Nov    

 Holotype Holotype 
 n = 1 n = 1 
 Female Female 

Body length 532 mm 397 mm 
Measurement %BDL %BDL 
Total Length 155.5 192.4 
Pre-caudal length 121.1 125.4 
Snout to vent length 59.4 67.3 
Tail length 63.7 60.5 
Trunk length 40.2 46.2 
Head length 24.2 28.3 
Pre-first dorsal fin length 25.0 29.5 
Pre-second dorsal fin 
length 

46.2 45.0 

Pre-pectoral fin length 28.0 32.9 
Pre-pelvic fin length 61.1 70.1 
Pre-orbital length 12.5 14.8 
Pre-orbital distance 12.8 14.8 
Pre-narial length 13.6 9.1 
Pre-narial distance 9.7 11.8 
Pre-oral length 9.0 11.7 
Pre-oral distance 13.1 16.7 
Snout length 10.3 13.1 
Eye Length 8.3 9.6 
Eye Height 6.0 6.6 
First dorsal to pectoral 16.0 20.1 
First dorsal to pelvic 41.6 45.8 
Second dorsal to pectoral 24.4 23.9 
Second dorsal to pelvic 23.1 29.9 
Snout width at base  2.0 2.0 
Snout anterior width 6.5 7.1 
Head width at suborbital 
ridge 

12.0 14.5 

Trunk width 11.1 12.6 
Abdominal Width 6.4 7.5 
Tail width 5.8 7.3 
Caudal peduncle width 1.5 1.7 
Snout height at base 7.5 9.5 
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Head height 20.5 21.4 
Trunk height 25.7 24.9 
Max Trunk height 24.8 24.1 
Abdomen height 19.9 24.7 
Tail height 12.4 14.6 
Caudal peduncle height 2.3 3.3 
Interdorsal space 8.5 2.7 
Dorsal-caudal space  1.4 0.7 
Pectoral-pelvic space 32.0 34.8 
Pelvic-anal space 55.3 45.8 
Pelvic-caudal space 57.3 46.6 
Pelvic-ridge space 21.8 18.8 
Pectoral fin anterior 
margin 

33.7 36.6 

Pectoral fin width 16.7 18.5 
Pectoral fin base width 10.2 10.1 
Pectoral fin base height 12.4 15.3 
Pelvic anterior margin  19.9 22.1 
Pelvic fin width 11.4 10.5 
Pelvic fin base width 4.8 6.2 
pelvic fin base height 7.0 7.2 
Dorsal spine length 21.6+ 23.4 
Dorsal spine ridge to 
origin 

2.8 3.1 

First dorsal fin base 13.2 16.1 
First dorsal fin height 12.1 15.5 
Second dorsal fin base 77.1 81.9 
Second dorsal fin anterior 
height 

2.7 3.4 

Second dorsal fin 
posterior height 

2.1 3.5 

Second dorsal fin mid 
height  

2.1 3.5 

Dorsal caudal margin  21.4 20.1 
Dorsal caudal height  1.8 2.4 
Ventral caudal margin 22.7 28.2 
Fleshy ridge to caudal 
insertion 

58.8 60.2 

Ventral caudal height 1.1 2.6 
total caudal length 29.9 66.8 
Spine to second dorsal fin 1.0 5.2 
Pectoral to pelvic 2.0 -0.5 
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Pectoral fins relatively narrow, pectoral fin width 16.7%, long anterior margin, 33.7% 

BDL, about 1.4 times (139.3%) head length; triangular in shape, rounded near base, 

anterior margin sigmoidal in shape, slightly concave near origin, increasing convexity 

about mid-length of anterior margin, increasing curvature distally to an apex, posterior 

margin slightly concave, rounded towards base. Pectoral fins, when depressed posteriorly 

against the body, barely reach the origin of pelvic fins, overlapping by 2.0% BDL. 

Pectoral fin base fleshy, rounded, asymmetrical in shape. Pelvic fins about half size 

(59%) of pectoral fins, smaller than (82.3%) head length, anterior margin very convex, 

posterior margin straight, rounding sharply into base, tear-drop in shape, tapering to a 

point distally; fleshy base thin and oval in shape.  

Spine to first dorsal fin N/A -1.4 
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Figure 15. Full body lateral Chimaera didierae, sp. nov., holotype CAS 242334, 
immature female, 890 mm TL, 704 mm BDL, 532 mm PCL a) photograph, b) 
illustration. Photo and illustration by P.J. Clerkin. 
 

First dorsal fin very small, height 12.0% BDL, base 14.0% BDL, triangular in shape, 

and proceeded by relatively tall, >21.4% BDL, robust spine. Spine ridge to origin 2.8% 

BDL, slightly posteriorly curved spine, curvature occurring evenly throughout spine, 

spine height equal or subequal to apex of first dorsal fin. Spine triangular in cross section, 

keel strongly trenchant along anterior edge, and two closely spaced columns of serrations 

along distal one-fourth of posterolateral edges. Posterior edge connects to first dorsal fin 

for approximately half of spine’s length. Dorsal spine originates just posterior to head, 

pre-first dorsal length 25.0% BDL, just anterior to pectoral fin origin, and when 
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depressed against the body, barely reaches second dorsal fin origin, overlaps by 2.0% 

BDL. Second dorsal fin less than one-fourth (23.8%) height of first dorsal fin, elongate, 

base 77.0% BDL, low, second dorsal fin anterior height 2.7% BDL, and not noticeably 

undulating. Caudal fin small and slender, dorsal caudal margin 21.4% BDL, nearly equal 

to ventral caudal margin, 22.7% BDL; with very low dorsal caudal height, 1.8% BDL, 

nearly equal to ventral caudal height, 1.1% BDL; dorsal and ventral margins of caudal fin 

originate at roughly the same position horizontally; caudal fin tapers off very gradually 

and ends in a thin, short filament. Anal fin very thin but long. Edges of fins feathery, 

jagged, and easily frayed.  

Lateral line measurements of holotype are presented in Table 8. Lateral lines of head 

open, narrow grooves, those on snout with sparse dilations. Preopercular and oral lateral 

line canals share a common branch connecting to the infraorbital canal on both sides of 

head. Supratemporal canal not fully connected to dorsal spine.  

Table 8.  Lateral line canals of the head expressed as proportion of body 
length (%BDL) of Chimaera didierae sp. nov and Chimaera buccanigella sp. 
nov. 
 
     

 
Chimaera didierae 
sp. nov 

Chimaera buccanigella 
sp. nov 

   
 Holotype Holotype 

 n = 1 n = 1 
 Female Female 

Body length 532 mm 397 mm 
Measurement %BDL %BDL 
Oronasal to nasal canal 2.3 2.0 
Length of the rostral 
canal  

1.8 2.1 
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Length across nasal 
canal 

4.9 5.1 

Infraorbital to angular 
canal  

3.1 8.9 

Preopercular to main 
trunk  

7.9 9.4 

Orbital canal length 4.4 5.3 
Supratemporal canal 
length 

4.8 5.1 

Spine to supratemporal 
canal  

3.3 3.9 

 

Anterior origin of trunk lateral lines branches from junction of occipital and optic 

canals. Lateral line dips sharply ventrally then dorsally in a sigmoidal curve before 

returning to a relatively stable line at origin of dorsal spine and continuing posteriorly 

relatively non-undulating. Lateral line canal originating at fork between occipital and 

optic head canals at level of upper eye margin. Orbital canal length 4.4% BDL, and joins 

a short supratemporal canal, 4.8% BDL, which curves anteriorly to where it joins at 

dorsal midline 3.3% BDL anterior of dorsal spine origin. Infraorbital to angular canal 

short, 3.1% BDL, and directed posteriordorsally to the junction of the oral and angular 

canal, where it continues to main trunk, preopercular to main truck, 7.9% BDL.  
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Figure 16. Illustration of Chimaera didierae, sp. nov., lateral lines of head showing:  
infraorbital to angular canal (IOA), junction of the oral-infraorbital canal to junction of 
the oral and angular canal, preopercular to main trunk (OTM), preopercular canal (POP), 
and oral canal (O). Illustration by P.J. Clerkin. 
 

Dentition. In order to preserve the integrity of the unique specimen, the holotype was 

not investigated internally.  

Coloration. Prior to preservation specimen uniformly light tan, flat with no 

iridescence; some longitudinal light-dark striations along tail. Snout tip and anterior 

margin of pre-orbital head a dark, sooty, gray-charcoal, with white marking around 

mouth, fairly uneven. Dorsal fin spine is a light to whitish color, dark brown along length 

of grooves of the anterior keel. Fins light gray-tan with a strong wash of light lavender, 

very anterior margins lighter in color, posterior margins frayed and lacking lavender 



65 
 

coloration. Pores present on head along canals, light in color with dark boarders, varying 

in size. Lateral line canals of head and body darkly shaded. Tooth plates light yellow in 

color. Preserved specimen maintains similar body color, but lavender hue of fins is 

dulled.  

Etymology. The Latin name is dedicated to Dr. Dominique A. Didier for her 

outstanding contributions to the systematics of this group of fish. Vernacular: the Falkor 

Chimaera, derived from the Japanese, fukuryu for “lucky dragon,” and so named for this 

species uniquely pale, slender body resembling a famous description of luck dragons.  

Distribution. A single specimen was collected from a seamount on the southern part 

of the Madagascar Ridge, located 34o30’S, 43o10’E near Walters Shoal in the 

Southwestern Indian Ocean. This was the only species of Chimaera encountered on this 

particular seamount (Figure 17). 
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Figure 17. Map of study area denoting collection sites of Chimaera didierae, sp. nov., 
(yellow triangle), and Chimaera buccanigella, sp. nov. (red circle). Map data: Google, 
Image © 2017 DigitalGlobe. 
 

Biological Notes. The female holotype was externally assessed to be in the early 

stages of maturity based on the presence of a developing, fleshy postanal pad used during 

copulation. In order to preserve its integrity, the unique type specimen was not examined 

internally. This species has a recorded depth range between 1000 m−1100 m. Walters 

Shoal is the shallowest feature of the Madagascar Ridge and is relatively flat, providing a 

simple habitat structure.  
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Comparison. Chimaera didierae is the third species of the genus known from the 

Southwestern Indian Ocean (Ebert, 2014; Eschmeyer, 2014) and can be distinguished 

from all other Chimaera species by the following combination of characters: light tan 

body color, without silver sheen, no defined patterning, spots, reticulations, or mottling; 

slender body, short trunk, long tail, relatively robust spine, very small unpaired fins, 

extremely deciduous skin. 

Chimaera didierae is uniformly colored and lacks strongly defined spots, 

reticulations, or patterning, easily separating it from C. monstrosa, C. owstoni and C. 

panthera that depending on the species may have distinct spot patterns, usually brownish 

in color, mottling and or reticulations (Tanaka, 1905; Didier, 1998; Didier, et al., 2012; 

Ebert et al., 2013; Kemper et al., 2015). Chimaera didierae also lacks iridescent sheen or 

silvery body coloration usually found in C. argiloba, C. cubana, C. fulva, and C. 

phantasma (Jordan and Snyder, 1900; Didier et al., 2002, 2012). 

Chimaera didierae is a medium-bodied species with a head of moderate length and 

height relative to body, without well-defined suborbital ridge, large eyes; thick, but 

moderately long dorsal spine equal to or subequal to height of first dorsal fin; relatively 

small paired fins. This combination of characters separates C. didierae from C. 

macrospina, which has a longer dorsal fin spine, 23.0 % (25.3% – 31.2%) BDL vs 21.4% 

BDL, which exceeds first dorsal fin apex; larger fins, pectoral anterior margin longer, 

39.5% (37.5% – 41.4%) BDL vs 34.0% BDL, greater second dorsal fin anterior height, 

5.2% (4.5% – 6.2%) BDL vs 2.8% BDL; and smaller eye length to head length ratio, one-

fourth (25%) head length vs one-third (34%) head length.  Chimaera notafricana is 
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distinct in having a less robust body with tail tapering rapidly after pelvic girdle; pectoral 

fin anterior margin about 1.8 times head length vs 1.5 times head length; dorsal spine 

more strongly curved, exceeding apex of first dorsal fin; shorter eye length, 6.3−6.5% 

BDL vs. 7.9% BDL. Chimaera lignaria is distinguishable by its larger, bulkier body and 

massively blocky head with bunt, squared snout vs slender body and moderately sized 

head and short thin snout; second dorsal fin taller, anterior height 4% (4−7%) BDL vs 

2.7% BDL, rubbery in texture and not easily split vs fins which are feathery, jagged, and 

easily frayed; pectoral fin rounded, not pointed at leading edge vs tear-drop in shape 

tapering to a point distally. Chimaera orientalis is separable by its shorter trunk length, 

37.0% (35.1−35.4%) BDL vs 40.2% BDL, longer dorsal spine 31.0% (28.4%) BDL vs 

21.6%, overlapping its much taller first dorsal fin, height 26.7% (22.8−25.0%) BDL vs 

12.1% BDL. Chimaera jordani is distinguished from C. didierae by its shorter trunk 

length, 52.8% BDL vs 59.4% BDL, shorter snout length, 2.6% BDL vs 10.3% BDL, 

smaller eye length, 6.6% BDL vs 8.3% BDL, and larger spine length, 26.6% BDL vs 

21.6%, overlapping apex of first dorsal fin. Chimaera bahamaensis is distinguishable by 

its shorter trunk length, 35.0% BDL vs 40.2% BDL, much more pronounced snout, 

preoral length 12.0% BDL vs 9.0% BDL, prenarial length 15.4% BDL vs 13.6% BDL; 

shorter eye length, 6.9% BDL vs 8.3% BDL, and eye height 3.5% BDL vs 6.0% BDL. 

Chimaera carophila is differentiable from C. didierae in having a longer preoral length, 

11−19% BDL vs 9.0% BDL, smaller dorsal spine length, 18−20% BDL vs 21.6% BDL, 

which exceeds apex of first dorsal fin. 
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The species most morphologically similar to C. didierae are C. obscura and C. 

opalescens, all characterized by a slender head, smaller fins, and spine not exceeding first 

dorsal fin. Chimaera obscura differs from C. didierae in having a longer dorsal spine, 

27.2% BDL vs 21.6% BDL, larger fins, first dorsal fin height 23.0% (23.8%) BDL vs 

12.1% BDL, second dorsal fin anterior height 5.0% (4.9%) vs 2.7% BDL, pectoral fin 

anterior length 38.9% (39.6%) BDL vs 33.7% BDL; and shorter eye length, 7.3% (6.1%) 

BDL vs 8.3% BDL. Chimaera opalescens is most similar to C. didierae, but is known 

from the northeastern Atlantic along the British Isles, France, and Greenland. It is similar 

to C. didierae in color being beige to tan, but is iridescent before preservation. 

Morphologically, C. opalescens tapers slower after its pelvic girdle into its tail 

transitioning into a greater tail height, 17.0−17.3% BDL vs 12.4% BDL; shorter snout 

length, 4.1−6.2% BDL vs 10.3% BDL, and shorter preoral length, 5.3−6.0% BDL vs 

9.0% BDL; dorsal spine more curved with thicker ridge to origin, 4.9−5.9% BDL vs 

2.8% BDL, first dorsal fin taller, 11.9− 17.1% vs 12.1% BDL, second dorsal fin with 

taller mid dorsal fin height, 3.5−4.4% BDL vs 2.1% BDL; lateral line canals on side of 

head much longer, oronasal to nasal canal, 5.6% BDL vs 2.3% BDL, length of the rostral 

canal 5.4% BDL vs 1.8% BDL, length across nasal canal, 12.6% BDL vs 4.9% BDL, 

infraorbital to angular canal 14.4% BDL vs 3.1% BDL; lateral line canals on dorsal 

portion of head much shorter, preopercular to main trunk, 2.1% BDL vs 7.9% BDL, 

orbital canal length 3.9% BDL vs 4.4% BDL, supratemporal canal length, 1.1% BDL vs 

4.8% BDL, and spine to supratemporal canal, 1.5% BDL vs 3.3% BDL. 
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Chimaera buccanigella, sp. nov., Dark-mouth chimaera 

Holotype. CAS 242335, 765 mm TL, 401 mm BDL, female, Southwestern Indian 

Ocean, Walters Shoal, 33o49’S, 42o22’E, bottom trawl between 495–960 m, collector P.J. 

Clerkin, 3 March 2012. 

Non-type. − 2 male specimens – MNHN 2004-0819 (BPS0693), 729 mm TL, 346 

mm BDL, immature male, Madagascar Ridge, Southwestern Indian Ocean, 33°21’S – 

44°37’E to 33°28, 317’S – 44°50, 525’E, 890 m – 910 m depth, collected by the F/V 

Kerguelen de Tremarec, 31 July 2002; MNHN 2004-0818 (BPS0692), 861 mm TL, 338 

mm BDL, immature male, Madagascar Ridge, Southwestern Indian Ocean, 33°21’S – 

44°37’E to 33°28’S – 44°50’E, 890m – 910 m depth, collected by the F/V Kerguelen de 

Tremarec, 31 July 2002.  

Diagnosis. Chimaera buccanigella, sp. nov. is distinguishable from other members of 

the genus by the following combination of characters: medium-sized species with 

moderate head length, 28.3% BDL, eyes very large, 9.6% BDL, with defined suborbital 

ridge, relatively long snout measuring 13.1% BDL; trunk tapering rapidly into long tail, 

60.4% BDL; uniform light tan color, not iridescent, no defined patterning, spots, 

reticulations, or mottling, dark sooty brown on snout, dark markings in and around mouth 

(Figure 18c); pectoral fins with short anterior margin, 36.6% BDL, pelvic fins broad, 

pointed distally, tear-drop shaped, with short anterior margin, 22.1% BDL; dorsal spine 

long, thin, and very straight, height of spine not exceeding height of first dorsal fin, when 

depressed just reaches origin of second dorsal fin; second dorsal fin not undulating, fins 

feathery, jagged, and easily frayed. Structure of the NADH2 gene. Chimaera 
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buccanigella, sp. nov. is distinguishable from its closest congeners, Chimaera obscura 

Didier et al. 2008, and Chimaera opalescens Luchetti et al. 2001, by a combination of 

characters: small dorsal spine, generally small fins, small first dorsal fin height, small 

second dorsal fin anterior height, moderately large eyes, generally elongate head, body, 

and snout, and coloration.  

Description. Morphometric proportions of the holotype and two paratypes are 

presented in Table 7. A medium-bodied species, head relatively large, head length 28.3% 

BDL, and thick, head width at suborbital ridge 14.4% BDL, and about half (51.5%) head 

length, suborbital ridge prominent and well-defined; snout length moderately long, 13.1% 

BDL making up almost one-half (46.2%) head length; snout width at base small, 7% head 

length. Trunk slightly compressed, length moderately short, 46.2% BDL, height 24.5% 

BDL, abdomen height 24.7% BDL, tapers rapidly into long, whip-like tail, tail height 

14.6% BDL, tail length 60.5% BDL, with short caudal filament. Eyes large, length 9.6% 

BDL, about one-third (34.0%) head length, and ovoid, located in posterior half of head, 

pre-orbital length 52.2% head length. Interdorsal space small, 2.7% BDL, pelvic-anal 

space large, 45.8% BDL. Pectoral-pelvic space 34.8% BDL, 1.2 times head length, and is 

shorter than pelvic caudal space. Pelvic-caudal space 46.6% BDL, 1.6 times head length, 

and is shorter than snout-vent length 67.3% BDL, 2.4 times head length. Skin smooth 

without denticles and not deciduous. 

Pectoral fins relatively broad, pectoral fin width 18.5% BDL, and long, anterior 

margin 36.6% BDL (1.3 times head length), triangular in shape, rounded near base; 

anterior margin increasing curvature distally to an acute apex, posterior margin slightly 
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sigmoidal; pectoral fin base fleshy, asymmetrical in shape. Pectoral fins, when depressed 

posteriorly against the body, barely reach the origin of pelvic fins. Pelvic fins about half 

(60%) size of pectoral fins, smaller than head length (78.0% head length), anterior and 

posterior margins fairly straight, rounding sharply into base, tear-drop in shape, tapering 

to a point distally; fleshy base thick and oval in shape.  

 

Figure 18. Full body lateral photograph of Chimaera buccanigella, sp. nov., a) holotype 
CAS 242335, immature female, 830 mm TL, 397 mm BDL b) illustration of holotype c) 
anterior view of holotype highlighting dusky mouth. Photos and illustration by P.J. 
Clerkin. 
 

First dorsal fin small, height 15.5% BDL, base 16.1% BDL, triangular in shape; 

proceeded by moderately long (23.4% BDL), thin (3.4% BDL) spine; dorsal spine 

straight, triangular in cross section, keel strongly trenchant along anterior edge, and two 

closely spaced columns of serrations along distal half of posterolateral edges; spine 

length not reaching height of first dorsal fin, but reaching origin of second dorsal fin 

when depressed against the body. Second dorsal fin about one-fifth (22.2%) height of 

first dorsal fin, elongate, 81.9% BDL, moderate in height and fairly straight, second 
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dorsal fin anterior height 3.4% BDL, second dorsal fin posterior height 3.5% BDL, 

second dorsal fin mid height 3.5% BDL. Caudal fin small, dorsal caudal margin 20.1% 

BDL, ventral caudal margin 28.2% BDL, small dorsal caudal height 2.4% BDL, ventral 

caudal height 2.6% BDL, and symmetrical in shape; caudal fin tapers off very gradually 

and ends in a thin, short filament. Anal fin very thin and small. Edges of all fins fairly 

straight, feathery, jagged, and easily frayed.  

Lateral line canals on head open, narrow grooves, those on snout with dilations fairly 

consistent in size and spacing (Table 8). Preopercular and oral lateral line canals share a 

common branch connecting to the infraorbital canal. Anterior origin of trunk lateral lines 

branches from junction of occipital and optic canals. Lateral line dips sharply ventrally 

then dorsally in a sigmoidal curve before returning to a relatively stable line at origin of 

dorsal spine and continuing posteriorly relatively non-undulating. Occipital canal short, 

5.3% BDL, directed semi-vertically to where it joins supratemporal and supraorbital 

canals, supratemporal canal short, 5.1% BDL, and strongly curved. Supraorbital canal 

extending anteriorly from supratemporal junction, roughly sloping around dorsal eye 

margin. Infraorbital to angular canal relatively long, 8.9% BDL, extending 

anteroventrally into mandibular and angular canals posterior of mid-eye. Angular canal 

horizontal before sensory pores and then continues anteroventrally.  
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Figure 19. Illustration of Chimaera buccanigella, sp. nov., lateral lines of head showing: 
infraorbital to angular canal (IOA), junction of the oral-infraorbital canal to junction of 
the oral and angular canal, preopercular. Illustration by P.J. Clerkin. 
 

Dentition. Tooth plates are smoky-gray in color, and lower tooth plates appear to lack 

visible rods. The type specimens were not dissected for detailed internal examination.  

Coloration. Prior to preservation specimens uniformly light tan, flat with no 

iridescence; some longitudinal light-dark striations along tail. Dark, gray-brown on tip of 

snout, and dark marking directly around mouth with light blotted labials. Lines of head 

and body darkly shaded. Dorsal fin spine light white in color, dark brown along length of 

grooves of the anterior keel. Unpaired fins smoky black-gray in color, with white margin 

on anterior half of second dorsal fin. Pectoral and pelvic fins light blue with many brown 
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speckles. Pores present on head along canals, light in color. Tooth plates dark smoky-

gray in color. Specimens after preservation mostly retain body coloration.  

Etymology. The Latin names bucca and nigella means respectively "mouth" and 

"dark," referring to the characteristic coloration of this species. The vernacular name, 

dark-mouth Chimaera, is based on the consistent dark coloration of this species’ mouth.  

Size. The two immature males measured 729 mm TL, 346 mm BDL, and 861 mm TL, 

338 mm BDL, and the immature female measured 401 mm BDL, 765 mm TL.  

Distribution. Known only from the deep waters of the Madagascar Ridge, in the 

Southwestern Indian Ocean (33°21'S – 42°22'E to 33°49'S – 44°50'E) and southern part 

of the Madagascar Ridge on a seamount (33o49’S, 42o22’E) associated with Walters 

Shoal in the Southwestern Indian Ocean (Figure 17).  

Biological Notes. Males were immature at 861 mm TL, 338 mm BDL. The female 

was externally assessed to be an immature based on the absence of a developing, fleshy 

postanal pad used during copulation. In order to preserve its integrity, the specimen was 

not examined internally. This species was recorded from a depth range of 495 m−960 m. 

Walters Shoal is the shallowest area of the Madagascar Ridge, which divides the 

Mozambique Basin and Madagascar Basin. Flat-topped seamounts and shallow plateaus 

characterized the area.  

Comparison. Chimaera buccanigella is the fourth Chimaera species known from the 

Southwestern Indian Ocean (Ebert, 2014) and can be distinguished from other Chimaera 

species by the following combination of characters: light tan body color, without silver, 
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no defined patterning, spots, reticulations, or mottling; stocky body, short trunk, tapering 

rapidly into a long tail; long, straight spine, skin not deciduous. 

Chimaera buccanigella is uniformly colored, lacking any distinct patterning of spots, 

mottling or reticulations, such as found on C. monstrosa, C. owstoni and C. panthera that, 

depending on the species may have distinct spot patterns, usually brownish in color, 

mottling and or reticulations (Tanaka, 1905; Didier, 1998; Didier, et al., 2012; Ebert et 

al., 2013; Kemper et al., 2015). Furthermore, C. buccanigella lacks an iridescent sheen or 

silvery pink, grayish, or pale brown body coloration, some with faint stripes, usually 

found in C. argiloba, C. cubana, C. fulva, and C. phantasma (Jordan and Snyder, 1900; 

Didier et al., 2002, 2012).  

Chimaera buccanigella is a medium-sized species with relatively long, conical snout, 

moderately sized head, defined suborbital ridge, large eyes, moderately long trunk length 

tapering rapidly into long tail, with long spine, very straight and not exceeding the height 

of first dorsal fin. This combination of characters separates C. buccanigella from C. 

macrospina, which has a shorter snout to vent length, 58.7% (55.1−61.3%) BDL vs 

67.3% BDL, short trunk length, 39.8% (37.3−40.5%) BDL vs 46.2% BDL, very weak 

suborbital ridge vs well defined, shorter eye length, 6.6% (5.7−8.3%) BDL vs 9.6% BDL, 

greatly exceeding apex of taller first dorsal fin, 19.7% (19.4−24.4%) BDL vs 15.5% 

BDL. Chimaera notafricana is distinct from C. buccanigella in having a dorsal spine 

more strongly curved and shorter in length, 22.1% (15.9−18.5%) BDL vs 23.4% BDL, 

and smaller eye length 6.3%–6.5% BDL vs. 9.6% BDL. Chimaera lignaria is 

distinguishable from C. buccanigella by its larger body, bulkier head, and squared snout. 
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Chimaera orientalis has a much longer spine, 31.0% (28.4%) BDL vs 23.4% BDL, which 

exceeds the apex of a taller first dorsal fin, height 26.7% (22.8−25.0%) BDL vs 15.5% 

BDL. Chimaera jordani is distinguished from C. buccanigella by its shorter snout length 

2.6% BDL vs 13.1% BDL, smaller eye length 6.6% BDL vs 9.6% BDL, and larger spine 

length, 26.6% BDL vs 23.4%, which overlaps apex of first dorsal fin. Chimaera 

bahamaensis is distinguishable by its smaller trunk length, 35.0% BDL vs 42.2% BDL, 

smaller eye length 6.9% BDL vs 9.6% BDL, and dorsal spine exceeding apex of first 

dorsal fin. Chimaera carophila is differentiable from C. buccanigella in having a smaller 

head length, 22−24% BDL vs 28.3% BDL, shorter eye length, 8% BDL vs 9.6% BDL, 

shorter dorsal spine length, 18−20% BDL vs 23.4% BDL, spine usually exceeding apex 

of first dorsal fin. 

The species most similar to C. buccanigella, with a conical snout, defined suborbital 

ridge, large eyes, and long spine not exceeding first dorsal fin, are C. obscura and C. 

opalescens. Chimaera obscura differs from C. buccanigella in having a longer dorsal 

spine, 27.2% BDL vs 23.4% BDL; larger fins, first dorsal fin 23.0% (23.8%) BDL vs 

15.5% BDL, second dorsal fin anterior height 5.0% (4.9%) vs 3.4% BDL; and smaller 

eye length 7.3% (6.1%) BDL vs 9.6% BDL. Chimaera opalescens is similar to C. 

buccanigella in color being beige to tan, but is iridescent before preservation; all around 

less elongate, trunk length 33.7−41.1% BDL vs 46.2% BDL, head length 20.1−23.8% 

BDL vs 28.3% BDL; features of head less elongate with shorter pre-oral length, 

8.1−11.5% BDL vs 14.8% BDL, prenarial length 2.8−4.1% BDL vs 9.1% BDL, snout 
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length 4.1−6.3% BDL vs 13.1% BDL; spine not as robust with ridge to origin 4.9−5.9% 

BDL vs 3.1% BDL. 

Comparison of New Southwestern Indian Ocean Chimaera Species 

The three new Chimaera species can be separated from each other by a combination 

of external characteristics. Chimaera willwatchi is large-bodied and distinct in its darker, 

heavily mottled body coloration, and white fin margins. Chimaera willwatchi is a more 

robust species, distinguishable from C. didierae by its larger, blockier head and trunk, 

squared snout; larger paired fins, pectoral fin width 22.1% (19.6−23.2%) BDL vs 16.7% 

BDL, pelvic fin anterior margin 25.0% (22.9−26.8%) BDL vs 19.9% BDL; dorsal fin 

spine longer, 27.3% (22.9−24.9%) BDL vs 21.6% BDL, exceeding apex of first dorsal 

fin, longer first dorsal fin base length 17.6% 14.2−17.9%) BDL vs 13.2% BDL, first 

dorsal fin height 20.3% (16.2−19.1%) BDL vs 12.1% BDL, second dorsal fin taller 

anterior margin, 6.6% (3.8−7.2%) BDL vs 2.7% BDL. 

Chimaera willwatchi can be distinguished from C. buccanigella by its blockier body 

shape, and by a shorter trunk length, 43.1% (36.4−44.4%) BDL vs 46.2% BDL; taller 

head height, 26.6% (23.0−26.7%) BDL vs 21.4% BDL; exceeding apex of first dorsal fin, 

first dorsal fin taller, 20.3% (16.2−19.1%) BDL vs 15.5% BDL, second dorsal fin with 

taller anterior margin, 6.6% (3.8−7.2%) BDL vs 3.4% BDL, but not as long 74.8% 

(70.1−77.5%) BDL vs 81.8% BDL. 

Morphometrically, C. buccanigella and C. didierae are the closest congers with both 

species being light tan in color with dark snouts, blue or purplish fins, and proportionally 

smaller unpaired fins. However, C. didierae is distinguishable by its shorter snout to vent 
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length, 59.4% BDL vs 67.3% BDL, while having a longer tail length 63.7% BDL vs 

60.5% BDL; more slender overall with snout height 7.5% BDL vs 9.5% BDL; shorter 

snout, 10.3% BDL vs 13.1% BDL, smaller eyes 8.3% BDL vs 9.6% BDL, less blocky 

head with less defined suborbital ridge, head width at suborbital ridge 12.0% BDL vs 

14.5% BDL; fins smaller overall, pectoral fin anterior margin more strongly curved and 

shorter, 33.7% BDL vs 36.6% BDL, pelvic fin anterior margin 19.9% BDL vs 22.1% 

BDL, first dorsal fin height 12.1% BDL vs 15.5% BDL, first dorsal fin base 13.2% BDL 

vs 16.2% BDL, second dorsal fin base 77.1% BDL vs 81.9% BDL, second dorsal fin 

anterior margin 2.7% BDL vs 3.4% BDL, ventral caudal height 1.1% BDL vs 2.6% BDL.  

The maximum likelihood tree topology at the NADH2 locus for SWIO chimaeras 

indicates that C. willwatchi, C. didierae and C. buccanigella form three distinct lineages, 

different from morphologically similar Chimaera species, as well as known South 

African species (i.e. C. notafricana, H. africanus) (Figure 13). Chimaera buccanigella is 

clearly distinct from all species incorporated in this analysis, including the 

morphologically similar C. opalescens and C. obscura, with 100% bootstrap support.  

Chimaera didierae also is distinguishable from the other species, recovered as a sister 

species to C. notafricana, known from South Africa, in this analysis.  The 

morphologically similar C. opalescens, C. obscura, and C. buccanigella are clearly also 

distinct from C. didierae based on the NADH2 molecular data.  Chimaera willwatchi is 

recovered as a single, distinct species (100% bootstrap support), with 4 sub-clades.  

These sub-clades are based on the location of collection within the SWIO.  There are two 

clades of SWIO Ridge individuals, however, this encompasses a very large area.  All but 
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one of the individuals (KX761206) in the SWIO Ridge clade, sister to the Walters Shoal 

clade, with detailed locality information, was collected from the western region of the 

SWIO Ridge (see map, Figure 9). The other SWIO Ridge clade individuals were all 

collected from a more eastern region of the SWIO Ridge. The individual C. willwatchi, 

KX761206, was collected from the eastern region of the SWIO Ridge. The exact location 

of two individuals that fall within these sub-clades, KX761197 and KX761216, were not 

recorded, but are known to be within the SWIO. The NADH2 locus suggests that C. 

willwatchi, C. didierae, and C. buccanigella are distinct species from other 

morphologically similar species and those nearby in locality. However, we caution that 

this tree topology is based on only a single gene with limited species sampling, and may 

not be congruent with the true species tree based on multiple markers and denser taxon 

sampling. 

Discussion 

Chimaeroid identification can be difficult due to poor original descriptions, and 

maybe further complicated by the poor condition of many specimens (Kemper et al., 

2015), small sample sizes, distortions and shrinkage of specimens during preservation, 

and variation and limitation of certain measurements used to describe species. There are 

also potential issues with sexual dimorphism, ontogenetic shifts with growth, color 

morphs and variation within species. As a result, the family Chimaeridae is one of the 

most poorly known groups of cartilaginous fish, with the International Union for 

Conservation of Nature (IUCN) assessing more than half of all known Chimaera and 

Hydrolagus species as data deficient (Dulvy et al., 2014). Consequently, this group is 
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taxonomically problematic, and therefore effective conservation and ecosystem-based 

management requires accuracy and improvement of species-specific identification of 

regional species. As the foundation upon which biological sciences rest, accurate and 

universal taxonomy is essential to this management goal (Simpfendorfer et al., 2011).  

Key to Indian Ocean Chimaera Species 

The following key to Indian Ocean Chimaeras is a modification of Ebert (2014). This 

key includes the three new species described here. There are a few caveats relative to this 

key. Many Chimaera species share similar body coloration, but color can vary greatly 

within species. Therefore, the key groups these species based on the most consistent and 

reliable characteristics, including body coloration characters, such as silvery or not 

silvery, and the presence or absence of distinct patterning on the body. Branching of oral 

and preopercular canals is not included in the key since this characteristic was determined 

to be inconsistent within a species. 

 

1a. Body color silvery..………………………..………………………………………2 

1b. Body color not silvery………….………….………………………………………3 

 

2a. Dorsal-fin spine exceeding apex of first dorsal fin; trunk lateral line with tight  

sinuous undulations or broad undulations anterior to pelvic fins; prepelvic  

tenaculum of males with 4-5 denticles, claspers of mature males exceeding free  

tips of pelvic fins…….……………………………………...…Chimaera argiloba  

2b. Dorsal-fin spine not exceeding apex of first dorsal fin; trunk lateral line without  
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sinuous undulations along its length; prepelvic tenaculum of males with 6-7  

denticles, claspers of mature males not exceeding free tips of pelvic 

fins…………………………………………………………….....Chimaera fulva 

      

3a. Dorsal-fin spine small, not exceeding height of first dorsal fin, and fairly  

Straight….............................................................................................................…4       

3b. Dorsal-fin spine large, exceeding height of first dorsal fin, robust, slightly to  

strongly curved………..……………………………..….…………………………6 

  

4a. Long slender body, conical snout; pelvic fins relatively small, and not distinctly  

rounded; body color light tan.…………….………………...……………..………5 

4b. Robust body, massive, blocky head, blunt squared snout; pelvic fins large and

 rounded; body color grey-blue, purple-brown or lavender…….Chimaera lignaria 

       

5a. Suborbital ridge well defined, eyes very large; dorsal spine thin, and very straight,  

second dorsal fin moderately long, mouth distinctly dark, uniform light tan color,  

not iridescent …….………………………….Chimaera buccanigella new species 

5b. Very slender body, shorter snout, suborbital ridge poorly defined; eyes fairly  

large; dorsal spine robust, slightly curved; second dorsal fin very long;  

mouth with some dark marking, uniform light toffee-tan color,  

not iridescent……………………………………Chimaera didierae new species 
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6a. Medium to small sized head, conical snout, without well-defined suborbital

 ridges………………………………………………………………………………7  

6b. Large, blocky head, well-defined suborbital ridge, blunt, squared snout; dorsal  

spine thick, slightly curved, exceeds the apex of the first dorsal fin; body color  

brown, marbled around snout; posterior margin of first dorsal fin often  

            distinctly white....................................................Chimaera willwatchi new species 

 

7a. Eyes moderate in size, greater than one-third head length, dorsal spine one-third to 

one fourth BDL; body color uniform dark brown or black….....Chimaera macrospina 

7b. Eyes small, less than one-third head length, dorsal spine one-fourth to one-

seventh BDL; body color blackish-brown………………….….Chimaera notafricana 
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Chapter Two: The Natural and Life Histories of Deep-sea Chondrichthyans in the 
Southwestern Indian Ocean 

 
Introduction  

Approximately 3 billion people (40% of the world’s population) rely on wild-caught 

marine fish as their source of dietary protein (FAO, 2012). In meeting this global 

demand, increased commercial fishing efforts supported by advancements in technology 

have had a profound anthropogenic influence on natural marine environments (Jackson, 

2010). Unfortunately, our understanding of this human impact on marine biodiversity and 

species populations is, for the most part, based primarily on limited information from 

retrospective studies that tend to focus on commercially valuable species or a handful of 

charismatic “megafauna” species (Collette et al., 2011; McClenachan et al., 2012; Ebert 

and Van Hees, 2015). Few studies have established a baseline of information for non-

charismatic shark species, and even fewer have focused on sharks in the deep sea, where 

intrinsic physical obstacles and financial constraints make sampling especially 

challenging (Morato et al., 2006). 

Despite harsh conditions, the deep sea is the largest habitable environment on the 

planet (Gage et al., 1991; Robinson, 2009) and serves as habitat for nearly half of all 

known shark species (Kyne and Simpfendorfer, 2010). Most deep-sea shark species, 

however, are very poorly known. A recent study by Dulvy et al., (2014) reviewed the 

IUCN Red List Assessments for chondrichthyans based on habitat, and found nearly one-

half were assessed as Data Deficient. Of those species accessed, 38.4% of the 482 coastal 

and continental shelf species, 10.3% of the 39 neritic and epipelagic species, 50.0% of the 

8 mesopelagic species, 54.5% of the 33 freshwater obligates, and 57.6% of the 479 deep-
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sea species were Data Deficient. Based on this study, it is apparent that those species 

occurring in the deep-sea are the least known group of cartilaginous fishes. 

From the limited information available, researchers estimate that deep-sea sharks are 

less fecund and slower to reproduce than their coastal counterparts (Morato et al., 2006; 

Simpfendorfer and Kyne, 2009). As a result, deep-sea fisheries might need to adapt a 

different management approach that takes into account this lower productivity. 

 Here we present natural history and life history information for 27 species of deep-sea 

sharks and four species of Holocephali encountered in the Southwestern Indian Ocean 

during two surveys of the Madagascar Ridge and the Southwest Indian Ocean Ridge.  

Materials and Methods  
 

Biological Data. The total length, sex, and maturity status were recorded for each 

specimen captured; maturity status assessment is detailed below. Standard measurements 

for sharks followed Compagno (1984) and Francis (2006a). Total length (LT) was 

recorded as the distance between the snout tip to the point on the horizontal axis 

intersecting a perpendicular, vertical line drawn down from the distal-posterior most 

point of the caudal lobe, while the precaudal length (PCL) was defined as the distance 

from the snout tip to the dorsal insertion of the caudal fin. All chimaerid species have a 

caudal fin that slowly tapers off into a long, whip-like filament (Didier et al., 2012). This 

distal extension of the caudal fin is often broken or absent, and because the filament is 

homogenous in form it is never truly possible to determine whether the caudal fin is 

completely intact. Total length measurements are, therefore, prone to error due to damage 

in chimaerids, and reproductive and maturity parameters are best expressed in terms body 
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length (BDL): the distance from dorsal edge of gill opening to origin of dorsal margin of 

caudal fin (Inada and Garrick, 1979; Compagno et al., 1990; Hardy and Stehmann, 1990). 

Maturity Determination. Shark maturity was assessed by external visual inspection of 

claspers in males and internal inspection of reproductive organs in females (Figure 20) 

following Ebert (1996, 2005) and Ebert et al. (2006). Males were considered mature 

when the claspers were elongated, extended beyond the posterior free margin of the 

pelvic fins, were firm, and had their terminal cartilage elements calcified. Adolescent 

males had elongated claspers surpassing the free rear tips of the pelvic fins, but claspers 

were flexible and lacked calcification. Juvenile males had short, flexible claspers not 

reaching past the posterior margin of the pelvic fins. Inner clasper length was measured 

from the apex of the cloaca to the distal tip of the clasper and the ratio of clasper length to 

LT (thus normalizing clasper length) was plotted against LT. An abrupt change in the 

clasper length to LT ratio has been used previously to indicate maturity (Ebert 2005). 

Males were not examined internally for maturity.  

Females were considered mature when large yolky oocytes were present in the 

ovaries, and the oviducal gland was well developed, which was visually determined by a 

pendulous and distinctly differentiated from the uterus (Ebert, 1996). The uterus was 

enlarged with pendulously posterior portions hanging free from the body cavity (Figure 

20-b). Adolescent females had small ovaries with some differentiation, but less 

developed, smaller oocytes lacking defined yellow yoke. The oviducal gland 

underdeveloped along a thin, constricted uterus closely attached to the body. Juvenile 

females lacked differentiation of oocytes and the oviducal gland was not differentiated 
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from the thin uterus. Any individual (male or female) with a partially healed umbilical 

scar was considered a neonate (Carlson, 1999). 

 
Figure 20. Illustration of maturity ranking system for sharks a) males, b) females. 
Illustration by P.J. Clerkin. 
 
 

Number and size of oocytes and mature eggs were plotted against LT to assess 

possible change in fecundity with increasing LT. The immature gamete formed in the 

ovary during oocytogenesis was considered an oocyte. This germ cell develops into a 

mature egg (ovum), during ovulation (release of the oocyte from the ovaries), which 

makes it available for fertilization by fusion with a male gamete cell (sperm) (William, et 
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al., 2003). To simplify discussion, the term oocyte will be used to refer to egg cells found 

with the ovaries, while egg will be used to describe egg cells in the uterus. 

Sex and length of pups were recorded and plotted against mother’s LT to determine the 

relationship of offspring sex ratios and size with mother’s LT. Litter size was recorded 

and plotted against the mother’s LT to investigate the relationship between fecundity and 

increase in mother’s LT.  Width of the oviducal gland was measured at its widest distance 

across the gland and the ratio of oviducal gland to LT was plotted against LT. An abrupt 

change in the oviducal gland width ratio indicated maturity (Ebert, 2005). To measure 

how fecundity changed with mothers' LTs, oocytes were counted separately in left and 

right ovaries, and the largest oocyte from each side was measured using a sliding caliper. 

Oocyte count and size were compared between left and right ovaries using a paired t-test  

with the null hypothesis of no difference between the mean number of right and left 

oocytes (P>0.05) (Zar, 1996; Ebert, 2005).  

Chimaeridae maturity was assessed modified from Didier and Rosenberger (2002) 

and Barnett et al. (2009), by external visual inspection of frontal tenaculum, prepelvic 

tenacula, and claspers in males, and external inspection of postanal pad and oviduct 

opening in females (Figure 21). Males were considered mature when secondary sexual 

characters were developed, with frontal tenaculum fully erupt and bearing thorn-like 

denticles, prepelvic tenacula able to articulate forward out of pockets, and claspers 

elongated, stiff and calcified with distal portions ending in fleshy tissue covered by a fine 

shagreen of denticles (Figure 21-a). Adolescent males were developing, with frontal 

tenaculum in the process of erupting from head, prepelvic tenacula developing in pockets, 
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claspers beginning to elongate, but were still flexible and lacked calcification. Juvenile 

males were undeveloped with frontal tenaculum not erupted on head, but often marked 

with white outline, prepelvic tenacula small, undeveloped, and not articulating forward 

out of pockets, claspers present, but very small and flexible. Total clasper length was 

measured from the apex of the cloaca to the distal tip of the clasper, and plotted as a ratio 

of BDL. An abrupt change in the clasper length to BDL ratio indicated maturity (Barnett 

et al., 2009). 

Figure 21. Illustration of maturity ranking system for chimaeroids showing stages of 
development of a) frontal tenaculum, b) pre-pelvic tenaculum, c) anal pad, and d), 
claspers. Illustration by P.J. Clerkin. 
  

Females were considered mature when a large swollen postanal pad was well defined 

from tail musculature, and oviduct openings were large and dilated, often swollen and 

textured with papule (Figure 21-b). Adolescent females had less-developed postanal pads, 

differentiable from tail, but not yet well defined, and oviduct opening small or starting to 

dilate, but not swollen or textured. Juvenile females with postanal pad undeveloped, 

sometimes darker in color, but not swelling to the point of being differentiable from the 

tail, and the oviduct opening not dilated, without papule, and appear as deep dimples 
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posterior to vent. Height and length of postanal pad were recorded and the ratio of 

postanal pad to BDL was plotted against BDL. An abrupt change in the postanal pad 

height and length to BDL ratio indicated maturity (D.A. Didier, Millersville University, 

pers. comm). 

Sexual Dimorphism. Sexual dimorphism exists in Chondrichthyans in several forms, 

such as tooth shape, pelvic fin length, and presence of claspers (external copulatory 

appendages) in males (Ebert, 2005). This study will focus on total length (BDL in 

chimaerids) as a dimorphic character since it is easily quantifiable, and directly related to 

maturity (Hoenig, 1990). Maximum length and size at maturity were compared between 

the sexes of each species for which both males and females were encountered (Table 9). 

Analysis. Length frequencies for males and females were plotted by 2 cm bins to 

illustrate size distribution. The overall proportions of each sex, as well as sex ratios of 

adults and sub-adults, were analyzed using a χ2 goodness of fit test to determine whether 

the observed ratios significantly deviated from unity and are presented in Table 10 (Zar, 

1996). The theoretical lengths at which 50% of male and 50% female specimens were 

mature (LT50) was estimated for both sexes of each species using a logistic regression in 

JMP (Roa et al., 1999; Mollet et al., 2000; Neer & Cailliet 2001).  

Egg Cases. Egg case measurements were taken following Ebert et al. (2006) and 

Ebert and Clerkin (2015). In addition to egg case length (ECL), nine measurements were 

taken, anterior border width (AWB), anterior respiratory fissure length (AFL), anterior 

width (AW), egg case height (HI), posterior border width (PBW), posterior respiratory 
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fissure length (PFL), posterior width (PW), waist width (WW), and flange height (FH), 

and normalized as a percentage of ECL (Figure 22).   

Figure 22. Diagram of egg case measurements: egg case length (ECL), anterior border 
width (AWB), anterior respiratory fissure length (AFL), anterior width (AW), egg case 
height (HI), posterior border width (PBW), posterior respiratory fissure length (PFL), 
posterior width (PW), waist width (WW), and flange height (FH), and normalized as a 
percentage of ECL. Illustration by P.J. Clerkin. 
  

Diet. Diet data were collected opportunistically at sea following Ebert et al. (1991). A 

total of 341 stomachs (8.1% of the sharks of this survey) from 12 species were found to 

have prey. Stomach contents were removed and broadly categorized into five higher 

taxonomic groups: bony fish, shark, cephalopod, other invertebrate, or mammal. Percent 

volume was visually estimated for each diet category and item count recorded. The 

importance of each prey item was evaluated by a percent volume and frequency of 

occurrence.  

Distribution. A total of 427 otter or bottom trawls were deployed with 216 tows (138 

bottom 

 tows, 78 mid-water tows) resulted in sharks captured as bycatch from 40 stations. Mesh 

size of the cod end was constant on all trawls, thus eliminating gear based sampling bias. 
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The stations sampled were simplified into two major areas based on the distinct 

ecosystems of the region: Madagascar Ridge (114 tows) — including the northern region 

(7 tows) and Walters Shoal in the southern region (97 tows) — and the Southwest Indian 

Ocean Ridge (112 tows). Distribution and relative abundance were investigated for each 

region and expressed as a percent species composition, and a total number of species 

encountered only in that region. Furthermore, sex and maturity data is provided, where 

sufficient information was gathered, for each region to determine if intraspecific 

segregation behavior occurs. Species composition was examined using a non-metric 

multidimensional scaling analysis in PRIMER to explore how fauna relative abundance 

compares between ecosystems. SIMPER pairwise comparison was used to quantify 

contributing and cumulative Bray Curtis similarity (species contributions) percentages of 

species composition between regions. SIMPER pairwise comparison of contributing and 

cumulative Bray Curtis similarity (species contributions) between trawl gear types was 

used to investigate species location in the water column. The nMDS scores were plotted 

to illustrate dissimilarities of species composition between gear types.  

Results 

Centrophorus granulosus (Bloch & Schneider, 1801), Gulper shark. In all, 34 C. 

granulosus (21 females and 13 males) were collected with an overall female to male 

(F:M) sex ratio of 1:0.6 (Table 9a), not significantly different from the expected 1:1 ratio 

(p>0.05) (Table 10). However, sex ratios were significantly different when compared by 

maturity status, with an inverse ratio between adults being primarily male, 1:9 (p-

value<0.05), and juveniles dominated by females, 1:0.2 (p-value<0.05).  
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Males ranged from 55 to 126.3 cm LT, with 9 mature individuals (69.2%), the 

smallest mature measuring 118.3 cm LT and the largest immature measuring 125.4 cm LT 

(Figure 23-a). Clasper length increased between 118 and 120 cm LT (Figure 23-b), with 

the smallest mature occurring at 93.7% LT max, and the LT 50 was estimated to be 117.5 

cm LT.  
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Table 9a. A list of species encountered, the relationship between total length (LT) and 
length at first maturity, length at first maturity in relation to maximum length (LTmax), and 
length at 50% maturity (LT50) for Squaliformes: Centrophoridae, Etmopteridae, 
Somniosidae, and Dalatiidae. 
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Table 10.  Sex ratio significance evaluated by p-value<0.05, and χ2 value for overall, 
adult, and subadult sex ratio. 

Species 
Maturit
y 

Num. 
female
s 

Num. 
males 

P-
value 

Chi^2 
value 

Significanc
e 

Centrophorus granulosus  Overall 21 13 0.17 1.882 
Not 
significant 

  Adult 1 9 0.011 6.4 Significant 
  Subadult 20 4 0.001 10.667 Significant 
Centrophorus squamosus Overall 4 15 0.012 6.368 Significant 

  Adult 0 12 
<0.00
1 13 Significant 

  Subadult 4 2 0.414 0.667 
Not 
significant 

Deania calcea Overall 30 12 0.005 7.714 Significant 

  Adult 9 12 0.513 0.513 
Not 
significant 

  Subadult 21 0 
<0.00
1 21 Significant 

Deania profundorum  Overall 32 6 
<0.00
1 17.789 Significant 

  Adult 16 6 0.033 4.545 Significant 

  Subadult 16 0 
<0.00
1 16 Significant 

Etmopterus granulosus  Overall 1529 916 
<0.00
1 

153.68
9 Significant 

  Adult 598 395 
<0.00
1 41.499 Significant 

  Subadult 931 521 
<0.00
1 

115.77
1 Significant 

Etmopterus lucifer   Overall 5 1 0.102 2.667 
Not 
significant 

  Adult           
  Subadult           

Etmopterus molleri   Overall 2 1 0.564 0.333 
Not 
significant 

  Adult           
  Subadult           

Etmopterus pusillus Overall 5 8 0.405 0.692 
Not 
significant 

  Adult           
  Subadult           
Etmopterus sculptus Overall 7 1 0.034 4.5 Significant 
  Adult           
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  Subadult           

Scymnodon plunketi  Overall 27 23 0.572 0.32 
Not 
significant 

  Adult 12 19 0.209 1.581 
Not 
significant 

  Subadult 15 4 0.012 6.368 Significant 
Centroscymnus coelolepis
   Overall 42 8 

<0.00
1 23.12 Significant 

  Adult 9 3 0.083 3 
Not 
significant 

  Subadult 33 5 
<0.00
1 20.632 Significant 

Centroscymnus owstonii   Overall 31 13 0.007 7.364 Significant 
  Adult 5 3 0.48 0.5 Significant 
  Subadult 26 10 0.008 7.111 Significant 

Centroselachus crepidater Overall 217 83 
<0.00
1 59.853 Significant 

  Adult 93 54 0.001 10.347 Significant 

  Subadult 124 29 
<0.00
1 58.987 Significant 

Zameus squamulosus Overall 1 4 0.18 1.8 
Not 
significant 

  Adult           
  Subadult           

Dalatias licha  Overall 165 10 
<0.00
1 

137.28
6 Significant 

  Adult 76 4 
<0.00
1 64.8 Significant 

  Subadult 89 6 
<0.00
1 72.516 Significant 

Apristurus sinensis Overall 34 59 0.01 6.72 Significant 
  Adult           
  Subadult           
Apristurus sp. cf. 
albisoma Overall 5 3 0.48 0.5 

Not 
significant 

  Adult           
  Subadult           
Apristurus sp. cf. 
ampliceps 1 Overall 5 2 0.257 1.286 

Not 
significant 

  Adult           
  Subadult           
Apristurus sp. cf. 
ampliceps 2 Overall 3 1 0.317 1 

Not 
significant 

  Adult           
  Subadult           

Apristurus sp. cf. manis Overall 11 12 0.835 0.043 
Not 
significant 
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  Adult           
  Subadult           
Apristurus sp. cf. 
melanoasper Overall 2 3 0.655 0.2 

Not 
significant 

  Adult           
  Subadult           

Bythaelurus naylori Overall 15 14 0.853 0.034 
Not 
significant 

  Adult           
  Subadult           
Bythaelurus bachi  Overall 11 1 0.004 8.333 Significant 
  Adult           
  Subadult           

Pseudotriakis microdon Overall 10 18 0.131 2.286 
Not 
significant 

  Adult 2 9 0.035 4.455 Significant 

  Subadult 8 9 0.808 0.059 
Not 
significant 

Chimaera willwatchi Overall 35 17 0.017 5.667 Significant 

  Adult 7 5 0.564 0.333 
Not 
significant 

  Subadult 30 12 0.008 7.049 Significant 

Hydrolagus sp A Overall 2 1 0.564 0.333 
Not 
significant 

  Adult 1 1     
Not 
significant 

  Subadult   1     
Not 
significant 

 

Females ranged from 113.8 to 157 cm LT, with a single mature individual that was 

also the largest female encountered (Figure 23-c). Oviducal gland width increased 

between 147 and 157 cm LT (Figure 23-d) and LT50 was estimated to be 152.0 cm. The 

mature female had a total number of 29 mature oocytes evenly distributed between left 

(14 oocytes) and right (15 oocytes) ovaries, with a maximum diameter of 0.8 cm.  
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Figure 23. Centrophorus granulosus: a) size distribution of males, b) relationship 
between inner clasper length (%LT) and LT (males), c) size distribution of females, d) 
relationship between shell gland width (%LT) and LT (females) Diet for this species was 
exclusively composed of bony fishes, which were found in six of the stomachs examined.  
 

Males and females were taken from seamounts along both Walters Shoal and the 

Southwest Indian Ocean Ridge at depths between 820 and 1312 m (Figure 24).  
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Figure 24. Distribution of the family Centrophoridae of this study: Centrophorus 
granulosus (red circle), Centrophorus squamosus (green square), Deania calcea (orange 
triangle), and Deania profundorum (purple star). Map data: Google, Image © 2017 
DigitalGlobe. 
 

Centrophorus squamosus (Bonnaterre, 1788), Leftscale Gulper Shark. A total of 19 

C. squamosus (four females and 15 males) were examined with a F:M ratio of 1:3.8, 

significantly different from the expected equal ratio (p-value<0.05). Comparison by 

maturity shows adults were exclusively male (p-value<0.05), and while juveniles were 

dominated by females 1:0.5 the sample size was too small to show significance (p-

value>0.05). 
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Males ranged from 96.6 cm LT to 130 cm LT, with 13 mature (86.7% of those 

encountered) (Figure 25-a). The smallest mature measured 107.1 cm LT and largest 

immature male measured 96.6 cm LT. Claspers length increases between 96 cm LT and 

105 cm LT (Figure 25-b), the smallest mature was at 82.4% LT max, and LT50 was 

estimated to be 101.9 cm LT. Females ranged from 106 cm LT to 126 cm LT, but no 

mature individuals were encountered. 

 
Figure 25. Centrophorus squamosus: a) size distribution of males, b) relationship 
between inner clasper length (%LT) and LT (males). 

One male had cephalopod remains in its stomach.  
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Males and females were encountered off Walters Shoal and the Southwest Indian 

Ocean Ridge at depths between 495 and 1250 m (Figure 24). 

 
Figure 26. Pie chart of prey items presented as percent composition of item-count for 
each species encountered with stomach contents. Broad taxonomic groups are shown as: 
cephalopod (red), fish (blue), crustacean (pink), mammal (orange), shark (grey), and 
unidentified (black). 
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Deania calcea (Lowe, 1839), Birdbeak Dogfish. In all, 42 D. calcea (30 females and 

12 males) were collected with an overall female to male ratio of 1:0.4, which is 

significantly different from the null hypothesis of a 1:1 ratio (p-value<0.05). Comparison 

by maturity level revealed an insignificant majority of adults were male, 1:1.3 (p-

value>0.05), while the 21 juveniles were exclusively female.  

Males ranged from 82.0 to 95.5 cm LT and were all determined to be mature, with the 

smallest individual measuring 82.0 cm or 5.9% of the LTmax (Figure 27-a). Females 

ranged from 86 to 116 cm LT, with nine mature, the smallest of which measured 87.9 cm 

LT (75.8% LTmax), and the largest immature measured 110 cm LT (Figure 27-b). Oviducal 

gland width increased between 95 cm LT and 98 cm LT (Figure 27-c), with LT50 estimated 

to be 106.3 cm LT.   
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Figure 27. Deania calcea: a) size distribution of males, b) size distribution of females, c) 
relationship between shell gland width (%LT) and LT (females). 
 
 

Females had between four and 18 eggs (averaging 8.6) in the left uterus and three to 

12 eggs (averaging 7.8) in the right uterus; this discrepancy was not significantly 

different from unity (p-value >0.05) (Table 11). The largest mature egg had a maximum 

diameter of 4.7 cm. 

Two females had bony fishes in their stomachs, with a third female containing a mix 

of fish and cephalopods. 

Although juvenile males and females were sometimes encountered on the same 

seamounts between 503 and 1290 meters, mature males were encountered along the 
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Southwest Indian Ocean Ridge (with one exception) while all mature females (except the 

largest female encountered, 108.9 cm) were encountered along Walters Shoal (Figure 

24).  

Table 11. List of numbers of ovarian oocytes (average and max), uterine eggs (left max, 
right max, total max, and average), and max width of oocytes

 
 

Deania profundorum (Smith & Radcliffe, 1912), Arrowhead Dogfish. Collectively 38 

D. profundorum (32 females and six males) were encountered with an overall F:M sex 

ratio of 1:0.2, significantly favoring females (p-value<0.05). Comparison by maturity 

level showed most adults, 1:0.4 (p-value<0.05), and all juveniles were female.  

Males ranged from 68.5 to 73 cm LT, and were all determined to be mature. Females 

ranged from 79 to 119.4 cm LT, with 16 individuals (50%) mature (Figure 28-a). 

Oviducal gland width increased between 92 cm LT and 93 cm LT (Figure 28-b). Smallest 

mature measured 92.5 cm LT (77.4% LTmax), the largest immature female measured 111 

cm LT, and LT50 was estimated to occur at 98.7 cm LT. 
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Figure 28. Deania profundorum: a) size distribution of females, b) relationship between 
shell gland width (%LT) and LT (females). 
 

Females had a total average of 15 mature oocytes, with between two and 17 oocytes 

in their left ovary (averaging 7.3) and three to 15 in their right (averaging 7.6) with 

insignificant differences between left and right ovaries (p-value >0.05). The largest 

mature oocytes had a maximum diameter of 6.2 cm. 
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Stomach contents were found in two females and consisted of bony fish in an 

adolescent and squid in the adult.  

Males and females were found on a single seamount in the Walters Shoal seamount 

complex, with a depth range of 560 to 1290 m (Figure 24).   

Etmopterus alphus, Ebert, Straube, Leslie, and Weigman, 2016, White Cheek 

Lanternshark. A total of six E. alphus were collected (five females and one male), with 

an overall sex ratio of 1:0.2, favoring females but a sample size too small to be significant 

(p-value>0.05). The only male was mature at 45.5 cm LT. Females ranged from 48.7 to 

54.5 cm LT, the largest of which was pregnant. Internal maturity indicators and diet were 

not examined. 

Females were collected from both Walters Shoal and the Southwest Indian Ocean 

Ridge (Figure 29) with a depth range of 500 and 1300 m, and the only male was collected 

from Walters Shoal between 900 and 1200 m deep.  

 

 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
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Figure 29. Distribution of the family Etmopteridae (sans E. granulosus. See figure 30): 
Etmopterus alphus (red circle), E. bigelowi (green square), E. compagnoi (orange 
triangle), E. pusillus (purple star), E. sculptus (yellow pentagon), E. cf. sculptus (maroon 
diamond). Map data: Google, Image © 2017 DigitalGlobe. 
 

Etmopterus bigelowi, Shirai & Tachikawa, 1993, Blurred Smooth Lantern Shark. A 

single female specimen measuring 36.3 cm LT was encountered from 

Walters Shoal between 560 and 1007 m deep. To maintain the integrity of the specimen it 

was not internally assessed for maturity (Figure 29).  

Etmopterus compagnoi, Fricke and Koch, 1990, Brown Lanternshark. In all, five E. 

compagnoi (four females and one male) were collected, with an overall F:M of 1:0.3 (p-

value >0.05). The male was mature at 57.4 cm LT, while the four females ranged from 

48.4 to 60.8 cm LT, and were not examined internally. This species was only encountered 

in the northern region of the Madagascar Ridge between 800 and 1300 m deep (Figure 

29). 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=301
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=301
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Etmopterus granulosus (Günther, 1880), Southern Lanternshark. A total of 2445 

(1529 females and 916 males) were examined, with an overall F:M ratio of 1:0.6, with 

significantly more females collected (p-value<0.05). Comparison by maturity status 

shows significantly more adult females, 1:0.6 (p-value<0.05), and more juvenile females 

1:0.5 (p-value<0.05).  

Males ranged from 21 to 92.8 cm LT, with 395 mature individuals (43.1% of 

examined) (Figure 30-a). Clasper length increased between 51 and 52 cm LT (Figure 30-

b). The smallest mature male measured 51.9 cm LT or 55.9% LTmax, the largest immature 

was 74 cm LT, and LT50 was estimate at 58.0 cm LT. Females ranged from 20.1 to 101.9 

cm LT, with 598 mature (39.1% examined) (Figure 30-c). Oviducal gland width increased 

sharply between 63 cm LT and 68 cm LT (Figure 30d). The smallest mature female 

measured 60 cm LT (58.9% LTmax), the largest immature at 81.1 cm LT, and LT50 was 

estimated at 71.8 cm LT.  
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Figure 30. Etmopterus granulosus: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of the females, d) 
relationship between shell gland width (%LT) and LT (females), and e) distribution of 
males (red triangles) and females (green circles). Map data: Google, Image © 2017 
DigitalGlobe. 
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Females had 14 mature oocytes on average with between one and 38 oocytes per 

ovary, averaging 7.1 left and 6.5 right (p-value <0.05). Uterine eggs ranged from 1 to 38, 

averaging 6.8 per uterus. There was no correlation between mother size and number of 

oocytes or eggs. The largest mature egg had a maximum diameter of 5.3 cm. Forty-four 

pregnant females ranging from 64 to 90 cm LT with an average of 76.4 cm LT were 

encountered from a relatively large area throughout the Southwest Indian Ocean Ridge. 

Pregnant females bore litters which were at different stages of development with a 

trend for larger pups from females measuring between 72 and 80 cm LT. Number of pups 

ranged from 2 to 15, with an average of 7.9 pups per mother. Female pups outnumbered 

male pups by more than 1:0.65 (p-value<0.05), with male pups ranging from 5.4 to 22 cm 

LT and females from 4.4 to 21.8 cm LT. This ratio favored female pups consistently 

throughout length of mothers. Umbilical scars present on the smallest free-swimming 

male (21 cm LT) and female (20.1 cm LT) suggest minimum length for the species.  

Table 12.  List of numbers of species bearing pups, number of pups, and number of pups 
reported in the literature 

 
Of the 61 individuals with stomach contents, 39 (66%) contained bony fishes and 20 

(33%) had cephalopods. Only two individuals were found to have both fish and 

cephalopod within their stomachs, and fish made up the majority (70%) of the visually 

estimated volumes. Males fed mostly on cephalopods (80%) with only a single male (63 
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cm TL) having fish in its stomach. Females largely fed on fish (88.9%). Diets often 

consisted of large pieces or whole animals.  

This was by far the most commonly encountered and widespread elasmobranch of the 

survey. Males and females were caught along both the Walters Shoal and the Southwest 

Indian Ocean Ridge with a depth range of 89 to 1334 m, with no clear segregation 

(Figure 30-e). Pregnant females were present exclusively at Southwest Indian Ocean 

Ridge.  

Etmopterus pusillus (Lowe, 1839), Smooth Lanternshark. A total of 13 E. pusillus 

(five females and eight males) were collected, with an overall F:M sex ratio of 1:1.6, not 

significantly different from unity (p-value>0.05). 

Males ranged from 40.1 to 45.5 cm LT, and were all determined to be mature. The 

smallest male was 88.1% LTmax. Females ranged from 41.2 to 51.6 cm LT. Internal 

maturity indicators and diet was not examined.  

Males and females were found together and only encountered along seamounts of 

Walters Shoal with a depth range of 580 to 1020 m (Figure 29).  

 

 

 

 

 

 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7035


112 
 

Table 13. List of species found with stomach contents, prey items given by 
number and percentage composition of estimated value, compared to diet reported 
in the literature. 
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Etmopterus sculptus, Ebert, Compagno & De Vries, 2011, Sculpted Lanternshark. 

Eight E. sculptus (seven females and one male) were collected with an overall 

   F:M ratio of 1:0.1 significantly different to the expected null hypothesis (p-value<0.05).  

The only male was mature at 46 cm LT. Females ranged from 41 to 55.5 cm LT, with at 

least three pregnant individuals, the smallest of which measured 50.1 cm LT (90.3% 

LTmax). Internal maturity indicators and diet were not examined.  

This species was collected from two seamounts along the Walters Shoal between 495 

and 1288 m deep (Figure 29). 

Etmopterus cf. sculptus, Sculpted Lanternshark. Three specimens of E. cf. sculptus 

were collected (two females and one male), a F:M ratio of 1:0.5, not significantly 

different from unity (p-value>0.05). The single male was mature at 45 cm LT. Females 

measured 45.5 and 50.9 cm LT, and maturity was not evaluated internally. 

Females were taken from the Southwest Indian Ocean Ridge, and the single male was 

encountered at Walters Shoal between 896 and 1300 m deep (Figure 29).   

Scymnodon plunketi (Waite, 1910), Plunket’s Shark. A total of 50 S. plunketi (27 

females and 23 males) were encountered, with an overall F:M sex ratio of 1:0.9, not 

significantly different from the expected 1:1 (p-value>0.05). Comparison based on 

maturity level revealed adult males did not significantly outnumber adult females, F:M of 

1:1.6 (p-value>0.05) but juvenile females were almost 3 times as abundant juvenile 

males, 1:0.3 (p-value<0.05).  

Males ranged from 101.6 to 139.2 cm LT, with 19 mature (82.6% males encountered) 

(Figure 31-a). Clasper length increased sharply between 116 and 123 cm LT (Figure 31-

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=71967
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
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b), and the smallest mature male measured 122.1 cm LT (87.7% LTmax), the largest 

immature male measured 116 cm LT, and LT50 was estimated to be 119.1 cm LT. Females 

ranged from 51 cm to 159 cm LT, with 12 mature (44.4% encountered), the smallest 

maturing at 123 cm LT (77.4% LTmax) (Figure 31-c). Oviducal gland width increase 

between 124 and 139 cm LT (Figure 31-d), the largest immature female measured 150 cm 

LT, and LT50 was estimated at 134.3 cm LT.  

Figure 31. Scymnodon plunketi: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females, d) relationship 
between shell gland width (%LT) and LT (females). 
 

Females had between 10 and 34 eggs evenly distributed between left and right uteri 

with between 10 and 36 oocytes in either ovary. The largest mature egg had a maximum 

diameter of 7.5 cm. The single pregnant individual bore 20 pups (14 females and 6 
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males), female pups outnumbering males 1:0.4, although statistically not significant (p-

value>0.05). Male pups ranged from 20.7 to 22.5 cm LT, and female pups from 21 to 22.2 

cm LT.  

Diet was comprised largely of bony fishes, with 14 (82.4%) individuals feeding solely 

on fish, one (5.9%) individual feeding on cephalopods, and two (11.8%) with fish (66% 

and 80% by volume) and cephalopods (34% and 20% by volume) in its stomach. 

Males were only encountered on the seamounts of the Southwest Indian Ocean Ridge 

with a range of 594 to 1288 m deep. Females were taken from both the Southwest Indian 

Ocean Ridge and Walters Shoal between 736 and 1271 m deep, with two mature 

individuals (7% of females) from the same area as the males (Figure 32).  
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Figure 32. Distribution of the family Somniosidae (sans Centroscymnus, Centroselachus, 
and Dalatias): Scymnodon plunketi (red circle), Zameus squamulosus (yellow pentagon), 
and Somniosus cf rostratus (blue hexagon). Map data: Google, Image © 2017 
DigitalGlobe. 
 

Centroscymnus coelolepis Barbosa du Bocage & de Brito Capello, 1864, Portuguese 

Dogfish. In all, 50 C. coelolepis (42 females and eight males) were collected with a F:M 

ratio of 1:0.2, with significantly more females than the expected 1:1 even sex ratio (p-

value<0.05). Among mature individuals, females insignificantly outnumbered males 

1:0.3 (p-value>0.05), and the significant majority of juveniles were females 1:0.15 (p-

value<0.05).  

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3264
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7044
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Males ranged from 81 to 95.6 cm LT, with three mature individuals encountered 

(37.8% of males). Clasper size increased between 89.5 and 90.5 cm LT (Figure 33-a). The 

smallest mature measured 90.2 cm LT (94.4% LTmax), the largest immature male was 95 

cm LT, with LT50 estimated at 92.6 cm LT. Females ranged from 69.5 to 123.3 cm LT, with 

9 mature (21.4% of females) (Figure 33-b). Oviducal gland width spiked between 102 

and 104 cm LT (Figure 33-c). The smallest mature female measured 105 cm LT, the 

largest immature reached 111 cm LT, and LT50 was estimated at 105.9 cm LT.  

 
Figure 33. Centroscymnus coelolepis: a) relationship between inner clasper length (%LT) 
and LT (males), b) size distribution of females, c) relationship between shell gland width 
(%LT) and LT (females). 

 

Females had between five and 22 eggs in their left uterus and between four and 20 in 

their right with an average of 22 eggs evenly distributed between their two uteri. The 
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largest mature egg had a maximum diameter of 5.9 cm across. Oocytes were numerous 

with between 20 and 43 per ovary with an average of 24.9 per ovary. A single pregnant 

individual was examined from Walters Shoal and measured 107.9 cm LT, bearing 12 pups 

(five left, seven right uterus), which averaged 70.9 mm LT and were undeveloped with a 

large portion of yolk un-absorbed.  

Stomach contents included bony fish (two females, both 109 cm LT) cephalopod (two 

females 103 and 105 cm LT), and mammal (pinniped) remains (two females 103 and 109 

cm LT). 

Males and females were taken from the same seamounts along the Southwest Indian 

Ocean Ridge and Walters Shoal with a depth range of 89 to 1310 m (Figure 34).  

 

Figure 34. Distribution of the genus Centroscymnus: C. coelolepis (green triangle) and C. 
owstonii (red circle). Map data: Google, Image © 2017 DigitalGlobe. 
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Centroscymnus owstonii, Garman, 1906, Roughskin Dogfish. In total, 44 C. owstonii 

(31 females and 13 males) were encountered, with a F:M ratio of roughly 1:0.4, 

significantly higher (p-value<0.05) than unity. Examination by maturity stage revealed 

adult females were more abundant than adult males 1:0.4 (p-value<0.05).  

Males ranged from 44.2 to 95.1 cm LT, with 3 mature (23.1% total) smallest mature 

measuring 84.9 cm LT, 89.3% LT max (Figure 35-a). Clasper length increased between 81 

and 88 cm LT (Figure 35-b), the largest immature male measured 91 cm LT, and LT50 was 

estimated at 90 cm LT. Females ranged from 75.6 to 114 cm LT, with five mature (16.1% 

of encountered) (Figure 35-c). Oviducal gland width increased between 108 and 110 cm 

LT (Figure 35-d). The smallest mature measured 79.8 cm LT and was 70% LTmax, the 

largest immature female was 113 cm LT, and LT50 was 99.9 cm LT.   

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3264
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=26575
http://en.wikipedia.org/wiki/Samuel_Garman
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=1542
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Figure 35. Centroscymnus owstonii: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females, d) relationship 
between shell gland width (%LT) and LT (females). 
 

Females had between four and 15 eggs in their left uterus and between six and 14 in 

their right, with the largest mature egg reaching a maximum diameter of 6.2 cm across.  

Diet was composed of cephalopods in one male, bony fishes in two females, and a 

combination of cephalopod (75%) and fish (25%) in one female. 

This species was found at 800 to 1400 m deep at both the Southwest Indian Ocean 

Ridge and Walters Shoal in between 686 and 1350 meters, with its distribution 

overlapping that of Centroscymnus coelolepis (Figure 34).  

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7044
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Centroselachus crepidater (Barbosa du Bocage & de Brito Capello, 1864), Longnose 

Velvet Dogfish. In total, 300 C. crepidater (217 females and 83 males) were examined, 

with an overall F:M ratio of 1:0.4, significantly different from the expected equal ratio (p-

value<0.05). Examination by maturity status revealed mature females outnumbered 

mature males by nearly threefold, F:M 1:0.4 (p-value<0.05), and juvenile female 

outnumbered juvenile males 1:0.2 (p-value<0.05).  

Males ranged from 20.5 to 94.9 cm LT, with 54 mature (65.1% of those encountered) 

(Figure 36-a). Clasper length increased between 60 and 63 cm LT (Figure 36-b) with the 

smallest mature individual measuring 63.2 cm LT (66.6% LTmax), the largest immature 

measured 66.4 cm LT, and LT50 was estimated to be 60.4 cm LT. Females ranged from 

37.5 to 145.8 cm LT, with 93 mature (42.9% of total females) (Figure 36-c). Oviducal 

gland width increased sharply between 73 and 75 cm LT (Figure 36-d), with the smallest 

mature measuring 78 cm LT (53.5% LTmax), the largest immature 86.0 cm LT, and LT50 

was estimate at 88.3 cm LT.  
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Figure 36. Centroselachus crepidater: a) size distribution of males, b) relationship 
between inner clasper length (%LT) and LT (males), c) size distribution of females, d) 
relationship between shell gland width (%LT) and LT (females), and e) distribution of 
males (red triangles) and females (green circles). Map data: Google, Image © 2017 
DigitalGlobe. 
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Females had an average of eight mature eggs between two uteri, with between one 

and 16 per uterus, measuring 3.5 cm across. Oocytes were numerous, up to 24 per ovary. 

Four pregnant females were dissected for fecundity data. Mothers ranged from 89 to 94 

cm LT with an average LT of 92.2 cm. Number of pups ranged from two to seven with an 

average of 3.8 per mother.  

Diet was found in 30 individuals and contained fishes in 26 specimens (86.7%), 

cephalopod in one specimen (3.3%), crustacean in one specimen, and mammal (pinniped) 

in one specimen. One individual had both crustacean (33% by volume) and fish (64%), 

and another had cephalopod and fish (50%). There was no evidence of correlation 

between sex, length, or maturity stage and diet.  

Females (adult and subadult) were taken from both the Southwest Indian Ocean 

Ridge and Walters Shoal. Males and pregnant females were only encountered along the 

Southwest Indian Ocean Ridge (Figure 36-e). This species had a depth range of 89 to 

1365 m. Depth did not appear to correlate with sex, or maturity status.  

Zameus squamulosus (Günther, 1877), Velvet Dogfish. Five Zameus squamulosus 

(one female and four males) were encountered, but the sample size was too small to be of 

significance (p-value>0.05). Males ranged from 52 to 53 cm LT, with three mature 

individuals. Clasper length increased between 52 and 53 cm LT, with the smallest mature 

measuring 52.5 cm LT (99.1% LTmax), and the only immature measured 52 cm LT, LT50 

was estimated to occur at 52.3 cm length. The only female specimen measured 92.9 cm 

LT, nearly twice the size of the largest male, and was pregnant. Oviducal gland width was 

1.0 cm, and the female had three pups in left uterus. Pups were all female, measured from 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=5138
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7051
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14.8 cm to 15.5 cm, and were moderately developed with a large amount of external yolk 

sack not yet absorbed.  

This species was encountered on Walters Shoal with a depth range of 810 to 1060 m, 

and was collected in low numbers (one or two) from different seamounts (Figure 32).  

Somniosus cf rostratus, Little Sleeper Shark. A single specimen of S. cf. rostratus was 

collected, a neonate male measuring 30.2 cm LT, and taken from the Southwest Indian 

Ocean Ridge between 670 and 755 m deep (Figure 32).  

Dalatias licha (Bonnaterre, 1788), Kitefin Shark. In total, 175 D. licha (165 females 

and 10 males) were collected with a F:M ratio of 1:0.1, significantly different from the 

expected equal ratio (p-value <0.05). Comparison by maturity stage revealed females 

outnumbered males in adult stage by 1:0.05 (p-value<0.05) and in juvenile stage by 

1:0.07 (p-value<0.05).  

Males ranged in size from 47.1 to 112 cm LT, with 4 mature (40% of males)  

(Figure 37-a). Clasper length increased between 103 and 107 cm LT (Figure 37-b), with 

the smallest mature occurring at 107 cm LT (95.5% LTmax), largest immature at 103 cm 

LT, and LT50 estimated to be 105.0 cm LT. The smallest free-swimming male, measuring 

47.1 cm TL bore an umbilical scar indicating a minimum size for the species. Females 

ranged from 56 to 157.3 cm LT, with 76 mature (46.1% females encountered) (Figure 37-

c). Oviducal gland width increased between 122 cm LT and 134 cm LT (Figure 37-d). 

Smallest mature measured 113.5 cm LT (72.2% LTmax), the largest immature at 147 cm LT, 

and LT50 estimated to be 130.0 cm LT.  



125 
 

Females had up to 58 undeveloped oocytes in a single ovary with an average of 15 

mature oocytes between both ovaries. Mature eggs averaged seven per uterus, although 

there could be as many as 26 eggs in a single uterus and 35 between both uteri. Mature 

eggs measured up to 9.2 cm across. 
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Figure 37. Dalatias licha: a) size distribution of males, b) relationship between inner 
clasper length (%LT) and LT (males), c) size distribution of females, d) relationship 
between shell gland width (%LT) and LT (females), and e) distribution (red triangles) 
and Haul 183 (indicated). Map data: Google, Image © 2017 DigitalGlobe. 
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Diet was examined in 65 specimens, and mainly consisted of bony fishes with 50 

(76.9%) individuals containing only fish, three (4.6%) squid, three (4.6%) shark, and one 

(1.5%) of invertebrates. Mixed diet was found in 8 (12.3%) individuals and contained of 

average of 19% shark, 35% squid, and 46% squid by volume. There was no correlation 

between sex, length, or maturity and diet composition.  

Males were found exclusively on the Southwest Indian Ocean Ridge with a depth 

range of 580 to 1290 m. Females were most commonly encountered along Walters Shoal, 

between 460 to 1311 m deep, with only reproductively inactive females found at the 

Southwest Indian Ocean Ridge (Figure 37-e). Individuals were normally taken in low 

numbers (one to three per haul), with the exception of a single haul on Walters Shoal, 

fishing depths between 560 and 1007 m, in which 75 females were collected (haul 183). 

The females in this haul had a maturity ratio equal to the rest of the survey. No males 

were present in this haul, and no deviation in diet (quantity or composition) was apparent.  

Apristurus sinensis, Chu and Hu, 1981, South China Catshark. In total, 93 total A. 

sinensis (34 females and 59 males) were encountered, with a F:M ratio of 1:1.7, 

significantly favoring males (p-value<0.05). Males ranged from 32.2 to 102.5 cm LT, 

with 39 mature (66.1% total males) (Figure 38-a). Clasper length increased sharply 

between 55 and 60 cm LT (Figure 38-b), with the smallest mature measuring 63.1 cm LT 

(61.6% LTmax), the largest immature 66 cm LT, and LT50 estimated to be 60.3 cm LT. 

Females ranged from 47.7 to 109.1 cm LT (Figure 38-c). Two female specimens were 

examined internally; one was determined to be immature at 74.4 cm LT while the other 

was mature at 93.9 cm LT.  
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Table 9b.  A list of species encountered, the relationship between total length (LT) and 
length at first maturity, length at first maturity in relation to maximum length (LTmax), and 
length at 50% maturity (LT50) for Carcharhiniformes: scyliorhinids, Pseudotriakidae, and 
Holocephali: Chimaeridae. 
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Figure 38. Apristurus sinensis: a) size distribution of males, b) relationship between inner 
clasper length (%LT) and LT (males), c) size distribution of females. 
 

This species was by far the most commonly encountered catshark in the area and 

appears to be widespread, with males and females taken from the same seamounts, 800 to 

1300 m deep, from both the Southwest Indian Ocean Ridge and Walters Shoal, between 

89 and 1365 m deep (Figure 39).  
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Figure 39. Distribution of the genus Apristurus: A. sinensis (red circle), A. cf. albisoma 
(green square), A. cf. ampliceps 1 (orange triangle), A. cf. ampliceps 2 (yellow pentagon), 
A. cf. manis (blue hexagon), and A. cf. melanoasper (maroon diamond). Map data: 
Google, Image © 2017 DigitalGlobe. 
 

Apristurus cf. albisoma, White-Bodied Catshark. In total, eight specimens of A. cf. 

albisoma were encountered (five females and three males), with an overall F:M ratio of 

1:0.6 with females not significantly outnumbering males (p-value>0.05). Males ranged 
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from 39.7 to 55.1 cm LT, with only the largest being mature. Females ranged from 50.2 to 

52.4 cm LT, and were not examined internally.  

This species was relatively uncommon, and found only at one site on the Southwest 

Indian Ocean Ridge and one site on the Madagascar Ridge between 890 and 1300 meters 

(Figure 39).  

Apristurus cf. ampliceps 1, Roughskin Catshark. In all, seven A. cf. ampliceps 1 were 

collected (five females and two males), with a F:M ratio of 1:0.4, not significantly 

favoring females (p-value>0.05).  

Males measured 66 and 83 cm LT, the larger of the two was mature. Females ranged 

from 82 to 88.5 cm LT and were not examined internally. Mature males and females of 

this species were scarred all over their bodies with bite marks matching the teeth of their 

own species.  

Males and females were taken from Walters Shoal between 1000 and 1300 m deep, 

with two females collected from two relatively close sites along the Southwest Indian 

Ocean Ridge, 1200 to 1400 m deep (Figure 39).  

Apristurus cf. ampliceps 2, Roughskin Catshark. A total of four A. cf. ampliceps 2 

were taken (three females and one male), a sex ratio of 1:0.3, not significantly favoring 

females (p-value>0.05).  

The lone male was mature at 81 cm LT. Females ranged from 77.3 to 86.1 cm LT, and 

were not examined internally. This species was scarred in a way that matched A. cf. 

ampliceps 1.  
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The male and females were encountered together on Walters Shoal, 1000 to 1100 m 

deep, and a single female was collected from the Southwest Indian Ocean Ridge, 1200 to 

1300 m deep (Figure 39).  

Apristurus cf. manis, Ghost Catshark. A total of 23 A. cf. manis (11 females and 12 

males) were collected with a F:M sex ratio of 1:1.1, not significantly different (p-

value>0.05) from unity. Males ranged from 45 to 92.8 cm LT, with 8 mature (66.7% of 

encountered) (Figure 40-a). Clasper size increased between 67 and 76 cm LT (Figure 40-

b), with the smallest mature measuring 76.6 cm LT (82.5% LTmax), the largest immature 

measuring 69 cm LT, and LT50 estimated at 75 cm LT. Females ranged from 78.4 to 87.1 

cm LT, with at least 3 mature (Figure 40-c). Of the females examined internally, the 

smallest mature measured 78.4 cm LT (90.0% LTmax).  

Males and females of this species were covered in scars matching the teeth of their 

own species. The absence of these scars in reproductively inactive specimens suggests 

that this species uses its teeth to position during copulation.  
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Figure 40. Apristurus cf. manis: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females.  
 

Females were encountered from the Southwest Indian Ocean Ridge and Walters 

Shoal between 620 and 1340 m deep, while males were found mostly on Walters Shoal 

between 1128 and 1270 m deep with two males from the Southwest Indian Ocean Ridge 

between 760 and 1250 m deep (Figure 39).  

Apristurus cf. melanoasper, Black Roughscale Catshark. In all, five A. cf. 

melanoasper were collected, (two females and three males), with a sex ratio of 1:1.5, not 

significantly different from unity (p-value>0.05). Males ranged from 63 to 77 cm LT, 

with 2 mature. Males were immature at 63 cm LT, mature at 72 cm LT (93.5% LTmax), LT50 
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was estimated at 69 cm LT. Females measured 41 and 47.7 cm LT, and were not internally 

evaluated for maturity.  

Specimens of this species were collected in separate hauls from five different sites on 

Walters Shoal with a depth range of 950 to 1340 m (Figure 39).  

Bythaelurus bachi, Weigmann, Ebert, Clerkin, Stehmann, and Naylor, 2016, Bach’s 

Catshark. A total of 12 B. bachi were encountered (11 females and one male), females 

significantly outnumbered males 1:0.09 (p-value <0.05). The only male collected was 

mature at 40.4 cm LT. Females range from 40.3 to 47.7 cm LT (Figure 41-a). The smallest 

female was mature with large yolky oocytes, but lacked egg capsules. Two females, 40.5 

and 40.8 cm LT, were dissected and found to contain a single fully developed egg case in 

each uterus (Figure 41-b).  

Figure 41. Bythaelurus bachi: a) size distribution of males, b) egg case removed from a 
non-type female. Photo by P.J. Clerkin. 
 



135 
 

Egg cases were small, 62.2–66.9 mm long, broad, case width 24.2–27.9% case length, 

and thick, case height 16.7–17.7% case length; tan-brown in color with very fine 

striations, smooth to the touch. Lateral flanges of case narrow, about 1.3–1.6 mm wide, 

flat, and without T-shaped lateral surface, extending length of the egg case. The anterior 

border of case concave, with horns narrow, very short, and curved inwards. The posterior 

border lacked apparent horns. 

This species was found from only two seamounts 35 miles apart on Walters Shoal 

between 800 and 1365 m deep (Figure 42).  

 
Figure 42. Distribution of the genus Bythaelurus: B. bachi (Walters Shoal) and B. naylori 
(Southwest Indian Ocean Ridge). Map data: Google, Image © 2017 DigitalGlobe. 
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Bythaelurus naylori, Ebert and Clerkin, 2015, Dusky Snout Catshark. In all, 29 

specimens of B. naylori (15 females, 14 males) were collected with a F:M sex ratio of 

1:0.9, not significantly different from the expected even ratio (p-value >0.05). Males 

ranged from 34.1 to 52.1 cm LT, with 8 mature (57.1% of males) (Figure 43-a). Clasper 

length increased between 44 and 48 cm LT (Figure 43-b). The smallest mature measured 

48.1 (92.3% LTmax), the largest immature was 44.4 cm LT, and LT50 was estimated to be 

46.2 cm LT.  

Figure 43. Bythaelurus naylori: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females, and d) egg 
case removed from a non-type female 452 mm TL. Photo by P.J. Clerkin. 
 

Females ranged from 44.6 to 54.8 cm LT (Figure 43-c). Only five females were 

examined internally: the smallest was immature at 44.6 cm LT, two females measuring 
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42.7 cm LT and 45.9 cm LT were mature, and two females 45.2 cm LT and 47.8 cm LT had 

egg cases. Each egg bearing female had a single fully developed egg case in each uterus 

(Figure 43-d).  

The egg cases were small (68–70 mm long), relatively broad (anterior case width 

30.9–32.9% of case length), and thick (greatest case height 15.7–20.6% of case length) 

with surface smooth to the touch, light brown with a greenish tinge, and with very fine 

striations. Lateral flanges of case narrow, about 1 mm wide, flat, and without T-shaped 

lateral surface, extending length of the egg case. The anterior border of case narrow and 

concave, with horns narrow, very short, and curved inwards, overlapping slightly, and 

without any evidence of tendrils being present. The posterior border of case is slightly 

concave, broad, and with no apparent horns.  

This species was encountered from only five sites on the Southwest Indian Ocean 

Ridge with a depth range of 89 to 1240 m, and may be geographically distinct from its 

morphometrically similar congener, B. bachi (Figure 42).  

Pseudotriakis microdon, de Brito Capello, 1868, False Catshark. A total of 28 P. 

microdon (10 females and 18 males) were collected with an overall F:M sex ratio of 

1:1.8, not significantly skewed in favor of males (p-value<0.05). However, when 

compared by maturity level, mature males greatly outnumbered females 1:4.5 (p-

value<0.05), while immature individuals had a sex ratio of 1:1.1 not significantly 

different from unity (p-value>0.05).  

Males ranged from 135 to 233 cm LT, with 9 mature (50% of encountered) (Figure 

44-a). Clasper length increased between 200 and 210 cm LT (Figure 44-b). The smallest 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3469
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=6880
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mature male measured 213 cm LT, the largest immature was 198.3 cm LT (91.4% of 

LTmax), and LT50 was estimated to be 205.7 cm LT. Females ranged from 158 to 291.2 cm 

LT, with 2 pregnant individuals (Figure 44-c). Oviducal gland width increased between 

223 and 226 cm LT (Figure 44-d). The smallest mature female measured 267 cm LT 

 (91.7% LTmax), the largest immature was 220.8 cm LT, and LT50 was estimated to be 

243.7 cm LT.  

Mature females had numerous (estimated several thousand) small oocytes in each 

ovary. Pregnant females had a single large pup per uterus (Figure 44e-g). A non-term 

embryo measured 69.1 cm LT, lacked a bloated stomach full of yolk, and had very large 

external yolk sac connected by short umbilical cord (Figure 44-f). The largest embryo 

measured 124.4 cm LT and appeared to be of term, and had fully absorbed its yolk sac 

(Figure 44-g).  
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Figure 44. Pseudotriakis microdon: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females, d) relationship 
between shell gland width (%LT) and LT (females) ,e) reproductive track of pregnant 
female with term pup,  f) non-term embryo 69.1 cm LT, g) term embryo 124.4 cm LT, g) 
distribution of males (green circles), and females (red triangles). Photos by P.J. Clerkin, 
Map data: Google, Image © 2017 DigitalGlobe. 
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Stomach contents contained fish (potentially discard from fishing activity) in seven 

individuals and crustaceans in two specimens. There was no apparent correlation between 

diet and sex or size.  

This species was only encountered from 2 sites in the southwestern part of the 

Southwest Indian Ocean Ridge between 594 and 1070 m deep, and one site at Walters 

Shoal between 860 to 1210 meters from (Figure 44-h). Individuals of both sexes were 

found at every maturity stage at the Southwest Indian Ocean Ridge, while only mature 

males were present in tows from Walters Shoal. 

Chimaera willwatchi, Clerkin, Ebert, and Kemper, 2017, Seafarer’s Ghostshark. This 

was by far the most common species of Chimaera encountered in the region, 

with a total of 52 C. sp. A were encountered (35 females 17 males) with an overall F:M 

ratio of 1:0.5, significantly different than unity (p-value<0.05). Comparison by maturity 

stage showed the adult F:M sex ratio was 1:0.7, insignificantly different from unity (p-

value>0.05), and juvenile F:M sex ratio significantly favored females, 1:0.4 (p-

value<0.05).  

Males ranged from 25.2 cm BDL (47.9 LT) to 49.2 cm BDL (83.4 LT), with 5 mature 

(29.4% of encountered) (Figure 45-a). Clasper length increased between 40 cm BDL and 

45 cm BDL (Figure 45-b) and correlated with a spike in frontal tenaculum length and 

bulb width. The smallest mature measured 45.6 cm BDL (92.7% BDLmax), the largest 

immature was 49.0 cm BDL, and LT50 was estimated to be 45.6 cm BDL. Females ranged 

from 11.8 cm BDL (29.0 cm LT) to 64.5 cm BDL (90.0 cm LT), with 7 mature (25.6% 

total) (Figure 45-c).  



141 
 

 
Figure 45. Chimaera willwatchi: a) size distribution of males, b) relationship between 
inner clasper length (%LT) and LT (males), c) size distribution of females. 
 

Females matured at a larger size, with the smallest mature female at 51.9 cm BDL 

(76.7 cm LT), and the largest immature was 52.9 cm BDL (91.3 cm LT), and LT50 was 

estimated to be 51.4 cm BDL (87% BDLmax). The smallest free-swimming individual, a 

female 11.8 cm BDL, 25.8 cm LT, was white in color with translucent regions on its 

abdomen suggesting it was recently hatched and of minimum size for the species. 

Diet included bony fish (evident by the presence of scales) and bivalves (crushed 

shells).  

Although sex ratios favored females, there appeared to be no intraspecific spatial 

segregation based solely on sex. However, mature individuals were found exclusively on 
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3 sites at the northwestern break of the Southwest Indian Ridge (Figure 46). Mature 

males were collected at the single farthest northwestern site along the Southwestern 

Indian Ridge (site 1), and mature females were found on 2 nearby sites to the southeast 

(sites 2 and 3). Although sites in this region were the only areas where mature individuals 

were found, mature individuals were in the minority, with all maturity stages present, 

including a hatchling. Both sexes were found at similar depths ranging between 89 and 

1365 m. 

 

Figure 46. Distribution of Chimaera encountered: Chimaera willwatchi (red circles), 
Chimaera didierae (green square), Chimaera buccanigella (orange triangle), Hydrolagus 
species A (yellow diamond). Map data: Google, Image © 2017 DigitalGlobe. 
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Chimaera didierae, Clerkin, Ebert, and Kemper, 2017, Falkor Chimaera. A single 

specimen of C. didierae, sp. nov. measuring 53.3 cm BDL (82.5 cm LT) was collected 

from Walters Shoal between 1064 and 1136 m deep (Figure 46). The specimen was 

female and immature.  

Chimaera buccanigella, Clerkin, Kemper, and Ebert, 2017, Dark-mouth Chimaera. A 

single immature female measuring 40.1 cm BDL (76.5 cm LT) was collected from a 

seamount on Walters Shoal between 495 and 960 m deep (Figure 46). 

Hydrolagus sp. A, Imelda’s Ghostshark. A mature male and female were collected 

from a single location on Walters Shoal. A third specimen (immature male) was taken 

from a nearby seamount, giving an overall F:M ratio of 1:0.5 (p-value >0.05). Males 

mature between 46.1 cm BDL (66.0 cm LT) and 50.0 cm BDL (690 mm LT). The females 

were mature at 55.4 cm BDL (73.8 cm LT). This species was collected between 800 and 

1312 m deep (Figure 46). 

Discussion 

Sex Ratios. The overall sex ratio for 14 of 26 species where mature male and female 

individuals were encountered was approximately 1:1 while 10 species were significantly 

skewed toward females and 2 species were skewed toward males (Table 10). Comparing 

maturity stages, 12 species had adults with roughly equal sex ratios, and 14 species had 

significantly skewed ratios. Sex ratios of immature individuals generally were 

insignificant or followed overall and/or adult ratios, with the exception of Scymnodon 

plunketi. Overall, and among adults this species was not significantly skewed by sex, but 

juveniles were significantly skewed toward females (Table 10). Although results in the 
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present study did not suggest segregation of S. plunketi based on sex ratios of adults, a 

separation by size and sex has been reported in the literature (Compagno, 1984).  

The frequency of symmetrical and skewed sex ratios was similar, but the significance 

and direction of skew was closely correlated to reproductive strategy. Viviparous species 

tended to have strongly skewed adult sex ratios (up to 19:1 in favor of females in 

Dalatias licha), which has been documented in the literature and theorized to be linked to 

behavior (Capapé, 2008; Ebert, 2013). High numbers of mature females could indicate 

sexual segregation after adulthood, potentially as the result of a broader movement 

pattern or some form of differential habitat use among mature individuals (Grubbs, 

2010). This kind of segregation in adults of a species is well documented and considered 

common in elasmobranchs (Springer, 1967; Yano and Tanaka, 1988; Ebert, 2003).  

However, since conditions are fairly constant in the deep-sea, reproductive cycles are 

usually asynchronous, without defined seasonality, and are, therefore, an unlikely 

influence on segregation in this ecosystem (Wetherbee, 1996; Kyne and Simpfendorfer, 

2010). Sexual segregation is likely influenced by environmental factors such as diet, and 

differential foraging patterns that could be a function of different caloric requirements 

associated with each sex’s role in reproduction (Grubbs, 2010). Compared to oviparous 

females, live-bearing females have a larger energetic investment in their young and likely 

require higher calorie food items than their male counterparts. Notably, this strong sexual 

segregation is not apparent in the oviparous catshark species in this study and has been 

observed to be absent in other egg laying species (Bullis 1967; Ebert, 2005; Bizzarro et 

al., 2014). 
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Maximum Length. Of the 16 species with previously established maximum lengths, 

nine met or exceeded the reported maximum total lengths; these included C. granulosus, 

D. profundorum, E. granulosus, E. lucifer, E. sculptus, C. coelolepis, C. crepidater, 

Z. squamulosus, and A. sinensis (Table 9). Four other species, D. calcea, E. pusillus, 

C. owstonii, and P. microdon, were within 90% of the reported maximum LT at 6 cm 

(95.1%), 4.5 cm (91.0%), 7 cm (94.2%), and 4.8 cm (98.7%), respectively (Table 9). The 

remaining three species were well within their known ranges: C. squamosus (82.3%), D. 

calcea (78.3%), and S. plunketi (81.9%) (Table 9).  

Table 9c.  A list of species encountered and lengths reported in the literature for 
Centrophoridae and Etmopteridae. 
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Table 9d.  A list of species encountered and lengths reported in the literature for 
Somniosidae, Dalatiidae, scyliorhinids and Pseudotriakidae. 

 
Sexual Dimorphism. Many species encountered during this survey exhibited sexual 

dimorphism in the form of length. Observations suggest size differences between sexes 

might be linked to reproductive mode (Table 9). The females of viviparous species in this 

study consistently exhibited greater LT than their male counterparts. In some viviparous 

species, females encountered were 1.4 (D. licha), 1.5 (C. crepidater), and 1.8 (Z. 

squamulosus) times the length of the largest mature males.  

The maximum length for 13 viviparous species studied and LT50 of all viviparous 

species calculated (seven species) showed females ultimately obtained larger size (LTmax) 

and matured at a greater length than males, (Table 9). The remaining five viviparous 

species did not have confirmed mature representatives of both sexes.  
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In contrast, the oviparous scyliorhinids species of this study (all single egg case per 

uterus) did not exhibit clear sexual dimorphism in the form of length, showing similar 

sizes between the sexes with only Apristurus cf. melanoasper having drastically larger 

males (77.0 cm vs 47.7 cm). However, the sample size for this species was small (3 

males, 2 females) with no female maturity status confirmed by internal evaluation. 

Previous studies of scyliorhinids have also observed males being equal or even larger 

than females (Compagno, 1984; Cross, 1988; Richardson et al., 2000; Musick and Ellis, 

2005; Ebert et al., 2006).  

It is worth noting that although they are single egg oviparous, Chimaera willwatchi 

(the only chimaeroid with mature males and females encountered during these surveys) 

had females 1.3 times the largest mature male (Table 9). The family shows sexual 

dimorphism in the form of frontal tenaculum, and paired prepelvic tenacula (present in 

males) in addition to pelvic claspers and, in some species, shape of pelvic fins, and body 

color (Didier, 1998; Didier et al., 2012).  

Chimaeroids lay two egg capsules simultaneously, and while the annual number of 

spawn is unknown, Hydrolagus colliei has been observed to lay a pair of eggs every 

seven to 10 days (Didier et al., 1998).  Females are believed to store sperm (Smith et al., 

2001) and this rate is assumed for other species over a spawning season of several 

months (Didier et al., 2012).  

Pseudotriakis microdon, the only oophagous species encountered, exhibited females 

also 1.3 times the largest male. Females carry a single pup per uterus, which cannibalizes 

eggs (Yano, 1992) until they reach up to 42.7% of their mother’s body length (Table 9). 
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Though low in number this litter takes up a considerable volume, which might lead to the 

same anatomical challenges of large litter bearing viviparous species.   

Maturity. Species in this study matured within a well-defined, fairly narrow size 

range, with an extended juvenile stage followed by either rapid maturation or a 

maturation stage of little growth. This observation has been documented in previous 

studies (Holden, 1974; Walker & Hislop, 1998). Most species studied here matured in 

excess of 80% of their maximum length; the exceptions being E. granulosus (55.9% LT 

males, 58.9% LT females) and C. crepidater (66.6% LT males and 33.6% LT females). 

This agrees with Holden (1974), who observed that elasmobranchs usually matured 

between 60% and 90% of their maximum length. Since maturity as a percent of 

maximum length has been linked to reproductive output and abundance (Holden, 1974), 

it is interesting that the two outliers, E. granulosus and C. crepidater, were by far the 

most common shark species encountered, making up more than half of all the individuals 

in this study (Table 9). It is possible that earlier maturation could provide the populations 

with more resilience and a relatively large capacity to respond to a perturbation. 

Size at maturity was greater for females than males for all viviparous species with 

maturity confirmed by either internal examination or observed pupping (C. granulosus, 

D. calcea, D. profundorum, E. granulosus, E. lucifer, E. sculptus, S. plunketi, C. 

coelolepis, C. owstonii, C. crepidater, and D. licha). Greater length of live bearing 

females at maturation is consistent with the literature (Cortes, 2000). This relationship 

was observed across various forms of viviparity including the only oophagous species 

surveyed (Pseudotriakis microdon), which also had females showing greater length of 
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maturity relative to males, illustrating, perhaps, the same anatomical size demand 

imposed on females of other live bearing reproductive strategies. In order to preserve 

specimen integrity, due to limited specimens and outstanding taxonomic resolution for 

some species, most oviparous species, e.g. catsharks and chimaeras, were not examined 

internally. However, based on the few females found to have egg cases, oviparous 

females appear to mature at the same size as their male counterparts. It is feasible that as 

a reproductive strategy, oviparity does not have the same anatomical size demand as 

viviparity. 

Estimates of LT50 were between length of smallest mature and largest immature with 

the exception of male Centroselachus crepidater and Apristurus cf. manis. In both cases 

the estimate was low (2.8 cm and 3.6 cm, respectively). Since LT50 is a theoretical 

estimate of a length (where 50% of the individuals of this length will be mature), small 

sample size, outliers, or limited maturity data can skew this binomial estimation (Ebert, 

2005). In contrast, first maturity is an observed and measured parameter of maturity. 

While LT50 provides a better maturity estimate of a population as a whole, first maturity is 

helpful with limited sample sizes or sample bias (resulting from behavior or segregation), 

and outliers (Ebert, 2005).   

Mature Oocyte Number. Of the eight species found to have mature uterine oocytes 

(eggs) (Table 11), only Etmopterus granulosus had a bilateral distribution bias, with 

significantly disproportionate number of eggs favoring the left uterus (7.1 left vs 6.5 

right), while the other seven species did not have statistically significant egg distribution 

bias between left and right uteri. The latter condition is most common among 
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chondrichthyans (Holden, 1975; Braccini and Chiaramonte, 2002; Mabragaña et al., 

2002; Ebert, 2005). On average, there was a higher number of ovarian oocytes than 

uterine eggs or pups, suggesting larger litters than indicated by fetal counts alone as 

inferred by Ebert (2013). Specimens with mature uterine eggs had dormant ovaries 

(inactive at time of inspection as indicated by the absences of healthy, developing 

oocytes), suggesting a resting phase.  

A higher number of E. granulosus (n=595) were encountered with mature eggs than 

any other species. Females had 14 mature eggs on average with up to 38 oocytes per 

ovary, agreeing with Wetherbee’s (1996) observations of nine to 15 eggs (per uterus), 

with up to 39 between both uteri, and seven to 30 ovarian eggs, in specimens off New 

Zealand.  

There was no correlation between size of mothers and number of eggs in any of the 

species studied. This contrasts with observations made by Peres and Vooren (1991) on 

viviparous School Sharks (Galeorhinus galeus), which had a direct relationship between 

length and fecundity, but agrees with Holden’s (1975) examination of Raja clavata (an 

oviparous species) maternal length and fecundity, in which he concluded body size not to 

be a limiting factor. Since the ovarian and uterine activity of this study appeared to 

alternate, it is not possible to directly link ovarian productivity to uterine yield or overall 

fecundity. Because deep-sea shark species are poorly understood, there is very little 

information comparing female length and number of oocytes or reproductive output.   

Fecundity. Seven species (E. alphus, E. granulosus, S. plunketi C. coelolepis, C. 

crepidater, Z. squamulosus, and P. microdon) were encountered with litters at different 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3264
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7044
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=5138
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7051
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3469
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=6880
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stages of development indicating no defined breeding season (Wetherbee, 1996; Kyne 

and Simpfendorfer, 2010) (Table 12). All litters examined fell within known ranges. 

Etmopterus granulosus had two to 15 pups comparable to the nine to 16 off Australia and 

six to 15 off New Zealand reported by Wetherbee (1996) and Ebert (2013). The single 

pregnant Scymnodon plunketi encountered had 20 pups while the species is known to 

have up to 30 young (Garrick, 1959a; Compagno, 1984; Ebert, 2013). The only pregnant 

Centroscymnus coelolepis had 12 pups compared to one to 29 (mostly between 12 and 

14) (Garrick, 1959b; Cox and Francis, 1997; Ebert, 2013). Centroselachus crepidater had 

two to seven pups compared to four to six reported by Last and Stevens (1994) and one to 

nine (with an average of six) from Ebert, 2013.  

This is the first record of pregnant females for two species, E. alphus (not examined 

internally) and Z. squamulosus, and first the account of fecundity for the latter. A single 

pregnant Z. squamulosus was encountered and found to have three pups (all present in the 

left uterus), thereby confirming previous estimates of litter sizes from three to 10 pups 

(Ebert, 2013). Because spontaneous abortion upon capture was fairly common, fecundity 

in terms of number of offspring is probably in the upper end of the ranges presented in 

this study. The species is viviparous with external yolk sac dependency as presumed by 

White et al (2006). 

Two pregnant Pseudotriakis microdon were encountered during this study. These 

females had no more than a single pup per uterus, which supports the observation by 

Yano (1992) of in utero cannibalism in this species. Yano (1992) found the stomachs of 

embryonic Pseudotriakis microdon to contain yolk and egg capsules, implying oophagy, 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=5138
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7051
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=7051
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with pups consuming yolk to replenish their external yolk sac reserves during the final 

stages of gestation. The pre-term embryo of this study measured 69.1 cm LT with 

considerable yolk reserves (Figure 44-f), while term embryos measured 122.9 and 124.4 

cm exceeding those investigated by Yano (1992) which measured 44.7 – 120.2 cm. Term 

embryos of this study had no yolk reverses and appeared ready for birth (Figure 44-g). 

The larger pup was active and able to swim free once removed from the uterus. Pups of 

this study likely represent an accurate minimum free-swimming length for the species.  

Egg Cases. Egg cases are a useful diagnostic tool in identifying shark species (Hubbs 

and Ishiyama, 1968; Ebert, 2005). Of the 12 oviparous species examined, only two (B. 

bachi and B. naylori) were found to have egg cases in utero (Figs. 41-b and 43-d 

respectively). The genus Bythaelurus has two different reproductive modes: 1) single egg 

oviparity where a single tough, leathery egg case is carried per uterus and deposited on 

the seabed during an early stage of development, and 2) viviparity where embryos are 

carried inside flimsy, membranous egg cases and hatch within the uteri before live birth 

(Francis, 2006b; Carrier et al., 2004; Ebert et al., 2006; Ebert and Clerkin, 2015). Based 

on the observation of a single, rigid and leathery egg case per uterus, the reproductive 

mode of both Bythaelurus species in this study was determined to be single egg oviparity. 

Egg cases are unique to each species and the descriptions have been included to serve as 

useful tool in for identifying specimens and potential nursery grounds. 

Neonates. Free-swimming neonates of six species (Etmopterus granulosus, 

Centroselachus crepidater, Somniosus cf rostratus, Dalatias licha, Pseudotriakis 

microdon, and Chimaera willwatchi) were identified by presences of umbilical scars in 
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live bearing species and translucent, developing abdomens in the Chimaeroids. Neonates 

were encountered rarely, but their presence along with pregnant females primarily along 

the Southwest Indian Ocean Ridge indicates a potential pupping ground and nursery.  

Diet. During the study, 194 individuals from 12 species were found to have food 

items in their stomachs (Table 13, Fig 26). Diet composition for these sharks was chiefly 

teleost, with boney fish representing 70.9% of stomach contents. Squid was the primary 

food item in 22.8% of diets, with crustaceans (3.2%), mammals – all pinniped – (1.9%), 

and sharks (1.3%) being the primary food sources in a much smaller percentage of 

individuals.  

Prey items usually fell within the known food items for all species with the exception 

of crustacean and mammal remains in C. crepidater. Centrophorus granulosus of this 

study were found exclusively with bony fishes in their stomachs, which agrees with 

Compagno, 1984. One specimen of C. squamosus had stomach contents that included 

cephalopod remains in agreement with its presumed diet of fish and cephalopods 

(Macpherson, 1989; Last and Stevens, 1994; Ebert, 2013). Deania calcea of this study 

ate bony fish and cephalopods, the species’ known diet (Compagno et al, 1989). The 

stomach contents of adult D. profundorum had bony fish and squid, consistent with 

Ebert et al. 1992. Etmopterus granulosus consumed a wide variety of bony fishes and 

cephalopod as stated by Compagno et al, 1989. Scymnodon plunketi diet was comprised 

largely of bony fishes, with one individual feeding on cephalopods, agreeing with Ebert 

(2013). Centroscymnus coelolepis stomach contents included bony fish, cephalopod, and 

mammal remains, consistent with Last and Stevens (1994) and Compagno et al. (1989). 
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Centroscymnus owstonii diet was composed of cephalopods, bony fishes in agreement 

with Last and Stevens (1994). Centroselachus crepidater, diet contained fishes, 

cephalopod, crustacean, and, in one specimen, mammalian (pinniped) remains. While 

fish and cephalopod have been recorded in the literature (Macpherson, 1989; Last and 

Stevens 1994), this is the first account of crustacean and mammal in this species’ diet. 

Dalatias licha diet was mainly bony fishes, with some shark, squid, and other 

invertebrates as described by Wetherbee et al. in 1990. Pseudotriakis microdon stomach 

contents contained fish and crustaceans in two specimens, which matched a study by 

Yano and Musick (1992). Chimaera willwatchi diet included bony fish and bivalves 

(evident by the presence of scales and crushed shells, respectively). This is the first diet 

investigation for Chimaera willwatchi, but benthic invertebrates have been the 

predominate prey of all chimaeroid studied to date, with a few species, Chimaera 

monstrosa Linnaeus, 1758, Hydrolagus bemisi Didier, 2002, Hydrolagus colliei (Lay and 

Bennett, 1839), Hydrolagus novaezealandiae (Fowler, 1910), Harriotta raleighana 

Goode & Bean, 1895, known to consume small fish (Didier et al., 2012; Dunn et al., 

2010). There was no trend between diet composition and sex, maturity, or length of 

individual for any species, and it appears diet might be based on opportunity (Grubbs, 

2010).  

This study divided diet items into broad caloric groups and presented these results in 

each species account. However, based on the food items found, the sharks of this study 

feed at relatively high trophic levels supporting the view of sharks as top marine 

predators (Cortes, 1999). Sharks are commonly assumed to be top-level consumers in 
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marine food webs, yet studies calculating trophic positions are very few (Cortes, 1999). A 

more in depth study and analysis is needed to determine each species position in the 

trophic web. 

Distribution. The Southwestern Indian Ocean Offshore is divided into two main 

geologically distinct ecosystems: the Southwest Indian Ocean Ridge and the Madagascar 

Ridge (which includes the relatively shallow Walters Shoal) (Sinha et al,. 1981). 

Surveyed species were distributed unevenly between these ecosystems (Tables 14 and 

15). Although its benthic habitat is less complex  (Goslin et al., 1980; Sinha et al., 1981; 

Collette and Parin, 1991), the Walters Shoal region of the Madagascar Ridge had a far 

greater amount of biodiversity, yielding a total of 25 species (80.6% of all encountered), 

with 11 species (35.5% of all encountered) found nowhere else during this survey (Table 

14). The Southwest Indian Ocean Ridge had fewer species overall, with 17 species 

encountered (54.8% of total), and seven species (6.5% of total) unique to this ecosystem 

during this study (Table 14).  
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Table 14.  Distribution of species encountered during surveys and their reported ranges 

 
Table 15. SIMPER pairwise comparison of species composition between regions. The 
contributing and cumulative Bray Curtis similarity (species contributions) percentages 
are expressed as %. 
 
Walters Shoal average similarity: 34.60 
 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
E. granulosus   3.15 22.08 1.6 63.82 63.82 
C. crepidater   1.03 4.22 0.75 12.2 76.02 
D. licha   0.63 2.45 0.37 7.07 83.09 
A. sinensis   0.59 1.87 0.54 5.4 88.49 
C. coelolepis   0.27 0.74 0.38 2.14 90.63 

 
 
 
Southwest Indian Ocean average similarity: 37.33 
 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 



157 
 

E. granulosus 3.96 27.55 1.25 73.78 73.78 
C. crepidater 1.02 5.4 0.72 14.46 88.24 
D. licha 0.29 1.47 0.31 3.95 92.19 

 

Bottom and mid-water trawls had considerably different species composition with the 

majority of sharks encountered caught in bottom trawls (Table 16). The three most 

abundant species were found in high numbers in both gear types, with E. granulosus and 

C. crepidater more common in bottom trawls and D. licha most abundant in mid-water 

trawls. The other species were more much common in bottom trawls with the exception 

of C. squamosus which was similar in abundance in each habitat (Table 16 and Figure 

47).  

Table 16. SIMPER pairwise comparison of species composition between trawl gear 
types. The contributing and cumulative Bray Curtis similarity (species contributions) 
percentages are expressed as %. 
 
Group Bottom Trawl average similarity: 42.69 
 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
E. granulosus  4.54 30.45 1.79 71.32 71.32 
C. crepidater 1.3 6.12 0.92 14.32 85.65 
A. sinensis 0.55 1.45 0.45 3.39 89.04 
S. plunketi 0.45 0.82 0.29 1.91 90.95 

 
Group Midwater Trawl average similarity: 32.34 
 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
E. granulosus 1.69 20.2 1 62.46 62.46 
D. licha 0.43 5.72 0.52 17.69 80.15 
C. crepidater 0.41 4.08 0.53 12.61 92.77 

 
 
Groups Bottom Trawl and Midwater Trawl average dissimilarity = 69.85 
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 Bottom 
Trawl 

Midwater 
Trawl                        

 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

E. granulosus  4.54 1.69 25.98 1.51 37.19 37.19 
C. crepidater  1.3 0.41 8.32 1.12 11.9 49.1 

D. licha  0.39 0.43 5.04 0.82 7.21 56.31 
A. sinensis  0.55 0.07 3.69 0.92 5.28 61.59 
S. plunketi  0.45 0.1 3.47 0.65 4.97 66.56 

C. willwatchi  0.29 0.13 2.71 0.69 3.88 70.44 
C. coelolepis  0.33 0.1 2.61 0.76 3.73 74.17 
C. granulosus  0.23 0.08 2.24 0.5 3.21 77.37 
C. owstonii  0.26 0.02 1.99 0.5 2.85 80.22 

C. squamosus  0.16 0.12 1.71 0.7 2.45 82.67 
D. calcea  0.21 0.02 1.67 0.37 2.39 85.07 
A. sp. cf. 

manis  0.26 0.01 1.55 0.54 2.22 87.29 

A. sp. cf. 
albisoma  0.13 0 1.45 0.26 2.08 89.37 

B. naylori  0.13 0.04 1.13 0.46 1.62 90.99 
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Figure 47. Plot of nMDS analysis illustrating differences in species composition of gear 
types.  
 

Endemism is common among deep-water species with small bodies and an affinity 

for the bottom (Kyne and Simpfendorfer, 2010). Although some species encountered are 

known to be widespread with low site fidelity (E. pusillus, C. crepidater, C. coelolepis, 

etc.), many of the genera (Etmopterus, Apristurus, Chimaera, and Hydrolagus) are noted 

for their high degree of endemism (Ebert and Bizzarro, 2007; Didier, 2012; Kyne and 

Simpfendorfer, 2010). Thirteen species studied during this survey (41.9% of total) 
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demonstrated strong site fidelity and were encountered from a cluster of sites in only one 

of the two main ecosystems of the region, and in several cases were found at only a single 

site (Figs. 24, 29, 32, 33, 39, 42, and 44). The low vagility of the region’s 

Chondrichthyan fauna might account for the high Chondrichthyan diversity within the 

area, since endemism directly correlates with speciation (Musick, et al., 2004; Stevens 

2010). 

Compared to the Walters Shoal region of the Madagascar Ridge ecosystem, the 

Southwest Indian Ocean Ridge tended to have more mature females and was the only 

place pregnant individuals from genera Etmopterus, Centroselachus, and Pseudotriakis 

were found, potentially indicating its importance as a nursery supplying refuge and/or 

trophic benefit.  

Gravid females are often absent from deep-sea shark surveys, and it has been 

theorized that pregnant females segregate themselves to pupping grounds or midwater 

habitats to avoid competition (Ebert, 1994; Kyne and Simpfendorfer, 2010). The presence 

of females with term embryos and neonates almost exclusively at the Southwest Indian 

Ocean Ridge suggests this area is a pupping ground for several deep-sea shark species.  

Life Strategy and Reproductive Mode. According to life history theory (Williams, 

1966), reproductive modes naturally select for an optimum ratio of parental investment to 

offspring survival (number offspring and likelihood of survival) balanced to best 

propagate an individual’s genes (Hussey et al., 2010). During this survey, four main 

groups of chondrichthyans were encountered: the squaloid dogfish (18 species), 

scyliorhinid catsharks (8 species), pseudotriakids (1 species), and holocephalans (4 
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species), with the dogfish and catsharks being by far the most commonly observed. These 

two groups represent vastly different reproductive strategies and associated life histories. 

The Squaliformes are viviparous, the most common form of reproduction in the shark 

world (Ebert et al., 2013). The Scyliorhinidae are mostly oviparous, with all Apristurus 

displaying single egg case oviparity and Bythaelurus displaying either oviparity or 

viviparity (Francis, 2006b; Ebert et al., 2006; Ebert et al., 2013; Ebert and Clerkin, 

2015).  

Reproductive modes of this study correlated with major parameters of life history 

such as sex ratio (statistically significant), sexual dimorphism (statistically significant), 

and potentially diet and distribution (statistical significance not calculated). Viviparous 

species had significantly skewed sex ratios favoring females, with females attaining 

greater total lengths and maturing at a greater size than males, while oviparous species 

had roughly equal sex ratios, similar total lengths, and similar lengths of maturation. The 

skewed sex ratios favoring females in viviparous species could represent segregation 

behavior. Since the viviparous females of this study were larger in size than the males of 

their species, it is possible that division of habitat is necessary to provide a trophic 

advantage required to meet the increased energetic demand associated with size.   

The correlation between viviparity and relatively larger body size of females 

compared to males could be explained by the higher caloric requirement and mass 

compensation to maintain locomotion while hosting a litter for an extended period of 

time (Grubbs, 2010). Larger female body size could compensate for the burden of hosting 

pups, and result in greater mobility required to forage for high calorie food items or to 
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migrate to nursery areas with refuge and trophic advantages (Grubbs, 2010). Large 

females with access to high calorie food items could produce larger pups in higher 

quantity (Hussey et al., 2010). This is contrary to what we commonly observe in 

terrestrial mammals and birds, where competition between males emphasizes size as the 

deciding factor for the right to reproduce (Darwin, 1859; Ralls, 1977; Ralls and Mesnick, 

2009). In the sparsely populated environment of the deep-sea, males are less limited by 

direct competition, but more by the ability to find a mate (Rohde, 1991). Although, 

sexual competition is traditionally thought to take place between males, female body size 

has been shown to be a competitive character in some vertebrate species (Clutton-Brock, 

2009). The defined sexual dimorphism in deep-sea viviparous shark species could be a 

result of size-selected pressure primarily affecting females, which is absent in single egg 

case oviparous species. Interestingly, the only oophagous species encountered in this 

survey, Pseudotriakis microdon, had larger females (291.2 cm) than males (233 cm) — 

although larger females (296 cm) and males (269 cm) have been reported in the literature, 

Table 9d) — possibly supporting that large females better compensate for the burden of 

bearing live offspring (Table 9). 

In contrast, the oviparous species of this study (all single egg case per uterus) did not 

segregate spatially by location or depth (Table 14). The majority of the oviparous sex 

ratios were roughly 1:1, and each sex reached similar size ranges. Previous studies of 

scyliorhinids have also observed monomorphism between males and females 

(Compagno, 1984; Cross, 1988; Richardson et al., 2000; Ebert, 2005). However, since 

our knowledge of sexual dimorphism in marine species is incomplete (Ralls and 
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Mesnick, 2009), caution is suggested when inferring evolutionary cause and effect of 

dimorphic traits in deep-sea sharks.  

The complexity and variation of chondrichthyan life histories illustrated in this study 

demonstrate that teleost and coastal shark management policies are not necessarily 

directly translatable to deep-sea chondrichthyans. A detailed understanding specifically 

of the life histories of deep-sea chondrichthyans is necessary in order to create policies to 

manage our deep-sea resources.   
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Synthesis 
 

The objectives of this study were to clarify the ambiguous taxonomic status of SWIO 

chimaeroids and catalogue the Chondrichthyan fauna along the northern section of the 

Madagascar Ridge, Walters Shoal, and the Southwestern Indian Ocean Ridge in order to 

provide a baseline of life history data.  

The family Chimaeridae, despite its global distribution (Ebert and Winton, 2010), 

remains poorly understood (Didier et al., 2012), and although the SWIO is considered a 

“hotspot” for chondricthyans, the deep-sea fauna of this region is still poorly known 

(Ebert, 2014). The taxonomic status of SWIO chimaeroids was virtually unknown with 

no previous studies confirming the species from seamounts of the offshore region (Ebert, 

2014). This study provides the first record of the genus in the Southwestern Indian 

Ocean, and increases the global total to 23 species, including the three new species 

described in this study (Clerkin et al., In Press). 

In addition to the taxonomic resolution provided for three new Chimaera species, 

data gathered during these survey cruises contributed to the descriptions of two new 

catsharks, Bythaelurus bachi and B. naylori (Ebert and Clerkin, 2015; Weigmann et al., 

2016), and to the taxonomic resolution of several other taxa. This included the genera 

Centrophorus, Centroscymnus, Etmopterus, and Scymnodon (Straube et al., 2015; White 

et al., 2013, 2015; Weigmann et al., 2016). Furthermore, tissue samples collected during 

these surveys were sent to Dr. Gavin Naylor, College of Charleston, for inclusion into the 

Tree of Life project (web site), which provides an account of extant chondrichthyan and a 
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framework of their relationships through genetic analysis, morphometric, and the fossil 

record.  

The study area was speciose with 31 species spanning 14 genera (Centrophorus, 

Deania, Etmopterus, Scymnodon, Centroscymnus, Centroselachus, Zameus, Somniosus, 

Dalatias, Apristurus, Bythaelurus, Pseudotriakis, Chimaera, and Hydrolagus). Biological 

data was collected to compile an overview of the region’s shark fauna. Although life 

history traits are among the most important parameters with which to evaluate species 

productivity (Simpfendorfer et al., 2011; White and Last 2012), such data are largely 

absent for deep-sea sharks in the SWIO, leaving most of our knowledge of 

chondrichthyans to be based on near shore and pelagic species (Ebert, 2014; Rigby and 

Simpfendorfer 2014). During this study, a successful census of the chondrichthyan and 

analysis of data provided an overview of sharks in the understudied region. The surveys 

spanned 46 sites and over 400 hauls to provide a rudimentary catalogue of species and 

baseline of population and life history information, but additional, more comprehensive 

studies are required to better understand the state of SWIO deep-sea sharks and improve 

information available to policy makers. New species and first accounts taken during this 

survey not only show how much we have yet to discovery about sharks in the deep ocean, 

but also highlight the complex variation in life histories among deep-sea shark species. If 

we are to continue our reliance on the ocean as a source of fish protein, we must acquire 

information that allows us to predict how groups might respond to harvest, and use that 

information to formulate sustainable, ecosystem-based management policies.   

 
 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=642
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3264
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=5138
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=3469
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APPENDICES 

Appendix A 

Diagram of measurements are presented in Figure 2 (lengths and paired fins), Figure 3 

(across body, fin interspace, unpaired fin height, margins, and overlap), Figure 4 (head 

measurements), Figure 5 (canals of head).  

 

Body measurements and their abbreviations are as follows: 

Length measurements: total length (TL) is measured as the snout tip to farthest 

elements of caudal filament; pre-caudal length (PCL), snout tip to origin of dorsal margin 

of caudal fin; snout to vent length (SVL), distal tip of snout to cloacal opening; tail length 

(TLL), cloacal opening to dorsal origin of caudal fin; body length (BDL), dorsal edge of 

gill opening to origin of dorsal margin of caudal fin; trunk length (TRL), ventral edge of 

gill opening to cloaca; head length (HDL), snout tip to the dorsal opening of the gill, pre-

first dorsal fin length (PD1), snout tip to origin of dorsal fin spine; pre-second dorsal fin 

length (PD2), snout tip to origin of second dorsal fin; pre-pectoral fin length (PP1), snout 

tip to origin of pectoral fin anterior margin radials; pre-pelvic fin length (PP2), snout tip 

to origin of pelvic fin anterior margin radials.  

Head measurements: pre-orbital length (POB), snout tip to anterior edge of orbit ; pre-

orbital distance (POBD), snout tip to anterior edge of orbit; prenarial length (PRN), snout 

tip to anterior edge of nasal apertures; prenarial distance (PRND), direct distance from 

snout tip to anterior edge of nasal apertures; pre-oral length (POR), snout tip to end of 

upper labial fold; pre-oral distance (PORD), direct distance snout tip to anterior edge of 
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mouth; snout length (SNL), snout tip to oronasal; eye length (EYL), greatest anterior to 

posterior length across eye; eye height (EYH), greatest dorsal to ventral height across 

eye.  

Cross body measurements: first dorsal to pectoral (D1P1), anterior edge of first dorsal 

fin base to anterior edge of pectoral-fin base; first dorsal to pelvic (D1P2), anterior edge 

of base of first dorsal-fin to anterior edge of pelvic-fin base; Second dorsal to pectoral 

(D2P1), anterior edge of second dorsal-fin base to anterior edge of pectoral-fin base; 

second dorsal to pelvic (D2P2), anterior edge of second dorsal-fin base to anterior edge 

of pelvic-fin base.  

Width measurements: snout width at base (SWB); snout anterior width (SWF), 

maximum snout width at distal end of nasal canal; head width at suborbital ridge (SOW), 

greatest width of head at suborbital ridge; trunk width (TRW), width at pectoral fin 

insertions; abdominal width (ABW), width at anterior pelvic girdle; tail width (TLW), 

width at directly posterior of pelvic girdle; caudal peduncle width (CPW), width at caudal 

peduncle.  

Height measurements: snout height at base (SHB), Snout height at base (apex); Head 

height (HDH), height at dorsal opening of the gill; trunk height (TRH), trunk height at 

pectoral fin insert; max body height (MBH), maximum depth across trunk; abdomen 

height; tail height (TLH), height at insertion of pelvic fins; caudal peduncle height 

(CPH), height at insertion of second dorsal fin.  

Inter-fin spaces: interdorsal space (IDS), space between first and second dorsal fins; 

dorsal-caudal space (DCS), space between second dorsal fin and anterior origin of caudal 
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fin; pectoral-pelvic space (PPS), posterior base of pectoral fin insertion to anterior base of 

pelvic fin origin; pelvic-anal space (PAS), posterior base of pelvic fin to origin of anal 

fin; Pelvic-caudal space (PCS), pelvic fin insertion to origin of ventral caudal fin; pelvic-

ridge space (PRS), pelvic fin insertion to origin fleshy ridge.  

Fin measurements: pectoral fin anterior margin (P1AM), length of the pectoral anterior 

margin; pectoral fin width (P1FW), maximum width across pectoral fin perpendicular to 

the anterior margin; pectoral fin base width (P1BW), width of pectoral fin base from 

origin of anterior margin to insertion of inner margin; pectoral fin base height (P1BH), 

height of pectoral fin base from body to farthest edge of fin base; pelvic anterior margin 

(P2AM), length of the pelvic anterior margin; pelvic fin width (P2FW), maximum width 

across pelvic fin perpendicular to the anterior margin; pelvic fin base width (P2BW), 

width of pelvic fin base from origin of anterior margin to insertion of inner margin; 

pelvic fin base height (P2BH), height of pelvic fin base from body to farthest edge of fin 

base; dorsal spine length (DSA), dorsal spine length along anterior margin; dorsal spine 

ridge to origin (SRO), dorsal spine width from ridge to origin; first dorsal fin base (D1B), 

origin of fin spine to insertion of first dorsal fin; first dorsal fin height (D1H), maximum 

height of first dorsal fin; second dorsal fin base (D2B), origin to insertion of second 

dorsal fin; second dorsal fin anterior height (D2AH), maximum height of anterior one-

third of the second dorsal fin; second dorsal fin posterior height (D2PH), maximum 

height of posterior one-third of the second dorsal fin; second dorsal fin mid height 

(D2MH), Lowest point mid second dorsal fin; dorsal caudal margin (CDM), origin to 

insertion of dorsal caudal fin; dorsal caudal height (CDH), maximum height of dorsal 
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lobe of caudal fin; ventral caudal margin (CVM), origin to insertion of ventral caudal fin; 

fleshy ridge to caudal insertion (RCI), origin of fleshy ridge to insertion of ventral caudal 

margin; ventral caudal height (CVH), maximum height of ventral lobe of caudal fin; total 

caudal length (CTL), dorsal origin of caudal fin to end of caudal filament.  

Overlap measurements: spine to second dorsal fin (OSD2), the distance which the 

dorsal spine, when depressed overlaps the origin of the second dorsal fin; pectoral to 

pelvic (OPP), distance which the distal tips of the pectoral fins overlaps the origin of the 

pelvic fins; Spine to first dorsal fin (OSD1), the distance which the dorsal spine exceeds 

the height of the first dorsal fin.  

Claspers (males): clasper length total (CLT), total length of claspers from pelvic-fin 

base to tip; clasper length medial branch (CLM), length of medial branch of clasper from 

fork to tip; clasper length lateral branch (CLL), length of lateral branch of clasper from 

fork to tip; clasper length outer (CLO), pelvic fin inner margin to clasper tip; clasper 

length inner (CLI), inner origin of clasper to distal tip; clasper width at base (CLB), 

maximum width clasper base; frontal tenaculum length (FTL), length of tenaculum from 

attachment to body to distal tip; frontal tenaculum bulb height (TBH), bulb height; frontal 

tenaculum bulb length (TBL), bulb length; frontal tenaculum bulb width (TBW), bulb 

width; frontal tenaculum stalk width (FTSW), width of stalk.  

Postanal pad (females): postanal pad length (APL), postanal pad height (APH), postanal 

pad width (APW).  

Lateral Lines: oronasal to nasal canal (ONC), anterior oronasal fold to center of nasal 

canal; length of the rostral canal (LRC), length of the rostral canal; length across nasal 
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canal (LNC), straight line length across the nasal canal; infraorbital to angular canal 

(IOA), junction of the oral-infraorbital canal to junction of the oral and angular canal; 

preopercular to main trunk (OTM), junction of the oral-infraorbital canal to junction of 

the main trunk-infraorbital canal; orbital canal length (OCL), junction of main trunk 

canal-infraorbital to junction of supratemporal-postorbital canals; supratemporal canal 

length (STL), from its junctions with the postorbital canal on either side of the head; 

spine to supratemporal canal (SPS), distance from anterior base of spine to the center of 

the supratemporal canal.  

 

Appendix B  

Locality, tissue identification number, voucher specimen collection number, and 

GenBank accession number for samples used in genetic analysis.  Ind. = Indian Ocean; 

Atl. = Atlantic Ocean; Pac. = Pacific Ocean; SWIO = Southwestern Indian Ocean; * = 

holotype. 

Locality Tissue ID Voucher 
Collection No. 

GenBank 
Accession No. 

Chimaera willwatchi 
     Ind., Walters Shoal GN11498 Not accessioned KX761229 
     Ind., Walters Shoal GN11550 CAS 242346 KX761218 
     Ind., Walters Shoal GN11711 CAS 242358 KX761223 
     Ind., Walters Shoal GN11742 CAS 242358 KX761207 
     Ind., Walters Shoal GN11753 CAS 242342 KX761211 
     Ind., Walters Shoal GN11756 CAS 242358 KX761225 
     Ind., Walters Shoal GN11808 CAS 242346 KX761195 
     Ind., Walters Shoal GN11741 CAS 242340 KX761219 
     Ind., Walters Shoal GN11543 CAS 242356 KX761198 
     Ind., Walters Shoal GN15528 CAS 242353 KX761199 
     Ind., Walters Shoal GN15526 CAS 242347 KX761217 
     Ind., Walters Shoal GN15527 CAS 242353 KX761201 
     Ind., Walters Shoal GN15529 CAS 242353 KX761214 
     Ind., SWIO Ridge GN11712 Not accessioned KX761192 
     Ind., SWIO Ridge GN11871 CAS 242345 KX761227 
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     Ind., SWIO Ridge GN15521 CAS 242357 KX761206 
     Ind., SWIO Ridge GN11666 CAS 242344 KX761226 
     Ind., SWIO Ridge GN11668 CAS 242343 KX761212 
     Ind., SWIO Ridge GN11670 Not accessioned KX761222 
     Ind., SWIO Ridge GN11672 CAS 242343 KX761202 
     Ind., SWIO Ridge GN11533 Not accessioned KX761231 
     Ind., SWIO Ridge GN11548 CAS 242358 KX761209 
     Ind., SWIO Ridge GN11532 MCZ 171972 KX761200 
     Ind., N Madagascar Ridge GN15531 CAS 242354 KX761220 
     Ind., N Madagascar Ridge GN15532 CAS 242354 KX761224 
     Ind., N Madagascar Ridge GN15533 CAS 242354 KX761213 
     Ind., N Madagascar Ridge GN15534 CAS 242354 KX761210 
     Ind., SWIO Ridge GN11822 Not accessioned KX761230 
     Ind., SWIO Ridge GN11827 Not accessioned KX761196 
     *Ind., SWIO Ridge GN15522 CAS 242336 KX761221 
     Ind., SWIO Ridge GN15523 CAS 242338 KX761228 
     Ind., SWIO Ridge GN15524 CAS 242349 KX761194 
     Ind., SWIO Ridge GN15525 CAS 242348 KX761205 
     Ind., SWIO Ridge GN15530 CAS 242351 KX761208 
     SW Indian Ocean GN10954 CSIRO H 5371-01 KX761197 
     SW Indian Ocean GN10953 CSIRO H 5356-01 KX761216 
Chimaera diderae 
     *Ind., N Madagascar 
Ridge 

GN11724 CAS 242334 KX761215 

Chimaera buccanigella 
     *Ind., Walters Shoal  GN11492 CAS 242335 KX761203 
     Ind., N Madagascar Ridge GN16034 MNHN 2004-0818  KX761204 
      Ind., N Madagascar 
Ridge 

GN16035 MNHN 2004-0819 KX761191 

Chimaera notafricana 
     Atl., South Africa GN 14838 - KU163634 
     Atl., South Africa GN 16916 - KU163635 
Chimaera macrospina 
     Ind., Australia GN 10955 CSIRO H 6417-02 KU163640 
     Pac., Australia GN 10956 CSIRO H 1382-02 KU163646 
Chimaera carophila 
     Pac., New Zealand GN 12992 NMNZ P.045580 KU163637 
     Pac., New Zealand GN 12993 NMNZ P.040174 KU163649 
Chimaera opalescens 
     Atl., Europe GN 13522 MNHN-IC 2007-1557 KU163647 
     Atl., Europe GN 13524 MNHN-IC 2007-1567 KU163644 
Chimaera lignaria 
     Pac., Tasmania GN 10958 CSIRO H 5125-01 KU163639 
     Pac., Tasmania GN 10959 CSIRO H 4873-04 KU163653 
Chimaera obscura 
     Pac., New South Wales GN10957 CSIRO H 1383-02 KX761193 
Hydrolagus africanus 
     Atl., South Africa GN16938 CAS 241488 KU934287 
     Atl., South Africa GN16939 CAS 241488 KU934286 
     Atl., South Africa GN16940 USNM 438933 KU934285 
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Appendix C 

Comparative Material. Chimaera bahamaensis – Holotype – FMNH 166362, mature 

female, 881 mm total length, TL, 528 mm body length, BDL; Atlantic Ocean, Tongue of 

the Ocean, Bahamas, Andros Island (24°30΄21˝N, 77°22΄12˝W). Collected by Quinn et al., 

field number CI144, at 1483– 1506 m on 3 February 1974.  

Chimaera cubana – 13 specimens – Holotype, MCZ 1464, , mature male, 728 mm TL, 

427 mm BDL, Cuba, Matanzas Bay; FMNH 71595, female, 283 mm TL, 118.3 mm BDL, 

Puerto Rico, 18°16΄N, 67°16.5΄W; USNM 222711, female, 429 mm TL, 211 mm BDL, 

Caribbean Sea, 16°45΄N, 81°27΄W, 0–150fms; USNM 222800, female, 300 mm TL, 115.4 

mm BDL, Caribbean Sea, 15°38΄N, 61°51΄W, 0–245fms; USNM 222800, female, 406 mm 

TL, 171 mm BDL, Caribbean Sea, 15°38΄N, 61°15΄W, 0–245fms; MCZ 1385, male, 664 

mm TL, 319 mm BDL, Cuba; MCZ 40682, male, 277 mm TL, 110.6 mm BDL, Caribbean 

Sea, 18°16΄N, 67°17΄W, 250fms; MCZ 40682, male, 258 mm TL, 116.1 mm BDL, 

Caribbean Sea, 18°16΄N, 67°17΄W, 250fms; USNM 222796, male, 549 mm TL, 241 mm 

BDL, Western Atlantic; USNM 222800, male, 267 mm TL, 129.1 mm BDL, L. Antilles, 

15°38΄N, 61°15΄W, 0–245fms; USNM 222800, male, 368 mm TL, 164 mm BDL, L. 

Antilles, 15°38΄N, 61°15΄W, 0–245fms; USNM 222800, male, 215 mm TL, 109 mm BDL, 

L. Antilles, 15°38΄N, 61°15΄W, 0–245fms; USNM 372728, immature male, 685 mm TL, 

343 mm BDL, Puerto Rico, La Parguera, 180m.  

Chimaera jordani, AMNH 4726, 700 mm TL, 483 mm BDL, male.  

Chimaera monstrosa – 23 specimens – USNM 17492, mature male, 800 mm TL, 400 mm 

BDL, Atlantic Ocean (Norway); MNHN 21–137, mature male, 919 mm TL, 419 mm BDL, 
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Atlantic Ocean (Cotes d’Espagne); MNHN 3, mature  male, 906 mm TL, 403 mm BDL, 

Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 13, mature  male, 655 mm 

TL, 403 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 14, 

mature  male, 845 mm TL, 432 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 

600 m; MNHN 16, mature  male, 712 mm TL, 409 mm BDL, Atlantic Ocean (Scotland), 

58°40΄N, 9°30΄W, 600 m; MNHN 17, mature  male, 795 mm TL, 414 mm BDL, Atlantic 

Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 18, mature  male, 850 mm TL, 418 

mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 19, mature  male, 

826 mm TL, 430 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 

20, mature  male, 688 mm TL, 403 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 

600 m; MNHN 24, mature  male, 864 mm TL, 420 mm BDL, Atlantic Ocean (Scotland), 

58°40΄N, 9°30΄W, 600 m; MCZ 326, mature  female, 725 mm TL, 462 mm BDL, no data; 

MCZ 855, mature  female, 774 mm TL, 449 mm BDL, Atlantic Ocean; USNM 10234, 

mature  female, 708 mm TL, 453 mm BDL, Atlantic Ocean (Norway); MNHN 1, mature  

female, 834 mm TL, 485 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; 

MNHN 8, mature  female, 817 mm TL, 423 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 

9°30΄W, 600 m; MNHN 9, mature  female, 916 mm TL, 488 mm BDL, Atlantic Ocean 

(Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 10, mature  female, 902 mm TL, 421 mm 

BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 11, mature  female, 

980 mm TL, 469 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 

12, mature  female, 895 mm TL, 430 mm BDL, Atlantic Ocean (Scotland), 58°40΄N, 

9°30΄W, 600 m; MNHN 21, mature  female, 830 mm TL, 408 mm BDL, Atlantic Ocean 
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(Scotland), 58°40΄N, 9°30΄W, 600 m; MNHN 23, mature  female, 830 mm TL, 427 mm 

BDL, Atlantic Ocean (Scotland), 58°40΄N, 9°30΄W, 600 m; LJVC-0459, mature  female, 

850 mm TL, 541 mm BDL. Chimaera cf. monstrosa five specimens: SAM 34517, mature  

male, 837 mm TL, 509 mm BDL, Cape Agulhas, southern Africa, 34°49΄9˝S, 20°00΄0˝E; 

SAM 34428, mature  male, 820 mm TL, 486 mm BDL, southern Africa, 34°43΄3˝S, 

18°03΄6˝E, 717 m; SAIAB 27132, mature  female, 930 mm TL, 517 mm BDL, southern 

Africa, 32°30΄5˝S, 16°24΄3˝E, 800 m; SAIAB 27133, mature  female, 925 mm TL, 522 

mm BDL, southern Africa, 32°30΄5˝S, 16°24΄3˝E, 800 m; SAM 34429, mature  female, 

880 mm TL, 534 mm BDL, southern Africa, 34°55΄6˝S, 18°11΄7˝E, 903 m.  

Chimaera notafricana – 10 specimens – SAIAB 34834, immature male, 346 TL, 159 m 

BDL; non-accessioned specimen, 816 mm TL, 575 mm BDL, fresh mature male; non-

accessioned specimen, 788+ mm TL, 579 m BDL, fresh mature male; non-accessioned 

specimen, 850+ mm TL, 580 mm BDL, fresh mature  male; accessioned specimen, 920 

mm TL, 626 mm BDL, fresh mature  male; non-accessioned specimen, 839 mm TL, 586 

mm BDL, fresh mature  male; non-accessioned specimen, 821 mm TL, 561 mm BDL, 

mature  male; SAM 34551, 825 TL, 477 mm BDL, immature  male; SAM 34423, 755+ 

mm TL, 470 mm BDL, mature  male; SAM 27135, 812 mm TL, 497 mm BDL, immature 

male; SAM 27134, 878 mm TL, 513 mm BDL, female.  

Chimaera opalescens – 2 specimens – USNM 390767 mature male, 916/686 mm, 2797 g, 

F.V. Izoard, 15 November 2003, Porcupine Seabight, 50o10.3‘–50o34.5’ N; 011o22.9‘–

011o19.3‘ W, 1065–1300 m; USNM 390768, mature female, 1098/726 mm, 3428 g; F.V. 
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Izoard, 09 October 2003, Porcupine Seabight, 50o 22.8’–50o 02.6’ N; 011o 19.1’–011o 24.5’ 

W, 950–1100 m.  

Chimaera phantasma, SAM 39655, 470+ mm TL, 183 mm BDL, immature male; SAM 

39655, 320 mm TL, 129 mm BDL, immature male.  

Hydrolagus africanus – 6 specimens – SAIAB 014040, 620 mm TL, 293 mm BDL, female, 

Kenya; SAIAB 25211, immature male, 790 mm TL, 325 mm BDL: SAIAB 25712, 

immature male, 443 mm TL, 304 mm BDL: SAIAB 25730, immature male, 387+ TL, 290 

mm BDL; SAM 33297, 800+ mm TL, 597 mm BDL, mature male: SAM 33297, 935 mm 

TL, 613 mm BDL, mature male.  
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