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ABSTRACT 

 

A SCRABBLE ARTIFICIAL INTELLIGENCE GAME  

 

by Priyatha Joji Abraham 

 

 
Computer AI players have already surpassed human opponents in competitive 

Scrabble, however, defeating a Computer AI opponent is complex and demands efficient 

heuristics. The primary objective of this project is to build two intelligent AI players from 

scratch for the Scrabble cross-board puzzle game having different move generation 

heuristics and endgame strategies to evaluate their performance based on various 

benchmarks like winning criteria, quality of moves, and time consumption. The first AI 

selected is the most popular Scrabble AI world champion called Maven. It generates a 

three-ply look-ahead simulation to evaluate the most promising candidate move and uses 

four different heuristics for the fast move-generation. The second AI, Quackle, is the 

strongest alternative Scrabble AI to Maven. It generates its best candidate move by using 

a three-ply look-ahead simulation and win probability estimation. In this project, we 

primarily focus on the end-game heuristics because end-game sessions are complex real-

world situations where the move options are limited and require expert techniques and 

model strategies to maximize the reward. Moreover, the basic game heuristics used in the 

mid-game are not sufficient for an end-game. For this project, we created four variants of 

Maven AI. After conducting experiments, we observed that Maven Q-Sticking slow-

endgame AI performs better than other AI variants like Maven Q-Sticking AI, Maven 

slow-endgame AI, No Q-Sticking AI and Quackle AI. 
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1. INTRODUCTION 

 

Artificial Intelligence (AI) is a collection of techniques used to simulate human 

decision-making skills. Since the 1950’s, AI has played a significant role in the game 

industry [1]. AI strives to build intelligent agents that can perceive and act rationally to 

accomplish goals. These learning agents respond and resolve well-defined problems. In 

the case of computer games, if there is no win situation then this intelligent learning agent 

memorize not to repeat previous mistakes. Thus, games provide an ideal domain for 

measuring the potential of AI applications. Today, machines defeat human players in the 

gaming field by playing abstract and strategic board games using the techniques of AI [1]. 

Scrabble is a popular crossword board game which is interesting from an AI perspective 

because the players play with gradual revealed information. The goal of this project is to 

develop variants of two popular AIs for Scrabble, Maven and Quackle, and to perform 

various experiments on their effectiveness in end game situation — situations in which 

the amount of information the AI has increases rapidly. 

 

The primary challenge of Scrabble is it is a game of imperfect information as each 

rack of tiles is hidden from the opponent [1]. Due to this missing information, it is hard to 

predict the exact successive move of the opponent as its state is unknown to the player 

and the optimal move is not defined. Secondly, the machine should quickly generate the 

promising candidate moves for a given rack and current board state. To do that, the 

computer machine must be modeled to apply efficient opponent strategies wisely on each 

turn with a quick move generation algorithm. Different heuristics are applied in these 
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move generation algorithms. Eventually, playing out the unplayable tiles like Q, Z, J 

during an end-game is crucial and challenging. 

 

To develop our Scrabble AI implementations, we researched related works. 

Currently, Maven and Quackle are the leading Scrabble AI’s. Maven was created in 2002 

by Brian Sheppard [3] whereas Quackle is an open source Scrabble AI developed by 

Jason Katz-Brown [4] and John O'Laughlin [4] in 2006. Maven is also the current world 

champion computer player and best known AI that has beaten human opponents. Maven 

uses a three-ply stochastic look-ahead simulation technique for the move generation [3]. 

In game theory, a ply refers to a player’s turn. The heuristics and strategy of Quackle are 

similar to that of Maven but not exactly same. Quackle incorporates a program module 

called kibitzer to rank the most promising candidate moves quickly.  These moves are 

further evaluated using a simulation engine that can simulate 100 to 300 random racks for 

each candidate move followed by a three-ply-look ahead move generation. 

 

 Maven and Quackle have both defeated the best human champions in tournaments 

[3,4]. However, Maven and Quackle have not fought against each other. A related work 

was done by C.  Josephson [6] and R Greene [6] from Stanford in 2016 where an AI is 

built with Monte Carlo Simulation and Appel and Jacobson’s [5] move generation 

algorithm to beat Quackle. The new AI focused on mid-game scenarios, and they could 

not implement an end-game strategy due to time limitations. 
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In this project, we built three variants of Maven incorporating different heuristic 

algorithms which are especially useful for the critical end-games. We mainly focused on 

end-game heuristics because Scrabble end-game sessions are very crucial. Each end-game 

move must be placed very carefully as it can break the leading player.  Quackle AI serves 

as the benchmark to analyze the performance of our Maven AI variants. 

 

This report is structured as follows: Chapter 2 gives a basic background overview 

of Scrabble game and explains Scrabble terminology. In Chapter 3, we discuss the 

techniques of world-championship player Maven. Chapter 4 showcases detailed 

explanations of Quackle AI. Chapter 5 presents the different variants of Maven AI 

implemented in our project and the heuristics algorithm used in these AIs. In Chapter 6, 

we compare the simulations of two AI.  Chapter 7 discusses the experiments and results 

conducted to ensure the correctness of the program. Chapter 9 concludes the project and 

explains the future work on this project.  
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2. BACKGROUND AND BASIC CHARACTERISTICS 

 

In this chapter, we provide the background, basic overview of Scrabble rules, and 

terminology, game strategies and explains the board representation used in our game. 

Scrabble is a world-famous classic board game played in tournaments by two to four 

players invented by Alfred. M. Butts during the 1930s [3]. In this project, we concentrate 

on a two-player AI as stated before. The ultimate goal of Scrabble game is to build valid 

English words on the game board and collect maximum points than the opponent by 

following a set of rules and restrictions. Figure 1 referred below represents a 15x15 grid 

Scrabble game board used officially.  

 

 The game has a tile bag that holds 100 tiles and is shared among all the players. 

Each group of 7 tiles forms a rack. The letters left out on a rack after each move is called 

'rack leave.' Out of the 100 square tiles in the tile bag, 98 tiles are English alphabets, and 

two tiles are blank. Each tile is associated with a predefined letter, ranging from A to Z, 

and value, ranging from zero to ten. Blank tiles are the wildcards in this game because 

they are used in place of any letter. These tiles are worthless and do not earn any points. 

The point distribution depends upon the tile frequency. High-frequent tiles such as A 

have a low point of 1 whereas low-frequent tiles like Q have a high score of 10. The tiles 

are drawn randomly from the tile bag on each turn to form a rack. 
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Figure 1. Scrabble game board [5] 

 

2.1. Scrabble Bonus Points: 

In Figure 2 shown below, we can see that some squares are marked as ‘DW,' ‘TW,' 

‘*3,’ ‘*2’ that runs diagonally across the board. They are premium squares such as ‘Double 

Word,' ‘Triple Word,' ‘Triple Letter,’ ‘Double Letter’ and laying a tile on these bonus 

squares can earn a double or a triple score of the word or letter. If a player uses all the tiles 

on the seven tiles on his rack, then it is called a ‘Bingo’ moves.  

 

 As we are using computer players, we have an added benefit than human players 

because a computer player can quickly find the bingo words from their dictionary in 

memory. In this project, we always give preference to placing bingo words because they 

can score a bonus of 50 which constitutes 1/8th of the total score in tournament games [7]. 
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2.2. ASCII Board Representation: 

In our project, we created an ASCII board representation of the Scrabble board. As 

the game board is a 15x15 square matrix, we numbered rows from 0 to 14, and labeled 

columns as alphabet letters from A to O. To represent the blank tiles in the rack, ‘_’ is 

used in the program. When a player draws a blank tile from the rack, the program 

automatically generates a replacement letter. Figure 2 referred below shows the ASCII 

Scrabble board notation used in this game. 

 

 

Figure 2. Scrabble board notation using ASCII characters 
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2.3. Legal Moves: 

Scrabble has a strict ruleset for placing the words on the board. The tiles are often 

placed in a cross-word manner, but all the moves must be legal according to the Scrabble 

ruleset. A Scrabble game does not allow diagonal plays. Hence the player can only lay the 

words in either horizontal or vertical direction. During the opening of a Scrabble game, a 

player must set the tile beginning from the center of the board. Subsequent plays would 

be an extension to the words formed in the preceding game. The letters that are already on 

game board are called anchor tiles, and the letters we use as an anchor tile extension for 

the current turn are called hook tiles. Each player can only place the letter tiles from his 

rack, and the hook tiles must be anchored to the anchor tiles. If there are no proper anchor 

tiles on the board, then the player could pass the turn that scores zero points. 

 

2.4. Common Game Strategies: 

Game strategies play an ideal role in Scrabble AI. These strategies help the player 

to perform actions or decision-making skills to win the game. The two kinds of game 

strategies which are adopted by all the AI players are straightforward strategy and 

defensive strategy.  

 

In the straightforward strategy, the greedy players place the longest word on each 

turn that earns the highest score [2].  So we can also call it as a greedy strategy. A 

drawback of this method is that it can generate a lot of hot spots for the opponent [2]. 

These hot spots on the game board let the competitors place a high score move in the next 

turn. This hot spot move may be a bingo move or a premium bonus move. Therefore, we 
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must remember that the highest scoring move is not always the best one. An intelligent 

AI player must efficiently apply different strategies and heuristics at each turn depending 

upon the current board state. 

 

In the defensive strategy, the player tries to minimize the hot spots for opponents 

by playing two-letter words. B. Sheppard [3] explains three kinds of defensive 

approaches played by his computer player, Maven during the end phase of the game. The 

next chapter explains these heuristics in detail. Our Maven AI executes all these four 

tactics using a three-ply look-ahead simulation algorithm whereas we found that Quackle 

does not adopt all the defensive approaches.  

 

2.5. Scrabble Game Terminology:  

 Board: 15x15 grid game board of Scrabble 

 Tiles:  Fills each board square; each tile has a letter and value 

 Tile Bag: Holds 100 tiles, 98 are letter-point alphabet tiles and two are blank tiles  

 Blank Tile: Tile with no value and earns zero score; denoted as ‘_’ in the program 

 Rack: Group of seven tiles hold by each player 

 Rack Leave: Letters left out on the rack after one play 

 Bingo: A word play uses all the seven letters on the rack, earns a bonus score of 50 

 Premium Squares: Squares that earn bonus points like DW, TW, *3, *2 

 DW: Double word bonus square runs diagonally, earns double the score of total word  

 TW: Triple word bonus square is a premium square, earns triple the score of total word 

 *3: Triple letter bonus square is a premium square that scores triple of the letter 
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 *2: Double letter bonus square is a premium square that scores double of the letter 

 Anchor Tile: Extended Tile on the board placed in any of the previous game  

 Hook Tiles: Tiles from the rack used to hook or extend  

 Hot Spots: Excellent squares on the board with excellent bonus-scoring opportunities 

 Ply: Turn of a player or half a move in a two-player game 

 End Game: The last phase of the game when there are no tiles left in the bag 
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3. MAVEN AI OVERVIEW 

 

As Maven is the best-known AI, we chose it as our first baseline AI and 

implemented from scratch. The Maven AI was created by Brian Sheppard [3] in 2002. It 

uses a Directed Acyclic Word Graph (DAWG) data-structure for dictionary 

representation and word generation [3]. In Maven, each move is influenced by three main 

factors. These three elements are the current score, the player rack, and the current game 

board. In our project, we focused on the end game heuristics because Scrabble endgames 

are crucial real-world scenarios and we cannot apply basic greedy human-strategies that 

gains maximum points for an endgame. The endgame determines the success or failure of 

Scrabble games, especially in tournaments. Moreover, tournaments play is time-limited 

(25 mins to finish all plays). Maven uses the concepts of move generation, heuristics, 

board evaluation and a three-ply look-ahead as explained below: 

 

3.1.Dictionary: 

An Official Scrabble Players Dictionary (OSPD) contains over 100,000 words and 

is freely available on the Internet. Maven uses this dictionary as their knowledge base [3]. 

In our AI, we initially used a similar Scrabble dictionary, downloaded from the internet, 

with 178,696 words (1.8 MB size). However, when we tried to simulate an end-game 

situation of the game board, we found that considering these many words is time-

consuming and unnecessary. Therefore, a trimmed dictionary was created for our testing 

purposes that consist of 232 words (1 KB size). The irrelevance of words is due to the 

existence of the redundant letter words which are unusable for Scrabble. For instance, if 

you look into the tile distribution of Scrabble there is only a single ‘Z’ in the tile bag. 
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However, our dictionary comprised of words like ZYZZYVAS, ZZZ which was 

unnecessary to keep because in a legal play we can only use at most 2 Z’s in a word 

(including the blank replacement tile). 

 

3.2.Lexicon Representation: 

Maven uses a Directed Acyclic Word Graph (DAWG) data–structure presented by 

Appel and Jacobson as cited in [5] for storing the words in OSPD. DAWG’s finite-state 

automation uses a minimal representation of a trie data structure to represent the entire 

dictionary or lexicon for fast move generation algorithm. A Trie is an ordered prefix 

search tree with an empty root and prefix labeled nodes. A common-prefix is shared by 

two or more words. The leaf of the trie holds the complete word and is known as the 

terminal node. However, tries can consume more space because it can contain duplicates. 

DAWG stores an entire lexicon in a reduced trie form so that the structure consumes only 

minimum memory or space as compared to the search trees. Figure 3 and Figure 4 shown 

below represents the trie data-structure and DAWG data structure of the given lexicon 

respectively. 

 

 

Figure 3. Trie with its lexicon [5] 
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Figure 4. DAWG with its lexicon [5] 

 

 Thus, the DAWG representation reduces the lexicon representation storage space to 

175 KB, which allows to keep it entirely in the memory [5]. DAWG is also fast because it 

has a backtracking search strategy. In our case, as we had a trimmed dictionary of 232 

words of size 1 KB, we were satisfied with either trie or the word-list representation. 

 

3.3. Move Generation: 

 Maven’s move generator discovered the possible legal moves for the current game 

state and assessed the future score based on the current game. To achieve that, it applied 

different kinds of heuristics efficiently on each turn and found up to 20-30 candidate 

moves [3]. The project follows the same move generation algorithm. We will explain the 

exact algorithm used in our project which is similar to Maven move-generation algorithm. 

For each move generation, we look into our rack state, board state, and score. Suppose the 

player have a rack like this ‘MFRFGTH’ and have a random board state with many words 

on it. Consider a situation where we selected 'FARM' as the best possible word which 

must be placed across the board word ‘AND’ anchored to the letter A. To play ‘FARM,' 
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six main constraints have to be checked during move generation before placing the letter 

on the board.  

 

 The pseudocode of the move generation algorithm is explained below: 

1.    Check if an empty square exists to the left of the ‘F’ as ‘F’ is the first letter. 

      1. a) IF TRUE, continue to next step 

   1. b) ELSE, check if a horizontal legal word formation exists. 

2.    F is either present in our rack or board as anchor letter 

3.    A is either present in our rack or board as anchor letter 

4.    R is either present in our rack or board as anchor letter 

5.    M is either present in our rack or board as anchor letter 

6.    Check if an empty square to the right of the last letter M exists 

   6. a) IF TRUE, just place the word on game board permanently. 

   6. b) ELSE, temporarily place the word in the desired direction and continue 

                checking legal formations using or placeTilesVert() explained in Section 3.4 

           and continue the process. 

  

       

3.4. Legal Placements: 

 As we mentioned before, all the moves placed on the game board must be valid legal 

moves as per Scrabble rules. We use the java class ‘LegalPlacement’ in our project to 

validate the correct placement of each move. For each move, we need to identify the 

direction whether it is a horizontal or a vertical move and check the proper word 

formation with any other letters on the top, bottom, left and right squares of the placement 

letter. The functions placeTilesHoriz() and placeTilesVert() in this class are used to verify 

the valid word formation with the adjacent non-empty cells in the board when the words 

are laid horizontally or vertically respectively. The pseudocode of these functions are 

explained below: 

i. placeTilesHoriz()  

 

1.  If possibleWord contains boardWord, then split the possibleWord that needs to 
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     check legal formation with boardwords into leftStr and rightStr, leftStr contains the 

     substring before boardword and rightStr contains substring after boardWord. 

   2.  If the direction is horizontal, then do the following: 

   2.a) Place the leftStr on board and check the below steps: 

   2.a.1) If the leftStr makes a legal word formation with the non-empty left cell, raise 

        the leftcellTrue flag  

   2.a.2) If the leftStr makes a legal word formation with the non-empty top cell, raise 

        the topcellTrue flag 

   2.a.3) If the leftStr makes a legal word formation with the non-empty bottom cell, raise 

         the bottomcellTrue flag 

   2.b) Similarly place the rightStr on board and check the below steps: 

   2.b.1) If the rightStr makes a legal word formation with the non-empty right cell, raise 

         the rightcellTrue flag  

   2.b.2) If the rightStr makes a legal word formation with the non-empty top cell or 

              bottom cell, raise the topcellTrue or the bottomcellTrue flag correspondingly. 

    2.c)  If any of the leftcell/ rightcell/ topcell/ bottomcell flag is true for leftStr or 

            rightStr, 

            then collect the left/ right/ top/ bottom words on the board respectively and check 

            if the collectedwords on the board form a valid word as per the OSPD. 

    3. If the new possibleWord is a valid word, then calculate its score and place the word 

        horizontally. 

    4. Else, ignore the word. 

 

ii. placeTilesVert()  

 

1.  If possibleWord contains boardWord, then split the possibleWord that needs to check 

     legal formation with boardwords into topStr and bottomStr, topStr holds the substring 

     before boardword and bottomStr holds substring after boardWord. 

2.  If the direction is vertical, then do the following: 

2.a) Place the topStr on board and check the below steps: 

2.a.1) If the topStr makes a legal word formation with the non-empty right cell or left 

          cell , raise the leftcellTrue flag or the rightcellTrue flag respectively. 

2.a.2) If the topStr makes a legal word formation with the non-empty top cell, raise 

      the topcellTrue flag 

2.b) Similarly place the bottomStr on board and check the below steps: 

2.b.1) If the bottomStr makes a legal word formation with the non-empty bottom cell, 

           raise the bottomcellTrue flag  

2.b.2) If the bottomStr makes a legal word formation with the non-empty left cell or 

           right cell, raise the leftcellTrue or the rightcellTrue flag correspondingly. 

2.c) If any of the leftcell/ rightcell/ topcell/ bottomcell flag is true for topStr or 

        bottomtStr, then  collect the left/ right/ top/ bottom words on the board respectively 

        and check whether the collectedwords on the board form a valid word as per OSPD. 

3. If the new possibleWord is a valid word, then calculate its score and place the word 

     vertically. 

4. Else, disregard the word. 
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3.5. Heuristics: 

 Heuristics are a set of evaluation parameters which are essential to instantly solve the 

problems when the traditional approaches are often slow, especially in AI. Many of the 

search algorithms use a heuristic function at each step of branching. The primary goal of 

a heuristic function is to find the best-matching solution of the original answer.  

 

    Maven uses four main heuristics to select the most promising moves for a player. The 

first heuristic is called Vowel – Consonant Balance for balanced rack management [3]. 

This heuristic examines if the rack has a right mix of Vowels and Consonants. To do that, 

we can take the ratio of Consonant/Vowel in our rack and evaluate if it is higher than a 

threshold value, assign a positive value. If the rack holds either a full set of Vowels or 

Consonant, then we assign a negative value. However, Maven did not consider a good 

rack-leave. 

 

    The second heuristic is known as U-With-Q-Unseen [3]. Using this heuristic, we give 

priority to play the words that contain a combination of Q and U. If any candidate words 

in our most promising word list have a mix of Q and U, then assign a high reward to that 

word. Words with Q and U must be played very quickly. Else it could get stuck in our 

rack which creates a ‘Q-Sticking’ scenario. Sticking with these tiles is a risky situation for 

the player.  Therefore, we must play the words that have a Q and U. 

 

  The third heuristic is known as Hot-Spot Block where a board-square near the 

premium squares are blocked by the player in the current turn. It is a common human- 
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move generation defensive strategy. These hot spots offer hints to the player to where the 

tiles must be placed. Also, it is essential to know when to use this strategy because we 

cannot use the defensive strategy in every turn. Particularly during a mid-game, it is 

favorable to use a straightforward strategy instead of a defensive one. However, we use a 

defensive approach in end-games. 

 

 The fourth heuristic is known as First-Turn Open [3]. This heuristic implies the 

importance of playing the first turn with a few tiles. Placing smaller words on the game 

boards eliminates the creation of hot spots for the opponent for the next turn. Moreover, 

Maven prefers to play for the first turn as in some cases the first player have got a higher 

probability of winning the game. 

 

3.6. Maven Game Phases:  

There are three major search phases for Maven: Beginning to Middle game phase 

known as Mid-game phase (Normal game), Pre-end game phase and End game phase [3]. 

The mid-game phase is the duration of the game from the beginning until nine or fewer 

tiles are left in the bag [3]. The pre-end game phase begins when we have a total of 16 

unseen tiles which means seven tiles the opponent’s rack and nine tiles in the tile bag. 

The pre-end game is comparatively slower. The final game phase is the end-game phase 

and commences when no tiles are left in the tile bag or for an empty tile bag [3]. Scrabble 

endgames are vital and determine the fate of an opponent. It can completely change the 

game and the leading player. Hence they need special strategies to resolve the endgames. 

End-games are mostly perfect information games. However, humans cannot win it using 

a highest scoring greedy approach. Instead, an intelligent player must deceive the 
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opponent with tricky tiles. Computer game engines are noteworthy in end-game situations 

because of its exceptional speed and advanced simulation heuristics. 

 

3.7. Board Evaluation: 

Maven tries to avoid generating hot spots for the opponent. It is an essential 

strategy in end-games. However, in mid-games and pre-end games sacrificial of few 

points for a hot spot does not concern Maven lest it is a grand spot such as a Triple Word 

premium board square. Moreover, when the game commences, it is better to consider the 

third heuristics explained in 3.5, i.e., Maven must open the board with a few number of 

tiles. This heuristic provides an opportunity to play in a controlled manner and not letting 

an opponent to lead in the game. 

 

3.8. Look-ahead and Simulation: 

      Maven employs a three-ply look-ahead to search and analyze the future opponent 

playable moves. According to the game theory, a ply implies a player’s turn in a two-

player game. A move is equivalent to two turns. We implemented a three-ply look-ahead 

in this project as follows: 

Ply 1: Place the best scoring candidate word for a given rack and board state 

Ply 2: Find the opponent’s possible candidate word and resultant score if that word is  

           placed 

Ply 3: Evaluate the current state and find the best word to block that move in an endgame.       
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  A deeper ply yields different results. However, in our case, we do not need a ply 

deeper than three-ply, especially during endgames. The reason is, as end-games are 

complete information states, evaluation of possible opponent word formation for each 

rack and board tiles, horizontally or vertically, can slow-down the program. Therefore, 

we can say that a major limitation of simulation is that they are lengthy and time-

consuming. Moreover, our project is built on Java whereas original Maven or Quackle is 

written in traditional C and C++. Hence the execution speeds are comparatively slower 

than its original program speed. 
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4. QUACKLE AI 

 

     Quackle is an open source Scrabble AI tool originally written in C++, a competitor 

of Maven AI. We implemented the underlying heuristics and components of Quackle in 

our project from scratch in Java. Quackle is similar to Maven in heuristic applications, 

but it has advanced tool for analysis. Quackle has two critical components called kibitzer 

and simulation engine. This section will overview the workflow, powerful features of 

Quackle and presents the strengths and limitation of the AI. 

 

4.1. Quackle Schematic Diagram: 

A Quackle engine uses a program module called kibitzer that applies a different 

kind of static evaluation function than Maven to find the most promising candidate in the 

game. Figure 5 shows the Quackle flowchart. 

 

Figure 5. Quackle flowchart [4] 
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4.2. Quackle Move Generation: 

In this block, we generate a set of candidate moves from our input rack and board. 

Quackle uses a Generalized Direct Acyclic Graph (GADDAG) data structure for move 

generation [4]. Generalized Direct Acyclic Graph (GADDAG) algorithm, developed by 

Steven Gordon in 1994 [8] surpassed the shortcomings of DAWG algorithm with a 

tradeoff. GADDAG is comparatively twice as fast as DAWG, but GADDAG is five times 

larger than DAWG. Consequently, GADDAG is costly as it consumes a large amount of 

memory. Due to its high computational cost, it is not desirable to use GADDAG in our 

Scrabble computer player. We used a trie and Array List data structure for storing the 

entire dictionary. However, the time consumption for trie was higher in an endgame 

simulation. So we used a trimmed dictionary of small size and stored it in an Array List. 

 

4.3. Static Evaluation Function: 

The candidate moves from the move generator are given as input to this block. 

Once it receives a collection of candidate moves, the static evaluation function calculates 

a rack leave value for each of the promising candidate words in the collection. To 

calculate the leave value, we first need to identify the letters remained on the rack after 

playing the corresponding word. In our project, we call the function calcStaticEvalFunc() 

to calculate the scoreLeave value which is the sum of move score and estimated leave 

value called leaveEstimate. Subsequently, the function returns the 23 highest scoring 

plays. To make this block run quicker, we used a precomputed database to lookup the 

leave estimate value for each of the letters. 
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 For instance, suppose our rack holds AISROCS, and Quackle’s move generator first 

creates a list of possible candidates move such as {OS, IS, SIC, SO, SICS, OR, AS, …} 

from this rack. Afterwards, Quackle applies the static evaluation function for each of 

these values in the candidate list. Consider the first word OS, if we play this word on 

board the rack leave will become AISRC. So we calculate the leave value for the rack 

leave, and it turns out to say 2.5. Hence, OS scores 2 points on the board as move score 

and 2.5 as its leave value. Then the static evaluation leave value will be the sum of move 

score and leave value which is equal to 4.5. This static evaluation function is then 

iteratively applied for each word in the candidate list and returns the top 23 words based 

on the total score. 

 

 We also apply some heuristics here. An empty rack-leave indicates a Bingo move. 

Our Quackle AI award higher leave values to the bingo moves so that they have good 

chances of playing for the current turn. 

 

4.4. Quackle Simulation: 

 Quackle runs hundreds of simulation for each candidate move. The official Quackle 

player even has an option to extend it to 1000 times. However, it will be time-consuming 

to run 1000 times compared to 100 times. Moreover, it uses a three-ply look ahead to 

identify the best promising word that must be played against the opponent.  For instance, 

consider the above example we discussed in Section 4.3. Let OS be one of the highest 

scored candidate move returned. We need to analyze if OS makes a good candidate move 

while running simulation. The three-ply look-ahead follows the steps below: 
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Ply1: Current player plays OS having a score leave value 4.5 and rack leave AISRC. 

Ply 2: A random rack is created for opponent and it plays word JEWEL scoring 20 points 

as score leave and leaves PM in the rack. 

Ply 3: Now, current player arbitrarily adds new shuffled tiles, say PT into his rack and 

play the best word CA(R)T for score 5.5 leaving ISRP in the rack. R is the anchor letter on 

the board. 

 

      Eventually, the point differential or equity score is calculated for each word as Our 

Total Score – Opponent’s Score + Residual rack leave value estimate [3]. The point 

differential can be positive or negative values. A positive point differential implies the 

score lead and a negative value refers how much the player is behind. 

 

4.5. Win Probability Percentage Estimation: 

Once the simulation identifies the three-ply look ahead moves, this block 

calculates the winning probability based on the point differential and the remaining tile 

count for each candidate move. After computing the win percentage, the candidate move 

list is sorted in the descending order of winning probability percentage. If two words are 

found with the same probability, we break the tie by selecting the word with lowest rack 

leave value. 

 

Figure 6 represents an example move of Quackle where player’s rack consists of 

letters JEIAFON, and the kibitzer founded 22 possible words that can be formed with this 

list. Each candidate word in the list is simulated 100 times, and we calculate an averaged 

point differential and its corresponding win probability. Thus a total of 2200 simulations 
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happened for all the 22 candidate words in the list. The time taken for 2200 simulations is 

235 secs which we consider reasonable. From the figure, we can realize that the candidate 

words like {FA, IN, IO, OF, AI …} has a point differential of 0.0 when the remaining 

tiles in the tile bag are 93. From the results in figure 6, we can realize that words with low 

point differential have a high winning probability. 

 

 

Figure 6. Quackle simulation example 
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5. END GAME STRATEGIES 

 

Our project implements three variants of end-game strategies for Maven AI and a 

general win percentage probability approach for Quackle AI. Figure 7 shown below 

illustrates the three kinds of endgame strategies used in the project. As endgames are 

essential determining the success of the game, we realized that having a right approach 

can let a losing player winner. Human players lack this skill as endgames are complicated 

and in tournaments or casual games, the player must make a move within the stipulated 

time limit. Towards endgame, human players usually play carelessly and hurriedly and 

eventually lose the game. Nevertheless, computer players play in a controlled manner by 

applying specific endgame strategies. These AIs use a three-ply simulation to evaluate the 

future board moves and tries to trap the opponent, by expanding the winning margin. 

Chapter 5 narrates the end-game strategies used in this project. 

 

Figure 7. Three variants of Maven end-game AI 

 

5.1. Q - Sticking: 

Q-Sticking is an endgame scenario where the opponent is stuck with an unplayable 

tile like Q, or V. Maven Q-Sticking AI block the opponent’s hot spots on board such that 

Maven AI endgame

Q-Sticking

Slow endgame

Q-Sticking with 
slow endgame
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they cannot get rid of tiles like Q or V which are hard to play due to its fewer word 

combinations. Once it blocks opponent's move, this AI carries out the favorite 

straightforward strategy of Maven used in mid-game scenarios where the highest scoring 

word is placed to gain maximum reward. If an opponent cannot make a play, it gives a 

pass, and the player scores an extra 20 points for each pass. Thus, the opponent penalty 

scores boost the final aggregate score of this AI. An AI which plays a straightforward 

strategy to score maximum points in Q-stuck scenarios is called No Q-Sticking AI. 

 

5.2. Slow-endgame Strategy: 

In this strategy, Maven traps the opponent player by stretching the game and plays 

one tile at the moment. The primary intention of this approach is to gain maximum score 

by slowing down the game using low-scoring tiles. For example, consider the possible 

candidate Maven AI word list as {HOPERS (score = 11), EPOCH (score=9), EH (score = 

5), OH (score =5), OHS (score = 6), TOD (score =4), OI (score=2)}. Suppose there is an 

anchor letter O on board that can benefit from a premium bonus (*2), and Maven has the 

choice of playing the highest scoring word HOPERS on board. Nonetheless, the slow-

endgame AI plays the OH vertically and for the first turn by placing H next to O which 

scores 6 points. On the subsequent turn, Maven extends the game by placing S next to 

OH to make the word OHS that scores 7 points. 

 

5.3. Q-Sticking with Slow-end game Strategy: 

For instance, the possible candidate words of Maven be {FAITH (score = 10), 

ENERGETIC (score=21), IT (score = 4), BIT (score = 3), AI (score =2)} and Quackle 
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has a hot spot on board to place word QI. In this case, instead of playing the highest 

scoring word FAITH with ‘I’ as anchor letter, Maven plays the word IT on board on first 

chance taking away the opponent’s opportunity because if we place FAITH on the board 

we can only score 10 and the rack leave becomes zero. However, if it plays slowly, then 

Maven can gain high scores in the subsequent plays by retaining a good rack leave. In the 

next turn, Maven plays word BIT by placing it on premium word square and scores 9. So 

the combined score in both the plays will be 4+10= 14 which is greater than 10 (score of 

FAITH). Figure 8 shown below represents a random endgame scenario that we simulated 

in our program. The current number of tiles equals zero implies that our tile bag is empty 

and the game has entered the end-game phase. 

 

Figure 8. Q-Sticking end game scenario 
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6. DESIGN AND WORKFLOW OF THE PROJECT 

 
We now present the overall design and work-flow of major classes of this project 

as shown below in Figure 8. First, we see the relationship between ComputerPlayer and 

Player classes. Player is an abstract class, and the two ComputerPlayer classes that are 

sub-classed from the abstract Player class implements the abstract play() method. 

ComputerPlayer class includes the implementation of Maven AI, and ComputerPlayer2 

refers to Quackle AI.  

 

Figure 9. Class diagram of Player Class and Computer Players 

 

 Each play() method in ComputerPlayer and ComputerPlayer2 class contains call to 

other functions such as findBestFirstMove() and findBestMove(). The former one finds 
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the best first move for the first play, and the latter one finds the best move in the 

subsequent plays other than the first play. Figure 9 presented below shows the flowchart 

of the game flow. 

 

Figure 10. Overall workflow of Scrabble game AI 
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7. EXPERIMENTS AND RESULTS     

 

This chapter discusses the experiments and results conducted in our project. The 

goal of this project is to let two AI’s play against each other as opponents and determine 

the performance of AI’s based on the quality of moves, winning criteria and time 

consumption. Since we have three AIs of Maven built on different endgame strategies 

like Q-Sticking, slow-endgames, Q-Sticking combined with slow-endgame, and another 

AI based on the Quackle AI and Maven No-Q-Sticking; we let each variant of Maven AI 

to fight against Quackle.  

 

         Maven and Quackle were originally written in C and C++ respectively for faster 

speed. However, we rewrote their heuristics in Java due to our comfort with the language. 

We focused on a two-player game and experimented with pairs of four AIs as follows: 

a) Maven Q-Sticking AI versus Quackle for Endgame 

b) Maven slow-end game AI versus Quackle for Endgame 

c) Maven Q-Sticking with slow-end game AI versus Quackle for Endgame 

Maven Q-Sticking versus Maven No-Sticking for Endgame 

 

 All these experiments are executed on a Mac Machine having 16 GB RAM-quad-core 

processor running Java version 7. We ran ten randomly generated Scrabble endgame for 

each experiment which was taken from real-world end-game scenarios used in 

tournaments as in [9, 11, 12] and also tested the Q-Sticking scenarios generated from a 

normal game after running the program. We chose these particular endgames because we 

needed to analyze the likely winning moves of our program during a Q-Sticking endgame 
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situation exhibited by these games. As the next step, these real-world endgame states 

were loaded into our project by considering the current game board state, player rack, 

player score, tile bag and score lead. 

 

7.1. Experiment 1: Maven Q-Sticking AI versus Quackle for Endgame: 

This experiment was conducted on 10 randomly generated Scrabble endgames 

between the two AI players, Maven-Q-Sticking AI and Quackle. Maven Q-Sticking 

implies Maven’s strategy when the opponent Quackle is stuck with unplayable tiles like 

Q or V. To do this experiment, we created Maven and Quackle AIs in two separate 

classes and made function calls to firstmove() of game open AI and bestmove() of both 

AIs for subsequent plays alternatively until a winner is detected. We considered Maven 

for first turn open in these experiments 

. 

In our hypothesis, we predicted that Maven Q-Sticking AI will perform better than 

Quackle as Maven AI can block the hot spots of Quackle when Quackle is stuck with Q 

and play with a greedy approach. The results of the experiment are shown in Figure 11.  

 

Figure 11. Experiments between Maven Q-Sticking AI and Quackle AI 
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To determine the average mean score and standard deviation (SD), we noted down 

the distribution of game scores of both the players on each iteration and calculated its 

mean after 10 iterations. Standard deviation was then calculated to measure the point 

spread. 

 

Table 1. Average game scores of Maven Q-Sticking AI and Quackle 

Player AI Mean Score + Standard Deviation 

Maven Q-Sticking AI  473.2 ± 70 

Quackle     450.4 ± 59.2 

 

7.1.1 Observations: 

From the test results, we conclude that Maven only wins 60% of the time and 

Quackle wins 40%, and the standard deviation of Maven is quiet higher than Quackle. At 

the beginning of the end-game situation, Quackle leads the game. However, after 

calculating the opponent’s rack, we found that Quackle is stuck with an unplayable tile. 

So the Maven AI applied its Q-Sticking strategy and scored by blocking the opponent hot 

spots using its high scoring words and became the winner 60% of the times. Thus, we 

realized that a leading Quackle could be defeated by Maven AI even if it is behind the 

points. 

 

We also observed that a Maven win is influenced by factors like the score 

difference, points on the rack tile, number of rack tiles, and the type of unplayable tile of 

the opponent. In the Iterations, 1, 2, and 5 Maven had high scoring tiles and could place 

those tiles by blocking the premium bonus spots of Quackle. Thus it was easily able to 

defeat Quackle because whenever Quackle gave a pass, Maven received extra 20 points 
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for each pass. In the Iterations 3, 6 ,7 the score difference during the start of endgame 

phase was less and Maven could easily outscore Quackle due to less point differential. 

Thus above-experiment confirmed our hypothesis that even if Quackle out-scores Maven, 

Maven has still room to win the game. 

 

Consider a real end-game scenario where the current score of Quackle and Maven 

is 480 and 360 respectively. Maven has seven tiles on the rack. However, the competitor 

Quackle is stuck with a Q. In this case, Maven blocks and beat the opponent as it has 

suitable tiles that can form a right legal word with the tiles in the hot spot. Most of the 

times, this scenario turns true however if Maven has less number of low scoring tiles, it 

cannot beat the opponent even if the blocking occurs. That is because Maven Q-Sticking 

AI places the highest scoring word on the hot spot and if the highest scoring word 

constitutes all the tiles in the rack and the total score is not greater than Quackle score, 

Maven may fail. Conversely, the highest scoring word does not mean the longest word in 

the rack. A high scored two letter word on premium squared board squares is one such 

instance. Figure 10 referred below shows that candidate word-set in the format <word, 

score, row, col>. In this case, word ‘IT’ has score 25 and ‘GHAT’ only scored 24 as IT is 

placed on a premium word score. 

 

Figure 12. Candidate moves of Maven 
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7.2. Experiment 2: Maven slow-endgame AI versus Quackle for Endgame: 

This experiment was conducted on ten randomly generated Scrabble endgames 

between Maven-slow-endgame AI and Quackle. To do this experiment, we created these 

two AIs in two separate classes and called the functions alternatively until a winner is 

detected. In this strategy, Maven slows down the endgame by playing low scoring one tile 

at the moment and takes away an opponent’s opportunity to increase the total reward.  

 

In our hypothesis, we predicted that Maven will outscore its Quackle opponent 

because it draws the tiles one-by-one at a time to gain high reward and maximum point 

spread through penalty score. Figure 13 referred below shows the experiment results. 

  

Figure 13. Experiments between Maven slow-endgame AI and Quackle 

 

The same procedure explained in section 7.1 was continued to determine the mean 

score and standard deviation of the game. 

Table 2. Average game scores of Maven slow-endgame AI and Quackle  

 

Player AI Mean Score + Standard Deviation 

Maven slow-endgame AI 461.9 ± 80 

Quackle 442.6 ± 60 
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7.2.1 Observations: 

From the above results, we learned that Quackle can still defeat Maven even if 

Maven plays out first or lead in the beginning of an endgame. Quackle won 60% of the 

time where Maven only won 40%. Table 2 shown above illustrates that the average scores 

of Maven is higher as compared to Quackle. Thus Maven’s data points are widely spread 

around the mean. Quackle win-influence factors seen in the game are a high-score lead 

for Quackle, Maven’s less value tile rack, Quackle’s rack of high point unplayable tiles 

when Maven tiles finished soon (e.g.: An unplayable tile V in the Quackle rack could 

only earn 4 points whereas Q in the rack earned 10 points and Quackle won). 

 

For instance, in Iteration 2, Maven’s score was 214, and Quackle’s score was 343. 

Quackle was stuck with a Q. Maven played out all his two remaining tiles, and at the end 

of the game, as a penalty, Maven added the maximum tile value ‘10’ (value of Q) to his 

score as well as subtracted the same score from Quackle. Still, Quackle won the game. 

The reason we analyzed is that there was a 129-point difference between the players 

during the beginning of the endgame situation. After play out, Maven’s score was only 

230 whereas Quackle’s score was greater than that. Moreover, there were only two tiles 

for Maven to play and one tile for Quackle. If there were a full rack tiles in Maven’s 

player rack, it could still win the game. However, 40% of the time, Maven had a high 

score full rack of tiles, and it won the game. In Iterations 7 and 8, the scoring lead for 

Quackle was few points (<10). Thus Maven could quickly take over Quackle. Hence, we 

realized that this AI is not good for Maven and this experiment denied our hypotheses. 
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7.3. Experiment 3: Maven Q-Sticking slow-endgame AI versus Quackle for 

Endgame: 

This experiment was conducted on randomly generated Scrabble endgames 

between Maven Q-Sticking slow-endgame AI and Quackle. Maven Q-Sticking slow-

endgame AI will always win the game as it can block any single opportunity of the 

opponent even if it is a hot spot or not and at the same time drag the game by placing tiles 

one by one with a goal of increasing the score. The above mentioned is a good strategy to 

trap the opponent with unplayable tiles and earn an extra score of 20 for each pass. 

Instead of blocking with the highest valued tile as seen in Q-Sticking, this strategy blocks 

the hot spots with low-scoring tiles. 

 

In our hypothesis, we predicted that Q-Sticking slow-endgame AI will outscore its 

Quackle opponent because it blocks all the opponent moves and draws the tiles one-by-

one at a time to gain high reward and maximum point spread through penalty score. To 

perform this experiment, we built Maven and Quackle AIs in two separate classes and 

made function calls as discussed in Experiment 7.1. We considered Maven for first turn 

open 70% of the times in the experiments. Figure 14 shows the experiment results. 

 

Figure 14. Experiments between Maven Q-Sticking slow-end game AI and 

Quackle 
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Again we applied same procedure explained in section 7.1 was to determine the 

mean score and standard deviation of the game. 

Table 3. Average game scores of Maven Q-Sticking slow-end game AI and 

Quackle 

Player AI Mean Score + Standard Deviation 

Maven Q-Sticking slow-end game AI 472.2 ±86.79 

 Quackle 417.9 ± 54.63 

 
 

7.3.1 Observations: 

 After running the experiments, we realized that 80% of times Maven defeated 

Quackle. In Iterations 1,2,3,4 even if the score variation was in the range 65 to 100 points, 

Maven blocked all the spots, hot spots or not, and played the low-scoring tiles one by one. 

Dragging the game allowed Maven to earn a bonus of 20 points on each pass of the 

opponent. Also, Iterations 6,7,8 and 10 Maven had also got the chance to place the 

majority of the low-scoring tiles in premium squares, gaining extra bonuses. Maven lose 

in 10% of the times as its low-scoring tiles played out fast due to less quantity and 

Quackle had a high score lead. Thus above-experiment confirmed our hypothesis that 

even if Quackle out-scores Maven, Maven can win the game. 

 
7.4. Experiment 4: Maven Q-Sticking slow-endgame AI versus No-Q-Sticking AI: 

This experiment was conducted on randomly generated Scrabble endgames 

between Maven Q-Sticking slow-endgame AI and No-Q-Sticking AI that plays a 

straightforward strategy. The later AI tries to score maximum points by placing the 

highest scoring word on board. Maven applies this strategy mostly in mid-game phase, 
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but we included it in endgame scenarios too.  

 

In our hypothesis, we predicted that Q-Sticking slow-endgame AI will outscore 

No-Q-Sticking AI opponent because it blocks all the opponent moves and draws the tiles 

one-by-one at a time to gain high reward and maximum point spread through penalty 

score. Figure 15 shows the experiment results of Maven Q-Sticking slow-endgame AI 

versus No Q-Sticking AI. 

 

Figure 15. Experiments between Maven Q-Sticking slow-end game AI and 

No-Q-Sticking 

 

We calculated the average scores of both the AIs to find the point spread over the 

mean over 10 games and found that Maven has higher mean score and deviation than the 

other one. 

Table 4. Average game scores of Maven Q-Sticking slow-end game AI and 

No Q-Sticking 

Player AI Mean Score + Standard Deviation 

Maven Q-Sticking slow-end game AI 479.9 ± 75 

 No-Q Sticking AI Score 415.1 ± 45 

 
 

 



 

38 

7.4.1 Observations: 

After running the experiments on a Q stuck opponent leading scenarios, we 

realized that 90% of times Maven Q-Sticking defeated No-Q-Sticking AI because No-Q-

Sticking does not block any opponent moves rather it plays the highest scoring move. 

This time Maven-Q-Sticking places its unplayable tiles in few moves, and thus it plays 

out all the tiles and wins the game. We realized that blocking is necessary to trap the 

opponent in an endgame scenario. Thus above-experiment confirmed our hypothesis that 

even if Quackle out-scores Maven, Maven can win the game. 
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8. CONCLUSIONS AND FUTURE WORK 
 

 In this project, we developed five different AIs having different move 

generation and simulation techniques. Maven AI with Q-Sticking slow-end game strategy 

was expected to outscore the Quackle AI, and it proved to be the best computer player AI 

in our project. It can block the hot spots as well as earn bonus points by trapping an 

opponent using the slow- endgame strategy. Maven Q-Sticking AI also had a relevant 

move generation heuristic and outscored the Quackle opponent. Still, the heuristics were 

not as favorable as Maven Q-Sticking slow-endgame AI. Maven slow-end game AI did 

not perform well for endgames, and the AI lost to Quackle many times. Quackle AI could 

only outscore Maven slow-end game AI. Finally, No Q-Sticking AI was found to be a 

promising AI during mid-games. However, this AI did not perform well during endgame 

scenarios. 

 

    The major drawback of our project was the execution time taken by three-ply 

look-ahead simulation. For example, our project consumes 100-255 seconds to finish 100 

simulations of Quackle whereas originally the Quackle championship player only takes 

about 19-50 seconds for a move generation. In case of Maven AI, the execution time of a 

single move generation was about 0-2000 milliseconds, however, originally Maven AI 

consumed only 0-30 milliseconds. The time consumption of original Maven AI was 

computed using a stopwatch. 

 

As a future enhancement, we will reduce this execution time of the simulation 

engine and will implement an interactive graphical UI for the project. Furthermore, we 
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realized that Quackle is not just a Scrabble play engine, it is also an analysis tool that can 

simulate up to 1000 times and gives an option to the player to look up to 6 plies deep 

which could be time-consuming. So we will try to incorporate these features into our AI 

in the future. 
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