
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2017

Metamporphic Code Generation Using LLVM
Michael Crawford
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Crawford, Michael, "Metamporphic Code Generation Using LLVM" (2017). Master's Projects. 557.
DOI: https://doi.org/10.31979/etd.swbk-bwp2
https://scholarworks.sjsu.edu/etd_projects/557

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/153450582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/557?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Metamporphic Code Generation Using LLVM

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Michael Crawford

December 2017

© 2017

Michael Crawford

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Metamporphic Code Generation Using LLVM

by

Michael Crawford

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2017

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Fabio Di Troia Department of Computer Science

ABSTRACT

Metamporphic Code Generation Using LLVM

by Michael Crawford

Each instance of metamorphic software changes its internal structure, but the

function remains essentially the same. Such metamorphism has been used primarily

by malware writers as a means of evading signature-based detection. However, meta-

morphism also has potential beneficial uses in fields related to software protection.

In this research, we develop a practical framework within the LLVM compiler that

automatically generates metamorphic code, where the user has well-defined control

over the degree of morphing applied to the code. We analyze the effectiveness of

this metamorphic generator based on Hidden Markov Model (HMM) analysis, and

discover that HMMs are effective at detection up to ∼285% code added.

ACKNOWLEDGMENTS

I would like to thank Dr. Mark Stamp, who provided invaluable guidance for

this project. I would also like to thank my committee members, Dr. Thomas Austin

and Fabio Di Troia, for their assistance in support of this project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Morphing Techniques . 3

2.1 Insertion . 3

2.1.1 Inaccessible Code . 3

2.1.2 Dead Code . 3

2.2 Substitution . 4

2.3 Transposition . 4

2.3.1 Register Swap . 4

2.3.2 Subroutine Permutation 5

2.3.3 Instruction Transposition 6

3 LLVM . 8

3.1 LLVM Intermediate Representation (IR) 9

3.2 LLVM Program Structure . 9

3.3 LLVM Passes . 9

3.4 LLVM Toolchain . 11

3.4.1 clang . 13

3.4.2 llvm-as . 13

3.4.3 opt . 13

3.4.4 llvm-dis . 13

3.4.5 llc . 14

vi

vii

3.5 Discussion . 14

4 Similarity Detection . 15

4.1 Signature Detection . 15

4.2 Hidden Markov Model (HMM) . 15

4.2.1 HMM Example . 17

4.2.2 HMM Training . 19

4.2.2.1 Solving 1: Forward Algorithm 19

4.2.2.2 Solving 2: Backward Algorithm 20

4.2.2.3 Solving 3: Model Building 20

4.2.3 HMM Use Cases . 21

5 Objective, Design, and Implementation 22

5.1 Introduction . 22

5.2 Implementation . 22

5.2.1 LLVM BasicBlockPass . 22

5.2.1.1 Features . 22

5.2.1.2 Morphing . 23

5.2.1.2.1 Addition . 23

5.2.1.2.2 Substitution 25

5.2.1.2.3 Transposition 26

5.2.1.3 Validation . 26

5.2.2 Opcode Extraction . 27

5.2.3 Similarity Detector (HMM) 29

5.2.3.1 Observation State Selection 29

viii

5.2.3.2 Validation . 30

6 Experiments . 31

6.1 Dataset . 31

6.1.1 Training Data . 31

6.1.2 Test Data . 31

6.2 Experimental Method . 32

6.3 Results . 32

7 Conclusion . 36

LIST OF REFERENCES . 37

APPENDIX

Additional Datasets . 40

A.1 Dataset 2: O0 Training, O2 Morphed 40

A.2 Dataset 3: O2 Training, O0 Morphed 41

A.3 Dataset 4: O2 Training, O2 Morphed 42

A.4 Dataset 5: O2 Trained Model Investigation 43

LIST OF TABLES

1 HMM Notation [1] . 16

2 State sequence probabilities [1] . 18

3 HMM Probabilities [1] . 19

4 MorphingBasicBlockPass Command-Line Options 22

5 Code Addition Mapping . 24

6 Code Substitution Mapping . 26

7 Trained HMM Model . 32

8 Add Degree vs. Code Added . 34

9 ROC AUC Statistics for Add Strategy 35

ix

LIST OF FIGURES

1 Complex Instruction morphed into Simple Instructions 4

2 Register Swap . 5

3 Subroutine Permutation . 6

4 Instruction Transposition . 7

5 LLVM Compiler [2] . 8

6 Sample LLVM Human-Readable IR Bytecode 10

7 LLVM Container Objects [3] . 11

8 LLVM High-Level Program Flow [3] 11

9 LLVM Compilation Tool Flow . 12

10 Hidden Markov Model Diagram . 16

11 State Transition Probability Matrix [1] 17

12 Observation Probability Matrix [1] 18

13 Initial State Distribution [1] . 18

14 Example Observation Sequence [1] . 18

15 Morphing Pass Command Line Example 23

16 Pre-Morphed Human Readable IR Bytecode 25

17 Morphed Human Readable IR Bytecode (add = 100, sub = 0) 25

18 Pre-Morphed Extracted Opcodes . 27

19 Morphed Extracted Opcodes (add = 30, sub & trs = 0) 28

20 Objdump Execution Example . 29

21 HMM Program Validation . 30

x

xi

22 HMM Score Vs. Morphing Degree . 33

23 ROC Curves for Add Degrees 200, 400, 800, and 1600 34

CHAPTER 1

Introduction

Software can be considered metamorphic if multiple functionally equivalent

copies exist, but these copies are structurally different. Traditionally, metamorphic

software has had malicious intent, often written by virus authors to avoid signature-

based virus detection. There are some marketable benefits to metamorphic software

however, in that it provides potential for diversity in code execution. Analogous to

genetic diversity and its resilience against disease and other vulnerabilities in nature,

metamorphic software can prevent large-scale infection of systems as it potentially

has higher “break once, break everywhere” resistance [4].

Metamorphic software is most commonly created using generators, which pro-

cess an original piece of software into multiple structurally unique copies. Meta-

morphic generators can be standalone [5], or embedded in the software [6]. When

embedded, the morphing generator morphs itself with each generation. Metamor-

phic malware is typically very challenging to detect [5]. Recent research using Hid-

den Markov Models [7, 8] and other methods [9] has had some success associating

morphed variants with their origins. Some better-known metamorphic generators

are “Mass Code Generator” (MPCGEN) [10], “Next Generation Virus Construktion

Kit” (NGVCK) [5], and “Metamorphic Permutating High-Obfuscating Reassembler”

(MetaPHOR) [6, 11].

Most morphing engines morph execution code at the assembly level. This has

the most potential for diversity as many high-level languages provide little control

over how the compiler creates processor instructions, a requirement if the goal is to

1

evade signature-based detection.

The remainder of this report is organized as follows. In Chapter 2, we discuss

various software morphing techniques. In Chapter 3, we discuss the Low Level Virtual

Machine compiler (LLVM) framework. In Chapter 4, we discuss similarity detection

strategies, with an emphasis on Hidden Markov Models (HMMs). In Chapter 5, we

discuss the objective, design, and implementation of the tooling developed to perform

the research for this project. In Chapter 6, we discuss the experiments performed,

and their results. In Chapter 7, we provide our conclusion and the findings of the

project.

2

CHAPTER 2

Morphing Techniques

2.1 Insertion

One of the simplest ways to change a program is to add instructions to it, de-

pending on where and how the code is added, very little needs to be known about

the program or how it functions.

2.1.1 Inaccessible Code

When code that will never be executed is added to a program, it is considered

to be inaccessible code. Inaccessible code is easily added to an executable wherever

there are gaps between routines or at the end of execution. A caveat of inaccessible

code insertion is that it can be easily optimized out of a program, since it is never

used. Smart detection strategies can ignore inaccessible code entirely [12]. A clever

way to avoid removal of inaccessible code is to provide a conditional path to it such

that the condition will never be satisfied in actual execution.

2.1.2 Dead Code

Dead code is added code that will be executed, but the execution produces no

usable result. The most basic form of dead code is the NOP instruction. Simple forms

of dead code can be optimized out of a program, but more complex implementations

can be very difficult to remove and will ultimately have an effect on the similarity of

a morphed program with its origin program.

3

2.2 Substitution

Substitution aims to replace existing instructions with functionally-equivalent

but different instructions or sets of instructions. Two simple examples are replacing

MOV R1, R2 with PUSH R1; POP R2, and replacing MOV R1, 0 with XOR R1,

R1. A more involved method of substitution replaces a complex instruction with a

set of simpler instructions [13]. As shown in Figure 1, the complex instruction movsd

can be replaced by four simpler instructions surrounded by stack operations, and in

another step the stack operations can be replaced.

Figure 1. Complex Instruction morphed into Simple Instructions [13]

2.3 Transposition

Transposition is the process of swapping execution code around such that the

output code is different in structure, but equal in function. Common transposition

techniques include Register Swap, Subroutine Permutation, and Instruction Trans-

position.

2.3.1 Register Swap

A very simple technique where the register pointed-to by an instruction operand

is switched to another register that is not currently in use. Figure 2 shows how

4

Figure 2. Register Swap [5]

register operands from the original program “a” are transformed into a new program

“b” which is functionally the same, but is not binary equivalent.

It should be noted that due to the assembly-level nature of register swapping,

implementing register swapping at the LLVM IR-level is not possible, since registers

are not defined at the IR-level. For more information about LLVM, see Chapter 3.

2.3.2 Subroutine Permutation

Subroutine Permutation takes the functions or methods of a program, and gen-

erates permutations of the ordering such that functionality remains the same, but

code structure is changed. Figure 3 shows a program with 8 subroutines and an

example resultant reordering of the initial program. Previous work using LLVM to

apply subroutine permutation has been completed with excellent results [14].

5

Figure 3. Subroutine Permutation [5]

2.3.3 Instruction Transposition

Instruction Transposition takes the idea behind Subroutine Permutation and

applies it at the basic block level. Basic blocks are sets of instructions that have one

entry point and one exit point [15], all jumps must be contained within the set of

instructions to be considered a basic block.

A Data-Dependency-Graph (DDG) can be created which represents the depen-

dencies of each instruction in the basic block. Each reordering of branches creates a

permutation of morphed output.

Figure 4 describes converting a DDG for an example basic block into some pos-

sible morphed outputs. In the example, we can see that the path to instruction 5 can

6

Figure 4. Instruction Transposition

happen before instruction 4 is executed, the opposite is also true. Other permutations

are also possible as seen in the diagram.

7

CHAPTER 3

LLVM

The Low Level Virtual Machine (LLVM) software is a compiler framework de-

signed to reduce compiler code duplication across languages and architectures. It

splits the functions of a compiler into a set of modular compiler components such that

the core components can be shared and reused across different compilation schemes.

This design is beneficial since it allows future work and optimization to be done in

components that have multiple use-cases which can potentially improve code gener-

ation for any language and architecture. LLVM uses these components to convert

arbitrary high-level language code, such as C or C++, into an intermediate repre-

sentation (IR). IR lies somewhere in-between the complexity of assembly and the

simplicity of high-level languages. A diagram of LLVM is shown in Figure 5.

Figure 5. LLVM Compiler [2]

8

3.1 LLVM Intermediate Representation (IR)

LLVM IR provides type safety, low-level operations, and the capability of repre-

senting ‘all’ high-level languages cleanly and is used throughout all phases of LLVM

compilation strategy [16]. LLVM makes creation of new languages and syntax less

cumbersome since compiler developers need only write code to convert new language

grammar into LLVM IR. Subsequently, adding architectures is easier since developers

need only write code to assemble LLVM IR into the architectures instruction code.

IR closely resembles assembly code, with the smallest unit of execution being

labeled as an Instruction [17]. A sample of Human Readable IR Bytecode is provided

in Figure 6.

3.2 LLVM Program Structure

Programs in LLVM are represented in a hierarchical container structure. The

outermost representation, the Module [18], represents the entire program [19]. Mod-

ules contain Function [20] objects, representing functions in the program. Functions

contain BasicBlock [21] objects, which represent Basic Blocks. Basic Blocks contain

Instruction [17] objects, which represent LLVM instructions in code. There is a cor-

responding Instruction implementation for all IR byte code instructions. The LLVM

container structure is shown visually in Figure 7.

3.3 LLVM Passes

To facilitate processing of LLVM IR bytecode, LLVM uses a data structure called

a “Pass”, which are typically split up into three different types [22]; Analysis, Trans-

form, and Utility. Analysis passes often perform some inspection of code, and may

store results in memory for subsequent passes to use. Transform passes modify code

9

1 define i32 @main () #0 {

2 entry:

3 %retval = alloca i32 , align 4

4 %i = alloca i32 , align 4

5 %str = alloca [13 x i8], align 1

6 store i32 0, i32* %retval

7 %0 = bitcast [13 x i8]* %str to i8*

8 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0 , i8* getelementptr ←↩
inbounds ([13 x i8]* @main.str , i32 0, i32 0), i64 13, i32 1,←↩
i1 false)

9 store i32 0, i32* %i, align 4

10 br label %for.cond

11

12 for.cond: ; preds = %for.←↩
inc , %entry

13 %1 = load i32* %i , align 4

14 %conv = sext i32 %1 to i64

15 %arraydecay = getelementptr inbounds [13 x i8]* %str , i32 0, i32 ←↩
0

16 %call = call i64 @strlen(i8* %arraydecay) #4

17 %cmp = icmp ult i64 %conv , %call

18 br i1 %cmp , label %for.body , label %for.end

19

20 for.body: ; preds = %for.←↩
cond

21 %2 = load i32* %i , align 4

22 %idxprom = sext i32 %2 to i64

23 %arrayidx = getelementptr inbounds [13 x i8]* %str , i32 0, i64 ←↩
%idxprom

24 %3 = load i8* %arrayidx , align 1

25 %conv2 = sext i8 %3 to i32

26 %call3 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ←↩
([3 x i8]* @.str , i32 0, i32 0), i32 %conv2)

27 br label %for.inc

28

29 for.inc: ; preds = %for.←↩
body

30 %4 = load i32* %i , align 4

31 %inc = add nsw i32 %4 , 1

32 store i32 %inc , i32* %i, align 4

33 br label %for.cond

34

35 for.end: ; preds = %for.←↩
cond

36 ret i32 0

37 }

Figure 6. Sample LLVM Human-Readable IR Bytecode

10

Figure 7. LLVM Container Objects [3]

in some way, and may make use of information created from a prior Analysis pass.

Utility passes are extra passes that don’t fit the Analysis/Transform model.

Passes can be written to function at different levels of the LLVM program struc-

ture. A ModulePass is applied to the program Module. A FunctionPass is applied to

the program Functions. A BasicBlockPass is applied to program BasicBlocks. Figure

8 describes program flow, applying Passes during LLVM execution.

Figure 8. LLVM High-Level Program Flow [3]

3.4 LLVM Toolchain

LLVM consists of many independent tools that collectively accomplish program

compilation and assembly. Users chain these tools together to perform the desired

functions. Tool use is performed within a command-line environment. Tools are

executed on a variety of files, described by their extensions as follows:

• Source Files - “.c”, “.cpp”

11

• Human Readable IR Bytecode - “.ll”

• Binary IR Bytecode - “.bc”

• Architecture Specific Assembly - “.s”

Figure 9 displays LLVM tool flow, showing file transition during the multi-step

compilation process. Tools are described in the following subsections. Many of the

tools can also be applied by running clang (see 3.4.1).

Figure 9. LLVM Compilation Tool Flow

12

3.4.1 clang

“Clang” is the C/C++ front-end for the LLVM project, it provides a gcc[23]

compatible means to compile C/C++ code into various forms. These forms include

pre-optimization LLVM IR bytecode, post-optimization LLVM IR bytecode, and na-

tive machine code [24]. As a GCC-compatible compiler, clang integrates with the

other tools in the LLVM tool suite to create fully compiled and linked executable

programs from source code. When using the -emit-llvm option, clang will output

Binary IR bytecode (.bc) if the output file has extension .bc, or a Human Readable

IR bytecode (.ll) file if the output file has extension .ll.

3.4.2 llvm-as

The LLVM assembler, “llvm-as”, reads files containing human readable IR byte-

code (.ll) and translates them into files containing Binary IR bytecode (.bc) [25]. This

tool is used to convert the output of llvm-dis or clang into Binary IR bytecode.

3.4.3 opt

The LLVM optimizer,“opt”, reads Binary IR bytecode and applies LLVM passes,

outputting the product of those passes [26].

3.4.4 llvm-dis

The LLVM disassembler, “llvm-dis”, takes Binary IR bytecode and “converts it

into human-readable LLVM assembly language” [27]. For this project, the primary

use of this program is to inspect code.

13

3.4.5 llc

The LLVM static compiler, “llc”, takes Binary IR bytecode and compiles it “into

assembly language for a specified architecture” [28].

3.5 Discussion

In summary, LLVM is a capable toolkit that provides a highly modular and ex-

tensible code modification and analysis platform. The C++ Application Programmer

Interface (API) is well documented [29], and there is a wealth of information available

from other sources. The toolsuite includes a mechanism to inspect modifications us-

ing Human Readable IR bytecode, providing a means of verification and validation.

These characteristics make LLVM a good candidate for creation of a morphing engine

in the form of an LLVM Pass.

14

CHAPTER 4

Similarity Detection

4.1 Signature Detection

Signature-based detection uses a unique string of bits within a program to de-

termine if that program is the same as another. Nearly all consumer-grade virus

scanning software uses signature-based detection.

4.2 Hidden Markov Model (HMM)

A. A. Markov developed the idea of a “Markov Process” in 1907 [30]. A Markov

process consists of a set of states and probabilities that describe the transition between

those states, often represented by a state transition matrix, shown in Figure 11.

Hidden Markov Models (HMM) are useful for understanding systems that can be

represented with a Markov process, where the states of the process are not directly

observable. A HMM is trained to generate a state transition matrix using observable

states thought to be dependent in some way on the unobservable states of the hidden

Markov process.

Figure 10 visually describes an HMM, where a set of hidden state transition

probabilities (A) determines the hidden state transitions occurring in the hidden

state sequence (X). Observations (Ot) influence the observation probability matrix

(B) at hidden state (Xt).

To assist in describing the structure of HMMs, notation is listed in Table 1. A,

B, and π are row stochastic. Equation 1 defines the values of the A matrix. Equation

2 defines the values of the B matrix. Equation 3 defines the probability of a state

15

sequence X occurring given observation states O.

Figure 10. Hidden Markov Model [1]

T = length of the observation sequence
N = number of states in the model
M = number of observation symbols
Q = {q0, q1, ..., qN−1} = distinct states of the Markov process
V = {0, 1, ...,M − 1} = set of possible observations
A = state transition probability matrix = {aij}, N ×N
B = observation probability matrix = {bj(k)}, N ×M
π = initial state distribution, 1×N
O = (O0,O1, ...,OT−1) = observation sequence
X = (X0,X1, ...,XT−1) = hidden state sequence
λ = (A,B, π) = hidden markov model

Table 1. HMM Notation [1]

aij = P (state qj at t+ 1 | state qi at t) (1)

bj(k) = P (observation k at t | state qj at t) (2)

P (X,O) = πx0bx0(O0)ax0,x1bx1(O1) . . . axT−2,xT−1
bxT−1

(OT−1) (3)

HMM’s can be used to solve 3 different problems [1]:

1. Given a model and a sequence of observations, we can determine the likelihood

of the observed sequence, P (O|λ) (see 4.2.2.1).

16

2. Given a model and a sequence of observations, we can find the optimal state

sequence of the underlying Markov process, XOpt = f(O,λ) (see 4.2.2.2).

3. Given a sequence of observations, and dimensions N and M , we can generate a

model that maximizes the probability of the observed sequence (see 4.2.2.3).

4.2.1 HMM Example

A =

[H C

H 0.7 0.3
C 0.4 0.6

]
Figure 11. State Transition Probability Matrix [1]

M. Stamp developed a straightforward example to describe HMMs [1]. In this

example, the objective is to determine if in the years before recorded history, those

years were hot or cold, dependent on the sizes of tree rings, taken from trees that

were living at the time. In this case, there is a Markov Chain with two states, Hot

and Cold, which were historically unrecorded by humans. However a correlation is

discovered between the sizes of tree rings and the temperature of the climate. We

have a set of observable states, the values of which depend on unobservable states,

an ideal case for an HMM. In this particular case, we can generate a state transition

matrix using recorded data, let’s assume that the state transition matrix for this

problem contains the data in Figure 11. We should also assume that the correlation

between temperature and tree ring sizes is provided by Figure 12, and the initial state

distribution is denoted by Figure 13.

Using the A (Figure 11), B (Figure 12), and π (Figure 13) matrices, and the

example observation sequence in Figure 14, we can determine the most likely annual

temperature sequence by computing the probabilities (Equation 3) for all permuta-

17

B =

[S M L

H 0.1 0.4 0.5
C 0.7 0.2 0.1

]
Figure 12. Observation Probability Matrix [1]

π =
[H C

0.6 0.4
]

Figure 13. Initial State Distribution [1]

tions of sequences. The computed values are in Table 2. Column three of Table 2

provides normalized probabilities such that all rows sum to 1.

O = (S, M, S, L)

Figure 14. Example Observation Sequence [1]

state probability
normalized
probability

HHHH .000412 .042787
HHHC .000035 .003635
HHCH .000706 .073320
HHCC .000212 .022017
HCHH .000050 .005193
HCHC .000004 .000415
HCCH .000302 .031364
HCCC .000091 .009451
CHHH .001098 .114031
CHHC .000094 .009762
CHCH .001882 .195451
CHCC .000564 .058573
CCHH .000470 .048811
CCHC .000040 .004154
CCCH .002822 .293073
CCCC .000847 .087963

Table 2. State sequence probabilities [1]

From Table 2 we can see that the most likely state sequence is CCCH. However,

HMM’s allow us to find the sequence that maximizes the expected number of correct

18

states, computed by summing the probabilities for a given state at each position in the

sequence. For example, as shown in Table 3, the HMM probability that the second

state is equal to H is 0.519576. Thus, the optimal HMM-based sequence is CHCH.

element
0 1 2 3

P (H) 0.188182 0.519576 0.228788 0.804029
P (C) 0.811818 0.480424 0.771212 0.195971

Table 3. HMM Probabilities [1]

4.2.2 HMM Training

4.2.2.1 Solving 1: Forward Algorithm

To find P (O|λ), the forward algorithm, or α-pass, is used [1]. The probability

of the partial observation up to time t, where the underlying Markov process is in

state qt at time t [1], is shown in Equation 4. Computing the values of αt(i) using

Equations 5 and 6 we can determine the αt(i) values for all t up to T −1. After which

we can determine P (O|λ) using Equation 7.

αt(i) = P (O0,O1, ...,Ot,xt = qi | λ), for {t|0 ≤ t < T} and {i|0 ≤ i < N} (4)

α0(i) = πibi(O0), for {i|0 ≤ i < N} (5)

αt(i) =

[
N−1∑
j=0

αt−1(j)aji

]
bi(Ot), for {t|1 ≤ t < T} and {i|0 ≤ i < N} (6)

P (O|λ) =
N−1∑
i=0

αT−1(i) (7)

19

4.2.2.2 Solving 2: Backward Algorithm

To find XOpt, we can use the backward algorithm, or β-pass, which measures the

relevant probability after time t. Using the data from the α-pass, we compute the β

values using Equations 9 and 10. Since the αt(i) represents probability leading up to

t and βt(i) represents probability following t [1], we can deduce that the most optimal

state at time t is the state qi when these probabilities are highest, shown in Equation

13.

βt(i) = P (Ot+1,Ot+2, ...,OT−1,xt = qi | λ),

for {t|0 ≤ t < T} and {i|0 ≤ i < N}
(8)

βT−1(i) = 1, for {i|0 ≤ i < N} (9)

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j), for {t|T − 2 ≥ t ≥ 0} and {i|0 ≤ i < N} (10)

γt(i) = P (xt = qi|O,λ), for {t|0 ≤ t < T} and {i|0 ≤ i < N} (11)

γt(i) =
αt(i)βt(i)

P (O|λ)
(12)

XOpt(t) = qi for i when γt(i) = max
0≤i<N

γt(i) (13)

4.2.2.3 Solving 3: Model Building

We can train a model from observations using a hill-climb process. First we

initialize λ = (A,B, π) using a best guess, or in near-uniform fashion such that

πi ≈ 1/N , aij ≈ 1/N , and bj(k) ≈ 1/M , while maintaining row-stochastic nature.

Then we compute αt(i) (Equations 5, 6), βt(i) (Equations 9, 10), γt(i) (Equation 12),

and γt(i, j) (Equation 15). We can then estimate the model using Equations 16, 17,

20

and 18. We hill climb this process through repetition, until P (O|λ) stops increasing.

γt(i, j) = P (xt = qi,xt+1 = qj | O,λ),

for {t|0 ≤ t < T − 1} and {i|0 ≤ i, j < N}
(14)

γt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(15)

πi = γ0(i), for {i|0 ≤ i < N} (16)

aij =
T−2∑
t=0

γt(i, j)

/
T−2∑
t=0

γt (17)

bj(k) =
T−1∑
t=0
Ot=k

γt(j)

/
T−1∑
t=0

γt(j) (18)

4.2.3 HMM Use Cases

Hidden Markov Model (HMM) based detection uses a trained HMM to deter-

mine if a program is similar enough to another program to be considered functionally

equivalent. Research has shown that HMMs can be used to successfully detect meta-

morphic viruses [7, 8, 12, 14], and are often used in pattern recognition applications,

such as speech [31] and handwriting [32] recognition, and bioinformatics [33].

21

CHAPTER 5

Objective, Design, and Implementation

5.1 Introduction

The primary objective of this research is to perform code morphing such that

the degree to which a morphing strategy is applied, is configured at run time. LLVM

is an ideal tool to use to accomplish this, given the modularity of the toolchain.

5.2 Implementation

5.2.1 LLVM BasicBlockPass

Since the objective is to morph code, a transform pass is an ideal candidate.

Morphing code requires adjustments at the Instruction level, and LLVM BasicBlocks

contain Instructions, so an LLVM BasicBlockPass is one way to accomplish our ob-

jective. A BasicBlockPass, “MorphingBasicBlockPass”, was developed in C++.

5.2.1.1 Features

Command line options are listed in Table 4. An example of execution is shown

in Figure 15, where the degree for each strategy is set to a value of 30.

Option Description Input
add-degree The probability addition is applied 0-INT MAX

sub-degree The probability substitution is attempted 0-100
trs-degree The probability transposition is attempted 0-100

Note: Probabilities are evaluated for each original Instruction

Table 4. MorphingBasicBlockPass Command-Line Options

22

opt -load MorphingBasicBlockPass.so -MorphingBasicBlockPass

-add-degree 30 -sub-degree 30 -trs-degree 30 < FILE.bc >

MORPHED FILE.bc

Figure 15. Morphing Pass Command Line Example

5.2.1.2 Morphing

Morphing degree is defined by user input. For each BasicBlock, an iteration is

performed over the Instruction objects. With each iteration, a random distribution of

1 to 100 is used to select a random number for comparison with the given morphing

strategy degree. If the random number is less than or equal to the degree, this is

considered a “hit” and the morphing strategy is attempted using that Instruction.

Multiple strategies can be applied to the same instruction if more than one strategy

has a “hit”. In the case of addition, a multiplier effect is applied if the add-degree

is greater than 100, this guarantees that for each multiple of 100, an instruction is

added.

5.2.1.2.1 Addition

The code addition strategy adds dead code to the program. When a hit occurs,

a randomly selected Instruction object is created and inserted into the Instruction

object list in the BasicBlock, after the current Instruction object in iteration. A

vector of enumerations, representing instructions, is used with a randomly selected

index, bounded by the vector size, to determine the instruction to add. Possible

instructions added are shown in Table 5.

To mitigate constant folding, where the compiler pre-computes constant values at

compile time and optimizes them out, at the start of each BasicBlock, a 64-bit integer

is allocated in memory. This value is loaded into a register initially and associated

with the first dead code instruction, each subsequent dead code instruction is chained

23

Enumeration Returns LLVM Instruction x86 Output
BINARY OP ADD int64 add add
BINARY OP SUB int64 sub sub
BINARY OP MUL int64 mul mul
BINARY OP DIV int64 div div

BINARY OP REM int64 urem div
BINARY OP SHL int64 shl shl

BINARY OP LSHR int64 lshr shr
BINARY OP ASHR int64 ashr sar
BINARY OP AND int64 and and

BINARY OP OR int64 or or
BINARY OP XOR int64 xor xor

ICMP TRUE int1 icmp true cmp
ICMP FALSE int1 icmp false cmp

BINARY OP FADD float fadd addsd
BINARY OP FSUB float fsub subsd
BINARY OP FMUL float fmul mulsd
BINARY OP FDIV float fdiv divsd

BINARY OP FREM float frem divsd
FCMP TRUE int1 fcmp true cmp

FCMP FALSE int1 fcmp false cmp

Table 5. Code Addition Mapping

to the previously added dead code instruction. At the end of the BasicBlock, the final

value is written back to memory, this ensures that the compiler does not optimize-out

the added code. In addition, as each dead code instruction is added, two vectors store

pointers to previously added dead code instructions, depending on the type of dead

code instruction to be added, an Integer or Floating Point value is randomly selected

from these vectors to be used as one of the instruction operands. This creates a

dependency between the added Instruction, the preceding dead code instruction, and

a randomly selected previously added instruction, which further mitigates compiler

optimization. LLVM is type aware, and will not allow operands of incorrect type to

be passed into Instructions. When the Instruction to be chained as an operand is of

the wrong type, a CastInst Instruction is added to convert the type.

24

Figure 16 displays a snippet of pre-morphed Human Readable IR bytecode taken

from a simple hello world program, performing the conditional part of a for loop. Fig-

ure 17 contains a snippet of morphed Human Readable IR bytecode. The parameters

of the morphing are -add-degree=100 -sub-degree=0.

1 for.cond: ; preds = %for.←↩
inc , %entry

2 %1 = load i32* %i , align 4

3 %conv = sext i32 %1 to i64

4 %arraydecay = getelementptr inbounds [13 x i8]* %str , i32 0, i32 ←↩
0

5 %call = call i64 @strlen(i8* %arraydecay) #4

6 %cmp = icmp ult i64 %conv , %call

7 br i1 %cmp , label %for.body , label %for.end

Figure 16. Pre-Morphed Human Readable IR Bytecode

1 for.cond: ; preds = %for.←↩
inc , %entry

2 %16 = alloca i64

3 %17 = load volatile i64* %16

4 %18 = ashr i64 %17 , 47

5 %19 = load i32* %i , align 4

6 %20 = sitofp i64 %18 to double

7 %21 = fadd double 0x7FE9820FC1E8470C , %20

8 %conv = sext i32 %19 to i64

9 %22 = fptosi double %21 to i64

10 %23 = ashr i64 %22 , 46

11 %arraydecay = getelementptr inbounds [13 x i8]* %str , i32 0, i32 ←↩
0

12 %24 = sitofp i64 %23 to double

13 %25 = fcmp false double 0x7FC385A243682477 , %24

14 %26 = zext i1 %25 to i64

15 %call = call i64 @strlen(i8* %arraydecay) #4

16 %27 = lshr i64 %26 , 39

17 store volatile i64 %27 , i64* %16

18 %cmp = icmp ult i64 %conv , %call

19 br i1 %cmp , label %for.body , label %for.end

Figure 17. Morphed Human Readable IR Bytecode (add = 100, sub = 0)

5.2.1.2.2 Substitution

Substitution is limited to integer and floating-point add and subtract instruc-

25

tions. When a hit occurs, the current instruction is evaluated to determine if it is

suitable for substitution, if not, the substitution operation is aborted. As shown in

Table 6; an “add” operation is replaced with a negate and “sub”, a “sub” operation

is replaced with a negate and “add”. LLVM does not have an IR representation for

“neg”, and instead uses subtraction against zero [16].

Input (LLVM) → Output (LLVM) → Output (x86)

O = add x y →
O′ = sub 0 x
O = sub y O′ →

sub
sub

O = fadd x y →
O′ = fsub 0 x
O = fsub y O′ →

subsd
subsd

O = sub x y →
O′ = sub 0 x
O = add O′ y →

sub
add

O = fsub x y →
O′ = fsub 0 x
O = fadd O′ y →

subsd
addsd

Table 6. Code Substitution Mapping

5.2.1.2.3 Transposition

Transposition uses the DependenceAnalysis [34] process to determine instruction

dependencies. In testing, this feature frequently returned that instructions were de-

pendent on previous instructions, and in some cases where dependencies were not

detected, inspection of the code showed that a dependence did indeed exist. Alter-

native mechanisms to leverage LLVM for dependence analysis were searched for, but

none were found. As a result, the user-input to configure transposition degree, and

the strategy activation code exists but the morphing strategy is not implemented.

5.2.1.3 Validation

Validation was performed by executing the full toolchain on pre-morphed and

morphed code. Comparisons were performed at both the LLVM IR Bytecode phase

(see Figures 16, 17), and at the post-assembled phase, by performing opcode extrac-

26

tion (see 5.2.2). Figure 18 contains a section of opcodes extracted from a “hello world”

test program that was not morphed. Figure 19 contains the corresponding section of

opcodes extracted from a morphed variant of the “hello world” test program listed

above. The parameters of the morphing were -add-degree=30 -sub-degree=0. The

following LLVM instructions were added to this section as part of the morphing, line

numbers of the result listed in parenthesis: icmp false (ln. 7), lshr (ln. 12), and lshr

(ln. 20).

1 nop DWORD PTR [rax]

2 push rbp

3 mov rbp ,rsp

4 sub rsp ,0x30

5 mov DWORD PTR [rbp -0x4],0x0

6 mov rax ,QWORD PTR ds:0 x400680

7 mov QWORD PTR [rbp -0x15],rax

8 mov ecx ,DWORD PTR ds:0 x400688

9 mov DWORD PTR [rbp -0xd],ecx

10 mov dl ,BYTE PTR ds:0 x40068c

11 mov BYTE PTR [rbp -0x9],dl

12 mov DWORD PTR [rbp -0x8],0x0

13 lea rdi ,[rbp -0x15]

14 movsxd rax ,DWORD PTR [rbp -0x8]

15 mov QWORD PTR [rbp -0x20],rax

16 call 400430 <strlen@plt >

17 mov rdi ,QWORD PTR [rbp -0x20]

18 cmp rdi ,rax

19 jae 4005e1 <main+0x81 >

20 movabs rdi ,0 x40068d

21 movsxd rax ,DWORD PTR [rbp -0x8]

22 movsx esi ,BYTE PTR [rbp+rax*1-0x15]

23 mov al ,0x0

Figure 18. Pre-Morphed Extracted Opcodes

5.2.2 Opcode Extraction

Opcodes need to be extracted for two reasons; they’re required to validate what

the compiler is doing with morphed LLVM IR bytecode, and they need to be extracted

to perform similarity detection using non-morphed and morphed code. Objdump, the

27

1 nop DWORD PTR [rax]

2 push rbp

3 mov rbp ,rsp

4 sub rsp ,0x50

5 movabs rax ,0 x7c2852d3e7014b1c

6 mov rcx ,QWORD PTR [rbp -0x8]

7 cmp rax ,rcx

8 setne dl

9 and dl ,0x1

10 movzx esi ,dl

11 mov eax ,esi

12 shr rax ,0x28

13 mov DWORD PTR [rbp -0xc],0x0

14 mov rcx ,QWORD PTR ds:0 x4007b0

15 mov QWORD PTR [rbp -0x1d],rcx

16 mov esi ,DWORD PTR ds:0 x4007b8

17 mov DWORD PTR [rbp -0x15],esi

18 mov dl ,BYTE PTR ds:0 x4007bc

19 mov BYTE PTR [rbp -0x11],dl

20 shr rax ,0x1f

21 mov QWORD PTR [rbp -0x8],rax

22 mov DWORD PTR [rbp -0x10],0x0

23 lea rdi ,[rbp -0x1d]

24 mov rax ,rsp

25 add rax ,0 xfffffffffffffff0

26 mov rsp ,rax

27 mov rax ,QWORD PTR [rax]

28 movsxd rcx ,DWORD PTR [rbp -0x10]

29 mov QWORD PTR [rbp -0x28],rcx

30 mov QWORD PTR [rbp -0x30],rax

31 call 4004f0 <strlen@plt >

32 mov rcx ,QWORD PTR [rbp -0x28]

33 cmp rcx ,rax

34 jae 4006fd <main+0xdd >

35 movabs rdi ,0 x4007bd

36 mov rax ,rsp

37 add rax ,0 xfffffffffffffff0

38 mov rsp ,rax

39 mov rax ,QWORD PTR [rax]

40 movsxd rcx ,DWORD PTR [rbp -0x10]

41 movsx esi ,BYTE PTR [rbp+rcx*1-0x1d]

42 mov QWORD PTR [rbp -0x38],rax

43 mov al ,0x0

Figure 19. Morphed Extracted Opcodes (add = 30, sub & trs = 0)

tool chosen for this research, is part of the Linux GNU binutils [35] package. Opcodes

are extracted using the Intel standard assembly syntax [36], text output is parsed

28

using grep [37] and awk [38]. For similarity detection, opcodes go through a cleanup

process, a simple program, “filteropcodes” was developed in C++. Filteropcodes

compares each value of a potential opcode with a file containing 697 valid opcodes,

taken as input, and filters out invalid entries, removing non-code data leftover from

the initial parsing phase. The valid opcode mnemonics were retrieved from an XML

file [39] using an XSL stylesheet. An example command-line execution of the opcode

extraction process is shown in Figure 20.

objdump -M x86_64 ,intel -mnemonic --no -show -raw -insn -S $BINARY |

grep ’ [0-9a-zA -Z]*\:’ | awk ’!($1="")’ | awk ’{print $1}’ >

$PREFILTERED_OPCODES
filteropcodes $VALID_INSTRUCTIONS $PREFILTERED_OPCODES

$FILTERED_OPCODES

Figure 20. Objdump Execution Example

5.2.3 Similarity Detector (HMM)

An HMM implementation was written in C++. Two programs were developed, a

HMM building program “hmm” that trains an HMM from input data, and an HMM

scoring program “hmmscore”, that uses a model to score input data. The programs

leverage an “OTHER” observation, that captures any input that is not present in the

set of observation states in the model.

5.2.3.1 Observation State Selection

Since computational demand increases as the HMM matrices increase in size,

the set of Observation states was bounded at a size of 26. To determine the most

useful instructions to include, objdump was executed on all morphed variants of the

program. Opcodes were counted, and the top 25 most frequent opcodes were selected

for the model. The 26th opcode is the “OTHER” observation listed in Section 5.2.3.

29

5.2.3.2 Validation

The “hmm” program was validated by performing the “not-so-simple example”

in [1], using the “Brown Corpus” and an HMM with two hidden states to separate

between vowels and consonants in English language. Program output that has the

expected result is shown in Figure 21.

Figure 21. HMM Program Validation

30

CHAPTER 6

Experiments

6.1 Dataset

Data was generated from GNU coreutils [40], a suite of Linux commands. The

largest command, “ls”, was selected as a program to perform morphing on. The other

commands were used as the benign data set. The benign data was compiled using

optimization level 2 (-O2).

6.1.1 Training Data

Training data was generated using an Add Degree of 1, the binaries were compiled

using clang with a compiler optimization of 0 (-O0). 50 variant files were generated,

with an average of 2.06% code morphing. The variant files were concatenated to-

gether, and the concatenated file was used as the input for HMM training. The

model is shown in Table 7.

6.1.2 Test Data

Test data was generated using varying add-degree values: 25, 50, 100, 200, 400,

800, 1600, and 3200. This non-linear approach was chosen because a non-linear rate of

change in scoring was observed during initial trial and error. The test data binaries

were compiled using clang with a compiler optimization of 0 (-O0). 50 files were

generated for each add-degree.

31

π 0.0000000000000000000 1.0000000000000000000

A
0.8637300479230411998 0.1362699520770013772

0.0860074392855465775 0.9139925607138835728

B

OTHER 0.0699936581903331939 0.0082915228540217534

add 0.0014958661667065841 0.0727099056793662213

and 0.0189049567728136435 0.0127566754956268645

call 0.0323666911830608126 0.0693702185449694003

cmp 0.1366788506795023339 0.0000000000000000000

ja 0.0027361093554276713 0.0023912945970399435

jae 0.0139133354969235481 0.0000000000000000000

je 0.0701424017120766408 0.0000000000000000000

jge 0.0066208286157774122 0.0000000000000000000

jmp 0.1332991576448592508 0.0340140401570356993

jne 0.0678759673366467475 0.0000000000000000000

lea 0.0006118131491648823 0.0108553295640027355

mov 0.3259771411192445290 0.6273424358217389862

movss 0.0113590390077642038 0.0000000000000000000

movsx 0.0148211450127546766 0.0015781868146700286

movsxd 0.0028243810806406516 0.0065603714315576973

movzx 0.0061572871657375816 0.0089080851421619849

nop 0.0000000000000000000 0.0159047351172595733

or 0.0027514345427740879 0.0017130199723750384

pop 0.0000000000000000000 0.0258077976653301178

push 0.0107248596738458608 0.0262407658962855901

retn 0.0000000000000000000 0.0244669598178846558

shl 0.0000000000000000000 0.0036337069036462360

sub 0.0070663228602007655 0.0350336106545953083

test 0.0451310221905035919 0.0000000000000000000

xor 0.0185477310435632516 0.0124213378703803973

Table 7. Trained HMM Model

6.2 Experimental Method

Using the model generated from the training data, the “benign” coreutils data,

and the morphed test data, HMM scores were computed. Results are in the following

section.

6.3 Results

Figure 22 displays HMM scores for each data point across the different morphing

degrees. Blue triangles reflect the Training Data, green triangles reflect the Benign

Data, and the data points of various shapes following a gradient from black to red

32

represent the morphed variants. We can see that around add-degree of 400, the

morphed code becomes indistinguishable from the benign data.

0 5 10 15 20 25 30 35 40 45 50

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

Number of Files

H
M

M
S
co

re

Training Benign Morph 25 Morph 50 Morph 100
Morph 200 Morph 400 Morph 800 Morph 1600 Morph 3200

Figure 22. HMM Score Vs. Morphing Degree

Table 8 provides the percentage of dead code added to a file for each morphing

degree, calculated by subtracting the size of the original executable from the size of

the morphed variant, and dividing the result by the size of the original executable.

An add-degree of 400 causes a 433.38% increase in executable size.

Figure 23 displays Receiver Operating Characteristic (ROC) curves for Add De-

gree’s 200, 400, 800, and 1600. We can see from the charts that the HMM begins to

break down at Add Degree 400, and continues to get worse as the code increases in

morphing.

33

Add Degree Code Added (%)
25 41.86
50 84.36
100 191.54
200 285.14
400 433.38
800 671.82
1600 1,051.45
3200 1,672.49

Table 8. Add Degree vs. Code Added

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Add Degree 200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Add Degree 400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Add Degree 800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Add Degree 1600

Figure 23. ROC Curves for Add Degrees 200, 400, 800, and 1600

The Area Under the Curve (AUC) for the data is shown in Table 9, we can

see that the number of false positives does not increase between 1600 and 3200 Add

Degree, which is suggestive that the HMM score plateaus at very high levels of mor-

phing. This is expected, since the HMM score is a value normalized by the number

of opcodes in the program.

34

Add Degree AUC
25 1.000
50 1.000
100 1.000
200 1.000
400 0.8364
800 0.5912
1600 0.5400
3200 0.5400

Table 9. ROC AUC Statistics for Add Strategy

Unexpectedly, the Add Degree 25 and Add Degree 50 sets appear to score better

than the original training data. Reviewing Figure 22, we can see the non-linear

fashion in which scores improve relative to code added. At very high Add Degrees,

the score improves very little, and it takes a significant increase, 433.38%, in program

size to evade HMM detection. Additional datasets were evaluated and are provided

in Appendix A. These include scoring optimized morphed variants using a model

trained with non-optimized data (see A.1), scoring non-optimized variants using a

model trained with optimized data (see A.2), and scoring optimized variants using a

model trained with optimized data (see A.3).

In summary, the HMM is highly effective at determining the similarity of the

morphed program when compiler optimization 0 is used during compilation. The

HMM was fully successful in differentiating the benign data from morphed variants

up to Add Degree 200. At Add Degree 400 the HMM started to provide similar scores

to that of the benign data.

35

CHAPTER 7

Conclusion

In this project, we investigated a new approach using the LLVM Pass API to

generate highly random morphed variants of software. Dead code was added at vari-

ous degrees and a model was trained using an HMM to determine both the strength

of this morphing approach, and the strength of the HMM. Leveraging a custom de-

veloped BasicBlocksPass, we intertwined dead code within the very low levels of a

program in an attempt to defeat compiler optimization, such that the dead code was

preserved.

We discovered that HMM’s are an effective detection mechanism in regards to

software that is morphed using this approach. We also discovered that at very high

morphing rates, the HMM becomes less effective at properly classifying the origin

of the morphed program. In the case tested, the HMM was capable of properly

classifying the morphed program up until 433% of dead code was added.

There are many improvements that can be made to this code generator. These in-

clude incorporating instruction transposition using LLVM’s Dependence Analysis ca-

pability (an original goal of this project), adding new instruction substitution schemes,

and increasing the precision of dead code insertion.

36

LIST OF REFERENCES

[1] M. Stamp, “A revealing introduction to hidden markov models,” 2015.

[2] “What is arc in ios.” 2015. [Online]. Available: https://iphonecodecenter.
wordpress.com/2015/10/06/what-is-arc-in-ios/

[3] “Adrian sampson: Llvm for grad students.” [Online]. Available: https:
//www.cs.cornell.edu/∼asampson/blog/llvm.html

[4] M. Stamp, Information Security: Principles and Practice. Wiley, 2011.

[5] P. Szor, The Art of Computer Virus Research and Defense. Pearson, 2005.

[6] P. F. F. Perriot, P. Szor. “Striking similarities - win32/simile and metamorphic
virus code.” 2003. [Online]. Available: https://www.symantec.com/avcenter/
reference/striking.similarities.pdf

[7] S. Venkatachalam, “Detecting undetectable computer viruses,” Master’s thesis,
Department of Computer Science, San Jose State University, 2010.

[8] W. Wong, “Analysis and detection of metamorphic computer viruses,” Master’s
thesis, Department of Computer Science, San Jose State University, 2006.

[9] D. Baysa, “Structural entropy and metamorphic malware,” Master’s thesis, De-
partment of Computer Science, San Jose State University, 2012.

[10] “Mpcgen v1.0.” 2013. [Online]. Available: http://www.textfiles.com/virus/
DOCUMENTATION/mpcgen.txt

[11] “Metamorphic permutating high-obfuscating reassembler.” 2013. [Online].
Available: http://dsr.segfault.es/stuff/website-mirrors/29A/29a-6/29a-6.602

[12] D. Lin, “Hunting for undetectable metamorphic viruses,” Master’s thesis, De-
partment of Computer Science, San Jose State University, 2009.

[13] Normalization towards Instruction Substitution Metamorphism Based on Stan-
dard Instruction Set, 2007.

[14] T. Tamboli, “Metamorphic code generation from llvm ir bytecode,” Master’s
thesis, Department of Computer Science, San Jose State University, 2013.

[15] F. Allen, “Control flow analysis,” SIGPLAN, 1970.

37

[16] “Llvm language reference manual.” 2017. [Online]. Available: http://llvm.org/
docs/LangRef.html

[17] “Llvm: llvm::instruction class reference.” 2017. [Online]. Available: http:
//llvm.org/doxygen/classllvm 1 1Instruction.html

[18] “Llvm: llvm::module class reference.” 2017. [Online]. Available: http:
//llvm.org/doxygen/classllvm 1 1Module.html

[19] “Llvm language reference manual.” 2017. [Online]. Available: https:
//llvm.org/docs/LangRef.html#high-level-structure

[20] “Llvm: llvm::function class reference.” 2017. [Online]. Available: http:
//llvm.org/doxygen/classllvm 1 1Function.html

[21] “Llvm: llvm::basicblock class reference.” 2017. [Online]. Available: http:
//llvm.org/doxygen/classllvm 1 1BasicBlock.html

[22] “Llvm’s analysis and transform passes - llvm 6 documentation.” 2017. [Online].
Available: https://llvm.org/docs/Passes.html

[23] “Gcc, the gnu compiler collection - gnu project - free software foundation (fsf).”
2017. [Online]. Available: https://gcc.gnu.org/

[24] “Clang compiler user’s manual - clang 6 documentation.” 2017. [Online]. Avail-
able: https://clang.llvm.org/docs/UsersManual.html#command-line-options

[25] “llvm-as - llvm assembler - llvm 6 documentation.” 2017. [Online]. Available:
https://llvm.org/docs/CommandGuide/llvm-as.html

[26] “opt - llvm optimizer - llvm 6 documentation.” 2017. [Online]. Available:
https://llvm.org/docs/CommandGuide/opt.html

[27] “llvm-dis - llvm disassembler - llvm 6 documentation.” 2017. [Online]. Available:
https://llvm.org/docs/CommandGuide/llvm-dis.html

[28] “llc - llvm static compiler - llvm 6 documentation.” 2017. [Online]. Available:
https://llvm.org/docs/CommandGuide/llc.html

[29] “Llvm programmer’s manual - llvm 6 documentation.” 2017. [Online]. Available:
http://llvm.org/docs/ProgrammersManual.html

[30] “Introduction to probability.” 2017. [Online]. Avail-
able: https://www.dartmouth.edu/∼chance/teaching aids/books articles/
probability book/amsbook.mac.pdf

38

[31] M. Gales and S. Young, “The application of hidden markov models in speech
recognition,” in Foundations and Trends in Signal Processing, M. Gales and
S. Young, Eds. Now Publishers, 2007, pp. 195–304.

[32] A. Kundu, “Handwritten word recognition using hidden markov model,” in
Handbook of Character Recognition and Document Image Analysis, P. S. W.
H. Bunke, Ed. World Scientific Publishing Company, 1997, ch. 6, pp. 157–182.

[33] B. Yoon, “Hidden markov models and their applications in biological sequence
analysis,” in Current Genomics. Bentham Science Publishers Ltd., 2008, pp.
402–415.

[34] “Llvm: llvm::dependenceanalysis class reference.” 2017. [Online]. Available:
http://llvm.org/doxygen/classllvm 1 1DependenceAnalysis.html

[35] “Binutils - gnu project - free software foundation.” 2017. [Online]. Available:
https://www.gnu.org/software/binutils/

[36] N. Matloff. “Introduction to linux intel assembly language.” 2002. [Online].
Available: http://heather.cs.ucdavis.edu/∼matloff/50/LinuxAssembly.html

[37] “Grep - gnu project - free software foundation.” 2017. [Online]. Available:
https://www.gnu.org/software/grep/

[38] “Gawk - gnu project - free software foundation.” 2017. [Online]. Available:
https://www.gnu.org/software/gawk/

[39] “x86reference.xml.” 2017. [Online]. Available: http://ref.x86asm.net/
x86reference.xml

[40] “Coreutils - gnu project - free software foundation.” 2017. [Online]. Available:
https://www.gnu.org/software/coreutils/coreutils.html

39

APPENDIX

Additional Datasets

A.1 Dataset 2: O0 Training, O2 Morphed

0 5 10 15 20 25 30 35 40 45 50

−3

−2.8

−2.6

−2.4

−2.2

−2

Number of Files

H
M

M
S
co

re

Training Benign Morph 25 Morph 50 Morph 100
Morph 200 Morph 400 Morph 800 Morph 1600 Morph 3200

Figure A.24. Dataset 2: HMM Score Vs. Morphing Degree

40

Add Degree Code Added (%)
25 -8.5
50 13.05
100 55.96
200 72.49
400 95.58
800 133.43
1600 193.29
3200 284.59

Table A.10. Dataset 2: Add Degree vs. Code Added

A.2 Dataset 3: O2 Training, O0 Morphed

0 5 10 15 20 25 30 35 40 45 50

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Number of Files

H
M

M
S
co

re

Training Benign Morph 25 Morph 50 Morph 100
Morph 200 Morph 400 Morph 800 Morph 1600 Morph 3200

Figure A.25. Dataset 3: HMM Score Vs. Morphing Degree

41

Add Degree Code Added (%)
25 114.63
50 178.38
100 339.34
200 479.93
400 703.07
800 1,058.79
1600 1,633.49
3200 2,582.34

Table A.11. Dataset 3: Add Degree vs. Code Added

A.3 Dataset 4: O2 Training, O2 Morphed

0 5 10 15 20 25 30 35 40 45 50

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

Number of Files

H
M

M
S
co

re

Training Benign Morph 25 Morph 50 Morph 100
Morph 200 Morph 400 Morph 800 Morph 1600 Morph 3200

Figure A.26. Dataset 4: HMM Score Vs. Morphing Degree

42

Add Degree Code Added (%)
25 37.65
50 69.95
100 135.35
200 159.44
400 193.83
800 251.00
1600 343.37
3200 481.42

Table A.12. Dataset 4: Add Degree vs. Code Added

A.4 Dataset 5: O2 Trained Model Investigation

Comparing the scores of the O2 training data and the scores of 1,931 benign files

from /usr/bin in a CentOS 7.4 Operating System, we can see that this model is not

producing a very useful capability of differentiating morphed data from unmorphed

data when compiler optimization is used. Figure A.27 displays the scores of the

benign files against the training data. When using a model with Add Degree 30 for

the training data, shown in Figure A.28, the scoring against the benign data is much

better, though there are still many benign files that might be considered a match.

When testing this higher degree model against the original Add Degree 1 training

data, the HMM is unable to differentiate it from many benign programs in terms

of similarity. This is a crude analysis, and doesn’t take into account the underlying

functionality of these benign files, which may be similar enough in function to be

considered a match.

43

0 5 10 15 20 25 30 35 40 45 50

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Number of Files

H
M

M
S
co

re

Training Benign

Figure A.27. Dataset 5: Training Score Vs. /usr/bin Benign Files

44

0 5 10 15 20 25 30 35 40 45 50
−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

Number of Files

H
M

M
S
co

re

Training (a30) Benign Morphed ls (a1)

Figure A.28. Dataset 5: Training Score (Model a30) Vs. /usr/bin Benign Files,
a1-O2 morphed ls

45

	San Jose State University
	SJSU ScholarWorks
	Fall 2017

	Metamporphic Code Generation Using LLVM
	Michael Crawford
	Recommended Citation

	tmp.1513215816.pdf.Nto0J

