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Abstract

In the “standard” Gizburg-Landau approach, a phase transition is intimately
connected to a local order parameter, that spontaneously breaks some symme-
tries. In addition to the “traditional” symmetry-breaking ordered phases, a
complex quantum system exhibits exotic phases, without classical counterpart,
that can be described, for example, by introducing non-local order parameters
that preserve symmetries.

In this scenario, this thesis aims to shed light on open problems, such as the
local distinguishability between ground states of a symmetry-breaking ordered
phase and the classification of one dimensional quantum orders, in terms of
entanglement measures, in systems for which the Gizburg-Landau approach
fails.

In particular, I briefly introduce the basic tools that allow to understand the
nature of entangled states and to quantify non-classical correlations. Therefore,
I analyze the conjecture for which the maximally symmetry-breaking ground
states (MSBGSs) are the most classical ones, and thus the only ones selected
in real-world situations, among all the ground states of a symmetry-breaking
ordered phase. I make the conjecture quantitatively precise, by proving that
the MSBGSs are the only ones that: i) minimize pairwise quantum correlations,
as measured by the quantum discord; ii) are always local convertible, by only
applying LOCC transformations; iii) minimize the residual tangle, satisfying at
its minimum the monogamy of entanglement.

Moreover, I analyze how evolves the distinguishability, after a sudden chan-
ge of the Hamiltonian parameters. I introduce a quantitative measure of dis-
tinguishability, in terms of the trace distance between two reduced density ma-
trices. Therefore, in the framework of two integrable models that falls in two
different classes of symmetries, i.e. XY models in a transverse magnetic field
and the N-cluster Ising models, I prove that the maximum of the distinguisha-
bility shows a time-exponential decay. Hence, in the limit of diverging time, all
the informations about the particular initial ground state disappear, even if a
system is integrable.

Far away from the Gizburg-Landau scenario, I analyze a family of fully-
analytical solvable one dimensional spin-1/2 models, named the N-cluster mod-
els in a transverse magnetic field. Regardless of the cluster size N + 2, these
models exhibit a quantum phase transition, that separates a paramagnetic phase



from a cluster one. The cluster phase coresponds to a nematic ordered phase
or a symmetry-protected topological ordered one, for even or odd N respec-
tively. Using the Jordan-Wigner transformations, it is possible to diagonalize
these models and derive all their spin correlation functions, with which recon-
struct their entanglement properties. In particular, I prove that these models
have only a non-vanishing bipartite entanglement, as measured by the concur-
rence, between spins at the endpoints of the cluster, for a magnetic field strong
enough.

Moreover, I introduce the minimal set of nonlinear ground-states function-
als to detect all 1-D quantum orders for systems of spin-1/2 and fermions. I
show that the von Neumann entanglement entropy distinguishes a critical sys-
tem from a non critical one, because of the logarithmic divergence at a quantum
critical point. The Schmidt gap detect the disorder of a system , because it sat-
urates to a constant value in a paramagnetic phase and goes to zero otherwise.
The mutual information, between two subsystems macroscopically separated,
identifies the symmetry-breaking ordered phases, because of its dependence on
the order parameters. The topological order phases, instead, via their deeply
non-locality, can be characterized by analyzing all three functionals.



There is a way to escape the inference of superluminal speeds and spooky-action at a
distance. But it involves absolute determinism in the universe, the complete absence of

free will. Suppose the world is super-deterministic, with not just inanimate nature
running on behind-the-scenes clockwork, but with our behavior, including our belief

that we are free to choose to do one experiment rather than another, absolutely
predetermined, including the “decision” by the experimenter to carry out one set of
measurements rather than another, the difficulty disappears. There is no need for a

faster-than-light signal to tell particle A what measurement has been carried out on
particle B, because the universe, including particle A, already “knows” what that

measurement, and its outcome, will be.

J. B.
BBC radio interview, 1985
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Introduction

It is well known that, following the Gizburg-Landau approach, the appear-
ance of an ordered phase in a classical system is associated to the rising of a
local order parameter, with a support on a single site of the system, that spon-
taneously breaks some symmetries of the Hamiltonian [53]. In the study of
ordered phases, associated to a spontaneous symmetry-breaking, a key concept
is played by the existence of locally inequivalent ground states, that are not
eigenstates of one or more symmetry operators for the corresponding Hamilto-
nian [113]. Counter-intuitively, among all these energetically equiprobable and
equally accessible ground states, the maximally symmetry-breaking ground sta-
tes are always selected. In complete analogy with the case of classical phase
transitions driven by temperature, the pedagogical explanation of this phe-
nomenon invokes the unavoidable presence of some local small perturbing ex-
ternal field, that selects one of the maximally symmetry-breaking ground states,
among all the elements of the quantum ground space. The implicit assump-
tion hidden in this type of reasoning is that the maximally symmetry-breaking
ground states are the most classical ones, thus selected in real-world situa-
tions. Efforts have been devoted to the investigation of the physical mecha-
nism that, in the thermodynamic limit, selects the symmetry-breaking ground
states. However, the complete understanding of this distinguishability remains
an open problem [16, 8].

It is therefore also natural to wonder how evolves the distinguishability be-
tween different ground states of a symmetry-breaking ordered phase. There
are several ways to prepare a system away from the equilibrium. An impor-
tant role is played by the one associated to a sudden quench of the Hamil-
tonian parameters. The system is initially prepared in an equilibrium state,
typically the ground state. Then the Hamiltonian parameters are suddenly
changed and the system starts to evolve under the action of a new Hamiltonian
[54, 79, 111, 112, 24, 129]. For several models and initial conditions, the local
physical quantities equilibrate exponentially in time, i.e the time evolution pro-
duce a steady state that looks locally thermal [11, 106, 105, 103, 85, 52]. This
implies that the local physical quantities lose any information about the initial
state, with the exception of the effective temperature induced by the quench

1



[106, 108, 67]. However, not all models have complex quantum dynamics and
not all models thermalize when placed away from the equilibrium. The dis-
covery that the integrability of a model avoids the thermalization, triggers an
intense discussion on the general relation between integrability and thermaliza-
tion in the long-time dynamics of strongly interacting complex quantum sys-
tems [68, 19, 25, 107, 11, 106, 38]. The lack of thermalization in solvable systems,
implies that the steady state preserve informations about the initial Hamilto-
nian parameters [107].

The lack of thermalization also suggest that the image of an integrable sys-
tem, that starts in one of the distinguishable ground states of a symmetry-
breaking ordered phase, continues to preserve memory of the particular initial
ground state.

Far away from the symmetry-breaking ordered phases, a complex quantum
system exhibits certain kinds of orders that are unsuitable to be described in
terms of the standard Gizburg-Landau scenario. A paradigmatic example is a
translation invariant spin-1/2 chain, for which the ground states correspond to
the so called valence bond states, i.e. states made by tensor products of Bell
states [5, 6]. Notable examples arise also in the presence of deconfined critical-
ity, like at the transition semimetal-insulator on the graphene or in the Haldane-
Shastry model [117, 14], or in long range interacting systems [87]. In such cases,
any possible local operator shows a vanishing expectation value and, hence,
there is no order parameter, as defined in the Gizburg-Landau picture. Nev-
ertheless, it is well known that these systems show an order, that can be high-
lighted by properly defining a non local order parameter. A similarly challeng-
ing situation realizes in materials for which the phase diagram is not known
at all, as for some high-Tc superconductors or for various lattice tight-binding
models [89]. Therefore, in recent years, efforts have been devoted to the under-
standing of quantum phase transitions with alternative approaches, based on
methods and techniques, originally developed in the field of quantum informa-
tion theory [4, 124]. For example, various types of quantum phase transitions
have been characterized by identifying the singular points in the derivative of
different measures of bipartite [99, 97] and multipartite [45, 46] entanglement.

Among these non trivial orders, nematic and topological phases are attract-
ing an increasing interest. Nematic phases [7, 78] occur if it is possible to define
a ground state that: a) It breaks at least one symmetry of the Hamiltonian; b)
It is characterized by an order parameter with a support on a finite set of sites,
with a dimension strictly greater than one single site. In this sense, the nematic
order can be seen as a generalization of the ferromagnetic/antiferromagnetic
order. On the opposite limit, the topological ordered phases are characterized
by string order parameters, i.e. non vanishing expectation value of operators
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which support extends on the whole system. [88, 35].
Such novel phases have a theoretical deeply importance. In fact, topolog-

ical ordered phases are associated to the robustness of ground state degenera-
cies [127], show quantized non-Abelian geometric phases [126] or possess pecu-
liar patterns of long-range quantum entanglement [26]. Moreover, these phases
have interesting applications. The topological ordered phases, in fact, play a
fundamental role in the spin liquids [69, 130] and in non-Abelian fractional Hall
systems [83] and are predicted to play a key role in the future development
of fault-tolerant quantum computers [76]. The nematic order is usually found
in materials commercially used in the liquid crystal technology [120], such as
LCDs (liquid crystal display).

Due to the great interest on these novel phases, scientists are trying to pro-
vide models in which they can be founded. For what concern the one dimen-
sional system, it is known that frustrated one dimensional ferromagnetic spin-
1/2 chain in an external magnetic field shows a nematic ordered phase [28, 60]
and the one dimensional cluster-Ising model exhibits a symmetry protected
topological ordered phase [118, 92, 46]. More recently, in Ref. [47], it has been
analyzed a very extensive set of exactly solvable models, that can be simulated
via Floquet interactions in atomic systems [81] and that show a quantum phase
transition between an antiferromagnetic phase and a nematic or topological
one.

Following this line of research, this thesis aims to shed light on the problem
of distinguishability between different ground states, associated to the same set
of Hamiltonian parameters, in a symmetry-breaking ordered phase and on the
exotic quantum phases, far away from the Gizburg-Landau scenario, for which
an approach in terms of entanglement measures needs. The thesis is organized
as follows.

In Chapter (1), I make a review on the entanglement, a keypoint of quantum
mechanics with no classical counterpart. In Sec. (1.1), I introduce the notion
of entangled and separable states, in Sec. (1.2) I review the criteria to detect
entangled states and in Sec. (1.3) I present measures to quantify the amount of
entanglement in a quantum state.

In Chapter (2), I review the properties of the one dimensional quantum spin-
1/2 models, that can be solved via Jordan Wigner transformations. In Sec. (2.1),
I diagonalize these models and derive the exact ground states, with which I
reconstruct all the spin correlation functions (Sec. (2.2)) and the reduced density
matrices (Sec. (2.3)). In Sec. (2.4), I extend the analysis to the time-dependence
induced by a sudden quench of the Hamiltonian parameters.

In Chapter (3), I analyze the nature of spontaneous symmetry-breaking as-
sociated to an ordered phase, by investigating the conjecture for which the max-
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imally symmetry-breaking ground states (MSBGSs) are the most classical ones.
I make this argument quantitatively precise by proving that the MSBGS are the
only ones that: i) minimize pairwise quantum correlations as measured by the
quantum discord (Sec. (3.1)); ii) are always locally convertible, i.e. can be ob-
tained from all other ground states by only applying LOCC transformations,
while the reverse is impossible; iii) minimize the residual tangle between a dy-
namical variable and the rest of the system, satisfying the monogamy of entan-
glement at its minimum (Sec. (3.2)).

In Chapter (4), I analyze how distinguishability between different ground
states of a symmetry-breaking ordered phase evolves after a sudden quench
of the Hamiltonian parameters. In Sec. (4.1), I define a quantitative approach
to the local distinguishability, in terms of the trace distance between two re-
duced density matrices. In the framework of the XY model (Sec. (4.2)) and
the N-cluster Ising model (Sec. (4.3)), I prove that the maximum of the local
distinguishability shows an exponential decay in time. Hence, in the limit of
diverging time, all the informations about the particular initial ground state
disappear, even if the systems are integrable.

In Chapter (5), I analyze a family of fully analytical solvable models, named
the N-cluster models in a transverse magnetic field. In Sec. (5.1), I diagonalize
the models and show that exhibit a quantum phase transition between a cluster
phase, that is a nematic or topological phase, depending on N, and a paramag-
netic one. In Sec. (5.2), I derive all the spin correlation functions, with which I
reconstruct the order parameters (Sec. (5.3)) and all the entanglement proper-
ties (Sec. (5.4)), by proving that these systems have only bipartite entanglement,
as measured by the concurrence, between two endpoints spins.

In Chapter (6), I introduce the minimal set of nonlinear ground-states func-
tionals to detect 1-D quantum orders. In Sec. (6.1), I briefly review the models
of spin-1/2 and fermions that span all possible phases in 1-D. In Sec. (6.1), I
show that von Neumann entanglement entropy characterizes the criticality of
a system, because of the logarithmic divergence at a quantum critical point. In
Sec. (6.2), I show that the Schmidt gap captures the disorder of a system, be-
cause it saturates to a constant value in a paramagnetic phase and goes rapidly
to zero otherwise. In Sec. (6.3), I prove that the mutual information identifies
symmetry-breaking ordered phases, because of its dependence on the order pa-
rameters. The topological order, via its deeply non locality, can be described by
analyzing all three functionals.

In Chapter (7), I draw my conclusions.
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The results discussed in the thesis are collected in four papers:

Classical nature of ordered quantum phases and origin of spontaneous symmetry break-
ing
M. CIANCIARUSO, S. M. GIAMPAOLO, L. FERRO, W. ROGA, G. ZONZO, M. BLA-
SONE, F. ILLUMINATI
arXiv: 1604.06403, submitted to Phys. Rev. A

Quench of a symmetry broken ground state
S. M. GIAMPAOLO, G. ZONZO
Phys. Rev. A 95, 012121 (2017)

N-cluster models in a transverse magnetic field
G. ZONZO, S. M. GIAMPAOLO, F. ILLUMINATI
In preparation

Minimal set of nonlinear ground-states functionals to detect 1-D quantum orders
G. ZONZO, S. M. GIAMPAOLO, M. DALMONTE, F. ILLUMINATI
In preparation
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1
Entangled states: basic concepts

Quantum systems show properties with no classical counterpart, such as
the superposition of quantum states, interference or tunneling. These are ef-
fects that can be observed in quantum systems composed of a single particle.
Further and more evident differences between arise when one treats composite
quantum systems, i.e. systems that decompose into two or more subsystems.
It is the correlations between these subsystems that give additional distinctions
between classical and quantum objects. Whereas classical systems exhibit clas-
sical correlations, described in terms of classical probabilities, this is not always
true in quantum systems. Such non-classical correlations lead to apparent para-
doxes, like the famous Einstein-Podolsky-Rosen paradox (EPR) [39], that might
suggest, on the first glance, a remote action in quantum mechanics.

In 1935 Einstein, Podolsky and Rosen designed a thought experiment that,
with the assumption of the principles of locality and reality as a requirements
for a completeness of a physical theory, demonstrated the incompleteness of
quantum mechanics. The logic of the experiment of Einstein, Podolsky and
Rosen was as follows. If one considers a system of two particles in a state
|φ−〉 = (|01〉 − |10〉)/

√
2, then the measurement made on the first particle has

an impact to the outcome of the second particle. Suppose that the particles are
separated from each other in millions of light years. After the measurement on
the first subsystem, the first particle is in state |0〉 or |1〉 with probability 1/2.
The same results are obtained for the second particle. If the measurement on
the first particle obtaines the state |0〉, then it is known that second one is in the
state |1〉. It looks like the knowledge of the state of the second particle come to
the first particle observer faster than the speed of light, in contradiction with the
principle of local realism. Einstein, Podolsky and Rosen came to the conclusion
that some quantum effects propagated faster than light, in contradiction with
the theory of relativity. Thus, the quantum mechanics could not be complete
and needed for “hidden variables”. As a response to the EPR paradox, Irish
physicist John Stewart Bell performed a thought experiment, showing that at
least one of the quantum mechanics assumptions must be false [66]. Bell in-
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troduced inequalities that satisfied the assumptions of local realism, and then
showed that, for certain quantum states, they are violated. Experimental viola-
tion of Bell’s inequalities was repeatedly confirmed by some quantum systems
[95, 123].

EPR paradox introduce states that display non-classical correlations, i.e. en-
tangled states, and the aim of this chapter is to introduce the basic tools that
allow to understand the nature of such states, to distinguish them from the clas-
sically correlated ones, and to quantify these non-classical correlations.

1.1 What is entanglement?

Quantum states are described by operators ρ, acting on the state space B(H),
i.e. the Hilbert space of bounded operators acting on H. Such operators are
called density matrices or density operators. Any density operator can be writ-
ten through a non-uniquely convex combinations of one-dimensional projectors

ρ = ∑
i

pi |ψi〉〈ψi| (1.1)

where {pi} is a probability distribution such that pi ≥ 0, ∀i and ∑i pi = 1. It
can be demostrated that

• Tr(ρ) = 1 (unity trace)

• ρ is semi-definite positive, i.e. all the eigenvalues of ρ are non-negative

• Tr(ρ2) ≤ 1

A special case is represented by pure states, i.e. pi = 1 for some i, for which
the density operator is described by a unidimensional projector

ρ = |ψi〉〈ψi| (1.2)

such that Tr(ρ2) = 1. Pure states are the extreme point of the set of quantum
states and then represent those systems for which the most complete informa-
tions are available.

Composite or multipartite quantum systems, i.e. systems that naturally de-
compose into two or more quantum subsystems A, B, · · · , N, usually charac-
terized by mutual distances larger than the size of the subsystems, are also
represented by density operators. Formally, the Hilbert space H of a compos-
ite quantum system is given by the tensor product of the Hilbert spaces Hi
(i = A, B, · · · , N) of each subsystem

8



H = HA ⊗ · · · ⊗HN (1.3)

The notion of “entanglement” appears in these composite quantum spaces,
in terms of correlators that have no classical counterpart. Consider a bipartite
quantum system (A|B), i.e. a system composed of two distinct subsystems,
described by the Hilbert spaceH = HA ⊗HB. It follows

Definition 1 (Bipartite separability). A quantum state is called biseparable if it can
be written as a convex combination of tensor products of density matrices, i.e. ρ ∈
B(HA ⊗HB) is bi-separable if

ρ = ∑
i

pi ρA
i ⊗ ρB

i (1.4)

Alternatively, states that cannot be written in this form are called entangled.

An example of entangled state, inH = HA ⊗HB, is the Bell state

|φ+〉 =
(|00〉+ |11〉)√

2
(1.5)

Let |φA〉 = α |0〉 + β |1〉 in HA and |φB〉 = γ |0〉 + δ |1〉 in HB, with the
normalization conditions |α|2 + |β|2 = 1 and |γ|2 + |δ|2 = 1. Suppose that |φ+〉
is separable, thus it can be written in the form

|φ+〉 = |φA〉 ⊗ |φB〉 = (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) (1.6)

Hence

(|00〉+ |11〉)√
2

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 (1.7)

but there are no values of α,β,γ and δ such that αγ = 1/
√

2 = βδ and αδ =
0 = βγ. Thus one obtains that |φ+〉 6= |φA〉 ⊗ |φB〉, i.e |φ+〉 is entangled.

For bipartite systems, one need just to make a distinction between separable
and entangled states. When multiple parts are involved it may happen that a
state contains entanglement among some parts which, at the same time, are not
entangled with others. An example is the state

(|00〉+ |11〉)√
2

⊗ (|00〉+ |11〉)√
2

(1.8)

which contains entanglement between the first two and between the last
two subsystems, but not between these two subgroups. In this context, it is
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necessary to introduce the notion of k-separability [37, 36, 1]. Consider a k-
partite quantum system (A1|A2| · · · |Ak), i.e. a system composed of k distinct
subsystems, describe by the Hilbert spaceH = HA1 ⊗ · · · ⊗HAk . It follows

Definition 2 (k-separability). A quantum state is called k-separable if it can be writ-
ten as a convex combination of k-tensor products of density matrices (as a generalization
of Eq. (1.4))

ρ = ∑
i

pi ρA1
i ⊗ ρA2

i ⊗ · · · ⊗ ρ
Ak
i (1.9)

1.2 How to detect entanglement?

The question spontaneously arises is: given a general quantum state ρ, how
to determine if it is entangled or not? In principle, one could think to check
whether the quantum state ρ could be written as a tensor product as in Eq. (1.4).
However, as ρ can be represented in infinitely many convex combinations, it is
amazing difficult to find one of these forms that reads like Eq. (1.4) [55, 66].
Following this reasoning, several entanglement criteria have been developed in
the last years [121].

1.2.1 Schmidt decomposition

Any pure state |ψ〉 of a bipartite quantum system (A|B) in HA ⊗ HB can be
written as

|ψ〉 =
m

∑
j=1

√
λj |jA〉 ⊗ |jB〉 (1.10)

where m = min[dim(HA), dim(HB)], {|jA〉 , jA = 1, · · · , m} and {|jB〉 , jB =
1, · · · , m}) are orthonormal basis in HA and HB respectively, and λi > 0 with
∑m

j=1 λj = 1 [115, 40, 94]. The decomposition expressed in Eq. (1.10) is called the
Schmidt decomposition and the coefficients λj are called the Schmidt coefficients of
|ψ〉.

If |ψ〉 has only one non-vanishing Schmidt coefficient, it is clearly separable,
and it is entangled if more than one Schmidt coefficient are different from zero

λj 6= 0 for one j =⇒ separable
λj 6= 0 for several j =⇒ entangled (1.11)
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In this way, the Schmidt decomposition completely characterizes separabil-
ity for bipartite pure states.

The reduced density matrices are particularly helpful to determine the Sch-
midt coefficients. The reduced density matrix of the subsystem A (or equiva-
lently B), in terms of the Schmidt decomposition, reads

ρA = TrB (|ψ〉〈ψ|)

= TrB

(
∑
ij

√
λiλj |iA〉〈jA| ⊗ |iB〉〈jB|

)
= ∑

i
λi |iA〉〈iA|

(1.12)

Thus, the Schmidt coefficients are given by the eigenvalues of the reduced
density matrix ρA (or equivalently ρB, that has the same eigenvalues). Since sep-
arability for bipartite pure states requires that exactly one Schmidt coefficient is
different from zero, it can be restate in terms of the reduced density matrix as

Tr(ρ2
r ) = 1 =⇒ ρr is pure =⇒ |ψ〉 is separable

Tr(ρ2
r ) < 1 =⇒ ρr is mixed =⇒ |ψ〉 is entangled

(1.13)

where r refers to one of the two subsystems.

1.2.2 Peres-Horodecki criterion

Although the Schmidt decomposition is a very powerful and useful entangle-
ment criterion, it can be applied only to pure states. The first entanglement
criterion for mixed states was proposed by A. Peres (and Horodecki) and uses
the notion of partial transposition [101]. The Peres-Horodecki criterion, also
called positive partial transposition (PPT), is a necessary condition for separabil-
ity of mixed states. Let ρ be a state from the M×N Hilbert spaceH = HA⊗HB
with dim(HA) = M and dim(HB) = N

ρmµ,nν = 〈mµ|ρ|nν〉 (1.14)

where the Latin letters describe the first subsystem and the Greek letters
refer to the second subsystem. The partial transposition of the density operator
ρ is defined in Ref. [17, 13] as

ρTA
mµ,nν = ρnµ,mν and ρTB

mµ,nν = ρmν,nµ (1.15)
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Hence, for any separable state ρ = ρA ⊗ ρB, one can write

ρTA = (ρA)
T ⊗ ρB and ρTB = ρA ⊗ (ρB)

T (1.16)

The Peres-Hodorecki criterion states that

• If a state ρ is separable, then ρTA and ρTB are positive operators (Peres);

• Composite states of dimension 2× 2 and 2× 3 are separable if and only if ρTA

and ρTB are positive operators (Horodecki).

For 2× 2 and 3× 3 dimensional states, the PPT criterion is also sufficient
condition for separability [17].

1.2.3 Entanglement and positive maps

Let B(HA) and B(HB) be the spaces of the bounded operators on the Hilbert
spacesHA andHB respectively. LetL (B(HA),B(HB)) be the space of the linear
maps from B(HA) to B(HB). Let Λ ∈ L (B(HA),B(HB)) be a positive map,
i.e. ρ ≥ 0 implies Λ(ρ) ≥ 0. Λ is completely positive (CP), if the extended
map I ⊗ Λ : B(M ⊗ HA) → B(M ⊗ HB) is positive for any space M. The
separability criterion in terms of positive maps states that

• Let ρ = ρA ⊗ ρB be a density operator acting on Hilbert space H = HA ⊗HB.
Then ρ is separable if and only if, for any positive map Λ ∈ L (B(HA),B(HB)),
the operator I⊗Λ(ρ) : ρA ⊗ ρB → ρA ⊗Λ(ρB) is positive.

This criterion reduces to PPT criterion if Λ is the transposition operator, i.e.
I⊗Λ(ρ) = ρTB for any Λ(σ) = σT, with σ an arbitrary state.

1.2.4 Entanglement witness

Entanglement witness is a separability criterion based on the Hahn-Banach the-
orem, that follows directly from the Def. (2) of k-separable states. The Hahn-
Banach theorem states that

Denote by S a convex, compact set in a finite dimensional Banach space. Let ρ be a
point in the space with ρ /∈ S. Then there exist a hyperplane that separates ρ from S.

In Fig. (1.1) it is shown a geometric interpretation of the Hahn-Banach the-
orem. Hyperplane, separating the set S from the point ρ, is identified by the
orthonormal vector W, which is selected from outside the set S. Each point ρ

12



Figure 1.1: Geometric interpretaion of the Hahn-Banach theorem

may be characterized by the signum of the scalar product Tr(Wρ). Since the
separable states form a convex, compact set, hence the Hahn-Banach theorem
can be used in terms of entanglement detection. It follows that

• A density operator ρ is entangled if and only if there exist a Hermitian operator
W with Tr(Wρ) < 0. On the contrary, Tr(Wσ) > 0 for any separable state σ.

The operator W is called entanglement witness.
Between positive maps and entangled witness it exists a close relationship

[101]. For any entanglement operator W, it can be defined a positive map Λ
such that

W = (I⊗Λ)(P+) (1.17)

where P+ is the projector operator onto the mawimally entangled state

P+ =
1
m

m

∑
i,j=1
|iAiB〉 〈jA jB| (1.18)

Each entangled state can be detected by some W [102, 114, 115], but in gen-
eral entanglement witness cannot be used because there is no a general method
to construct it.

1.2.5 Majorization

The majorization criterion, proposed by Nielsen and Kempe [95], is necessary
but not sufficient condition for separability. From the definition of majorization
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Definition 3. Let X = {x1, · · · , xn} and Y = {y1, · · · , yn} be non-increasing se-
quences such that x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn. X majorizes Y
(X ≺ Y) if

k

∑
i=1

xi ≥
k

∑
i=1

yi (1.19)

for each k = 1, 2, · · · , n

it follows that

• Let (A|B) be a composite quantum system, and let ρA, ρB and ρAB be the den-
sity operators of the systems A, B and AB, with a non-increasing sequences of
eigenvalues λ(ρA), λ(ρB) and λ(ρAB) respectively. If the state ρAB is separable,
then

λ(ρAB) ≺ λ(ρA) and λ(ρAB) ≺ λ(ρB) (1.20)

Note that sequences λ(ρA) and λ(ρB) are shorter than λ(ρAB), thus they are
equalized by appending zeros.

1.3 How to quantify entanglement?

Entanglement criteria are helpful to detect if a state is entangled or not, but they
do not give a quantitative information on how much a state is entangled. With
the development of the Quantum Information Theory, the entanglement has
been considered as a resource. Hence, it became fundamental to know and to
measure how much of this resource is available in each state.

Even if it is still being discussed on the conditions to be fulfilled, a good
measure of entanglement should satisfy the following requirements [31]

• Semi-definite positivity, i.e. a measure of entanglement E is a function which
assigns non-negative value for each state ρ;

• LOCC monotonicity, i.e. a measure of entanglement E cannot increase un-
der LOCC operations.

LOCC (Local Operations and Classical Communications) are an important
class of maps, necessary to define measures of entanglement. The class
of LOCC operations includes all quantum operations, also measurements,
characterized by two properties:

14



– all operations are performed locally on the respective subsystem (Lo-
cal Operations). An example of local operation is the trace operation,
which can be performed locally on each subsystem A or B of a com-
posite quantum system (A|B);

– the information between subsystems is exchanged by means of clas-
sical communication channels (Classical Communication);

• Normalization, i.e. for every arbitrary state σ we have E(σ) < E(ρ), where
ρ is the maximally entangled state;

• Convexity, i.e. E(λρ + (1− λ)σ) ≤ λE(ρ) + (1− λ)E(σ), for any arbitrary
states ρ and σ;

• Continuity, i.e. let ρn and σn be a sequences of states acting on the compos-
ite Hilbert spaces (HA ⊗HB)

⊗n. If limn→∞ ||ρn − σn||1 = 0, then

lim
n→∞

E(ρn)− E(σn)

n ln(dim(HA ⊗HB))
= 0

• Depending on the requirements of measurement functions, the additivity
condition can be formulated in several ways

– Additivity, i.e. E(ρ⊗ σ) = E(ρ) + E(σ), for any arbitrary states ρ and
σ;

– Subadditivity, i.e. E(ρ⊗ σ) ≤ E(ρ) + E(σ), for any arbitrary states ρ
and σ;

– Weak additivity, i.e. E(ρ) = E(ρ⊗N)
N , for any arbitrary state ρ;

– Existence of regularization, i.e. E(ρ) = limN→∞
E(ρ⊗N)

N .

Examples of quantifiers of entanglement can be found in references [4]. I
limit my analysis to the most useful ones.

1.3.1 Von Neumann entropy

For bipartite pure states (A|B) in the Hilbert space H = HA ⊗ HB, there ex-
ist only one entanglement measure, the von Neumann entropy of the reduced
density operator ρ [31], given by

E(ρ) = S(ρA) = −Tr (ρa log ρA) (1.21)
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where ρA = TrB(ρ) and the default logarithm base equals to 2. Using spec-
tral decomposition, the von Neumann entropy can be written in terms of the
eigenvalues {λj} of the reduced density operator ρA

S(ρA) = −∑
j

λj log λj (1.22)

On the contrary, for mixed states there exist a lot of measures of entangle-
ment. In the following, I analyze the most important ones.

1.3.2 Entanglement cost

The entanglement cost is an entanglement measure that quantifies how many
ebits (unit of bipartite entanglement, i.e. the amount of entanglement contained
in a maximally entangled two-qubit state) are required to prepare a copy of a
state, only using LOCC operations. Many copies of a state can be prepared at
the same time and the entanglement cost, therefore, quantifies how many ebits
are required per copy.

Let P+ be the projector onto a Bell state |Φ+〉 = (|00〉+ |11〉)/
√

2

P+ := |Φ+〉〈Φ+| (1.23)

The entanglement cost aims to quantify the rate m/n at which it is possible
to convert P⊗m

+ into ρ⊗n with a LOCC operation Λ. It is usually impossible to
perform this exactly, then one makes an approximation Λ(P⊗m

+ ) ≈ ρ⊗n, which
quality can be quantified by a distance measure D(Λ(P⊗m

+ ), ρ⊗n), that can be ei-
ther the Bures, the trace or another suitable distance. The entanglement cost EC
is then the infimum of all possible rates m/n at which the approximation can be
made arbitrarily good, by choosing m and n sufficiently large. Mathematically,
it can be formulated as

EC(ρ) = inf{E | ∀ε, δ > 0, ∃m, n, Λ, |E− m
n
| ≤ δ and D(Λ(P⊗m

+ ), ρ⊗n) ≤ ε}
(1.24)

1.3.3 Distillable entanglement

The Bell state |φ+〉 = (|00〉+ |11〉)/
√

2 is, in general, the optimal state to per-
form quantum information tasks. Suppose that two observers, Alice (A) and
Bob (B), separated by arbitrarily large distance, would like to perform one of
these tasks but they do not share |φ+〉. Instead, they are supplied with as many
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mixed states ρAB as they want. Can they use these states ρAB to establish |φ+〉
states between them, by only using LOCC?

The distillable entanglement answers to this question, and determines how
many m pairs of |φ+〉 can be extracted (or distilled) out of n pairs of the state
ρAB, by only using LOCC strategies Λ, in the limit of n → ∞. In mathematical
words the distillable entanglement of ρAB is given by

ED(ρAB) = sup
Λ

lim
n→∞

m
n

(1.25)

The main difficulty of the distillable entanglement is the optimization over
all possible LOCC protocols it contains, that, in general, makes this quantifier
extremely hard to compute. Moreover, not all entangled states are distillable
[65], such as the bound entangled states, for which there is no LOCC protocol
able to get maximally entangled states out of them, even if many copies are
available.

1.3.4 Entanglement of formation

For each pure state of a composite quantum system (A|B), the entanglement
of formation is defined as the von Neumann entropy of either of the two sub-
systems A and B. The entanglement of formation EF of a mixed state ρ, is then
defined as the average entanglement of the pure states of the decomposition,
minimized over all possible decomposition of ρ

EF(ρ) = min

{
∑

i
piE(ψi)

}
(1.26)

It is possible to express the Eq. (1.26) as an explicit funtion of ρ, thanks to the
“spin flip” transformation. For a mixed state ρ of two qubits, the spin flipped
state is given by

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) (1.27)

where ρ∗ is the complex conjugate of ρ and σy is the Pauli matrix. It has been
demonstrated [128] that

EF(ρ) = E(C(ρ)) (1.28)

where E is a funtion monotonically increasing from 0 to 1, given by

E(C) = −1 +
√

1− C2

2
log2

1 +
√

1− C2

2
− 1−

√
1− C2

2
log2

1−
√

1− C2

2
(1.29)
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and C(ρ) is the concurrence, equal to

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (1.30)

where {λj} are the eigenvalues, in decreasing order, of the Hermitian matrix
R =

√√
ρρ̃
√

ρ, or alternatively the square root of the eigenvalues of the non-
Hermitian matrix ρρ̃

The equation (1.28) is very useful, because it works for all density matrices
and give an explicit formulation of the entanglement of formation in terms of
the reduced density operators.

This measure of entanglement is close to entanglement cost. In fact, this last
is equal to the regularization of the entanglement of formation

EC(ρ) = lim
n→∞

1
n

EF(ρ
⊗n) (1.31)

1.3.5 Relative entropy of entanglement

As with many other objects in Quantum Information Theory, the relative en-
tropy of entanglement is defined by extending the classical definition from prob-
ability distributions to density matrices. Let S be a set of separable states. The
relative entropy of entanglement ER for a state ρ is defined as

ER(ρ) = inf
σ∈S
{S(ρ||σ)} = inf

σ∈S
{Tr (ρ log ρ− ρ log σ)} (1.32)

where S is the von Neumann entropy for the state ρ. The relative entropy
of entanglement is a measure of similarity between two quantum states, i.e. it
gives the distance between ρ and the nearest separable state.

For pure states, the above-mentioned measures coincide with the von Neu-
mann entropy. The situation is quite different for mixed states, for which there
exist many entanglement measures. It can be shown that, for a given density
operator ρ, it holds a relation [27] between the different entanglement measures

ED(ρ) ≤ E(ρ) ≤ EC(ρ) (1.33)

Thus, the distillable entanglement ED and the entanglement cost EC are the
lower and upper limits of any entanglement measures.
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2
Mathematical framework and

techniques

In this chapter, I review some results on the exact diagonalization of one
dimensional spin-1/2 models. I consider systems described by a translational
invariant Hamiltonian H{λ} that depends on a set of parameters {λ}. By know-
ing the analitical expression of the ground states, I extract all the spin correlation
functions with which I reconstruct the reduced density matrices and the entan-
glement properties of each model. I extend the analysis to the time dependence
induced by a sudden quench of the Hamiltonian parameters.

2.1 Exact diagonalization via Jordan Wigner
transformations

The one dimensional spin-1/2 models under invetigation are the XY models
in a transverse magnetic field, the N-cluster Ising models and the N-cluster
models in a transverse magnetic field, which Hamiltonians respectively read:

HXY
{γ,h} = −

1 + γ

2 ∑
j

σx
j σx

j+1 −
1− γ

2 ∑
j

σ
y
j σ

y
j+1 − h ∑

j
σz

j (2.1)

HcI
{φ,N} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σ
y
j σ

y
j+1 (2.2)

Hch
{φ,N} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σz
j (2.3)

where γ, h and φ are respectively the anisotropy parameter, the magnetic
field and the phase parameter that control the relative weight of the interacting
terms, the operator ZN

j stands for
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ZN
j =

N⊗
k=1

σz
j+k

and the spin operators are defined in terms of the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −ı
ı 0

)
σz =

(
1 0
0 −1

)
I introduce the ladder operators

σ+
j =

σx
j + ıσy

j

2
σ−j =

σx
j − ıσy

j

2
(2.4)

in terms of which the Pauli matrices read

σx
j = σ−j + σ+

j σ
y
j = ı(σ−j − σ+

j ) σz
j = 2σ+

j σ−j − 1 (2.5)

The ladder operators have either a Fermi part

{σ−j , σ+
j } = 1 (σ−j )2 = (σ+

j )2 = 0 (2.6)

and a Bose part

[σ+
j , σ−k ] = [σ+

j , σ+
k ] = [σ−j , σ−k ] = 0 j 6= k (2.7)

The Hamiltonian in terms of the ladder operators cannot be diagonalized,
because a canonical transformation does not preserve the set of canonical rules.
However, one can introduce a new set of strictly fermionic operators, by per-
forming a Jordan-Wigner (JW) transformation [73]

cj =
j−1

∏
k=1

(σz
k ) σ−j c†

j =
j−1

∏
k=1

(σz
k ) σ+

j (2.8)

with which the spin-1/2 systems can be mapped into models of non-interact-
ing fermions, moving freely along the chain, only obeying Pauli’s exclusion
principle. Here, cj and c†

j stand respectively for the annihilation and creation
fermionic operators on the j-th site, with strictly fermionic commutation rules

{cj, c†
k} = δjk {cj, ck} = {c†

j , c†
k} = 0 (2.9)

The Hamiltonians of Eqs. (2.1), (2.2) and (2.3) can be rewritten into a quadratic
form, in terms of fermionic operators
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HXY
{γ,h} = ∑

j

(
c†

j c†
j+1 + γc†

j cj+1 + h.c.
)
− h ∑

j

(
2c†

j cj − 1
)

(2.10)

HcI
{φ,N} = cos(φ)∑

j

(
c†

j c†
j+N+1 + c†

j cj+N+1 + h.c.
)

+ sin(φ)∑
j

(
c†

j c†
j+1 − c†

j cj+1 + h.c.
) (2.11)

Hch
{φ,N} = cos(φ)∑

j

(
c†

j c†
j+N+1 + c†

j cj+N+1 + h.c.
)

+ sin(φ)∑
j

(
2c†

j cj − 1
) (2.12)

Note that I consider the thermodynamic limit, in which the boundary terms
are negligible. In terms of fermionic operators, the cluster interaction of the
Hamiltonians of Eqs. (2.2) and (2.3) is reduced from a N + 2 interaction to a
two-body interaction between sites at distance N + 1.

The fermionic problem can hence be diagonalized using a Fourier transform

bk =
1√
N

∑
j

cje−ıkj b†
k =

1√
N

∑
j

c†
j eıkj (2.13)

where the wave number k is given by k = 2πl/M and l is an integer index
that runs from -M/2 to M/2, where M is the total number of spins in the chain.
The Hamiltonians can be expressed as

H{λ} = ∑
k>0

H̃{λ},k (2.14)

where λ is a set of parameters on which the Hamiltonian depends and H̃{λ},k
is a term acting only on fermions with momentum equal to k or −k. This local
Hamiltonian, in the momentum space, is equal to

H̃{λ},k = 2ε{λ},k(b
†
k bk + b†

−kb−k − 1) + 2ıδ{λ},k(b
†
k b†
−k − b−kbk) (2.15)

where ε{λ},k and δ{λ},k depend on the model analyzed. In the XY model
({λ} = {γ, h}), they are equal to{

ε{γ,h},k = cos(k)− h
δ{γ,h},k = γ sin(k)

(2.16)
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for the N-cluster Ising model ({λ} = {φ, N}), they are equal to{
ε{φ,N},k = cos((N + 1)k) cos ϕ− cos(k) sin(ϕ)

δ{φ,N},k = sin((N + 1)k) cos ϕ− sin(k) sin(ϕ)
(2.17)

and for the N-cluster model in a transverse magnetic field ({λ} = {φ, N}),
they correspond to{

ε{φ,N},k = cos((N + 1)k) cos(φ) + sin(φ)
δ{φ,N},k = sin((N + 1)k) cos(φ)

(2.18)

Defining the occupation number basis |1k, 1−k〉, |0k, 0−k〉, |1k, 0−k〉, |0k, 1−k〉,
each H̃{λ},k corresponds to a four-level system described by a 4× 4 matrix

H̃{λ},k =


2ε{λ},k 2ıδ{λ},k 0 0
−2ıδ{λ},k −2ε{λ},k 0 0

0 0 0 0
0 0 0 0

 (2.19)

From this expression of H̃{λ},k, it is easy to evaluate the ground state energy,
that results to be

ω{λ},k = −2
√

ε2
{λ},k + δ2

{λ},k (2.20)

The associated ground state |ψ{λ},k〉 is a superposition of |1k, 1−k〉 and |0k, 0−k〉

|ψ{λ},k〉 = α{λ},k |1k, 1−k〉+ β{λ},k |0k, 0−k〉 (2.21)

with superposition parameters given by

α{λ},k = ı
ε{λ},k−

√
ε2
{λ},k + δ2

{λ},k√
δ2
{λ},k +

(
ε{λ},k−

√
ε2
{λ},k + δ2

{λ},k

)2

β{λ},k =
δ{λ},k√

δ2
{λ},k +

(
ε{λ},k−

√
ε2
{λ},k + δ2

{λ},k

)2
(2.22)

Since the Hamiltonian is the sum of the non-interacting terms H̃{λ},k, each
one of them acting on a different Hilbert space, the ground state of the total
Hamiltonian is the tensor product of all |ψ{λ},k〉
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|ψ{λ}〉 =
⊗

k

|ψ{λ},k〉 (2.23)

and the associated density energy, in the thermodynamic limit, is equal to

Ω{λ} =
1
π

∫ π

0
ω{λ},k dk (2.24)

It is worth to note that the ground state holds a well defined parity, that
depends on the particular set of parameters taken into account [15]. However,
going towards the thermodynamic limit, the energy gap between the even and
the odd sectors tends to vanish and, when the number of spins diverges, the
system shows a perfect degeneracy, below the quantum critical point, between
even and odd ground states [10, 113].

2.2 Correlation functions

By having the expression of the exact ground state in Eq. (2.23), all the spin
correlation functions can be reconstructed. However, the state is not expressed
neither in terms of spins nor in terms of fermionic operators in real space, but
in terms of fermionic variables in the momentum space. For this reason, in or-
der to determine the spin correlation functions, one must, at first, transform all
the spin operators in fermionic operators, thanks to the Jordan Wigner trans-
formations of Eq. (2.8). To simplify such process it was shown [84, 10] that all
the spin operators can be mapped into ordered products of 2 types of Majorana
fermionic operators, indicated with Aj and Bj respectively

Aj = cj + c†
j Bj = cj − c†

j (2.25)

where j is an index that runs on all the spins of the system. In general,
after this process, one obtains a fermionic operator made by a large number of
fermionic terms, that can be evaluated by applying the Wick’s theorem.

Having two types of fermionic operators, it is enough to evaluate five expec-
tation values, that possess all the ingredients to determine each spin correlation
functions. From the expression of the ground state |ψ{λ}〉 in Eq. (2.21), it im-
mediately follows that both 〈Aj〉 and 〈Bj〉 vanish (〈O〉 is used as a shortcut for
〈ψ{λ}|O |ψ{λ}〉 ). In fact, adding or removing a single fermion from |ψ{λ}〉, the
state is driven in an orthogonal subspace, that implies

〈Aj〉 = 0

〈Bj〉 = 0
(2.26)
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As a consequence, if a spin operator is mapped into a fermionic operator
made by an odd number of components, its expectation value on |ψ{λ}〉 van-
ishes.

On the contrary, the other three basic elements can be non zero

〈Ai Ak〉 = fi,k({λ})
〈Bi Ak〉 = gi,k({λ})
〈BiBk〉 = hi,k({λ})

(2.27)

and must be evaluated to obtain the explicit value of a generic spin cor-
relation function. Because the models are invariant under spatial translation,
also these functions hold the same property and hence they have not to de-
pend on the particular choice of the spin i and k but only on their relative
distance r = i − k. Therefore, fi,k({λ}) ≡ fr({λ}), gi,k({λ}) ≡ gr({λ}) and
hi,k({λ}) ≡ hr({λ}). By substituting the expression of Ai and Bi given in Eq.
(2.25), it follows

gr({λ}) = 〈Br A0〉 = 〈ψ{λ}| (cr − c+r )(c0 + c+0 ) |ψ{λ}〉
fr({λ}) = 〈Ar A0〉 = 〈ψ{λ}| (cr + c+r )(c0 + c+0 ) |ψ{λ}〉
hr({λ}) = 〈BrB0〉 = 〈ψ{λ}| (cr − c+r )(c0 − c+0 ) |ψ{λ}〉

(2.28)

With a straightforward calculations, one obtains, in the thermodynamic limit,
that

gr({λ})=
1
π

∫ π

0

[
(|β̃{λ},k|2−|α̃{λ},k|2)cos(kr)+ı(α̃∗{λ},k β̃{λ},k−α̃{λ},k β̃∗{λ},k)sin(kr)

]
dk

(2.29)

fr({λ}) = δr,0 +
ı
π

∫ π

0
(α̃∗{λ},k β̃{λ},k + α̃{λ},k β̃∗{λ},k) sin(kr)dk

hr({λ}) = −δr,0 +
ı
π

∫ π

0
(α̃∗{λ},k β̃{λ},k + α̃{λ},k β̃∗{λ},k) sin(kr)dk

(2.30)

where δr,0 is the Kronecker delta that is different from zero only for r = 0.
In all the models analyzed, α{λ},k is an imaginary number while β{λ},k is

real, as one can see in Eq. (2.22). Therefore, in the static case, the integrals in the
definition of both fr({λ}) and hr({λ}) are all zero and fr({λ}) = −hr({λ}) =
δr,0. On the contrary, the functions gr({λ}) are all reals.
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With the knowledge of gr({λ}), fr({λ}) and hr({λ}), one can evaluate all
the spin correlation functions. However, the approach to the evaluation is dif-
ferent, depending on the fact that the spin operators commute or anti-commute
with the parity Pz = ⊗M

i=1σz
i .

In the case of operators that commutes with Pz, the correlation functions can
be evaluated directly. In the following, I just limit to describe the characteristic
examples of the symmetric spin correlation functions that enter in the reduced
density matrix of two spin at a generic distance r. With some algebra, it is easy
to show that

〈σz
i 〉 = −g0({λ}) (2.31)

〈σz
i σz

i+r〉 = g0({λ})2 − gr({λ})g−r({λ}) (2.32)

〈σx
i σx

i+r〉=

∣∣∣∣∣∣∣∣∣
g−1({λ}) g−2({λ}) · · · g−r({λ})
g0({λ}) g−1({λ}) · · · g1−r({λ})

...
... . . . ...

gr−2({λ}) gr−3({λ}) · · · g−1({λ})

∣∣∣∣∣∣∣∣∣ (2.33)

〈σy
i σ

y
i+r〉=

∣∣∣∣∣∣∣∣∣
g1({λ}) g2({λ}) · · · gr({λ})
g0({λ}) g1({λ}) · · · gr−1({λ})

...
... . . . ...

g2−r({λ}) g3−r({λ}) · · · g1({λ})

∣∣∣∣∣∣∣∣∣ (2.34)

Unfortunately, the way to obtain the spin correlation functions associated to
operators that do not commute with the parity Pz is much more complex. In the
next section, I illustrate in details the trick used to the evaluation.

2.3 Symmetry-breaking ground states

The Hamiltonians under analysis H{λ}, all satisfy the parity symmetry respect
to a spin direction, regardeless the values of the Hamiltonian parameters {λ}.
This means that H{λ} commutes with the parity operator

Pν =
M⊗

i=1

σν
i (2.35)

where M is the total number of spins in the system. For sake of simplicity
and without loosing of generality, one can fix ν = z. Because [H{λ}, Pz] = 0,
the Hamiltonian and the parity operator admit a complete set of eigenstates in
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common. However, in the case in which the Hamiltonian shows degenerated
spectrum, there exist eigenstates of the Hamiltonian that are not eigenstates of
the parity. When this happens at the level of the ground state, the phenomenon
is known as a spontaneous symmetry breaking, of which the magnetically or-
dered phases are the most known examples.

In the magnetically ordered phases of one dimensional spin-1/2 systems,
the Hamiltonian admits a twofold degenerated ground states [113, 110], be-
tween the infinite number of ground states, that are also eigenstates of the
parity operator Pz with opposite eigenvalues. These two symmetric ground
states, usually named the even |e{λ}〉 (Pz |e{λ}〉 = |e{λ}〉) and the odd |o{λ}〉
(Pz |o{λ}〉 = − |o{λ}〉) ground states, form a complete orthonormal base for the
ground space. Therefore, a generic ground state of the Hamiltonian H{λ} can
be written as

|g{λ}(u, v)〉 = u |e{λ}〉+ v |o{λ}〉 (2.36)

where u and v are complex superposition amplitudes that satisfy the nor-
malization condition |u|2 + |v|2 = 1.

Consider an arbitrary bipartition (S|R) of the system, such that the subsys-
tem S = {i1, · · · , iL} is any subset made by L spins, and subsystem R is the
remainder. The projection of the state |g{λ}(u, v)〉 into S is represented by the
reduced density matrix ρ(u, v, S), obtained tracing out all the degrees of free-
dom that fall outside S. The reduced density matrix ρ(u, v, S) can be expressed
in terms of the L-points spin correlation functions [97] as

ρ(u, v, S)=
1
2L ∑
{µi}
〈g{λ}(u, v)|Ô{µi}

S |g{λ}(u, v)〉Ô{µi}
S (2.37)

In the above equation, Ô{µi}
S = σ

µ1
i1
⊗ σ

µ2
i2
⊗ . . .⊗σ

µL
iL

is the tensor product of
Pauli operators defined on the spins in S, {µi} is a set of L variables where any
single element ranges across µi = 0, x, y, z, the sum runs on all possible {µi}
and σ0

i stands for the identity operator on the i-th spin.

With respect to the parity operator Pz =
⊗N

i=1 σz
i , any operator Ô{µi}

S can be
classified in two different families: the operators that commute or anti-commute
with Pz. It is well known that, in the thermodynamic limit, the expectation
value of an operator that commutes with the parity is the same on even |e{γ}〉
or on odd |o{γ}〉 ground state [113, 110]. As a consequence, the two symmetric
ground states are always locally indistinguishable. On the contrary, any opera-
tor Ô{µi}

S that anti-commutes with Pz drives even states in odd ones and, hence,
its expectation value on a symmetric ground state vanishes.
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With these considerations, the reduced density matrix ρ(u, v, S) of Eq. (2.37)
can be rewritten as

ρ(u, v, S) = ρsym(S) + χ(u, v, S) (2.38)

The density matrix ρsym(S) is obtained projecting one of the two symmetric
ground states into S, and it is equal to

ρsym(S) =
1

2L ∑
{µi}
〈Ô{µi}

S 〉Ô
{µi}
S (2.39)

where the sum extends over all the operators Ô{µi}
S that commute with Pz.

Vice versa χ(u, v, S) is an Hermitian traceless matrix that depends on the
superposition parameters and is made by the contributions of all the opera-
tors Ô{µi}

S that anti-commute with Pz. To evaluate χ(u, v, S), I introduce, for a

generic spin operator Ô{µi}
S defined on S and that anti-commutes with Pz, the

operator Ŵ{µi}
S∪S+R = Ô{µi}

S ⊗ Ô{µi}
S+R, with Ô{µi}

S+R = σ
µ1
i1+R⊗σ

µ2
i2+R⊗ . . .⊗σ

µl
il+R, de-

fined on a new subset S + R, obtained from S by a rigid spatial translation of
R. Because both Ô{µi}

S and Ô{µi}
S+R anti-commutes with Pz, Ŵ{µi}

S∪S+R commute with
the parity operator and hence its expectation value on a symmetric ground state
can be different from zero. Hence, the expectation value of a generic operator
Ô{µi}

S that anti-commutes with Pz and the spin correlation function associated,
is recovered exploiting the property of asymptotic factorization of two local op-
erators separated by an infinite distance, that yields to

〈Ô{µi}
S 〉 =

√
lim

R→∞
〈Ŵ{µi}

S∪S+R〉 (2.40)

Starting from this state independent expression of the 〈Ô{µi}
S 〉, the Eq. (2.38)

can be written as

ρ(u, v, S) = ρsym(S) + (u∗v + v∗u)χ̃(S) (2.41)

where

χ̃(S) =
1
2l ∑
{µi}
〈Ô{µi}

S 〉Ô
{µi}
S (2.42)

and the sum is restricted to all the operators Ô{µi}
S that anti-commute with

Pz.
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2.4 Time evolution induced by a sudden quench

In this section, I illustrate in details the method used to evaluate the time-
dependent spin correlation functions. Such approach can be used for all mod-
els that can be solved using Jordan-Wigner transformations and for all time-
dependences that preserve the parity symmetry of the Hamiltonians.

I consider the following quench protocol. At time t < 0 the system is pre-
pared in one of the possible ground state |g{λ0}(u, v)〉 of the Hamiltonian H{λ0}.
At time t = 0, the set of the Hamiltonian parameters are suddenly changed
from {λ0} to {λ1} and the state starts to evolve under the action of the new
Hamiltonian H{λ1}.

Such approach

2.4.1 Time evolution of the ground state

After a sudden change of the Hamiltonian parameters from {λ0} to {λ1}, the
dynamics of the system, for any time t ≥ 0, is described by the state

|ψ{λ0,λ1}(t)〉 = U({λ1}, t) |ψ{λ0}〉 (2.43)

where U({λ1}, t) = e−iH{λ1}t is the time evolution unitary operator and
|ψ{λ0}〉 is the ground state at t < 0 (initial state). Taken into account that:

1. Eq. (2.14) is still valid even for {λ} = {λ1},

2. the wave number k does not depends on the set of the Hamiltonian pa-
rameters {λ},

3. the initial state |ψ{λ0}〉 can be written as a tensor product of states defined
on each single k > 0 (eq. (2.23)),

it follows that

|ψ{λ0,λ1}(t)〉 =
⊗

k

|ψ{λ0,λ1},k(t)〉 =
⊗

k

Uk({λ1}, t) |ψ{λ0},k〉 (2.44)

where Uk({λ1}, t) is a time evolution unitary operator that acts on a single
k. The explicit expression of Uk({λ1}, t) can be determined by the solution of
the Heisenberg equation

ı
d
dt

Uk({λ1}, t) = H̃{λ1},kUk({λ1}, t) (2.45)

that in matrix form reads
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ı
d
dt

(
U11,k(t) U12,k(t)
U21,k(t) U22,k(t)

)
=

(
2ε{λ1},k 2ıδ{λ1},k
−2ıδ{λ1},k −2ε{λ1},k

)(
U11,k(t) U12,k(t)
U21,k(t) U22,k(t)

)
(2.46)

From Eq. (2.46), one obtains two non trivial systems of first order coupled
differential equations with constant coefficients. The first is given by{

ıU̇11,k(t) = 2ε{λ1},kU11,k(t) + 2ıδ{λ1},kU21,k(t)
ıU̇21,k(t) = −2ıδ{λ1},kU11,k(t)− 2ε{λ1},kU21,k(t)

while the second is{
ıU̇12,k(t) = 2ε{λ1},kU12,k(t) + 2ıδ{λ1},kU22,k(t)
ıU̇22,k(t) = −2ıδ{λ1},kU12,k(t)− 2ε{λ1},kU22,k(t)

These two systems can be solved by decoupling them into four second or-
der differential equations, with constant coefficients and opportune boundary
conditions.

It follows for U11,k 
Ü11,k(t) + ω2

{λ1},k
U11,k(t) = 0

U11,k(0) = 1
U̇11,k(0) = −2ıε{λ1},k

(2.47)

for U12,k 
Ü12,k(t) + ω2

{λ1},k
U12,k(t) = 0

U12,k(0) = 0
U̇12,k(0) = 2ıδ{λ1},k

(2.48)

for U21,k 
Ü21,k(t) + ω2

{λ1},k
U21,k(t) = 0

U21,k(0) = 0
U̇21,k(0) = −2ıδ{λ1},k

(2.49)

and, at the end, for U22,k
Ü22,k(t) + ω2

{λ1},k
U22,k(t) = 0

U22,k(0) = 1
U̇22,k(0) = 2ıε{λ1},k

(2.50)
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The matrix elements of the time evolution unitary operator can be derived
by solving the above differential equations

U11,k(t) = cos(ω{λ1},kt)− ı
ε{λ1},k
ω{λ1},k

sin(ω{λ1},kt)

U12,k(t) = ı
δ{λ1},k
ω{λ1},k

sin(ω{λ1},kt) (2.51)

U21,k(t) = −ı
δ{λ1},k
ω{λ1},k

sin(ω{λ1},kt)

U22,k(t) = cos(ω{λ1}, kt) + ı
ε{λ1},k
ω{λ1},k

sin(ω{λ1},kt)

With the explicit expression of the elements of time-evolution unitary opera-
tor Uk({λ1}, t), one can obtain the image of the initial state |ψ{λ0},k〉, at a generic
time t and for any wave number k

|ψ{λ0,λ1},k(t)〉 = α̃{λ0,λ1},k(t) |1k, 1−k〉+ β̃{λ0,λ1},k(t) |0k, 0−k〉 (2.52)

where

α̃{λ0,λ1},k(t) = α{λ0},k cos(ω{λ1},kt)− ı
ε{λ1},kα{λ0},k − δ{λ1},kβ{λ0},k

ω{λ1},k
sin(ω{λ1},kt)

β̃{λ0,λ1},k(t) = β{λ0},k cos(ω{λ1},kt)− ı
δ{λ1},kα{λ0},k − ε{λ1},kβ{λ0},k

ω{λ1},k
sin(ω{λ1},kt)

(2.53)

In complete analogy with the stationary case, it follows from Eq. (2.44) that
the global ground state is the tensor product |ψ{λ0,λ1}(t)〉 =

⊗
k |ψ{λ0,λ1},k(t)〉.

2.4.2 Time-dependent fermionic correlation functions

The method illustrated in Sec. (2.2), for the stationary case, can be used to ob-
tain the expression of the time-dependent fermionic correlation functions. In
completely analogy, one have to evaluate five expectation values, that possess
all the ingredients to determine each time-dependent spin correlation function.
In completely analogy, it follows that
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〈Aj〉t = 0

〈Bj〉t = 0
(2.54)

and

〈Ai Ak〉t = fi,k({λ0, λ1}, t) ≡ fr({λ0, λ1}, t)
〈Bi Ak〉t = gi,k({λ0, λ1}, t) ≡ gr({λ0, λ1}, t)
〈BiBk〉t = hi,k({λ0, λ1}, t) ≡ hr({λ0, λ1}, t)

(2.55)

where 〈O〉t is a shortcut for 〈ψ{λ0,λ1}(t)|O |ψ{λ0,λ1}(t)〉.
The analytical expression of the three non-trivially zero time-dependent cor-

relation functions can be obtained, with a straightforward calculation, by using
the definition of Majorana fermions of Eq. (2.25) and the time-dependent apli-
tudes of Eq. (2.53). In the thermodynamic limit one obtains that

gr({λ0, λ1}, t)=
1
π

∫ π

0

[ (
|β̃{λ0,λ1},k(t)|

2 − |α̃{λ0,λ1},k(t)|
2
)

cos(kr)

+ ı
(

α̃∗{λ0,λ1},k(t)β̃{λ0,λ1},k(t)− α̃{λ0,λ1},k(t)β̃∗{λ0,λ1},k(t)
)

sin(kr)
]
dk

fr({λ0, λ1}, t)=δr,0 +
ı
π

∫ π

0

(
α̃∗{λ0,λ1},k β̃{λ0,λ1},k + α̃{λ0,λ1},k β̃∗{λ0,λ1},k

)
sin(kr)dk

hr({λ0, λ1}, t)=−δr,0 +
ı
π

∫ π

0

(
α̃∗{λ0,λ1},k β̃{λ0,λ1},k + α̃{λ0,λ1},k β̃∗{λ0,λ1},k

)
sin(kr)dk

(2.56)

where δr,0 is the Kronecker delta that is different from zero only when r = 0.
By using Eq. (2.53), for example, one can obtain the explicit expression of

gr({λ0, λ1}, t), fr({λ0, λ1}, t) and hr({λ0, λ1}, t) in terms of the Hamiltonian pa-
rameters before {λ0} = {γ, h0} and after {λ1} = {γ, h1} the quench, for the XY
model

gr(γ, h0, h1, t) =
1
π

∫ π

0

(
(cos(k)−h0)(cos(k)−h1)+γ2sin(k)2) ((cos(k)−h1)cos(kr)−γ sin(k) sin(kr))

Λ(γ, h1, k)2Λ(γ, h0, k)
dk

+
γ(h1−h0)

π

∫ π

0

cos (4tΛ(γ, h1, k))sin(k)(γ cos(kr) sin(k)+(cos(k)−h1) sin(kr))
Λ(γ, h1, k)2Λ(γ, h0, k)

dk

and
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fr(γ, h0, h1, t) = δ(r) +
iγ(h0 − h1)

π

∫ π

0

sin(k) sin(kr) sin (4tΛ(γ, h1, k))
Λ(γ, h0, k)Λ(γ, h1, k)

dk

hr(γ, h0, h1, t) = −δ(r) +
iγ(h0 − h1)

π

∫ π

0

sin(k) sin(kr) sin (4tΛ(γ, h1, k))
Λ(γ, h0, k)Λ(γ, h1, k)

dk

(2.57)

where it has been defined

Λ(γ, h, k) =
√
(h− cos(k))2 + γ2 sin(k)2 (2.58)

To recover the well known static expression of the fermionic correlation
functions, it is enough to take h1 = h0 or t = 0 equivalently. On the other hand,
in the limit of diverging time, the time dependent integrals becomes integrals
of rapidly oscillating functions that slowly go to zero. Therefore, in the limit
t→ ∞, the functions gr(γ, h0, h1, ∞), fr(γ, h0, h1, ∞) and hr(γ, h0, h1, ∞) retrieve
the same symmetries of the stationary case. In particular, fr(γ, h0, h1, ∞) =
−hr(γ, h0, h1, ∞) = δr,0, while gr(γ, h0, h1, ∞) becomes

gr(γ, h0, h1, ∞)=
1
π

∫ π

0

(
(cos(k)−h0)(cos(k)−h1)+γ2sin(k)2)(cos(k)−h1)cos(kr)

Λ(γ, h1, k)2Λ(γ, h0, k)
dk

− γ

π

∫ π

0

(
(cos(k)−h0)(cos(k)−h1)+γ2sin(k)2)sin(k)sin(kr)

Λ(γ, h1, k)2Λ(γ, h0, k)
dk

(2.59)

Unfortunately, the analogous analytical expressions for the time-dependent
correlation functions for the N-clusters Ising models and the N-cluster mod-
els in a transverse magnetic field are longer and more cumbersome to write.
In any case, they can be recovered from Eq. (2.53) and Eqs.(2.17), (2.18), with
{λ0} = {φ0, N} and {λ1} = {φ1, N}. In complete analogy with the XY model,
also in the N-cluster models, the gr(φ0, φ1, ∞), fr(φ0, φ1, ∞) and hr(φ0, φ1, ∞)
functions have the same symmetries of the static function gr(φ0), fr(φ0) and
hr(φ0). Therefore, it follows that fr(φ0, φ1, ∞) = −hr(φ0, φ1, ∞) = δr,0 while
gr(φ0, φ1, ∞) 6= 0 only for r = a(N + 2) + 1 or r = a(N + 1) (a is an integer) re-
spectively for the N-cluster Ising models and N-cluster models in a transverse
magnetic field [47, 118].

2.4.3 Time-dependent spin correlation functions

With the knowledge of gr({λ0, λ1}, t), fr({λ0, λ1}, t) and hr({λ0, λ1}, t), one can
recover all the time-dependent spin correlation functions at any time. In com-
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pletely analogy with the stationary case, the evaluation of the time-dependent
spin correlation functions depends on the fact that the spin operators commute
or anti-commute with parity operator Pz.

The time-dependent spin correlation function that commute with Pz can be
evaluated directly. I just limit the description to the characteristic examples of
the time-dependent spin correlation functions that enter in the reduced density
matrix of two spin at a distance r = 1

〈σz
i 〉t = −g0({λ0, λ1}, t)

〈σz
i σz

i+1〉t = g0({λ0, λ1}, t)2 − f−1({λ0, λ1}, t)2

− g−1({λ0, λ1}, t) g1({λ0, λ1}, t)
〈σx

i σ
y
i+1〉t = i f−1({λ0, λ1}, t)

〈σx
i σx

i+1〉t = g−1({λ0, λ1}, t)

〈σy
i σ

y
i+1〉t = g1({λ0, λ1}, t) (2.60)

Fermionic correlation functions that are identically zero in the stationary
case become different from zero for t > 0. In Eq. (2.60), it is pointed out the
case of 〈σx

i σ
y
i+1〉t, and the fact that in the expression of 〈σz

i σz
i+1〉t appears the

term f−1({λ0, λ1}, t), identically zero in the stationary case.
Unfortunately, to evaluate the time-dependent correlation functions associ-

ated to spin operators Ô{µi}
S that do not commute with Pz, one needs to use the

same trick discussed in Sec. (2.2), for which

〈Ô{µi}
S 〉t =

√
lim

R→∞
〈W{µi}

S∪S+R〉t (2.61)

The expectation value in the r.h.s. of Eq. (2.61) can be evaluated by making
use of the Pfaffians, that at t = 0 and t → ∞ reduce to the standard determi-
nant [10]. Usually, with the exception of some particular case at t = 0 or t→ ∞,
in which one can use the Szegö theorem ([119]), it is not possible to evaluate
analytically the limit of diverging R of the Pfaffians and one is forced to make
use of numerical evaluation.
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3
Classical nature of ordered phases

and origin of spontaneous symmetry
breaking

In this chapter, I test the conjecture for which, among the locally inequiv-
alent ground states of the symmetry-breaking ordered phases, the maximally
symmetry-breaking ground states (MSBGSs) are the most classical ones, thus
selected in real-world situations. I make the conjecture quantitatively precise
by proving that the MSBGSs are the most classical ones with respect to three
criteria of classicality:

• Quantum correlations – For all pairs of dynamical variables (e.g. spins) the
MSBGSs are the only ground states that minimize pairwise quantum cor-
relations, as measured by the quantum discord. Moreover, they are the
only ground states whose pairwise quantum discord vanishes asymptoti-
cally as a function of the intra-pair distance;

• Local convertibility – All ground states are locally convertible into MSBGSs
via local operations and classical communication (LOCC), while the re-
verse transformation is impossible;

• Entanglement distribution – The MSBGSs are the only ground states that
minimize the residual tangle between a dynamical variable and the rest of
the system, i.e. the only ground states that satisfy monogamy of entangle-
ment, a quantum constraint on distributed correlations with no classical
counterpart, at its minimum.

These three features imply that the mechanism of the spontaneous symmetry-
breaking selects the most classical ground states associated to ordered phases of
quantum matter.

As standard prototype, I investigate the XY models in a transverse magnetic
field [113, 10], which Hamiltonian HXY

{γ,h} I analized in chapter (2), obtaining
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results of general validity for all systems that belong in the same universality
class.

3.1 Pairwise quantum correlations

In this section, I analyze the behavior of one-way discord-type correlations and
entanglement between any two spins, for symmetry-preserving and maximally
symmetry-breaking ground states. Operationally, one-way discord-type corre-
lations are defined in terms of the distance with respect to the classical-quantum
states, i.e. quantum states that are invariant under the action of non trivial local
unitary operations. In geometric terms, a bona fide measure of quantum correla-
tions must quantify how much a quantum state discords from classical-quantum
states and must be invariant under the action of all local unitary operations. A
computable and operationally well defined geometric measure of quantum cor-
relations is the discord of response [109, 50]. The pairwise discord of response Qr
for a two-spin reduced density matrix is defined as:

Qr(ρ
(r)
ij (u, v)) ≡ 1

2
min

Ui
dx

(
ρ
(r)
ij (u, v), ρ̃

(r)
ij (u, v)

)2
, (3.1)

where ρ
(r)
ij (u, v) is the state of two spins i and j at a distance r, with arbitrary

amplitudes as pointed out in Sec. (2.3), ρ̃
(r)
ij (u, v)≡Uiρ

(r)
ij (u, v)U†

i is the two-spin
state transformed under the action of a local unitary operation Ui acting on spin
i, and dx is any well-behaved, contractive distance (e.g. Bures, trace, Hellinger)
of ρ

(r)
ij from the set of locally unitarily perturbed states, realized by the least-

perturbing operation in the set. The trivial case of the identity is excluded by
considering only unitary operations with harmonic spectrum, i.e. the fully non-
degenerate spectrum on the unit circle with equispaced eigenvalues.

For pure states the discord of response reduces to an entanglement mono-
tone, whose convex-roof extension to mixed states is the so-called entanglement
of response Er [48, 91, 41]. Therefore, the entanglement and the discord of re-
sponse quantify different aspects of bipartite quantum correlations, via two dif-
ferent uses of local unitary operations. The discord of response arises by apply-
ing local unitaries directly to the generally mixed state, while the entanglement
of response stems from the application of local unitaries to pure states. By virtue
of their common origin, it is thus possible to perform a direct comparison be-
tween these two quantities.

In terms of the trace distance, which will be relevant in the following, the
two-body entanglement of response is simply given by the squared concurrence
[128, 109], whereas the two-body discord of response relates nicely to the trace
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Figure 3.1: (Color online) Behavior of the nearest-neighbor trace distance-based
discord of response Q1 (left panel) and nearest-neighbor trace distance-based
entanglement of response E1 (right panel) for symmetry-preserving ground
states, as functions of the external field h, and for different values of the
anisotropy γ. Solid blue curve: γ = 0.2; dashed red curve: γ = 0.4; dot-dashed
green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; dotted orange
curve: γ = 1. In the right panel, to each curve, there corresponds a vertical line
denoting the associated factorizing field h f . In the left panel, the solid vertical
line denotes the critical field hc = 1.

distance-based geometric discord [93], whose closed formula is known only for
a particular class of two-body states [29], although it can be computed for a
more general class of two-qubit states through a very efficient numerical opti-
mization.

3.1.1 Symmetry-preserving ground states

I first compare the two-body entanglement of response Er and the two-body
discord of response Qr in symmetry-preserving ground states. In Fig. (3.1) I
plot these two quantities, for two neighboring spins (r = 1), as functions of the
external field h and for different values of the anisotropy γ. By fixing an inter-
mediate value of γ, E1 and Q1 exhibit very different behaviors. E1 features two
maxima at h = 0 and a h > hc and two minima at h = hc (factorization point)
and h → ∞ (saturation). On the contrary, Q1 always features a single maxi-
mum, that can be either in the ordered phase (h < hc) or in the paramagnetic
one (h > hc), depending on γ, and disappears for h → ∞. Indeed, at the factor-
izing field h = h f and for any γ 6= 0, 1, the symmetry-preserving ground state
is not completely factorized but rather is a coherent superposition of the two
completely factorized symmetry-breaking ground states. Consequently, while
the two-body entanglement of response must vanish in accordance with the
convex roof extension, the two-body discord of response remains always finite.

37



Figure 3.2: (Color online) Behavior of the two-body trace distance-based discord
of response Qr (left panel) and two-body trace distance-based entanglement of
response Er (right panel) for symmetry-preserving ground states, in the ther-
modynamic limit, as functions of the external field h, in the case of γ = 0.4,
for different inter-spin distances r. Solid blue curve: r = 2; dashed red curve:
r = 3; dot-dashed green curve: r = 8; dotted black curve: r = ∞. In both pan-
els, the two solid vertical lines correspond, respectively, to the factorizing field
(left) and to the critical field (right).

Moreover, in Fig. (3.2) I plot the bahavior of Er and Qr for different inter-
spins distances r, as a function of the external field and for a fixed value of
γ = 0.4. Due to the monogamy of the squared concurrence [30, 98], Er dramat-
ically drops to zero as r increases, in agreement with Ref. [3]. On the contrary,
while in the disordered and critical phases Qr vanishes as r increases, in the
ordered phase Qr remains diferent from zero, even in the limit of infinite r. In-
deed, in both the disordered and critical phases, the only non-vanishing spin
correlation functions are 〈σz

i 〉 and 〈σz
i σz

i+r〉, so that the two-body reduced state
can be written as a classical mixture of eigenvectors of σz

i σz
i+r. In the ordered

phase, also the two-body correlation function 〈σx
i σx

i+r〉 appears, thus prevent-
ing the two-body ground state from being a mixture of classical states.

3.1.2 Maximally symmetry-breaking ground states

In this section, I compare the two-body entanglement of response and discord
of response for maximally symmetry-breaking ground states.

In Fig. (3.3), I plot E1 and Q1 for two neighboring spins, as a funtion of
the external field and for different values of the anisotropy γ. It is evident that
only the two-body discord of response is affected by the symmetry-breaking. In
fact, according to Ref. [100], the concurrence and, consequently, the two-body
entanglement of response, attains the same value for any h ≥ h f both in the
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Figure 3.3: (Color online) Behavior of the nearest-neighbor trace distance-based
discord of response Q1 (left panel) and nearest-neighbor trace distance-based
entanglement of response E1 (right panel) for maximally symmetry-breaking
ground states, as functions of the external field h and for different values of the
anisotropy γ. Solid blue curve: γ = 0.2; dashed red curve: γ = 0.4; dot-dashed
green curve: γ = 0.6; double-dot-dashed black curve: γ = 0.8; dotted orange
curve: γ = 1. In both panels, to each curve there corresponds a vertical line
denoting the associated factorizing field h f . The rightmost vertical line denotes
the critical field hc = 1.

symmetry-preserving and the symmetry-breaking ground states. Otherwise,
if h < h f , there is a slight enhancement in the pairwise entanglement of re-
sponse in the symmetry-breaking ground states compared to the corresponding
symmetry-preserving ones. On the contrary, the two-body discord of response
undergoes a dramatic suppression in the entire ordered phase h < hc, when
moving from symmetry-preserving to symmetry-breaking ground states.

Moreover, in Fig. (3.4), I plot the behavior of Er and Qr for different inter-
spins distances r, as a function of the external field and for a fixed value of
γ = 0.4. Moving from symmetry-preserving to maximally symmetry-breaking
ground states, both the two-body entanglement of response and the two-body
discord of response vanish asymptotically with increasing inter-spin distance
r. The behavior of the two-body entanglement of response is again due to the
monogamy of the squared concurrence [30, 98]. The bahavior of the two-body
discord of response, instead, is due to the fact that also 〈σx

i 〉 and 〈σx
i σz

i+r〉 are
nonvanishing in the limit of infinite inter-spin distance r. This feature allows
to write any two-spin reduced density matrix obtained from the symmetry-
breaking ground states as a classical mixture of eigenvectors of OiOi+r, where
Oi is an Hermitian operator defined on the i-th site as Oi = cos βσz

i + sin βσx
i ,

with tan β =
〈σx

i 〉
〈σz

i 〉
.

It can be concluded that the pairwise quantum correlations between any two
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Figure 3.4: (Color online) Behavior of the two-body trace distance-based discord
of response Qr (left panel) and two-body trace distance-based entanglement of
response Er (right panel) for maximally symmetry-breaking ground states, as
functions of the external field h, for γ = 0.4 and for different inter-spin distances
r. Solid blue curve: r = 2; dashed red curve: r = 3; dot-dashed green curve:
r = 8; dotted black curve: r = ∞. In both panels, the two solid vertical lines
correspond, respectively, to the factorizing field (left) and to the critical field
(right).

spins, as quantified by the two-body discord of response and two-body entan-
glement, decreases significantly in the entire ordered phase, when symmetry
breaking is taken into account. In particular, these two-body correlations mea-
sures are minimized and disappear in the limit of infinite intra-pairs distance r
only for maxymally symmetry-breaking ground states. Thus, the MSBGSs are
the only ground states that satisfy the first criterion of classicality.

3.2 Global properties of quantum correlations

I now investigate the nature of quantum ground states in the ordered phase,
with respect to the properties of local convertibility and entanglement distribu-
tion.

3.2.1 Local convertibility

In general, given two pure bipartite quantum states, |ψ1〉 and |ψ2〉, one says
that |ψ1〉 is locally convertible into |ψ2〉, if |ψ1〉 can be transformed into |ψ2〉 by
using only local quantum operations and classical communication (LOCC), and
the aid of an ancillary entangled system [71, 72].

This concept of local convertibility can be formalized in terms of the entire
hierarchy of the Rényi entanglement entropies Sα(ρA) = 1

1−α log2
[
Tr(ρα

A)
]

of
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Figure 3.5: (Color online) Behavior of the Rényi entropies Sα(ρA) as functions
of the different ground states in the ordered phase h < hc, for a subsystem A`

made of ` contiguous spins. Each line stands for a different value of α. Black
dotted line: α = 0.5. Green solid line: α → 1+ (von Neumann entropy). Blue
dot-dashed line: α = 3. Red dashed line: α → ∞. The different ground states
are parameterized by the superposition amplitudes u = cos(θ) and v = sin(θ).
The two vertical lines correspond to the two MSBGSs, respectively obtained for
θ = π/4 and θ = 3π/4. The Hamiltonian parameters are set at the intermediate
values γ = 0.5 and h = 0.5.

the reduced density operator ρA of a subsystem A, which provides a complete
characterization of the entanglement spectrum and its scaling behavior in differ-
ent quantum phases [49]. The necessary and sufficient condition for a bipartite
state |ψ1〉 to be locally convertible into another state |ψ2〉 is that the inequality
Sα(ψ1) ≥ Sα(ψ2) holds for all bipartitions and for all α > 0 [122]. Local convert-
ibility has been recently applied to the characterization of topological ordered
phases and to the computational power of different quantum phases [56, 33, 32].

It was previously shown that symmetric ground states are always locally
convertible among themselves for h f < h < hc, and never for h < h f < hc [49].
Here, I extend the results, by investigating the local convertibility property of all
quantum ground states in the ordered phase. In Fig. (3.5), I report the behavior
of the Rényi entropies Sα, as functions of the different ground states and for a
subsystem A made of ` contiguous spins, while in Fig. (3.6) I report it for a
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Figure 3.6: (Color online) Behavior of the Rényi entropies Sα(ρA) as functions
of the different ground states in the ordered phase h < hc, for a subsystem Ar
made by two spins and for different inter-spin distances r. Each line stands for
a different value of α. Black dotted line: α = 0.5. Green solid line: α → 1+ (von
Neumann entropy). Blue dot-dashed line: α = 3. Red dashed line: α→ ∞. The
different ground states are parameterized by the superposition amplitudes u =
cos(θ) and v = sin(θ). The two vertical lines correspond to the two MSBGSs,
respectively obtained for θ = π/4 and θ = 3π/4. The Hamiltonian parameters
are set at the intermediate values γ = 0.5 and h = 0.5.

subsystem A made of two spins and for various inter-spin distances r.
It can be observed that the MSBGSs are characterized by the smallest value

of all Rényi entropies, independently of the size ` of the subsystem A and of the
inter-spin distance r. Therefore, all different ground states are always locally
convertible to a MSBGS, while the opposite is impossible. Thus, the MSBGSs
are the only ground states that satisfy the second quantitative criterion of clas-
sicality.

3.2.2 Entanglement distribution

I now compare symmetry-breaking and symmetry-preserving ground states
with respect to entanglement distribution. The monogamy inequality imposes
how bipartite entanglement may be distributed among many parties [30, 98].
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For a given system of N spins-1/2 it reads:

τ(i|N − 1) ≥
N−1

∑
j=1

τ(i|j) j 6= i, ∀ i . (3.2)

In the above expression, τ = C2 is known as the tangle, where C is the con-
currence [62, 128]. The l.h.s. quantifies the bipartite entanglement between one
particular reference spin i, arbitrarily chosen in the system, and all the remain-
ing N− 1 spins. The r.h.s. is the sum of all the pairwise entanglements between
the reference spin and each of the remaining N − 1 spins. The inequality im-
plies that entanglement cannot be freely distributed among multiple quantum
parties N ≥ 3.

The residual tangle τ̃ is the positive semi-definite difference between the l.h.s
and the r.h.s in Eq. (3.2). It measures the amount of entanglement not quantifi-
able as elementary bipartite spin-spin entanglement. Its minimum value, com-
patible with monogamy, provides yet another quantitative criterion for classi-
cality.

In the XY models, since the expectation value of σ
y
i vanishes on each element

of the ground space, the expressions of the tangle τ and the residual tangle τ̃
for any arbitrarily chosen spin in the chain respectively read

τ = 1−m2
z − (u∗v + v∗u)2m2

x , (3.3)

τ̃ = τ − 2
∞

∑
r=1

C2
r (u, v) ≥ 0 , (3.4)

where mz = 〈e|σz
i |e〉 = 〈o|σz

i |o〉 is the on-site magnetization along z, mx =

〈e|σx
i |o〉=

√
lim
r→∞
〈e|σx

i σx
i+r|e〉 is the order parameter, and Cr(u, v) stands for the

concurrence between two spins at a distance r, for an arbitrary ground state
|g(u, v)〉, Eq. (2.36).

By comparing all ground states (symmetric, partially symmetry-breaking,
maximally symmetry-breaking), if h < h f < hc the spin-spin concurrences are
maximum in the MSBGSs [100]. If h f < h < hc, they are equal on each ground
state, because they do not depend on the superposition amplitudes u and v.
It immediately follows that the sum in the r.h. of Eq. (3.4) is maximized by
the MSBGSs, i.e. the residual tangle is minimized by the MSBGSs. Therefore,
the MSBGSs are the only ones that satisfy the third quantitative criterion of
classicality.
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4
Quench of a symmetry-breaking

ground state

In this chapter, I analyze how evolves the distinguishability between locally
inequivalent ground states, i.e. ground states that differ for expectation values
of some local physical observable defined on a finite subset, after a quench of
the Hamiltonian parameters. It has been observed, in chapter (3), that, among
locally distinguishable ground states, the MSBGSs are the most classical ones
and thus the only ones selected in real-world situations. It is therefore natural
to wonder if the image of an integrable system, that starts in one of its distin-
guishable ground states of a symmetry-breaking ordered phase, after a sudden
change of the Hamiltonian parameters, still preserves any information about
the particular initial ground state. I introduce a way to quantify the local dis-
tinguishability in terms of the trace distance between reduced density matrices,
obtained projecting on the same subset different ground states, and I prove that,
for several integrable models, with different classes of symmetry, the local dis-
tinguishability exponentially disappears in time [51].

4.1 A quantitative approach to the distinguishability

In this section, I provide a quantitative approach to the distinguishability be-
tween two different ground states, in a symmetry-breaking ordered phase. I
consider the XY models in a transverse magnetic field and the N-cluster Ising
models, one dimensional systems of spin-1/2, described by the translational in-
variant Hamiltonians HXY

{γ,h} and HcI
{φ} of Eqs. (2.1) and (2.2) respectively, that

satisfy the parity symmetry respect to a spin direction, regardless the values of
the Hamiltonian parameters {λ}.

The reduced density matrix ρ(u, v, S), obtained projecting a generic ground
state in a generic finite subset S, according with Sec. (2.3), is the tool to deal
with the problem of the local distinguishability. For a block S made by L spins
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(S = {i1, · · · , iL}), it can be expressed as the sum of a symmetric part ρsym(S) ,
i.e. the reduced density matrix obtained from the even |e{λ}〉 or the odd |o{λ}〉
ground states, that commute with the parity operator, and a traceless matrix
χ̃(S), that includes all the symmetry-breaking correlation functions, i.e. all the
terms that are nonvanishing only in presence of a symmetry-breaking, as in Eq.
(2.41)

ρ(u, v, S) = ρsym(S) + (u∗v + v∗u)χ̃(S) (4.1)

Two state are locally distinguishable if there exist a finite subset S for which
the two reduced density matrices are different. Hence, a quantity measure of
the distance between two reduced density matrices, it is also a measure of their
distinguishability. For sake of simplicity, I work with the trace distance [94] that
allows to simplify our analysis. From the definition, the maximum distance
between two reduced density matrices is reached when the two states are the
symmetric ground state and the maximally symmetry-breaking ground state
respectively. Named ρmax(S) the reduced density matrix obtained projecting
the maximally symmetry-breaking ground state on S (u = v = 1/

√
2)

ρmax(S) = ρsym(S) + χ̃(S) (4.2)

and DS the maximum of the local distinguishability

DS = ‖ρmax(S)− ρsym(S)‖ (4.3)

it follows that

DS=
1
2

2L

∑
i=1
|νi| (4.4)

where the {νi} is the set of the eigenvalues of the traceless matrix χ̃(S), that
are functions of the symmetry-breaking spin correlation functions with support
in S.

In static conditions, for a system in a magnetically ordered phase, DS is al-
ways different from zero, because there exist a magnetic order parameter, re-
gardless the choice of S. For other kind of orders, as the nematic one [78, 47], in
which the symmetry-breaking order parameter has a support greater than one
single spin, DS is different from zero or not depending on the fact that S has a
dimension comparable with the order parameter or not.

What happens when one introduces the time dependence? The results can
be easily generalized to the time dependent situations, for which the evolution
is due to a sudden quench of the Hamiltonian parameters {λ}, from {λ0} to
{λ1}. In such cases H{λ0}, H{λ1} and also the time-evolution unitary operator
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U{λ1} = exp(−ıH{λ1}t) will commute with the parity. This implies that the
time evolution induced by U{λ1} does not change the superposition coefficient
in Eq. (2.36). Therefore, to evaluate the time dependent distance between the
two reduced density matrices, it is enough to determine the set of the eigenval-
ues of time-dependent traceless matrix χ̃(S, t). Hence, one can generalized the
maximum of the distinguishability of Eq. (4.4) to the dynamic case DS(t) as

DS(t) =
1
2

2l

∑
i=1
|νi(t)| (4.5)

where νi(t) are the time dependent eigenvalues of χ̃(S, t), defined as

χ̃(S, t) = ρmax(S, t)− ρsym(S, t) (4.6)

In Eq. (4.6), ρmax(S, t) and ρsym(S, t) are the straightforward generalization
to the dynamic case of the reduced density matrices ρmax(S) and ρsym(S).

4.2 Numerical results for the XY model

In this section, I apply the quantitative approach to local distinguishability de-
scribed in the previous section to the XY model in a transverse magnetic field,
the well known one-dimensional spin-1/2 model described by the Hamiltonian
HXY
{γ,h} of Eq. (2.1)

HXY
{γ,h} = −

1 + γ

2 ∑
j

σx
j σx

j+1 −
1− γ

2 ∑
j

σ
y
j σ

y
j+1 − h ∑

j
σz

j (4.7)

where the two Hamiltonian parameters are respectively the anisotropy γ
and the transverse external field h.

The XY models satisfy the hypothesis considered in the previous section, i.e.
the Hamiltonian in eq. (4.7) always commutes with the parity operator along z
direction, Pz =

⊗
i σz

i , and it shows a magnetically ordered phase for γ ∈ (0, 1]
and h < hc ≡ 1 [113, 10], in which the parity symmetry is broken by an order
parameter equal to

〈σx
i 〉 =

[γ2(1− h2)]1/8

[2(1 + γ)]1/2 . (4.8)

The order parameter 〈σx
i 〉 never vanishes in the magnetically ordered phase,

regardless the choice of S. Consequently, the maximum of the distinguishability
in the static condition DS never vanishes. On the contrary, for the dynamic situ-
ation there is no closed formula. However, by applying the methods described
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Figure 4.1: (Color online) Behavior of the time-dependent distinguishability for
two different sudden quenches of the Hamiltonian parameter for the XY model.
Fixing the anisotropy γ = 0.5, in the left panel I report the results for the exter-
nal field quenched from h0 = 0.2 to h1 = 0.8, while in the right panel, the
external field is quenched from h0 = 0.4 to h1 = 1.2. In both cases, in the main
plot one can observe the behavior of the maximal distinguishability DS(t) as a
function of the time t, for subsystem S made by one single spin (Black dotted
line), two neighbors spins (Blue dot-dashed line), two next neighbor spins (Red
dashed line) and three spins (Green lines). In the inset at the top right, it is
plotted a zoom of the main inset for very short times, in which the transient is
highlighted. In the inset at the bottom left, it is plotted the behavior of the ab-
solute value of the magnetizations 〈σx

i 〉 along the x (Black line) and 〈σy
i 〉 along

the y (Red line) axes respectively.

in the Sec. (2.4), it can be derived the behavior of DS(t), as a function of time,
for several choice of initial and final Hamiltonian parameters. In Fig. (4.1) I plot
DS(t) for a fixed value of the anisotropy γ and for two quenches of the external
field h0 = 0.2, h1 = 0.8 and h0 = 0.4, h1 = 1.2 in the left and right panels respec-
tively. After a short transient, in which the maximum of the time-dependent
local distinguishability can increase with respect to the static case, DS(t) shows
an exponential decay e−t/τ, which a common time scale τ. The presence, dura-
tion and relevance of the transient depend on the difference between the initial
and final sets of the Hamiltonian parameters and on the choice of S: it becomes
more and more relevant as the size of S increase and the distance between the
initial and final Hamiltonian parameters decreases. The time scale τ, instead,
does not depend on S but depends on the parameters of the system before and
after the quench:it increases as the two sets become closer and closer. As en
example, in Fig. (4.2) I report the behavior of the time scale τ as function of
the external field h1, in the XY model, for several sets of the initial parameters
γ0 = γ1 and h0.
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Figure 4.2: (Color online) Behavior of time scale τ, as a function of the final
external field h1, in the XY models, for several sets of the initial parameters
and for different quenches that involve only the external field. Black circles
represent the case in which γ0 = γ1 = 0.8 and the initial value of the external
field is h0 = 0.2; red squares stand for the case in which γ0 = γ1 = 0.5 and
h0 = 0.5; blue stars represent the case in which γ0 = γ1 = 0.2 and h0 = 0.8.

The exponential decay of DS(t) is a consequence of the exponential decay
that characterizes all the symmetry-breaking correlation functions with support
included in S. In the bottom left insets of Fig. (4.1), I plotted some of these cor-
relation functions, It is evident that the time evolution induced by a sudden
quench of the Hamiltonian parameters forces a magnetization along y direction
that in the static condition is equal to zero and that vanishes in the limit of large
times. A similar behavior is also shared by all the other symmetry-breaking
correlation functions, that in the static condition vanish, and also by the correla-
tion functions which operators commute with the parity, that in static condition
vanish and that in the steady state disappear with a behavior slower than an
exponential one. This fact immediately implies that, regardless the choice of S,
the steady state, realized in the limit of diverging time, has no memory about
the superposition of the initial ground states, i.e. for any subset S, the reduced
density matrix of the steady state ρ(u, v, S, t → ∞) holds the same symmetries
of the reduced density matrix obtained from the symmetric ground state in the
stationary condition ρsym(S).

However, the two states show very different physical properties, due to the
disappearance of the order parameter and the associated long range order. The
most relevant example of such differences is the value of the mutual information
between two macroscopically separated spins. In fact, it is known [57] that the
symmetric ground states in a ferromagnetic phase are characterized by a non
vanishing mutual information between two very far spins, associated to the
presence of a non zero order parameter mx
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Figure 4.3: (Color online) Behavior of the absolute values of the differences ∆
for four symmetry-breaking correlation functions, obtained choosing RMAX =
R + ∆R and RMAX = R, as function of time, for a fixed set of the Hamilto-
nian parameters γ = 0.8, h0 = 0.2 and h1 = 0.8. I have arbitrarily chosen
∆R = 10. The different curves stands for: black circles (left-most curve) R = 20;
red squares R = 40; blue stars R = 60; green upward triangles R = 80; orange
downward triangles (right-most curve) R = 100; From the top left ,in the clock-
wise order, I have plotted the difference for the following correlation functions
〈σx

i 〉, 〈σ
y
i 〉, 〈σ

y
i σz

i+1〉 and 〈σx
i σz

i+1〉. The lines at 10−9 indicate the computational
noise upper limit at which the differences become significant.

I2(∞) = log2

[
1 +

m4
x(1− (uv∗ + vu∗)4)

(1 + m2
z + m2

x(uv∗ + vu∗)2)2

]
(4.9)

However, after the quench, all the correlation functions that break the parity
symmetry, including also the order parameter mx, go rapidly to zero, implying
the disappearance of the mutual information. This represent a further proof of
the fragility of the states with global entanglement, detected by the persistence
of a non vanishing mutual information in the limit of large distance between
the spins [57].

I want to point out that the expectation values of the operators that anti-

commutes with Pz, i.e. 〈Ô{µi}
S 〉t =

√
limR→∞ 〈W

{µi}
S∪S+R〉t, cannot be evaluated
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analytically, with the exception of some particular case at t = 0 or t → ∞, in
which one can use the Szegö [119] theorem, as pointed out in Sec. (2.4) This
forces to make numerical evaluations, that limits the use of a value of R, named
RMAX, large but finite. In which limit this approximation is valid? In Fig. (4.3),
I report the differences between evaluations of four symmetry-breaking corre-
lation functions, made with two different RMAX (RMAX and RMAX + ∆R with
∆R = 10), for the XY models. If the difference is greater than the computational
noise, set arbitrarly to 10−9, the estimation of 〈Ô{µi}

A 〉 with that R = RMAX is
not accurate. All the curves have a very similar pattern. Up to a certain time
t∗(RMAX), that grows with the increase of RMAX, the difference is comparable
with the computational noise. When t becomes greater than t∗(RMAX), it can be
observed a coherent increment of the difference, that saturates to a small thresh-
old value, but nonetheless significant and not negligible with workable value of
RMAX. For this reason, all the results showed in the main text are obtained con-
sidering t always less that t∗(RMAX).

4.3 Numerical results for the N-cluster Ising models

In the previous section, in the framework of the XY models, I proved that the
maximum of the local distinguishability, after a sudden quench of the Hamil-
tonian parameters, goes to zero exponentially in time, regardless the particular
choice of the initial and final set of Hamiltonian parameters, and of the subset
S. As a consequence, in the limit of very large time, the system loses completely
any information about the particular initial ground state. The question that nat-
urally arises is: how general is this picture?

In the attempt to provide an answer to this question, I extend the analysis
to different models with a symmetry-breaking ordered phase, the well known
N-cluster Ising models [118, 46, 47], described by the Hamiltonian HcI

{φ} of Eq.
(2.2)

HcI
{φ} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σ
y
j σ

y
j+1 (4.10)

where φ is the phase parameter, that controls the relative weight of the clus-
ter and Ising interaction terms and ZN

i =
⊗N

k=1 σz
i+k

This family of models is relevant for the analysis, because it includes differ-
ent Hamiltonians that fall into different classes of symmetry, that are not vio-
lated in the symmetry-breaking ground states, with the only exception of the
parity along the z direction, with an order parameter for φ > φc = π/4 equal to
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Figure 4.4: (Color online) Behavior of the time-dependent distinguishability for
two different sudden quenches of the Hamiltonian parameters for the N-cluster
Ising models, with N = 1. In the left panel, I report the results for the phase
parameter φ quenched from φ0 = 5

16 π to φ1 = 7
16 π, while in the right panel, φ

is quenched from φ0 = 3
8 π to φ1 = 1

8 π . In both cases, in the main plot one can
see the behavior of the maximum of the distinguishability DS(t) as a function
of the time t, for subsystem S made by one single spin, two neighbors spins and
two next neighbor spins (Black dotted line), and three spins (Red solid line). In
the inset, it is plotted a zoom of the main inset for very short times, in which the
transient is highlighted.

(−1)i 〈σy
i 〉 =

(
1− tan(φ)−2

) N+2
8 (4.11)

I extend to these models the same analysis made for the XY models in the
previous section. In Fig. (4.4), I plot the numerical results for the maximum of
the time-dependent distinguishability DS(t) as a function of the time t, for two
different quenches of the parameter φ. Comparing the results for the N-cluster
Ising models with the results for the XY models in Fig. (4.1), one can see several
analogies and differences.

In completely analogy with the XY models, also for the N-cluster Ising mod-
els DS(t), after a transient in which it may increase, shows an exponential decay,
which time scale does not depend on S but only on the values of φ before and
after the quench. Therefore, the steady state, realized at a very large time, loses
all the informations about the particular initial ground state.

On the contrary, the presence of other symmetries that are preserved in the
symmetry-breaking ground states plays an extremely important role. In fact,
if one takes a look at the two-body fermionic correlation functions gr(φ0, φ1, t),
fr(φ0, φ1, t) and hr(φ0, φ1, t) of the N-cluster Ising models, one notes that, in
the stationary case, fr(φ0) = −hr(φ0) = δr,0, in completely analogy with the
XY models, and gr(φ0) = 0 ∀r 6= a(N + 2) + 1, whit a an integer [118, 47],
differently from the XY models, where all the g(γ, h0, r) 6= 0. Such a difference
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implies that the only spin correlation functions, which support is included in a
subsystem S with a size L < N + 2, different from zero in static conditions can
be 〈σy

i 〉. Consequently, DS1 = DS2 if LS1 , LS2 < N + 2.
After the quench, instead, the two-body fermionic correlation functions de-

pend on time. But, independently of the parameters before and after the quench,
at any time t > 0, g(φ0, φ1, r, t) = 0 ∀r 6= a(N + 2) + 1 and f (φ0, φ1, r, t) =
−h(φ0, φ1, r, t) with f (φ0, φ1, r, t) = 0 ∀r 6= a(N + 2). As a consequence, all the
symmetry-breaking spin correlation functions, which operators have a support
in a subsystem S with a size L < N + 2 remain zero also after the quench. In
completely analogy with the stationary case, this results is due to the presence of
residual symmetries of the system that are not violated by the ground states that
break the parity symmetry. Consequently, DS1(t) = DS2(t) if LS1 , LS2 < N + 2,
as a generalization to the time dependence of the stationary results.
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5
N-cluster models with a transverse

magnetic field

In this chapter, following the great interest of the scientists towards systems
with orders that do not have classical counterparts, I analyze a family of fully
analytical solvable spin-1/2 models, named N-cluster models in a transverse
magnetic field, in which a many-body cluster interaction competes with a uni-
form transverse magnetic field. These models, independently by the cluster size
N + 2, exhibit a quantum phase transition, that separates a paramagnetic phase
from a cluster one, that corresponds to a nematic ordered phase or a symmetry
protected topological ordered one for even or odd N respectively. I analyti-
cally solve the models and derive all the spin correlation functions, with which
I reconstruct the reduced density matrix and different entanglement properties.
In particular, I prove that, in contrast with the models analyzed in Ref. [47],
for any value of N there is a region of the parameter φ for which the entan-
glement between a pair of spins, as quantified by the concurrence, does not
vanish. Moreover, by analyzing the relation between conformal field theory
[64] and the divergence of the block entanglement, at a quantum critical point
φ = φc = π/4, I prove that all different models fall in different classes of sym-
metry, because the central charge turns out to be dependent on N.

5.1 Solution of the models

The Hamiltonian of equation (2.3) for the N-cluster models in a transverse mag-
netic field reads

Hch
{φ,N} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σz
j (5.1)

where σα
j (α = 0, x, y, z) are the Pauli matrices, ZN

j =
⊗N

k=1 σz
j+k and φ is the

phase parameter that controls the relative weight of the interacting terms.
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Figure 5.1: (Color online) Behavior of the second derivative of the energy den-
sity of the ground state E{φ,N}, as function of the phase parameter φ, for differ-
ent cluster sizes N + 2. The divergence is independent of N at the critical value
φc = π

4 and corresponds to a vanishing energy gap between the ground state
and the first excited state.

In these models a many-body cluster interaction term competes with an ex-
ternal magnetic field that acts uniformly on all spins of the system. Indepen-
dently by the cluster size N + 2, these models exhibit a quantum phase transi-
tion at φc = π/4, that separates a paramagnetic phase from a cluster phase, that
corresponds to a nematic ordered phase or a symmetry protected topological
ordered one for even or odd N respectively.

By following the well-known approach based on the Jordan-Wigner (JW)
transformations [73] and illustrated in the Sec. (2.1), the one dimensional spin-
1/2 Hamiltonian Hch

{φ,N} can be mapped into a non-interacting spinless fermions
Hamiltonian, freely moving along the chain [84, 9, 10, 118, 47], where, thanks the
non locality of the JW, the cluster term, involving an interaction among N + 2
spins, is mapped into a two body fermionic term, involving an interaction be-
tween sites at distance N + 1. Thanks to a Fourier transform on the fermionic
operators, one can solve the problem and derive the exact ground state |ψ{φ,N}〉
and the associated energy density E{φ,N}, in the thermodynamic limit, as in Eqs.
(2.23) and (2.24) respectively.

Explicity, the expression of the energy density is given by

E{φ,N} = −
2
π

∫ π

0

√
1 + cos((N + 1)k) sin(2φ)dk (5.2)

According to the general theory of the continuous phase transitions at zero
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temperature [113], the divergence of the second derivative of the energy density,
with respect to the Hamiltonian parameters, signals the presence of a quantum
critical point. In Fig. (5.1), I plot the second derivative of the energy density as
a function of the phase parameter φ. It clearly shows a divergence at φ = φc ≡
π/4, independently by N. The singularity corresponds to the vanishing energy
gap between the ground and the first excited state with modes k = jπ

N+2 , where
j runs from 0 to N + 1 .

5.2 The spin correlations functions

With the analytic expression of the ground state |ψ{φ,N}〉 of the Hamiltonian
Hch
{φ,N}, all the spin correlation functions can easily be derived. By following the

method illustrated in Sec. (2.2), it immediately follows that

〈Ai〉 = 0
〈Bi〉 = 0

〈Ai Ak〉 = δik

〈BiBk〉 = −δik (5.3)
〈Bi Ak〉 = gi,k(φ, N) ≡ gr(φ, N)

with r = i − k. The explicit expression of the non-trivially zero fermionic
correlation function gr(φ, N) can be obtained from the explicit expression of
α{φ,N},k and β{φ,N},k of Eq. (2.22), in terms of the ε{φ,N},k and δ{φ,N},k of Eq.
(2.18)

gr({φ}, N)=
1
π

∫ π

0

cos(k(N + 1 + r))cos φ+cos(kr) sin φ√
1 + cos((N + 1)k)sin(2φ)

dk . (5.4)

Solving this integral, one note that if r 6= l(N + 1), where l is an integer
number that runs from −∞ to ∞, then the gr(φ, N) vanishes for all values of φ.
This fact, plays a fundamental role in the behavior of the entanglement property
among different spins.

From Eqs. (5.3) and (5.4), one can recover all the spin correlation functions
of interest, and I point out some interesting results about some specific ones.

The presence of the external field along the z axis forces a magnetization
along the z direction, i.e. 〈σz

j 〉, that it equals to

〈σz
j 〉 = −g0(φ, N) (5.5)
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and, therefore, it is always different from zero for all possible values of φ 6= 0
and for all possible N.

The two-body spin correlation functions, instead, can be written as 〈σµ
i σ

µ
i+r〉

with µ = x, y, z. If µ ≡ z, the correlation function 〈σz
i σz

i+r〉 have a very simple
expression in terms of gr(φ, N)

〈σz
i σz

i+r〉 = g0(φ, N)2 − gr(φ, N)g−r(φ, N) (5.6)

In the case of r 6= l(N + 1), ∀l ∈ I , it follows that

〈σz
i σz

i+r〉 = g0(φ, N)2 ≡ 〈σz
j 〉

2 (5.7)

Otherwise, if µ = x, y, the spin correlation functions are given by the Slater
determinant expressed in Eqs. (2.33) and (2.34). Taking into account that gr(φ, N)
vanishes for all r 6= l(N + 1), it follows that

〈σx
i σx

i+r〉 = 〈σ
y
i σ

y
i+r〉 = 0 ∀r 6= l(N + 1) (5.8)

In the very relevant case in which r = N + 1, one can note that

〈σx
i σx

i+N+1〉 = (−1)Ng−(N+1)(φ, N) g0(φ, N)N

〈σy
i σ

y
i+N+1〉 = (−1)NgN+1(φ, N) g0(φ, N)N (5.9)

5.3 The order parameters

As pointed out in Sec. (5.1), the behavior of the second derivative of the ground
state energy density shows that the system undergoes a quantum phase transi-
tion at φ = φc ≡ π/4, regardless the value of N. However, the divergence of the
free energy is not a detector of the kind of phases realized belove and above a
quantum critical point. In this section, I determine the nature of the two phases,
for all possible value of N, by studying the behavior of the order parameters
that characterize them.

In the phase dominated by the many-body cluster interaction terms, i.e.
when φ < φc, one can apply the results obtained in Ref. [47]. In fact, for φ = 0
the two models coincide and hence also the order parameters are the same, for
any N. When φ ≥ 0, until φc is reached, the same order parameters are different
from zero, for the adiabatic deformation of the ground state [74].

Therefore, the many-body cluster phase is characterized by two different
kind of orders, depending on N. For odd values of N, the system is in a symme-
try protected topological ordered phase, characterized by a string order param-
eter while, for even values of N, the system is in a nematic phase, characterized
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Figure 5.2: (Color online) Behavior of the expectation value
〈
O(N)

j O
(N)
j+r

〉
for

N = 1 (left panel) and N = 2 (right panel) and r = 3, 6, 9, 12, 15, as a function
of the phase parameter φ. Green dots (upper curve) r = 3, blue up-triangles
r = 6, red down-triangles r = 9, magenta squares r = 12 and black stars (lower
curve) r = 15. As r increases, the expectation value tends to disappear in the
paramagnetic phase while it remains finite in the cluster phase.

by an order parameter defined on a block of spins with dimension greater than
one single spin. Hence, one can define two operators, for odd and even values
of N respectively

O(N)
j =

j−N−1⊗
k=1

σz
k

 σ
y
j−Nσx

j−N+1 · · · σx
j odd N

O(N)
j = σx

j σ
y
j+1σx

j+2 · · · σx
j+N even N (5.10)

in such a way to rewrite the Hamiltonian of Eq. (5.1) as follows

Hch
{φ,N} = − cos(φ)∑

j
O(N)

j O
(N)
j+1+sin(φ)∑

j
σz

j (5.11)

The the string order parameter S (N)
j and the nematic order parameter B(N)

j
are defined as follows

S (N)
j =

√
lim
r→∞

〈
O(N)

j O
(N)
j+r

〉
odd N

B(N)
j =

√
lim
r→∞

〈
O(N)

j O
(N)
j+r

〉
even N (5.12)
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Figure 5.3: (Color online) In the left panel, I plot the behavior of the string order
parameter S(N)

j for N = 1, 3, 5, 7, 9, as a function of the phase parameter φ < φc:
green dots (upper curve) N = 1, blue up-triangles N = 3, red down-triangles
N = 5, magenta squares N = 7 and black stars (lower curve) N = 9. In the
right panel, I plot the behavior of the nematic order parameter B(N)

j for N =

2, 4, 6, 8, 10, as a funtion of the phase parameter φ < φc: green dots (upper curve)
N = 2, blue up-triangles N = 4, red down-triangles N = 6, magenta squares
N = 8 and black stars (lower curve) N = 10. The dots represent the numerical
results of the order parameters S(N)

j and B(N)
j of Eqs. (5.12), whereas the curves

correspond to analytical fits S(N) and B(N) defined in Eq. (5.13).

In Fig. (5.3), I plotted the expectation values
〈
O(N)

j O
(N)
j+r
〉

for odd N = 1
(left panel) and even N = 2 (right panel) respectively, as a function of the phase
parameter φ, by varying r. It is evident that, as r increases, these expectation
values tend to disappear in the paramagnetic phase, while remain finite in the
cluster phase, by makingO(N)

j a candidate for the order parameter. In Fig. (5.3),

in fact, I plotted S (N)
j (left panel) and B(N)

j (right panel), for a sufficiently large
value of r and for different values of N. It is evident that they capture perfectly
the nature of the cluster phase, because they remain different from zero below
the critical point and disappear above.

Analyzing the numerical data obtained for both defined order parameters,
S (N)

j and B(N)
j , I find finally the same dependence on N and φ, i.e.

S (N) =
(

1− tan(φ)2
) N+1

8

B(N) =
(

1− tan(φ)2
) N+1

8
(5.13)
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From the Eq. (5.13), it follows that critical exponent β depends on N

β(N) =
N + 1

8
(5.14)

Comparing these results to the equivalent expression in Ref. [47], it is ev-
ident that the critical exponents for two models are different: in the N-cluster
models in a transverse magnetic field the critical exponent is N+1

8 while in the
N-cluster Ising models it is equal to N+2

8 . One can than conclude that, by fixing
N, the two families of models fall in different classes of symmetry. Moreover, by
fixing N and φ < φc, the order in the N-cluster models in a transverse magnetic
field is stronger than the order in the N-cluster Ising models. It follows that an
external uniform magnetic field affects the cluster phase less than a short range
magnetic Ising-like interaction.

On the contrary, above the quantum critical point, i.e. for φ > φc, the models
show a phase dominated by the external magnetic field. In such a phase, there
is no order parameter and the system is in a typical paramagnetic phase.

5.4 The entanglement properties

In this section, I analyze the entanglement properties between spins in a block as
well as between a block of spins and the rest of the chain. Despite the complex-
ity of the class of models under investigation, I obtain general results showing
the relevance of the entanglement features in these systems. To study the en-
tanglement properties, I focus on the reduced density matrix of m spins, which
is obtained by tracing out all the degrees of freedom of the remaining spins of
the system, according with Sec. (2.3). The reduced density matrix of m adjacent
spins can be expressed in terms of the m-points spin correlation functions as in
Eq. (2.37)

ρ(m) =
1

2m ∑
α1,...,αm

〈σα1
1 σα2

2 · · · σ
αm
m 〉 σα1

1 ⊗ σα2
2 ⊗ · · · ⊗ σαm

m (5.15)

To obtain the expression of the m-point spin correlation functions, I used the
results obtained in Sec. (5.2).

I focused the attention on three different entanglement measures: the con-
currence [128], that quantifies the entanglement between two spins in the chain,
the genuine multipartite entanglement [61, 58, 86] between spins in a block of
the dimension of the cluster interaction and the von Neumann entanglement
entropy between a block of adjacent spins and the rest of the chain, because of
its relevant relation with the central charge at a quantum critical point [64].
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5.4.1 Pairwise entanglement

Taking into account the properties of the spin correlation functions derived in
Sec. (5.2), I prove the following theorem:

Theorem 1. If the distance r between the two spins cannot be written as r = l(N + 1),
with l ∈ I , then the two spins are not entangled

Proof: The proof is based on the results obtained in Sec. (5.2) for the spin
correlation functions. In fact, in agreement with Eq. (5.15), the reduced density
matrix of 2 spins can be written as a linear composition of single body and
two body spin correlation functions. For what concern the single body spin
correlation function, from the symmetry properties of the fermionic correlation
function gr(φ, N), it follows that

〈σx
i 〉 = 0

〈σy
i 〉 = 0

(5.16)

because of 〈Ai〉 = 〈Bi〉 = 0 (see Eq. (5.3)). On the other hand, for what con-
cern the two body spin correlation functions, all the functions that involve dif-
ferent spin operators vanish in agreement with the fact that 〈Ai〉 = 〈Bi〉 = 0 and
〈Ai Aj〉 = 〈BiBj〉 = 0 if i 6= j (see Eq. (5.3)). Thus, the two spins reduced den-
sity matrix depends on four different correlation functions only: 〈σz

i 〉, 〈σx
i σx

i+r〉,
〈σy

i σ
y
i+r〉 and 〈σz

i σz
i+r〉.

If r 6= l(N + 1), with l ∈ I , it follows that

〈σx
i σx

i+r〉 = 0

〈σy
i σ

y
i+r〉 = 0

(5.17)

The reduced density matrix depends only on 〈σz
i 〉 and 〈σz

i σz
i+r〉 and, there-

fore, is diagonal in the basis of the eigenstate of σz
i and σz

i+r. This fact is the proof
that the reduced density matrix is classical and no entanglement arises between
i-th and i + r-th spins. Q.E.D.

On the contrary, when r = l(N + 1), 〈σx
i σx

i+r〉 6= 0 and 〈σy
i σ

y
i+r〉 6= 0. The

reduced density matrix is not classical and it exists a region of the Hamiltonian
parameters for which spins are entangled.

It is possible to quantify such entanglement in terms of the concurrence C(ρ)
[128]. In Fig. (5.4), it is plotted the concurrence as a function of the phase param-
eter φ, for two spins at the endpoints of the cluster, i.e. l = 1 and r = (N + 1),
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Figure 5.4: (Color online) Behavior of the concurrence C(ρ) between two spins
at the endpoints of the cluster, as function of the phase parameter φ, for different
N that runs from 1 (highest curve) to 12 (lowest curve). Note that only for N = 1
the concurrence is non-zero before and after the critical point and, generally, it
decreases with increasing cluster size.

and for different values of N. It is evident that there exists a region of φ for
which the concurrence does not vanish.

The concurrence shows a similar behavior with N: it is different from zero in
a region confined in the paramagnetic phase, with the only exception of N = 1;
by increasing N, the concurrence becomes smaller and smaller and the relative
maximum goes towards higher value of φ. However, at φ = π/2, regardless
the value of N, the systems admit a factorization point [42, 43, 44], with a single
factorized ground state, in which all entanglement quantities vanish.

On the other hand, for all l > 1 all the concurrences are identically zero.
Therefore, the entanglement is always limited between spins at the endpoints
of the clusters.

5.4.2 Genuine multipartite entanglement

For what concerne the genuine multipartite entanglement, I prove the following
theorem

Theorem 2. For each block made by m adjacent spins, with m ≤ N + 2, there is no
genuine multipartite entanglement

Proof: The proof is based on the fact that, following the definition of the
genuine multipartite entanglement for a mixed state, it must be impossible to
find a decomposition of the reduced density matrix in states that show only
entanglement between a couple of spins.
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The reduced density matrix of a block made by N + 2 adjacent spins can
be written, as in Eq. (5.15), in terms of the spin correlation functions and, in
turn, all the spin correlation functions can be written in terms of the gr(φ, N)
functions. Taking into account the results shown in Sec. (5.2) and the fact that
the maximum distance between two spins in the block is N + 1, the reduced
density matrix depends only on three different functions: g0(φ, N), gN+1(φ, N)
and g−N−1(φ, N). Therefore the only spin correlation functions different from
zero are that diagonal in the natural basis or that associated to an inversion of
the two spins at the endpoints of the block. With this result, in the natural basis,
the reduce density matrix can be written as a linear convex combination

ρN+2 = ∑
i

pi

( ⊗
k=2,N+1

χ
(k)
i

)
⊗ χ

(1,N+2)
i (5.18)

where χ
(k)
i is a state defined on the k-th spin (k runs from 2 to N + 1 ) of the

block and χ
(1,N+2)
i is a state (entangled or not) defined on the two endpoints

spins of the block. In other words, the reduced density matrix can be written as
a sum of states that, with the only exception of a possible bipartite entanglement
between the two endpoints spins, are fully factorized. In such state, it comes
immediately that any multipartite entanglement vanishes.

If now one considers a block made by m = N + 1 adjacent spins, it follows
that the reduced density matrix can be obtain by Eq. (5.18), tracing out one of
the two endpoints spin. Thus, the reduced density matrix becomes a linear con-
vex combination of fully disentangled states. Hence, also any subsystem cannot
show any multipartite entanglement. Q.E.D.

It is interesting to make a comparison with the results reported in Ref. [47]
where, on the contrary, there is no bipartite entanglement but a significant value
of genuine multipartite entanglement, confined in the anti-ferromagnetic phase,
with the only exception of N = 1. Comparing these two results, and taking into
account the proof of the presence of the genuine multipartite entanglement in
the XY-models [45, 63], it can counter-intuitively be concluded that a funda-
mental requirement to have genuine multipartite entanglement is the presence,
in the Hamiltonian, of a simple Ising-like interaction.

5.4.3 Block entanglement

Another important entanglement property in multipartite systems concerns the
entanglement between a block of m spins and the rest of the chain and how
it relates to the holomorphic and anti-holomorphic sectors in conformal field

64



theory [64].
For this purpose, I compute the Von Neumann entropy of the reduced den-

sity matrix of m spins

S(m) = −Tr
(

ρ(m) log2(ρ
(m))

)
(5.19)

Using the methods developed in Ref. [125, 80], it follows that

S(m) =
m

∑
i=1

HShannon

(
1 + νi

2

)
(5.20)

where HShannon(x) is the Shannon entropy

HShannon(x) = −x log2(x)− (1− x) log2(1− x) (5.21)

and νi are the imaginary part of the eigenvalues of the matrix Γ′ given by(
Γ′
)

ij = δij − i
(

Γ(m)
)

ij
(5.22)

with

Γ(m) =


Π0 Π−1 · · · Π−m+1
Π1 Π0 · · · Π−m+2
...

... . . . ...
Πm−1 Πm−2 · · · Π0

 (5.23)

and

Πr =

(
0 gr(φ, N)

−g−r(φ, N) 0

)
(5.24)

I evaluate numerically the von Neumann entropy for blocks of length rang-
ing from 1 to 200 spins, at the critical point φc = π/4, for N that runs from 1 to
8 and plot the results in Fig. (5.5).

Analyzing the numerical data, it can be deduced that

S(m) ' 0.17(1 + N) log2 m + const(N) (5.25)

The multiplicative constant in front of the logarithmic term is known to be
related to the central charge of the 1 + 1 dimensional conformal field theory,
that describes the critical behavior of the chain via the relation [64]

Sm =
c+ c

6
log2 m (5.26)
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Figure 5.5: (Color online) Behavior of the von Neumann entropy S(m) as a
funtion of the block size m, for different cluster sizes N, at the critical point
φc = π/4. The value of N runs from 1 lowest (black) curve to 8 the highest
(violet) curve.

where c and c are the central charges of the so-called holomorphic and anti-
holomorphic sectors of the conformal field theory. Due to the existence of a
duality in the system under investigation, it follows that c = c and hence

c = c(N) ' 0.51(1 + N) (5.27)

Two quantum one-dimensional systems belong to the same universality class
if they have the same central charge. In this case, the central charge, as well
as the critical exponent β of Eq. (5.14), depends on N. This implies that the
N-cluster models in a transverse magnetic field fall into different classes, with
respect to their symmetries.
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6
Minimal set of nonlinear

ground-states functionals to detect
1-D quantum orders

Traditionally, the characterization of phase transitions in strongly correlated
systems has been based on the “standard” Gizburg-Landau scenario of second
order phase transitions. The order, associated to the breaking of some symme-
try of the Hamiltonian, is characterized by local order parameters O, whose
expectation values are different from zero in the whole ordered phase. How-
ever, there are important cases where an order parameter is not available, as
in presence of topological phases, or more simply where a local parameter is
intrinsically difficult to construct or measure, as in presence of nematic phases.
A similarly challenging situation realizes whenever the phase diagram of the
material under investigation is not known at all. In all these cases a major prob-
lem is to identify a quantity able to detect a certain phase or phase transition.
The question spontaneously arises is: could one find an alternative approach to
complete characterize all the phases for which the Gizburg-Landau paradigm
fails?

In this chapter, I provide an answer to this question, by proving that the von
Neumann entropy, the Schmidt gap and the mutual information identify the
minimal set of nonlinear ground-states functionals that completely characterize
all kind of orders in 1-D quantum systems of spin-1/2 and fermions.

6.1 Models

In this section, I breefly review both the 1-D spin-1/2 models, i.e. the XY mod-
els in a transverse magnetic field, the N-cluster Ising model and the N-cluster
models in a tranverse magnetic field, and the 1-D fermionic models, i.e. the
Kitaev chain, that I have considered.
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The Hamiltonian of the XY models in Eq. (2.1) reads

HXY
{γ,h} = −

1 + γ

2 ∑
j

σx
j σx

j+1 −
1− γ

2 ∑
j

σ
y
j σ

y
j+1 − h ∑

j
σz

j (6.1)

where γ is the anisotropy parameter and h the external uniform magnetic
field, that control the relative weight of the interacting terms. Regardless of
the value of γ, in the thermodynamic limit, these models feature a quantum
phase transition at h = hc = 1. For h > hc and for any value of γ, the ground
state space is non-degenerate and there is a finite gap in the energy spectrum
between the ground state and the first excited state. On the other hand, for
h < hc, two different cases arise: for γ = 0, the ground state space remains non-
degenerate while the energy spectrum becomes gapless and this corresponds
to the isotropic, gapless XX model, whereas for γ > 0 the ground state space
becomes two-fold degenerate, the energy spectrum is gapped, and the system
can be characterized by a non vanishing local order parameter.

The Hamiltonian of the N-cluster Ising models in Eq. (2.2) reads

HcI
{φ,N} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σ
y
j σ

y
j+1 (6.2)

where φ is the phase parameter that controls the relative weight of the inter-
acting terms and ZN

j =
⊗N

k=1 σz
j+k. Regardless the value of N, in the thermodi-

namic limit, these models feature a quantum phase transition at φ = φc = π/4.
For φ > φc, the ground state space is two-fold degenerate, the energy spectrum
is gapped, and the system can be characterized by a non vanishing local order
parameter. On the other hand, for φ < φc, the systems exibit a cluster phase, the
ground space becomes 2N+1 degenerate, the energy spectrum is gapped, and
the system can be characterized by a non vanishing block order parameter (ne-
matic phase) or a non vanishing string order parameter (topological phase) for
even or odd N respectively.

The Hamiltonian of the N-cluster models in a transverse magnetic field in
Eq. (2.3) reads

Hch
{φ,N} = − cos(φ)∑

j
σx

j ZN
j σx

j+N+1 + sin(φ)∑
j

σz
j (6.3)

where φ is the phase parameter that controls the relative weight of the inter-
acting terms and ZN

j =
⊗N

k=1 σz
j+k. Regardless the value of N, in the thermodi-

namic limit, these models feature a quantum phase transition at φ = φc = π/4.
For φ > φc, the ground state space is non-degenerate and there is a finite gap
in the energy spectrum between the ground state and the first excited state. On
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the other hand, for φ < φc, the systems exibit a cluster phase, the ground space
becomes 2N+1 degenerate, the energy spectrum is gapped, and the system can
be characterized by a non vanishing block order parameter (nematic phase) or
a non vanishing string order parameter (topological phase) for even or odd N
respectively.

The Hamiltonian of the Kitaev chain [75] reads

HK
{φ} = sin(φ)∑

j
(cjcj+1 − c+j cj+1 + h.c.)− cos(φ)∑

j
(c+j cj −

1
2
) (6.4)

where φ is the phase parameter that controls the relative weight of the in-
teracting terms and c+j , cj are the creation and annihilation fermionic operators.
In the thermodinamic limit, this model feature a quantum phase transition at
φ = φc = π/4. For φ < φc, the ground state space is non-degenerate and there
is a finite gap in the energy spectrum between the ground state and the first
excited state. On the other hand, for φ > φc, the ground state space is two-fold
degenerate, the energy spectrum is gapped, and the system can be characterized
by a non vanishing string order parameter, defined on the whole system.

These 1-D models are useful for the analysis, because, despite their complex-
ity, they can be exactly diagonalized by following the method illustrated in Sec.
(2.1) and they span, by varying the Hamiltonian parameters, all possible kind
of orders in 1-D quantum systems.

6.2 Von Neumann entropy

First attempts within an alternative approach to understanding quantum many-
body systems and their simulatability [116], focused on the study of quantum
phase transitions (QPT) in spin chains [97, 99], by exploiting the entanglement
content of the ground states of such systems. A good figure of merit to measure
the bipartite correlations embedded in the ground state of a spin chain, is the
von Neumann entropy S. For a bipartite quantum system (A|B) in a pure state,
the von Neumann entropy is calculated from the reduced density matrix ρA or
ρB according to the formula (1.21)

S(ρA) = −Tr(ρA log ρA) = −
L

∑
i=1

λi log λi (6.5)

where L is the number of spins in the subsystem A and λi are the eigenval-
ues of the reduced density matrix ρA. Its finite size scaling, i.e., the dependence
of S with the size of the subsystem L, shows remarkable properties [125]. At
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Figure 6.1: (Color online) Behavior of the von Neumann entropy S(ρL), as a
function of the size L of the subsystem. Purple club refer to 1-cluster model in
a transverse magnetic field with φ = 3π/8 (paramagnetic phase); yellow dots
refer to Kitaev chain with φ = arctan(0.5) − 0.1 (paramagnetic phase); pink
spade refer to Kitaev chain with φ = arctan(0.5) + 0.1 (topological phase); or-
ange empty squares refer to XY model with h = 0.5 and γ = 0.5 (ferromagnetic
phase); brown triangles refer to 1-cluster Ising model with φ = π/8 (topologi-
cal phase); green squares refer to 2-cluster Ising model with φ = π/8 (nematic
phase); blue diamonds refer to Kitaev chain with φ = arctan(0.5) (critical point);
light-blue triangles refer to XY model with h = 1 and γ = 0.5 (critical point);
red empty circles refer to XY model with h = 0.5 and γ = 0 (critical phase);
black stars refer to 1-cluster Ising model with φ = π/4 (critical point).

criticality, where the system is gapless, the von Neumann entropy S diverges
logarithmically as S ∼ c log L [125, 59, 64, 77, 18], where c is the so-called cen-
tral charge of the corresponding QPT as provided by the conformal field theory
(CFT). This universal logarithmic behavior of the entanglement entropy at crit-
icality underpins the conformal invariance of QPT in 1-D, and leads also to a
universal - depending asymptotically only on c - distribution of the eigenval-
ues of the reduced density matrix [23]. On the other hand, outside but close to
criticality, when the system is gapped, the von Neumann entropy S scales as
S ∼ c log ξ [18], being ξ the correlation length that sets the relevant scale for
long-distances physics.

The logarithmic divergence of S, with the size L of the system, can be ex-
plained because when a system approaches a critical point a fundamental chan-
ge in the ground state and in the structure of entanglement in the ground state
occurs: the transition is governed by a change in the spatial extent of the entan-
glement. The entanglement between a block of spins and the rest of the lattice
away from the critical point is bounded in a finite region because the correla-
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tions are damped exponentially in the separation. At the critical point, the cor-
relations, and hence entanglement, develop on all length scales. In some sense,
at the critical point the state is delocalized, compared to the local nature of the
entanglement away from the criticality.

In fig. (6.1), I report the behavior of the von Neumann entropy S as a fun-
tion of the size L of the subsystem, for all the models considered in Sec. (6.1)
and for a certain values of the Hamiltonian parameters that span all possible
phases for these quantum systems. It is evident that, at a quantum critical point,
where the system is gapless and the correlations develop at all length scale, S
diverges logarithmically as L increases, according to S ∼ c log L, while, away
from the critical point, where the system is gapped and the correlation length ξ
is bounded in a finite region, S saturates a constant value very quickly, accord-
ing to S ∼ c log ξ.

Therefore, the von Neumann entropy S can be unambiguously used to dis-
tinguish a critical system from a non critical one.

6.3 Schmidt gap

Away from criticality, when a system is gapped, the von Neumann entropy is
not suitable to characterize quantum phases, because it saturates to a constant
value, independently of the size L, for all 1-D gapped systems.

It is in this away-from-criticality regime that further informations, not in-
cluded in the entanglement entropy, can be obtained from the entanglement
spectrum, i.e. the set of eigenvalues {λi} of the reduced density matrix ρA. In-
deed, it is known that the (topological) Haldane phases, appearing for integer
spin chains [104], and non-Abelian fractional quantum hall effect states [83] are
characterized by a double (or higher) degeneracy of the entire entanglement
spectrum. Moreover, for several 1-D spin systems [34, 82], the finite-size scal-
ing (FFS) argument shows a complete characterization of the critical points and
mass scaling exponents in terms of the scaling properties of the Schmidt gap
∆λ(ρ), i.e. the difference between the the two largest non trivially degenerated
eigenvalues of the reduced density matrix ρ. Recent studies in 2D systems also
show the scaling of the entanglement spectrum near phase transitions [2, 70].

The question spontaneously arises is then: could entanglement spectrum
provide a complete characterization of quantum matter phases away from crit-
icality? I provide an answer to this question, by proving that the Schmidt gap
∆λ(ρ) completely identifies paramagnetic phases. Indeed, in the paramagnetic
phases, characterized by a non-degenerate state space and a finite gap in the en-
ergy spectrum between the ground state and the first excited state, the Schmidt
gap ∆λ(ρ) saturates at a finite value, while otherwise it goes rapidly to zero, as
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Figure 6.2: (Color online) Behavior of the Schmidt gap ∆λ(ρL), as a function of
the size L of the subsystem. In the left panel, I plot the results for both topo-
logical and symmetry-breaking ordered phases. Red dots refer to Kitaev chain
with φ = arctan(0.5) + 0.1 (topological phase); blue triangles refer to 2-cluster
Ising model with φ = π/8 (nematic phase); light-blue squares refer to 1-cluster
Ising model with φ = π/8 (topological phase); orange club refer to 1-cluster
model in a transverse magnetic field with φ = π/8 (topological phase); black
strars refer to XY model with h = γ = 0.5(ferromagnetic phase). In the right
panel, I plot the results for paramagnetic phases and criticality. Red dots refer
to 1-cluster model in a transverse magnetic field with φ = 3π/8 (paramagnetic
phase); green squares refer to XY model with h = 1.1 and γ = 0.5 (paramagnetic
phase); black triangles refer to Kitaev chain with φ = arctan(0.5) − 0.1 (para-
magnetic phase); light-blue squares refer to Kitaev chain with φ = arctan(0.5)
(critical point); blue club refer to XX model with h = 0.5 (critical phase); ma-
genta strars refer to 1-cluster Ising model with φ = π/4 (critical point).

the size L of the subsystem increases.
An arbitrary vector |ψ〉, for a bipartite quantum system AB, can be written

in the Schmidt decomposition |ψ〉 = ∑k λk |ψA
k 〉 ⊗ |ψB

k 〉 as in Eq. (1.10), where
|ψA

k 〉 (|ψB
k 〉) is the kth eigenvector of the reduced density matrix ρA (ρB) of the

subsystem A (B) and λk, the kth eigenvalue of the reduced density matrix, rep-
resents the entanglement spectrum that satisfies λk ≥ 0 and ∑k λ2

k = 1. By
assuming that λk is arranged in a descending order with k, the Schmidt gap is
defined as [34, 82]

∆λ(ρA) = λ1 − λ2 (6.6)

with λ1 and λ2 the two largest non-trivially degenerate eigenvalues.
By following the results obtained in Ref. [34, 82], I extended the analysis to a
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wide range of exactly-solvable models of spin-1/2 and fermions, that show ex-
otic phases, such as nematic and topological ones, in addition to the tradition-
ally symmetry-breaking ordered paramagnetic ones, and that fall in different
classes of symmetry.

In fig. (6.2), I report the behavior of the Schmidt gap ∆λ as a function of the
size L of the subsystem, for all the models considered in Sec. (6.1) and for a
certain values of the Hamiltonian parameters that span all possible phases for
these quantum systems. It is evident that, in the paramagnetic phases, where
the ground state is unique and there is a finite gap with the first excited state,
the Schmidt gap saturates very quickly to a constant value, as the size L of the
system increases. Otherwise, it goes rapidly to zero. At a criticality, the en-
tanglement spectrum tends to a continuum distribution, in the thermodynamic
limit, that implies the closure of the Schmidt gap as the size L of the system
increases. In the ordered phases, characterized by degenerate ground states in
the thermodynamic limit, the Schmidt gap tends to disappears as the size L of
the system increases.

According with Ref. [34, 82], it follows that the Schmidt gap ∆λ can be iden-
tified as a non-local parameter, that unambiguously capture the nature of para-
magnetic phases.

6.4 Mutual information

The von Neumann entropy and the Schmidt gap unambiguously detect the crit-
icality and the disorder of 1-D quantum systems, but are not suitable to provide
a complete characterization of the ordered ones. In this scenario, further infor-
mations can be obtained from the mutual information, a bona fide measure of
total correlations (classical plus quantum) [96]. I prove, indeed, that the mu-
tual information, between two macroscopically separated subsystems A and B,
completely identifies symmetry-breaking ordered phases, because it saturates
to a finite value when it is possible to define a finite order parameter and goes
rapidly to zero otherwise.

For a bipartite quantum system (A|B), made by two subsystems A and B at
a distance r, the mutual information is defined as [94]

Ir(A|B) = S(ρA) + S(ρB)− S(ρAB) (6.7)

where S(ρX) is the von Neumann entropy of the density matrix pertaining
to subsystem X. If for two arbitrary subsystems A and B, spatially separated
by arbitrarily large distances r, the mutual information I(A|B) is vanishing,
it is assured that there are no macroscopic correlations and, in particular, no
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Figure 6.3: (Color online) Behavior of the mutual information Ir(A|B), as a func-
tion of the distance r between the two subsystems A and B. Orange dot-dashed
lines refer to XY chain with h = γ = 0.5 (ferromagnetic phase) and A=B=3 spin;
orange dotted lines to XY chain with h = γ = 0.5 (ferromagnetic phase) and
A=B=1 spin; green dot-dashed lines to XY chain with γ = 0, h = 0.5 (critical
phase) and A=B=3 spin; green dotted lines to XY chain with γ = 0, h = 0.5 (crit-
ical phase) and A=B=2 spin; blue dot-dashed lines to 1-cluster Ising chain with
φ = π/8 (topological phase) and A=B=3 spin; blue dotted lines to 1-cluster Ising
chain with φ = π/8 (topological phase) and A=B=1 spin; red dot-dashed lines
to 1-cluster + h chain with φ = 3π/8 (paramagnetic phase) and A=B=3 spin;
red dotted lines to 1-cluster + h chain with φ = 3π/8 (paramagnetic phase)
and A=B=2 spin; black dot-dashed lines to 2-cluster Ising chain with φ = π/8
(nematic phase) and A=B=3 spin; black dotted lines to 2-cluster Ising chain with
φ = π/8 (nematic phase) and A=B=2 spin; yellow dot-dashed lines to Kitaev
chain with φ = arctan(0.5)− 0.1 (paramagnetic phase) and A=B=2 spin; yellow
dotted lines to Kitaev chain with φ = arctan(0.5) + 0.1 (topological phase) and
A=B=2 spin.

macroscopic entanglement and no macroscopic quantum correlations. Other-
wise, taking into account that the total system is in a global pure state, the two
subsystems must be macroscopically entangled and quantum correlated.

In the XY model in a transverse magnetic field, that shows a quantum phase
transition between a magnetically ordered phase and a paramagnetic one, it has
been demonstrated that, in the entire phase with symmetry-breaking, the maxi-
mally symmetry-breaking states have vanishing long-distance mutual informa-
tion I∞(A|B), while the latter remains finite for any non maximally symmetry-
breaking superposition, attaining a maximum for the totally symmetric states.
On the contrary, in the paramagnetic phase, I∞(A|B) identically vanishes for
any state [57]. These results can be extended to the N-cluster models, that
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exhibit non-trivially ordered phases, such as nematic and topological ones. I
proved that, for dimensions of the subsystems A and B comparable with the
size of the order parameters, the mutual information vanishes for the maxi-
mally symmetry-breaking states, while attains the maximum value for the to-
tally symmetric ones, in completely agreement with Ref. [57]. In particular, it is
possible to derive an analytical expression for the maximum (totally symmetric
states) 2-Rényi based mutual information I∞(A|B), that is a functional of the
order parameter

I∞(A|B) ∼ log2 (1−C · OP α) (6.8)

where C is a constant that depends on certain correlation functions, α is a
certain power law and OP is the order parameter. For the 2-cluster Ising model
of Ref. [47] and for the 2-cluster models in a transverse magnetic field of chapter
(5), that exibit a nematic phase (N = 2, odd) for φ < φc = π/4, the correspond-
ing expression of the 2-Rènyi based mutual information I∞(A|B) is given by

I∞(3|3)=log2

[
1 +
G4

xyx(1− (uv∗ + vu∗)4)

(1 + G2
xyx(uv∗ + vu∗)2)2

]
2-cluster Ising

I∞(3|3)=log2

[
1 +

G4
xyx(1− (uv∗ + vu∗)4)

((1 + m2
z)

3 + G2
xyx(uv∗ + vu∗)2)2

]
2-cluster field

(6.9)

where Gxyx = 〈σxσyσx〉 is the nematic order parameter and u, v the super-
position amplitudes, according with Sec. (2.3). The only non-vanishing 2-Rènyi
based mutual information I∞(A|B) is obtained for subsystems A and B made
by 3 or more spins, i.e. subsystems on which the order parameter Gxyx is differ-
ent from zero. Due to the normalization constraint, |u|2 + |v|2 = 1, the fractions
in Eq. (6.9) are semi-definite positive and vanish only either at Gxyx = 0, i.e..
away from the cluster ordered phase, or when (uv∗ + u∗v) = 1. Therefore, in
the cluster phase, the only ground states with vanishing long-range mutual in-
formation are the maximally symmetry-breaking ground states (u = v = 1/

√
2)

and the maximum is achieved in the totally symmetric (u = 1, v = 0) or anti-
symmetric (u = 0, v = 1) ones.

Therefore, I applied these results, for the symmetric ground states, to all
models considered in Sec. (6.1), for certain values of the Hamiltonian parame-
ters, that span all possible phases for these quantum systems, and for different
sizes of the subsystems A and B, and reported in Fig. (6.3) the scaling of the
mutual information I∞(A|B) as the distance r between A and B increases. It
is evident that the mutual information saturates to a finite constant value very
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Disordered Critical Ordered Topological
Nematic On site

∆λ(ρL) −−−→
L→∞

6= 0 −−−→
L→∞

0 −−−→
L→∞

0 −−−→
L→∞

0 −−−→
L→∞

0

S(ρL) −−−→
L→∞

6= 0 ∼ log(L) −−−→
L→∞

6= 0 −−−→
L→∞

6= 0 −−−→
L→∞

6= 0

Ir(A|B) −−−→
r→∞

0 −−−→
r→∞

0 −−−→
r→∞

6= 0 −−−→
r→∞

6= 0 −−−→
r→∞

0

Table 6.1: Behavior of the Schmidt gap, the von Neumann entropy, and the mu-
tual information for all possible 1-D quantum phases. The Schmidt gap ∆λ(ρL)
detects the disorder of a system, because it saturates a finite constant value in
a disordered phase and goes rapidly to zero otherwise, as L increases; the von
Neumann entropy S(ρL) distinguishes a critical system from a non critical one,
because of the logarithmic scale with the size L of the system at a critical point;
the symmetry-breaking ordered systems, instead, is characterized by the mu-
tual information Ir(A|B), because it saturate a constant value in the ordered
phases and disappears otherwise, as the distance between two subsystems A
and B increases. Topological ordered phases, moreover, can be detected by an-
alyzing all three nonlinear ground-states functionals.

quickly for models that exhibit quantum symmetry-breaking ordered phases, if
the dimensions of the subsystems A and B are comparable with the size of the
order parameters, and goes rapidly to zero otherwise.

Therefore, it follows that the mutual information can be unambiguously
used to distinguish symmetry-breaking ordered phases from other ones.

How about the topological ordered phases? The topological ordered phases,
via their deeply non-local quantum order, need all three functionals to be com-
pletely characterized. In fact, whenever the von Neumann entropy saturates to
a constant value and the Schmidt gap and the mutual information disappear, in
the limit of increasing size L and distance r, the system unambiguously shows
topological order.

In Tab. (6.4), I summarized the results.
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7
Conclusions and outlook

The aim of this thesis focused on the investigation of two open problems of
complex quantum systems: the “real-world” selection of the maximally symme-
try-breaking ground states and the classification of all 1-D quantum orders in
systems for which the Gizburg-Landau approach fails.

In the first direction, I investigated the classical nature of local inequiva-
lent, i.e. distinguishable for the expectation value of some symmetry operators,
quantum ground states associated to a symmetry-breaking ordered phase, by
introducing three independent quantitative criteria of classicality. According
to these three criteria, I found that the maximally symmetry-breaking ground
states are the most classical ones, i.e the only ones that: i) minimize pairwise
quantum correlations, as measured by the quantum discord; ii) are always local
convertible, by only applying LOCC transformations; iii) minimize the resid-
ual tangle, satisfying at its minimum the monogamy of entanglement. This
result strongly supports the intuitive idea that the physical mechanism which
selects the maximally symmetry-breaking ground states is due to the unavoid-
able presence of environmental perturbations, such as local fields, which in real-
world experiments necessarily drive the system into the most classical among
all possible ground states.

Furthermore, I analyzed how evolves the local distinguishability between
these inequivalent ground states, after a quench of the Hamiltonian parame-
ters, in the framework of two integrable models that fall into different classes
of symmetry, i.e. the XY models in a transverse magnetic field and the N-
cluster Ising models. Despite the integrability that avoids the thermalization, I
demonstrated that the local distinguishability disappears exponentially in time,
independently of the models and the parameters before and after the quench.
Hence, in the steady state, all the informations about the particular initial ground
state are completely erased by the time evolution. Moreover, I proved that an
unitary time evolution induced by a sudden quench, for models with only mag-
netic order, forces the rise of long-range correlation functions also in the di-
rection of minimum asymmetry. These long-range correlation functions may
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induce interesting phenomena, such as the amplification of the entanglement
between two neighbors spins, with relevant applications for the quantum infor-
mation and computation [12]. I also provided further evidence of the fragility of
the states that show a nonzero global entanglement. It follows that these states
are unstable, not only from a point of view of interactions with an external en-
vironment, as shown by the behavior of the local convertibility or of the mutual
information [57], but also in a presence of a unitary evolution, typical of a closed
system.

In this sense, the work can be seen as a generalization of some previous
results, concerning the analysis of the time evolution of the order parameter,
obtained, in the framework of the XY model, by the group leaded by P. Cal-
abrese [20, 21, 22], providing a more general approach based on all the correla-
tion functions that break the symmetry. It is important to remember that these
results concerned short-range one-dimensional models, which not allow phase
transitions at temperatures different from zero [90]. In a future work, the aim
is to generalize these results to models that show ordered phases even at tem-
peratures different from zero and to other types of time evolution, that could
preserve the quantumness of a state.

In the second direction, I deeply analyzed the properties of a family of fully
analytical solvable models, named the N-cluster models in transverse magnetic
field. These models are characterized by a N + 2 body cluster interaction term,
competing with a spatially uniform transverse magnetic field. Using the Jordan-
Wigner transformations, I diagonalized the models and proved that their classes
of symmetry depend on N. However, in these models a phase transition always
occurs exactly when both terms are equally weighted, regardless the value of
N. The paramagnetic phase, realized for φ > φc, shows a very similar aspect,
for all N. On the contrary, the cluster phase, realized for φ < φc, exhibits two
different orders, depending on N. For odd or even cluster size N + 2, the models
exhibit a symmetry protected topological order or a nematic order respectively,
in agreement with the results obtained in Ref. [47]. I also investigated how
the apparent complexity of the orders translates to the amount of entanglement
shared among spins in a block or among a block of spins and the rest of the
system. Surprisingly, in completely contrast with the results obtained for the
N-cluster Ising models [47], any possible multipartite entanglement vanishes,
while the bipartite entanglement, as quantified by the concurrence, between
two spins at distance N + 1 has a non-vanishing value in a region confined in
the paramagnetic phase, with the only exception of the N = 1. The remarkable
importance of this family of fully analytical solvable models is the presence of
exotic phases, such as nematic and topological phases. Hence, they may become
a good testing ground for non-trivial spin orderings and serve as a prototype
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for studying the possible applications of quantum information tasks.
Furthermore, I investigated the quantum phase transitions of a wide range

of one dimensional models of spin-1/2 and fermions and I provided the mini-
mal set of nonlinear ground-states functionals to detect all kind of orders in 1-D.
This approach is particularly useful in systems for which the Gizburg-Landau
approach fails, because an order parameter is not available, as in presence of
topological phases, or more simply because it is difficult to construct or mea-
sure, as in presence of nematic phases. In particular, I considered the XY models
in a transverse magnetic field, the N-cluster Ising models, the N-cluster models
in a transverse magnetic field and the Kitaev chain, all exactly-solvable models
that span, by varying the Hamiltonian parameter, all 1-D quantum orders. By
studying the scaling with the size L of the system, I proved that the von Neu-
mann entropy unambiguously characterize the criticality of a system, the mu-
tual information unambiguously detect the ordered phases and the Schmidt gap
unambiguously identify the disordered ones. The topological ordered phases,
instead, via their deeply non-local quantum order, need all three functionals
to be completely characterized. In fact, whenever the von Neumann entropy
saturates to a constant value and the Schmidt gap and the mutual information
disappear, in the limit of increasing size L and distance r, the system unambigu-
ously shows topological order.

In this sense, the work can be seen as a generalization of results also known
in the framework of some 1-D systems [34, 82], to a wide range of exactly-
solvable models of spin-1/2 and fermions, that show exotic phases, such as ne-
matic and topological ones, in addition to the traditionally symmetry-breaking
ordered and paramagnetic ones, and that fall in different classes of symmetry.
In a future work, the aim is to make this picture more general, by extending the
analysis to the case of higher dimensional systems (both in space and degrees
of freedom).
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[27] D. CHRUŚCIŃSKI, J. PYTEL, AND G. SARBICKI, Constructing optimal entan-
glement witnesses, Phys. Rev. A, 80 (2009), p. 062314.

[28] A. V. CHUBUKOV, Chiral, nematic, and dimer states in quantum spin chains,
Phys. Rev. B, 44 (1991), pp. 4693–4696.

[29] F. CICCARELLO, T. TUFARELLI, AND V. GIOVANNETTI, Toward computabil-
ity of trace distance discord, New Journal of Physics, 16 (2014), p. 013038.

[30] V. COFFMAN, J. KUNDU, AND W. K. WOOTTERS, Distributed entanglement,
Phys. Rev. A, 61 (2000), p. 052306.

[31] T. M. COVER AND J. A. THOMAS, Elements of Information Theory, Wiley,
1991.

[32] J. CUI, L. AMICO, H. FAN, M. GU, A. HAMMA, AND V. VEDRAL, Local
characterization of one-dimensional topologically ordered states, Phys. Rev. B.,
88 (2013), p. 125117.

[33] J. CUI, M. GU, L. C. KWEK, M. F. SANTOS, AND V. VEDRAL, Quantum
phases with differing computational power, Nature Communication, 3 (2012),
p. 818.

[34] G. DE CHIARA, L. LEPORI, M. LEWENSTEIN, AND A. SANPERA, Entan-
glement spectrum, critical exponents, and order parameters in quantum spin
chains, Phys. Rev. Lett., 109 (2012), p. 237208.

[35] K. DUIVENVOORDEN AND T. QUELLA, Discriminating string order parame-
ter for topological phases of gapped su(n) spin chains, Phys. Rev. B, 86 (2012),
p. 235142.
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für Physik, 47 (1928), pp. 631–651.

[74] T. KATO, On the adiabatic theorem of quantum mechanics, Journal of the
Physical Society of Japan, 5 (1950), pp. 435–439.

[75] A. Y. KITAEV, Unpaired majorana fermions in quantum wires, Physics-
Uspekhi, 44 (2001), p. 131.

[76] A. Y. KITAEV, Fault-tolerant quantum computation by anyons, Annals of
Physics, 303 (2003), p. 2.

[77] V. E. KOREPIN, Universality of entropy scaling in one dimensional gapless
models, Phys. Rev. Lett., 92 (2004), p. 096402.

86



[78] C. LACROIX, P. MENDELS, AND F. MILA, Introduction to Frustrated Mag-
netism, Springer Series in Solid-State Sciences, 2011.

[79] A. LAMACRAFT, Quantum quenches in a spinor condensate, Phys. Rev. Lett.,
98 (2007), p. 160404.

[80] J. I. LATORRE, E. RICO, AND G. VIDAL, Ground state entanglement in quan-
tum spin chains, Quant. Inf. Comput., 4 (2004), p. 48.

[81] T. E. LEE, Y. N. JOGLEKAR, AND P. RICHERME, String order via floquet
interactions in atomic systems, Phys. Rev. A, 94 (2016), p. 023610.

[82] L. LEPORI, G. DE CHIARA, AND A. SANPERA, Scaling of the entanglement
spectrum near quantum phase transitions, Phys. Rev. B, 87 (2013), p. 235107.

[83] H. LI AND F. D. M. HALDANE, Entanglement spectrum as a generalization
of entanglement entropy: Identification of topological order in non-abelian frac-
tional quantum hall effect states, Phys. Rev. Lett., 101 (2008), p. 010504.

[84] E. LIEB, T. SCHULTZ, AND D. MATTIS, Two soluble models of an antiferro-
magnetic chain, Annals of Physics, 16 (1961), pp. 407 – 466.

[85] N. LINDEN, S. POPESCU, A. J. SHORT, AND A. WINTER, Quantum
mechanical evolution towards thermal equilibrium, Phys. Rev. E, 79 (2009),
p. 061103.

[86] Z.-H. MA, Z.-H. CHEN, J.-L. CHEN, C. SPENGLER, A. GABRIEL, AND
M. HUBER, Measure of genuine multipartite entanglement with computable
lower bounds, Phys. Rev. A, 83 (2011), p. 062325.

[87] S. R. MANMANA, E. M. STOUDENMIRE, K. R. A. HAZZARD, A. M. REY,
AND A. V. GORSHKOV, Topological phases in ultracold polar-molecule quan-
tum magnets, Phys. Rev. B, 87 (2013), p. 081106.
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