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Goethe



i
i

“Template” — 2017/6/9 — 16:42 — page 4 — #4 i
i

i
i

i
i



i
i

“Template” — 2017/6/9 — 16:42 — page 5 — #5 i
i

i
i

i
i

Acknowledgements

During my PhD in the NeuRoNeLab I met wonderful friends whom I warmly
thank: Luca, Paola, Massimo, thanks for the constant support, the countless

discussions and above all for the entertainment of the past three years.

A big thank you goes to the the special people I met in Helsinki: they never
let me feel alone! Many thanks to Vittorio, Veer, Marit and Pia.

A special thank goes to my family who always support me.

I really do want to thank my mentors, Prof. Roberto Tagliaferri and Prof.
Dario Greco, for the patient, the constant support and for the valuable advice

of the last three years.

Finally, the biggest thanks goes to Michele, without him I would not have
come so far. ���

5



i
i

“Template” — 2017/6/9 — 16:42 — page 6 — #6 i
i

i
i

i
i



i
i

“Template” — 2017/6/9 — 16:42 — page 7 — #7 i
i

i
i

i
i

Abstract

In recent years, the advancement of high-throughput technologies, combined
with the constant decrease of the data-storage costs, has led to the produc-
tion of large amounts of data from different experiments that characterise the
same entities of interest. This information may relate to specific aspects of a
phenotypic entity (e.g. Gene expression), or can include the comprehensive and
parallel measurement of multiple molecular events (e.g., DNA modifications,
RNA transcription and protein translation) in the same samples.

Exploiting such complex and rich data is needed in the frame of systems
biology for building global models able to explain complex phenotypes. For
example, the use of genome-wide data in cancer research, for the identification of
groups of patients with similar molecular characteristics, has become a standard
approach for applications in therapy-response, prognosis-prediction, and drug-
development.ÂăMoreover, the integration of gene expression data regarding cell
treatment by drugs, and information regarding chemical structure of the drugs
allowed scientist to perform more accurate drug repositioning tasks.

Unfortunately, there is a big gap between the amount of information and
the knowledge in which it is translated. Moreover, there is a huge need of
computational methods able to integrate and analyse data to fill this gap.

Current researches in this area are following two different integrative meth-
ods: one uses the complementary information of different measurements for the
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study of complex phenotypes on the same samples (multi-view learning); the
other tends to infer knowledge about the phenotype of interest by integrating
and comparing the experiments relating to it with respect to those of differ-
ent phenotypes already known through comparative methods (meta-analysis).
Meta-analysis can be thought as an integrative study of previous results, usually
performed aggregating the summary statistics from different studies. Due to its
nature, meta-analysis usually involves homogeneous data. On the other hand,
multi-view learning is a more flexible approach that considers the fusion of dif-
ferent data sources to get more stable and reliable estimates. Based on the type
of data and the stage of integration, new methodologies have been developed
spanning a landscape of techniques comprising graph theory, machine learn-
ing and statistics. Depending on the nature of the data and on the statistical
problem to address, the integration of heterogeneous data can be performed
at different levels: early, intermediate and late. Early integration consists in
concatenating data from different views in a single feature space. Intermediate
integration consists in transforming all the data sources in a common feature
space before combining them. In the late integration methodologies, each view
is analysed separately and the results are then combined.

The purpose of this thesis is twofold: the former objective is the definition of
a data integration methodology for patient sub-typing (MVDA) and the latter
is the development of a tool for phenotypic characterisation of nanomaterials
(INSIdEnano). In this PhD thesis, I present the methodologies and the results
of my research.

MVDA is a multi-view methodology that aims to discover new statistically
relevant patient sub-classes. Identify patient subtypes of a specific diseases is a
challenging task especially in the early diagnosis. This is a crucial point for the
treatment, because not all the patients affected by the same disease will have the
same prognosis or need the same drug treatment. This problem is usually solved
by using transcriptomic data to identify groups of patients that share the same
gene patterns. The main idea underlying this research work is that to combine
more omics data for the same patients to obtain a better characterisation of
their disease profile. The proposed methodology is a late integration approach
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based on clustering. It works by evaluating the patient clusters in each single
view and then combining the clustering results of all the views by factorising
the membership matrices in a late integration manner. The effectiveness and
the performance of our method was evaluated on six multi-view cancer datasets
related to breast cancer, glioblastoma, prostate and ovarian cancer. The omics
data used for the experiment are gene and miRNA expression, RNASeq and
miRNASeq, Protein Expression and Copy Number Variation.

In all the cases, patient sub-classes with statistical significance were found,
identifying novel sub-groups previously not emphasised in literature. The ex-
periments were also conducted by using prior information, as a new view in the
integration process, to obtain higher accuracy in patients’ classification. The
method outperformed the single view clustering on all the datasets; moreover,
it performs better when compared with other multi-view clustering algorithms
and, unlike other existing methods, it can quantify the contribution of single
views in the results. The method has also shown to be stable when perturbation
is applied to the datasets by removing one patient at a time and evaluating the
normalized mutual information between all the resulting clusterings. These ob-
servations suggest that integration of prior information with genomic features
in sub-typing analysis is an effective strategy in identifying disease subgroups.

INSIdE nano (Integrated Network of Systems bIology Effects of nanomater-
ials) is a novel tool for the systematic contextualisation of the effects of engin-
eered nanomaterials (ENMs) in the biomedical context. In the recent years,
omics technologies have been increasingly used to thoroughly characterise the
ENMs molecular mode of action. It is possible to contextualise the molecu-
lar effects of different types of perturbations by comparing their patterns of
alterations. While this approach has been successfully used for drug reposition-
ing, it is still missing to date a comprehensive contextualisation of the ENM
mode of action. The idea behind the tool is to use analytical strategies to con-
textualise or position the ENM with the respect to relevant phenotypes that
have been studied in literature, (such as diseases, drug treatments, and other
chemical exposures) by comparing their patterns of molecular alteration. This
could greatly increase the knowledge on the ENM molecular effects and in turn
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contribute to the definition of relevant pathways of toxicity as well as help
in predicting the potential involvement of ENM in pathogenetic events or in
novel therapeutic strategies. The main hypothesis is that suggestive patterns
of similarity between sets of phenotypes could be an indication of a biological
association to be further tested in toxicological or therapeutic frames. Based on
the expression signature, associated to each phenotype, the strength of similar-
ity between each pair of perturbations has been evaluated and used to build a
large network of phenotypes. To ensure the usability of INSIdE nano, a robust
and scalable computational infrastructure has been developed, to scan this large
phenotypic network and a web-based effective graphic user interface has been
built. Particularly, INSIdE nano was scanned to search for clique sub-networks,
quadruplet structures of heterogeneous nodes (a disease, a drug, a chemical
and a nanomaterial) completely interconnected by strong patterns of similarity
(or anti-similarity). The predictions have been evaluated for a set of known
associations between diseases and drugs, based on drug indications in clinical
practice, and between diseases and chemical, based on literature-based causal
exposure evidence, and focused on the possible involvement of nanomaterials in
the most robust cliques. The evaluation of INSIdE nano confirmed that it high-
lights known disease-drug and disease-chemical connections. Moreover, disease
similarities agree with the information based on their clinical features, as well as
drugs and chemicals, mirroring their resemblance based on the chemical struc-
ture. Altogether, the results suggest that INSIdE nano can also be successfully
used to contextualise the molecular effects of ENMs and infer their connections
to other better studied phenotypes, speeding up their safety assessment as well
as opening new perspectives concerning their usefulness in biomedicine.
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Chapter 1
Introduction

Cells are the basic structural, functional, and biological units of life and can be
considered as the building block of all living beings [1].

They carry precise instructions in DNA concerning how they grow and func-
tion. Complexity arose in the study of the cell phenotype, when it comes to
study the dynamic aspects of the DNA at the level of genes, RNA transcripts,
proteins, metabolites and their interactions.

In fact, the components of a biological system (for example, genes, proteins,
metabolites and so on) function in networks and these networks interact with
each other [2]. This gave birth to systems biology science whose main idea
is that the molecular level of cells must be studied together organically and
comprehensively, rather than separately. Since the objective of systems biology
is to model the interactions in a system, the experimental techniques need to be
system-wide and be as complete as possible. Therefore, there is a need to collect
and to integrate different kinds of data that are used to develop new approaches
for the contextualisation of the behaviour of biological networks and to design
and validate models [3–5].

Thanks to the technological advances in omics technologies and the decrease
of storage costs, different types of omics data have become available, among

17
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18 1. INTRODUCTION

them, there are gene expression, microRNA expression (miRNA), protein ex-
pression, copy number variation (CNV) etc. Each of these experimental data
provides potentially complementary information about the whole studied organ-
ism.

Integrating these different sources is an important part of current systems
biology research, since it is necessary to understand the whole biological system
while the information coming from a single experiment is not sufficient. For ex-
ample, the goal of functional genomics is to define the function of all the genes
in the genome under a given condition. This is a difficult task that requires
the integration from different experiments in order to be achieved [6]. Lanck-
riet et al.[7] for example, aimed at classifying proteins as membrane proteins or
not. They demonstrated that the integration of genomic data, amino acid se-
quences and protein-protein interactions increase the classification performance
compared to the use of only protein sequencing information.

Data integration methodologies arise in a wide range of clinical applications
as well. Recently, new data integration techniques have been proposed to in-
crease the clinical relevance of patients’ sub-classifications. Wasito et al. [8]
proposed a kernel based integration method for lymphoma cancer sub-typing.
They demonstrated that using the integration of DNA microarray and clinical
data using Support Vector Machines (SVM) and Kernel Dimensionality Reduc-
tion (KDR) improves the accuracy in the identification of cancer subtypes. Sun
et al. [9] employed multi-view bi-clustering to subtype cocaine users. They pro-
posed a matrix decomposition approach that integrates already known genetic
markers with clinical features to identify significant subtypes of the disease.
Data integration also plays an important role in toxicogenomics, when research-
ers want to understand the interaction between the genome and the environment
to investigate the response of the genes to toxins and how they modify the gene
expression function. Patel et al.[10] describes the contribution of different data
sources in advancing this field. The goals of data integration are to obtain higher
precision, better accuracy, and greater statistical power than those provided by
single datasets. Moreover, integration can be useful in validating results from
different datasets, under the assumption that if information from independent
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1.1. GENE EXPRESSION 19

data sources agrees, it is more likely that the information is more reliable than
information from a single source. Unfortunately, there is a big gap between the
amount of information and the knowledge in which it is translated. Even though
many computational strategies have been developed to pre-process and analyse
gene expression data, there is still a huge need of computational methods able
to integrate and analyse gene expression data with other omics data.

1.1 Gene expression

The gene expression is the process by which the information contained in a gene
is used to obtain a gene product that is often represented by proteins [11]. In a
non-protein coding genes, such as the tRNA and small nuclear RNA (snRNA)
genes, the final product is a functional RNA. It is worth mentioning that it is
a common assumption to take the gene expression level as proportional to the
amount of proteins translated. Indeed, several studies show that there exists
a strong correlation between expression levels and protein abundance [12–14].
However, it is well known that there exist situations where the opposite is also
true [15], [16]. In these cases, it is said that a post-transcriptional activity
occurred.

This makes the role of gene expression of paramount importance in the study
of the molecular profile of the cells. In fact, considering the existent relationship
between gene expression and protein translation, the level of mRNA can provide
indirectly knowledge on the state of the cell [17]. For example, by comparing
the level of gene expression in healthy and diseased subjects, the molecular basis
of the disease can be determined. Furthermore, by measuring the level of gene
expression as a function of serial processes, the molecular changes over time (cell
cycle), or the response to a specific drug or metabolite, can be identified.

Three are the options available for investigating the molecular dynamics of
the cell, that give rise to three different approaches: (1) proteomics, where the
set of proteins in the cell are analysed, (2) transcriptomics, where the set of
mRNA transcripts that lead to the production of proteins are analysed, (3)
metabolomics, where the set of metabolites generated by the proteins are ana-
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20 1. INTRODUCTION

lysed. Research in proteomics and metabolomics has been ongoing for many
years, but there is still a lack of standardised methodologies and poor reprodu-
cibility of the experiments. On the other hand, the DNA microarray technology
is a well-established tool for transcriptomic studies [18], [19]. DNA microarrays
are not the only tool available to study the gene expression, new technologies
such as RNA Sequencing, is becoming widely used for transcriptomic data ana-
lysis.

1.2 1.2 High-throughput omics technology

Technological advancement allows simultaneous examination of thousands of
genes with high-throughput techniques. Two of the major technologies used for
transcriptomic analyses are DNA microarray and RNA sequencing. They both
allow to measure gene expression but their protocol is substantially different.
Zhao et al.[20] demonstrate that RNA-Seq has some advantages with respect
to DNA microarray. RNA-Seq technology has a higher capability in detecting
low abundance transcripts. It also has a broader dynamic range than microar-
ray, that allows to detect more differentially expressed genes with higher fold-
changes. However, despite the benefits of RNA-Seq, microarrays are still widely
used by researchers to conduct transcriptional profiling experiments. This is
probably because microarrays are better known, data is easier to analyse and
they are less expensive that RNA-Seq.

1.2.1 1.2.1 DNA microarrays

DNA microarrays have been proposed by Shena et al. in 1995 as a techno-
logy able to simultaneously monitor the level of mRNA transcript for tens of
thousands genes [21]. Even if the microarrays are used for a variety of different
purposes, such as comparative genomics hybridisation (CGH) [22] or CHIP-on-
CHIP [23], their most popular application is still the large scale gene expression
analysis. Microarrays have been also used to study several diseases, the cell cycle
of various organisms as well as the regulation of many biological mechanisms.
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22 1. INTRODUCTION

Microarrays are small slides to which DNA molecules are bound. From the
samples of each experimental condition the mRNA present in the cells is ex-
tracted and manipulated (reverse transcription) to obtain complementary DNA
(cDNA). At the same time, it is also labelled with fluorescent compounds (Cy3
green fluorescence, Cy5 red fluorescence) to mark each class of sample. The
cDNA sequences hybridised with complementary sequences are positioned on
the microarray spots. The slide is then scanned with a laser light at different
wavelengths. For each spot the fluorescence intensity is recorded. The spots
that respond to green light correspond to genes expressed only in first exper-
imental condition, whereas spots responding to red light correspond to genes
expressed only in the second experimental condition; finally, the spots respond-
ing to both lights (i.e. yielding a yellow fluorescence) indicate genes expressed
in both experimental conditions. The intensity of the expression level is given
by the intensity average of the corresponding spots in the image. This process
is illustrated schematically in Figure 1.2.1.The expression values derived from
measurements made on the microarray are noisy and need to be pre-processed,
corrected with respect to the background [24] and normalised [25], [26].

1.2.2 1.2.2 RNA Sequencing

Another technology used to quantify gene expression is based on next-generation
sequencing (NGS) to reveal the presence and quantity of RNA in a biological
sample at a given moment in time [27], [28]. Classical DNA sequencing tech-
niques aims to identify the order of the four bases in a DNA strand. NGS,
also called high-throughput sequencing technologies, allows to parallelize the
sequencing process, producing thousands or millions of sequences concurrently
[29], [30]. The main differences between Microarray technology and RNA-Seq
is that with the Microarray only a limited number of genes, those bound on
the spots, can be studied. On the other hand, with RNA-Seq methodology a
scanning of the whole genome is performed, allowing to investigate both known
transcripts and exploring new ones. Therefore, RNA-seq is ideal for discovery-
based experiments [28]. For example, 454-based RNA-Seq has been used to
sequence the transcriptome of the Glanville fritillary butterfly [31]. Moreover,
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1.2. 1.2 HIGH-THROUGHPUT OMICS TECHNOLOGY 23

RNA-Seq has very low background signal, in fact, DNA sequences can been
mapped to unique regions of the genome [28].

The standard work-flow of an RNA-seq analysis is composed of three steps
(see Figure 1.2.2): (1) the RNAs in the sample of interest are fragmented and
reverse-transcribed to create a library of complementary DNAs fragments (cD-
NAs). (2) The obtained cDNAs are then amplified (i.e. duplicated millions
of times [32]) and subjected to NGS to obtain short sequences. (3) The short
reads generated can then be mapped on a reference genome. The number of
reads aligned to each gene are called counts and gives a digital measure of gene
expression levels in the investigated sample [33].

There are multiple methods for computing counts. The most used method
considers the total number of reads overlapping the exons (i.e. the portion of a
gene that is transcribed by RNA polymerase during the transcription process)
of a gene [34].

However, it can happen that a fraction of reads maps outside the boundaries
of known exons [35]. Thus, alternatively, the whole length of a gene can be
considered, also counting reads from introns (i.e. non-coding region of the genes
that are transcribed by RNA polymerase). The ’Union-Intersection gene’ model
considers the union of the exonic bases that do not overlap with the exons of
other genes [36].

After computing the counting, two kinds of biases have to be removed [37–
39]. The former to be taken into account is the sequencing depth of a sample,
defined as the total number of sequenced or mapped reads. For two given RNA-
seq experiments A and B, if A generates twice the number of reads than the
experiment B, it is likely that the counts from experiment A will be doubled.
To solve this problem, a common practise is to scale counts in each experiment
by the sequencing depth estimated for the sample [40].

The latter is related to gene length [36, 41]; in fact, the expected number
of reads mapped into a gene is proportional to both the abundance and length
of the isoforms transcribed from that gene. Indeed, longer genes produce more
reads than shorter ones. To reduce this bias, Mortazavi et al. [42] proposed to
summarise the reads with the "Reads Per Kilobase of exon model per Million
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24 1. INTRODUCTION

systems have already been applied for 
this purpose. The Helicos Biosciences 
tSMS system has not yet been used for 
published RNA-Seq studies, but is also 
appropriate and has the added advantage 
of avoiding amplification of target cDNA. 
Following sequencing, the resulting reads 
are either aligned to a reference genome 
or reference transcripts, or assembled 
de novo without the genomic sequence 
to produce a genome-scale transcription 
map that consists of both the transcrip-
tional structure and/or level of expression 
for each gene.

Although RNA-Seq is still a technology 
under active development, it offers several 
key advantages over existing technologies 
(TABLE 1). First, unlike hybridization-based 
approaches, RNA-Seq is not limited to 
detecting transcripts that correspond 
to existing genomic sequence. For 

example, 454-based RNA-Seq has been 
used to sequence the transcriptome of 
the Glanville fritillary butterfly27. This 
makes RNA-Seq particularly attractive 
for non-model organisms with genomic 
sequences that are yet to be determined. 
RNA-Seq can reveal the precise location 
of transcription boundaries, to a single-
base resolution. Furthermore, 30-bp short 
reads from RNA-Seq give information 
about how two exons are connected, 
whereas longer reads or pair-end short 
reads should reveal connectivity between 
multiple exons. These factors make RNA-
Seq useful for studying complex tran-
scriptomes. In addition, RNA-Seq can also 
reveal sequence variations (for example, 
SNPs) in the transcribed regions22,24.

A second advantage of RNA-Seq 
relative to DNA microarrays is that 
RNA-Seq has very low, if any, background 

signal because DNA sequences can 
been unambiguously mapped to unique 
regions of the genome. RNA-Seq does 
not have an upper limit for quantifica-
tion, which correlates with the number 
of sequences obtained. Consequently, 
it has a large dynamic range of expres-
sion levels over which transcripts can be 
detected: a greater than 9,000-fold range 
was estimated in a study that analysed 16 
million mapped reads in Saccharomyces 
cerevisiae18, and a range spanning five 
orders of magnitude was estimated for 
40 million mouse sequence reads20. By 
contrast, DNA microarrays lack sensitivity 
for genes expressed either at low or very 
high levels and therefore have a much 
smaller dynamic range (one-hundredfold 
to a few-hundredfold) (FIG. 2). RNA-Seq 
has also been shown to be highly accurate 
for quantifying expression levels, as deter-
mined using quantitative PCR (qPCR)18 and 
spike-in RNA controls of known concentra-
tion20. The results of RNA-Seq also show 
high levels of reproducibility, for both 
technical and biological replicates18,22. 
Finally, because there are no cloning steps, 
and with the Helicos technology there is 
no amplification step, RNA-Seq requires 
less RNA sample.

Taking all of these advantages into 
account, RNA-Seq is the first sequencing-
based method that allows the entire 
transcriptome to be surveyed in a very 
high-throughput and quantitative man-
ner. This method offers both single-base 
resolution for annotation and ‘digital’ 
gene expression levels at the genome scale, 
often at a much lower cost than either 
tiling arrays or large-scale Sanger EST 
sequencing.

Challenges for RNA-Seq
Library construction. The ideal method 
for transcriptomics should be able to 
directly identify and quantify all RNAs, 
small or large. Although there are only 
a few steps in RNA-Seq (FIG. 1), it does 
involve several manipulation stages dur-
ing the production of cDNA libraries, 
which can complicate its use in profiling 
all types of transcript.

Unlike small RNAs (microRNAs  
(miRNAs), Piwi-interacting RNAs (piRNAs), 
short interfering RNAs (siRNAs) and many 
others), which can be directly sequenced 
after adaptor ligation, larger RNA mol-
ecules must be fragmented into smaller 
pieces (200–500 bp) to be compatible 
with most deep-sequencing technologies. 
Common fragmentation methods include 
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Figure 1 | A typical RNA-Seq experiment. Briefly, long RNAs are first converted into a library of cDNA 
fragments through either RNA fragmentation or DNA fragmentation (see main text). Sequencing 
adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from 
each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned 
with the reference genome or transcriptome, and classified as three types: exonic reads, junction reads 
and poly(A) end-reads. These three types are used to generate a base-resolution expression profile for 
each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.
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Figure 1.2.2: A typical RNA-seq experiment. Briefly, long RNAs are first
converted into a library of cDNA fragments through either RNA fragmenta-
tion or DNA fragmentation (see main text). Sequencing adaptors (blue) are
subsequently added to each cDNA fragment and a short sequence is obtained
from each cDNA using high-throughput sequencing technology. The resulting
sequence reads are aligned with the reference genome or transcriptome, and
classified as three types: exonic reads, junction reads and poly(A) end-reads.
These three types are used to generate a base-resolution expression profile for
each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.
Figure and Legend from [28].
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mapped reads" (RPKM) measure, that is computed by dividing the number of
reads aligned to a gene exon, by the total number of reads mapped and by the
sum of exonic bases.

microRNA expression

MicroRNAs (miRNAs) are small (approximately 18-24 nucleotides) non-coding
RNA molecules of single-stranded DNA, which bind to mRNAs and regulate
protein expression, either promoting degradation of the mRNA target and/or
by blocking translation [43, 44], or alternatively by increasing translation [45].
miRNA are mainly active in the regulation of gene expression at the transcrip-
tional and post-transcriptional levels. They have been found to be involved
in numerous cell functions such as proliferation, differentiation, death [46, 47].
The aberrant expression of miRNAs has been implicated in the onset of many
diseases [48, 49] and they can be used for therapeutic purposes [50]. Profiles
of miRNAs in various types of tumors have been shown to contain potential
diagnostic and prognostic information [51]. The study of mirna expression is
slightly more complicated than the study of gene expression. Several technical
variables must be taken into account in problems related to microRNA isolation,
the stability of stored miRNA samples and microRNAs degradation [52]. As for
gene expression, microRNA expression can be quantified by hybridization on
microarrays, slides or chips with probes to hundreds or thousands of miRNA
targets, so that relative levels of miRNAs can be determined in different samples
[53]. microRNAs can be both discovered and profiled by high-throughput se-
quencing methods (microRNA sequencing) [54].

1.3 Biological Databases

Given the large number of omics data produced, there have been many efforts
made to collect the results of the experiments and make them available to the
research community. In fact, many are the biological available online databases,
which contain the experimental data (either in raw form that pre-processed)
and the knowledge produced by such experiment (i.e. the connection between
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the gene and disease). Examples of database that provide experimental data are
The Cancer Genome Atlas (TCGA - [55]), the Gene Expression Omnibus (GEO
[56]) databases, the Connectivity Map (CMAP - [57]) and the NanoMiner ([58]
) databases.

The TCGA is a public repository that collects samples related to more that
30 different tumours. It makes available the clinical information of the samples,
metadata regarding technicalities of the experiments, histopathology images
and molecular different information such as mRNA/miRNA expression, protein
expression, copy number, etc. GEO is a public repository that collect array and
sequence-based data coming from the scientific community and makes them
available to the public. It provides tool to help the user to query and download
experiments and curated gene expression profiles. CMAP is a collection of
transcriptional expression data from human cells treated with drugs. The main
goal of the project was to discover functional connections between drugs, genes
and diseases through the transitory feature of common gene-expression changes.
NanoMiner database contains in-vitro transcriptomic data on human samples
exposed to nanoparticles.

On the other side, some examples of database collecting knowledge extracted
from the experiments are the Comparative Toxicogenomics Database (CTD [59]
), the Medicaton Indication dataset (MEDI [60]) and the Molecular Signature
Database (MSigDB [61]).

CTD is a robust, publicly available database that aims to advance under-
standing about how environmental exposures affect human health. It provides
manually curated information about chemicalâĂŞgene/protein interactions, chem-
icalâĂŞdisease and geneâĂŞdisease relationships. These data are integrated
with functional and pathway data to aid in development of hypotheses about
the mechanisms underlying environmentally influenced diseases. MEDI is an
ensemble resource of electronic medical record (EMR) data. It contains inform-
ation related to the drugs that have been prescribed to treat certain diseases.
The MSigDB is a collection of annotated gene sets, that are useful for the
GSEA analysis or to evaluate the biological meaning of clusters of genes. All
these data can be used to perform integrative analysis both with multi-view and
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meta-analysis techniques.

1.4 Data Integration

Data integration (or data fusion) methodologies integrate multiple datasets in
order to increase the accuracy, to reduce the noise and to extract more accurate
information from multi modal datasets by finding correlation across them. Fig-
ure 1.4.1 reports a classification of the integration methodologies based on the
statistical problem, the type of analysis to be performed, on the type of data to
be integrated and on the integration stage as described in [62].

Type of Analysis

The analysis to be performed is somehow limited by the type of data involved
in the experiment and by the desired level of integration. Analyses can be di-
vided into two categories: meta-analysis and integrative analysis. Meta-analysis
can be thought as an integrative study of previous results, usually performed
aggregating the summary statistics from different studies [63, 64]. Due to its
nature, meta-analysis can only be performed as a step of late integration in-
volving homogeneous data. On the other hand, integrative analysis is a more
flexible approach that considers the fusion of different data sources to get more
stable and reliable estimates. Based on the type of data and on the stage of
integration, new methodologies have been developed spanning a landscape of
techniques comprising graph theory, machine learning and statistics.

Type of Data

Data integration methodologies in systems biology can be divided into two cat-
egories based on the type of data: integration of homogeneous or heterogeneous
data types. Usually biological data are thought to be homogeneous if they assay
the same molecular level, for gene or protein expression, copy number variation,
and so on. On the other hand if data is derived from two or more different
molecular levels they are considered to be heterogeneous. Integration of this
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kind of data poses some issues: first, the data can have different structure, for
example they can be sequences, graphs, continuous or discrete numerical values.
Moreover, data coming from different sources is subject to different noise levels
depending on the platform and on the technologies used to generate data. The
integration process must include a step, called batch effect removal where the
noise and the random or systematic errors between the different views become
comparable [65].

Integration Stage

Depending on the nature of data and on the statistical problem to address, the
integration of heterogeneous data can be performed at different levels: early,
intermediate and late. Early integration consists in concatenating data from
different views in a single feature space, without changing the general format
and nature of data. Early integration is usually performed in order to create a
bigger pool of features by multiple experiments. The main disadvantage of early
integration methodologies is given by the need to search for a suitable distance
function. In fact, by concatenating views, the data dimensionality considerably
increases, consequently decreasing the performance of the classical similarity
measures [66]. Intermediate integration consists in transforming all the data
sources in a common feature space before combining them. In classification
problems, every view can be transformed in a similarity matrix that will be
combined in order to obtain better results. In the late integration methodolo-
gies each view is analysed separately and the results are then combined. Late
integration methodologies have some advantages over early integration tech-
niques: (1) the user can choose the best algorithm to apply to each view based
on the data; (2) the analysis on each view can be executed in parallel.
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Chapter 2
Aim of the study

The aim of this work is to provide new data integration tools to help the scientific
community. Particularly, I have focused on two main objectives:

• The definition of a methodology that integrates multiple omics feature
sets to find statistical relevant patient subtypes.

• The development of a tool for phenotypic characterisation of nanomateri-
als mode-of-action with respect to human diseases, drugs treatments and
chemicals exposures.

31
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Chapter 3
Multi View Learning for Patient
Subtyping

In this chapter the multi-view genomic data integration methodology (MVDA)
is described. MVDA is a clustering based methodology proposed to identify
patient sub-types by combining multiple high-throughput molecular profiling
data. It is a late integration approach where the views are integrated at the
levels of the results of each single view clustering iterations. By using MVDA,
patient sub-classes with statistical significance were retrieved, identifying novel
sub-groups previously not emphasised in literature. The content of this chapter
is published in [68].

3.1 Introduction

Many diseases - for example, cancer, neuropsychiatric, and autoimmune dis-
orders - are difficult to treat because of the remarkable degree of variation among
affected individuals [69]. Trying to solve this problem a new discipline emerged,
called precision medicine or personalized medicine [70]. It tries to individualize

33
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the practice of medicine by considering individual variability in genes, lifestyle
and environment with the goal of predicting disease progression and transitions
between disease stages, and targeting the most appropriate medical treatments
[71].

A central role in precision medicine is played by patients subtyping, that is
the task of identifying subpopulations of similar patients that can lead to more
accurate diagnostic and treatment strategies Identify disease subtypes can help
not only the science of medicine, but also the practice. In fact, from a clinical
point of view, refining the prognosis for similar individuals can reduce the uncer-
tainty in the expected outcome of a treatment on the individual. Traditionally,
disease subtyping research has been conducted as a by-product of clinical exper-
ience, wherein a clinician noticed the presence of patterns or groups of outlier
patients and performed a more thorough (retrospective or prospective) study to
confirm their existence.

In the last decade, the advent of high-throughput biotechnologies has provided
the means for measuring differences between individuals at the cellular and mo-
lecular levels. One of the main goals driving the analyses of high-throughput
molecular data is the unbiased biomedical discovery of disease subtypes via unsu-
pervised techniques. Using statistical and machine learning approaches such as
non-negative matrix factorization, hierarchical clustering, and probabilistic lat-
ent factor analysis [72], [73], researchers have identified subgroups of individuals
based on similar gene expression levels. For example, the analysis of multivari-
ate gene expression signatures was successfully applied to discriminate between
disease subtypes, such as recurrent and non-recurrent cancer types or tumour
progression stages [74]. To improve the model accuracy for patient stratifica-
tion, in addition to gene expression, other omics data type can be used, such as
miRNA (microRNA) expression, methylation or copy number alterations. For
example, somatic copy number alterations provide good biomarkers for cancer
subtype classification [75]. Data integration approaches to efficiently identify
subtypes among existing samples has recently gained attention. The main idea
is to identify groups of samples that share relevant molecular characteristics.
Strategies of data integration of multiple omics data types poses several compu-
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tational challenges, as they deal with data having generally a small number of
samples and different pre-processing strategies for each data source. Moreover,
they must cope with redundant data as well as the retrieval of the most relevant
information contained in the different data sources. When the integrated data
are high dimensional and heterogeneous, defining a coherent metric for cluster-
ing becomes increasingly challenging. A number of data integration approaches
for patients subgroups discovery were recently proposed, based on supervised
classification, unsupervised clustering or bi-clustering [76–79]. Moreover, multi-
view clustering methodologies have been intensively used also if in few cases on
omics data

3.2 Materials and Methods

3.2.1 Clustering

Clustering is an unsupervised learning technique, able to extract structures from
data without any previous knowledge on their distribution. It is one of the main
exploratory techniques in data mining and it is used to group a set of objects
in such a way that objects in the same group (called a cluster) are more similar
to each other than to those in other clusters.

Clustering have been widely applied in bioinformatics. Two of the main
problems addressed by clustering are: (1) identify groups of genes that share
the same pattern across different samples [80]; (2) identify groups of samples
with similar expression profiles [81]. The number of different clustering tech-
niques proposed in literature is huge. Two of the most common approaches are
hierarchical clustering or partitive clustering [82].

The former methods start having each object in different clusters and then
they, iteratively, join couple of similar clusters until they reach a stop criterion.
This kind of methodology creates a hierarchy of the clusters that is called
dendrogram. The crucial point in hierarchical clustering is the evaluation of
the measure between two clusters. Different measures have been proposed such
as: the single-linkage, where the distance between two clusters is defined as the
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minimum distance between each couple of points between the two clusters; the
complete linkage computes the distance between two clusters as the maximum
distance between each couple of points. In the average linkage the distance
between two clusters is computed as the mean of the distances between all the
couples of objects between the two clusters. Ward’s minimum variance linkage
aims to minimise the total within-cluster variance. All these methods produce
a hierarchy of the samples, in order to clustyer data, this hierarchy must be cut
at a certain height that is arbitrary chosen by the user. To solve this problem
the Pvclust [83] algorithm have been proposed. It is a hierarchical clustering
algorithm that applies a multi-scale bootstrap re-sampling procedure to the
dataset, to compute a p-value that is used to cut the tree to obtain clusters that
are statistically supported by data.

The latter methods, conversely, start from a group of initial points, called
centroids, that represent the clusters and in an iterative manner, assign each
sample in the dataset to a centroid and if necessary update the centroids. The
whole process aims to minimise an objective function, and the algorithm runs
until convergence or until a stop criterion is reached. Examples of this kind of
algorithms are Kmeans [84], Partitional Around Medoids (PAM) [85] and SOM
[86].

Given a set of observations (x1, x2, . . . , xn

), where each observation is a
d-dimensional real vector, k-means clustering [84] aims to partition the n obser-
vations into k( n) sets S = S1, S2, . . . , Sk

so as to minimise the within-cluster
sum of squares (WCSS) In other words, its objective is to find:

arg min
x

KX

i=1

X

x2Si

||x � µ
i

||2 (3.2.1)

where µ
i

is the mean of the points in S
i

. The optimal solution is obtained
iterating two different steps: the former in which each point is assigned to the
nearest centroid, and the latter in which the centroids are updated to minimise
the equation 3.2.1.

Partitional Around Medoids [85] is a clustering algorithm related to the
K-means algorithm and the medoids shift algorithm. Both the K-means and
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K-medoids algorithms are partitional (breaking the dataset up into groups) and
both attempt to minimise the distance between points assigned to a cluster
and a point designated as the centre of that cluster. Contrary to the K-means
algorithm, K-medoids chooses data points as centres (medoids or exemplars)
and works with an arbitrary matrix of distances between data points;

SOM [86], is a type of artificial neural network (ANN) that is trained using
unsupervised learning to produce a low dimensional (typically two-dimensional),
discretised representation of the input space, called a map. Self-organising maps
are different from other artificial neural networks in the sense that, during the
training phase, they use a neighbourhood function to preserve the topological
properties of the input space. A self-organizing map consists of components
called nodes or neurons. Associated with each node there are a weight vector
of the same dimension of the input data vectors (prototype), and a position in
the map space. The usual arrangement of nodes is a two-dimensional regular
spacing in a hexagonal or rectangular grid. The self-organising map describes
a mapping from a higher-dimensional input space to a lower-dimensional map
space. The procedure for placing a vector from input space onto the map is to
find the node with the closest (smallest distance metric) weight vector to the
data space vector. This makes SOMs also useful for obtaining low-dimensional
views of high-dimensional data, akin to multidimensional scaling.

The SOM is trained iteratively. At each training step, a sample vector
x is randomly chosen from the input data set. Distances between x and all
the prototype vectors are computed. The best-matching unit (BMU), which is
denoted here by b, is the map unit with prototype closest to x

||x � m
b

|| = min
i

||x � m
i

||. (3.2.2)

Next, the prototype vectors are updated. The BMU and its topological
neighbours are moved closer to the input vector in the input space. These two
iterations are repeated until convergence. At the end, all the points assigned to
the same neuron in the SOM will be allocated in the same cluster.

A clustering algorithm different from these two families is the spectral clus-
tering [87]. The general approach to spectral clustering starts from a similarity



i
i

“Template” — 2017/6/9 — 16:42 — page 38 — #38 i
i

i
i

i
i

38 3. MULTI VIEW LEARNING FOR PATIENT SUBTYPING

matrix, then computes the relevant eigenvector of its Laplacian. In the space of
these eigenvectors, a classical clustering algorithm, such as K-means is executed.
Traditional state-of-the-art spectral methods [87] aim to minimise RatioCut [88],
by solving the following optimisation problem:

min
Q2R

n⇥c
Trace(QT L+Q) s.t.QT Q = I (3.2.3)

where Q = Y (Y T Y )�1/2 is a scaled partition matrix, L+ denotes the nor-
malised Laplacian matrix L+ = I � D�1/2WD�1/2 given the similarity matrix
W .

When performing a clustering analysis, the first problem is to choose the
algorithm that best fits the problem. There are many different clustering al-
gorithms and the application of each one will usually produce different results.
Moreover the results of the algorithms strongly depend on the input parameters
(such as the number of clusters). Without additional evaluation, it is difficult
to determine which solutions are better. To solve this problem some indexes
have been proposed to asses the clustering solutions [89]. Usually algorithms
are executed with different parameters and then solutions that reach the best
values of the evaluation indexes are selected.

3.2.2 Multi-View Clustering

The main difference between traditional and multi-view clustering is that the
former takes multiple views as a flat set of variables without taking into account
differences among different views, while the latter exploits the information from
multiple views and takes the differences among the views into consideration
in order to produce a more accurate and robust data partitioning. Multi-view
clustering has been widely applied in machine learning by using different variants
of existing single view clustering methodologies [90–95]. Moreover, it has been
widely applied to integrate different genome-wide measurements in order to
identify cancer-subtypes [76–78, 93, 96].

Chen et al. [91] proposed the early integration method Two-level variable
Weighting k-means (TW-kmeans) clustering for multi-view data. This method
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extends the classical k-means algorithm by incorporating the weights of the
views and of the variables into the distance function that identifies clusters of
objects. The algorithm is able to identify the set of k clusters, the important
views and the relevant variables for each view. The authors evaluated the per-
formance of the TW-k-means algorithm for classification of real life data, by
testing it on three data sets from UCI Machine Learning Repository.

The algorithm proposed by Long et al. [94] exploits the intuition that the
optimal clustering is the consensus clustering shared across as many views as
possible. This can be reformulated as an optimisation problem where the op-
timal clustering is the closest to all the single view clusterings under a certain
distance or dissimilarity measure. Clusterings are again represented as mem-
bership matrices. Formally the model can be described as follow: given a set of
clustering membership matrices M = [M1, . . . , Mh

] 2 Rn⇥l

+ , a positive integer k

and a set of non-negative weights {w
i

R+}m

i=1, the optimal clustering membership
matrix B 2 Rn⇥k

+ and the optimal mapping matrices P = [P1, . . . , Ph

] 2 Rk⇥l

+

are given by the minimisation:

min
B,P

hX

i=1

w
i

GI(M (i)||BP (i))

s. t. P � 0

B � 0, B1 = 1

(3.2.4)

where GI(M ||BP ) is the generalised Kullback-Leibler divergence such that

GI(X||Y ) =
X

ij

(logX
ij

log
X

ij

Y
ij

� X
ij

+ Y
ij

)

subject to the constraint that both P and B must be non-negative and that each
row of B must sum to one. The method has been evaluated on both synthetic
and two real data sets: the former is a web page advertisement data-set and
the latter is a newspaper dataset. They executed the multi-view clustering
algorithm ten times on each dataset by imposing the number of clusters equal
to the number of real classes and evaluated the final multi-view clustering with
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respect to the real class labels with the Normalised Mutual Information. They
demonstrated that the integration methodology gives better results compared to
those obtained with the use of single view separately and the experiments showed
that the algorithm efficiently learns robust consensus patterns from multiple
view data with different levels of noise.

Green et al. [95] proposed a meta-analysis technique for multi-view cluster-
ing in a late integration manner. The main idea is to use the matrix factorisation
approach to combine clustering results on each single view expressed in form of
membership matrices.The method first transposes all the membership matrices
and stacks them vertically in order to obtain the cluster matrix X in R l×n where
l is the total number of clusters in C and n is the number of samples. Then, it
iteratively finds the best approximation of X such that X ⇡ PH and P � 0,
H � 0 by measuring the error with the Frobenius norm and the update rules
proposed by Lee et al. [97]. The results of the factorisation are two matrices,
P 2 R{l⇥k} that projects the clusters into a new set of k meta-clusters and
H 2 R{k⇥n} whose columns can be viewed as the membership of the original
objects in the new set of meta-clusters. Starting from the values of P , a matrix
T 2 R{v⇥k} is computed, with v being the number of views. T

hf

indicates the
contribution of the view V

h

to the fth meta-cluster. The method has been eval-
uated on both synthetic and real-world document datasets. In both settings it
produced more informative clusterings with respect to the single view clustering
counterparts. It turned out that the method can effectively take advantage of
cases when a variety of different clusterings are available for each view and in
fact out-performed popular ensemble clustering algorithms.

Yang et al. [98] proposed a biclustering algorithm, based on matrix factor-
isation, for module detection in multi-view genomic data sets. Their method,
called iNMF is a modification of the jSNF algorithm [99]. Both methods are
able to factorise multi-view datasets but, while jSNF considers all the views as
having the same effect on the resulting factorisation, iNMF allows each view to
bring its own contribute to the factorisation process. The method was tested on
a real ovarian cancer dataset coming from TCGA. The dataset was composed
of three views: DNA methylation, gene expression and miRNA expression. The
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method was able to detect multi-modal modules and sample clusters that agree
with the ones already in the literature.

iCluster [96] uses a joint latent-variable model to identify the grouping struc-
ture in multi omics data. This method simultaneously achieves data integration
and dimension reduction, by reporting all the views to a common space, that has
a number of latent variables significantly smaller than the originals ones, and
clustering patients in that space. The optimal space is identified in an optimiz-
ation process that uses the EM algorithm and a Lasso model that penalises the
norm of the coefficient vectors and continuously shrinks the coefficients associ-
ated with non-informative genes toward zero, to ensure the data sparseness. The
method was tested by simultaneously clustering gene expression, genome-wide
DNA copy number and methylation data derived from the TCGA Glioblastoma
Multiforme samples. The authors compared their method with a naive integ-
ration obtained by concatenating the views and applying PCA. Their results
showed that iCluster had better capability to stratify patients by integrating
different omics views.

On the other hand, SNF [93] is an intermediate integration network fusion
methodology able to integrate multiple genomic data (e.g., mRNA expression,
DNA methylation and microRNA expression data) to identify relevant patients’
subtypes. The method first constructs a patients’ similarity network for each
view. Then, it iteratively updates the network with the information coming from
other networks in order to make them more similar at each step. At the end,
this iterative process converged to a final fused network. The authors tested the
method combining mRNA expression, microRNA expression and DNA methyl-
ation from five cancer data sets. They showed that the similarity networks of
each view have different characteristics related to patients similarity while the
fused network gives a clearer picture of the patients’ clusters. They compared
the proposed methodology with iClust and the clustering on concatenated views.
Results were evaluated with the silhouette score for clustering coherence, Cox
log-rank test p-value for survival analysis for each subtype and the running time
of the algorithms. SNF outperformed single view data analysis and they were
able to identify cancer subtypes validated by survival analysis.
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MEREDITH [77] is an intermediate late integration approach methodology
to discover cancer sub-typing by integrating multiple omics feature sets. This
methodology is composed of several steps comprising data normalisation, data
integration, clustering and validation. Since, it is a gene centred method, as
a first step, all the features in the different views are mapped to the corres-
ponding genes. Then, a PCA analysis is performed to reduce the dimension-
ality of each view. The first 50 PCs per dataset with the highest eigenvalues
are retained and then scaled and concatenated to construct a single integrated
dataset. A mapping into a two-dimensional space is performed by means of
the t-distributed stochastic neighbourhood embedding. The clustering analysis
and survival analysis is performed. The method was tested on more that 4000
patients coming from the The Cancer Genome Atlas (TCGA)across 19 cancer-
types and four views: gene expression, DNA-methylation, copy-number vari-
ation and microRNA expression. The performed DBSCAN clustering was able
to identify 18 clusters significantly over-represented by a cancer type (p < 0.001).
MEREDITH was then able to identify known cancer types and subtypes. This
results suggest that data integration methodologies could enable novel insight
in patients characterization.

The proposed methodology for the analysis of multi-view biological datasets
takes in input n matrices M

i

2 RFi⇥P for i = 1, . . . , n where F
i

is the number of
features (genes, miRNAs, CNV, methylation, clinical information, etc.) and P

is the number of patients and a vector cl of classes labels, and yields a multi-view
partitioning G =

S
k

i=1 G
i

of patients. The multi-view integration methods also
return a matrix C where c

i,j

is the contribution of view i to the final multi-view
cluster j.

The approach consists of four main steps as shown in Figures 3.2.1 and 3.2.2:
(a) Prototype Extraction; (b) Prototype ranking; (c) Single view clustering; (d)
late integration.

In the prototype extraction step, the features with low variance across the
samples were eliminated. Therefore, the data were clustered with respect to
the patients and the cluster centroids were selected as the prototype patterns.
The centroid of each cluster was selected as the most correlated element with
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Figure
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respect to the other elements in that cluster. Different clustering algorithms
were used such as Hierarchical clustering with Ward’s method [100], Pvclust
[83], Kmeans [84], PAM [85] and SOM [86]. See section 3.2.1 for more detail on
these clustering algorithms.

The idea is to evaluate several popular clustering techniques and compare
their behaviour on the different views with respect to the hierarchical method
that is the standard algorithm used to cluster genes. Cluster analysis is a
complex and interactive process and results change based on its parameters
[101]. Therefore, each algorithm was executed for different values of K. For
each algorithm and for each K, clustering performance was evaluated according
to the following evaluation function:

V AL =
1

4

✓
IC + 1

2
+ 1 � IE + 1

2
+ (1 � S) + CG

◆

where IC is the complete diameter measure, representing the average sample
correlation of the less similar objects in the same cluster; EC is the complete
linkage measure, representing the average sample correlation of the less similar
objects for each pair of clusters; S is the singleton factor and CG is the compres-
sion gain. The evaluation function was defined in order to obtain the output
value normalised between 0 and 1. The complete diameter and the complete
linkage measures were calculated with the R "clv" package [102]. The number
of singleton was normalised in a range (0,1) in order to be comparable with the
correlation measure. It was defined as S = N/(K−1). The compression gain
was defined as CG = 1−(K/Nelem), where K is the number of clusters and N is
the number of elements to be clustered. Each clustering algorithm was executed
on n different values of K and the corresponding results were evaluated with the
function V AL. Values close to 1 indicate a clustering with similar objects in the
clusters, weakly linked clusters, with few singletons and with a good compres-
sion rate. A numeric score was then assigned to each K value by considering the
average values of the VAL function compiled over the clustering results obtained
with the different algorithms. Then, the K showing the highest score was chosen
and subsequently used to identify the best clustering algorithms having the first
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two highest scores with respect to the selected k value.

The V AL index is a validity index measure such as the Dunn Index or
David Bouldin Index [103]. It measures the compactness and separation of the
clusters. A "good" clustering should have two characteristics: compactness and
separation. A clustering is compact when the members of each cluster are as
close to each other as possible. The compactness is measured by the IC value.
The separation is therefore measured by the EC value, the less the correlations
between two different clusters the more they are separated.

More detail on the computational procedure followed to fine-tuned the k-
values for the cluster analysis can be found in the article [68].

In the prototype ranking, further dimensional reduction by feature selection
was performed. Feature ranking was computed by means of the CAT-score [104]
and the Mean Decreasing Accuracy index calculated by Random Forests [105].
For each rank, the cumulative sum of the ranking score was computed and four
different cuts based on the cumulative values were taken. Cuts considered all
the features needed to maintain 60 %, 70 %, 80 % and 90 % of the cumulative
value. These different groups of features were used to cluster patients in each
single view (single view clustering step), with the same single view clustering
algorithms used in the first step. The number of clusters K was considered
as the number of classes. For each clustering, the error was calculated as the
dispersion obtained in the confusion matrix between class labels and clustering
assignments. The clustering algorithm that reached the minimum error for each
view was then selected.

These clustering results were used as the input to the late integration step
to obtain the final muti-view meta clusters. The integration was performed
by using both Greene [95] and Long [94] approaches. Once the multi-view
clusters were obtained, a subclass was assigned to each one. For each cluster,
the number of objects of each class was calculated and the class with more
representative patterns was assigned as the cluster label. Then, a p-value was
calculated in order to verify the statistical significance of the subclass by the
Fisher’s exact test [106]. Experiments were performed in two ways: the former
uses all the prototypes for classification; the latter uses only the most relevant



i
i

“Template” — 2017/6/9 — 16:42 — page 47 — #47 i
i

i
i

i
i

3.2. MATERIALS AND METHODS 47

ones for class separability. Each one of these approaches were performed both in
unsupervised and semi-supervised manners, respectively. The semi-supervised
approach consists of giving a priori information as input to the techniques of late
integration via a membership matrix of patients with the exact information of
their classes. This information is combined with the membership of the patients
compared to the single view clustering and integrated in meta-clusters. This can
be a useful approach mainly when the data set is composed of unbalanced or
under represented classes.

MVDA was compared with classical single view clustering algorithms (Kmeans,
Hierarchical and Pam), early (TW-Kmeans) and intermediate (SNF) integration
approaches. For each method clustering impurity, normalised mutual informa-
tion (NMI) and cluster stability were evaluated. Cluster impurity was defined
as the number of patients in the cluster whose label differs from that of the
cluster. Given two clustering solutions the NMI was computed as the mutual
information between the two clustering normalised by the cluster entropies. The
NMI was computed between clustering results and real patient classifications.

The stability of the system was tested by giving different inputs to the al-
gorithm and comparing the results. In order to perform the highest number
of comparison, and avoid to have unbalanced patient classes, the dataset was
altered with leave-one-out technique.

A test was run on the first step to generate a stability index for the proto-
types of the obtained clusters. Then, the steps 2, 3 and 4 were evaluated jointly
to assess the stability of the selected features and to evaluate the robustness
of the multi-view clustering results. Furthermore, a borda-count method [107]
was performed to find the final list of features selected over the leave-one-out
experiments for the integration step. At the end of this process, N different
clustering assignments were obtained, one for each removed patient. An mat-
rix was created, where M(i, j) was the normalised mutual information (NMI)
between the clustering obtained removing patient i and the clustering obtained
removing patient j. Then the mean of the matrix was calculated, indicating the
stability measure of the method.

The method was tested on large genomic data sets including different omics
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data types, such as the Cancer Genome Atlas (TCGA) data sets ([55]). The
comparison experiments suggest that MVDA outperforms other existing integ-
ration methods, such as Tw-Kmeans and SNF.

3.3 Dataset collection and preparation

The experiments were performed on six genomic datasets (see Table 3.1). They
were downloaded from The Cancer Genome Atlas (TCGA) ([55]), Memoral
Sloan-Kettering Cancer Center ([108]) and from NCBI GEO ([56]) (See Table
3.1). Since all the data downloaded were already pre-process ed, only the batch
effect was removed by the comBat method in the R âĂĲsvaâĂİ package [109].

For the dataset TCGA.BRC, the RNASeq and miRNASeq (level 3) data re-
lated to breast cancer patients, with invasive tumors, were downloaded from the
TCGA repository (https://tcga-data.nci.nih.gov/tcga/ - Breast invasive
carcinoma [BRCA]). Patients were subsequently divided into four classes (Her2,
Basal, LumA, LumB), using PAM50 classifier [110, 111].

mRNA (GSE22219) and microRNA (GSE22220) expression data related to
breast cancer patients, from a study performed at Oxford University [112], were
downloaded from Gene Expression Omnibus Dataset [56]. Patients were divided
into four classes (Her2, Basal, LumA, LumB), using PAM50 classifier [110, 111].
This dataset was namend OXF.BRC.1. The same patients were then classified
into four classes (Level1, Level2, Level3, Level4) using clinical data also retrieved
from the same source. This dataset was namend OXF.BRC.2.

For the TCGA.GBM dataset, the gene and miRNA expression (level 3) data
related to patients affected by Glioblastoma, were downloaded from the TCGA
repository (https://tcga-data.nci.nih.gov/tcga/ - Glioblastoma multiforme
[GBM ]). Also, clinical data was retrieved. The patients were divided info four
classes: Classical, Mesechymal, Neural and Proneural as described in [113].

For the dataset TCGA.OVG the gene expression, protein expression, and
miRNA expression (level 3) data related to patients affected by ovarian cancer,
were downloaded from the TCGA repository (https://tcga-data.nci.nih.
gov/tcga/ - Ovarian serous cystadenocarcinoma [OV ]). Clinical data were

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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Table 3.1: Datasets: Description of the datasets used in this study. "N" is the
number of subjects for each dataset. N(i) is the number of samples in the i-th
class. An x denotes if that view (column) is available for a specific dataset
(row).

Dataset Response N(0) N(1) N(2) N(3) G
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Breast Cancer from The Cancer genome Atlas, N = 151

TCGA.BRC Pam50 (Her2,Basal,LumA,LumB) 24 13 55 59 x x
Breast Cancer from The Gene Expression Omnibus, N = 201

OXF.BRC.1 Pam50 (Her2,Basal,LumA,LumB) 26 6 117 52 x x
OXF.BRC.2 Clinical (Level1, Level2, Level3, Level4) 73 54 42 32 x x

Prostate Cancer from Memorial Sloan-Kettering Cancer Center, N=88

MSKCC.PRCA Tumor stages T1 vs. T2, T3, T4 53 35 x x x x
Ovarian Cancer from The Cancer Genome Atlas, N=398

TCGA.OVG Tumor stage I,II, Tumor stage III, Tumor stage IV 33 315 50 x x x
Glioblastoma Multiforme from The Cancer genome Atlas, N = 167

TCGA.GBM (Classical, Mesechymal, Neural, Proneural) 37 54 24 52 x x

downloaded to classify patients in three categories. In particular patients were
classified by clinical stage: first class: stage IA, IB, IC, IIA, IIB and IIC, second
class: IIIA, IIIB and IIIC, third class Stage IV.

For the dataset MSKCC.PRCA, the gene expression, microRNA expression,
copy number variation (CNV) and clinical data related to patients affected by
prostate cancer, were downloaded from the Memorial Sloan Kettering Cancer
Center ([114]). Clinical data were downloaded to classify patients in three cat-
egories. Patients were classified in two classes by using clinical data by the
tumour stage: class one is Tumour Stage I and class two is Tumour Stage II,
III and IV. Classification of patient was done according to a previous study
performed on the same dataset [115].

3.4 Results

The MVDA method was compared with other multi-view clustering methods,
such as SNF [93] and Tw-Kmeans [91]. Using TCGA datasets from 4 different
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tumour types (Table 3.1 ), the cluster impurity error, the Normalised Mutual
Information and the cluster stability of all the considered algorithms was evalu-
ated. The evaluation metrics computed for each dataset are summarised in Table
3.3. The unsupervised version of MVDA, shows a mean error of 22.47%, nor-
malised mutual information (NMI) of 28% and stability of 85%. Moreover, the
error significantly decrease when using prior information. Indeed, the MVDA
methodology applied with prior information reduces the error to 6.30%.

The other methods used in the comparison study show a higher mean error
from the lowest 30, 83% of SNF to the highest 30, 93% of Kmeans. They also
show a lower NMI (the maximum value reached is 26% of Ward’s method) and
variable stability from the lowest 51% of the Kmeans to the highest 96% of the
partitioning around medoids (pamk).

A class label and a p-value was assigned to each cluster obtained after the
integrative step. Figure 3.4.1 shows, as example, the results obtained for the
dataset OXF.BRC.1. The label indicates the subclass to which patients in
the cluster belong, while the p-value measures the statistical significance of a
cluster. In the case of the dataset OXF.BRC.1, the patients are divided into four
classes: LumA, LumB, Her2 and Basal. Eight relevant clusters were observed,
four of which are subclasses of class LumA (cluster 4 - pvalue 2.51E�4; cluster
5 - pvalue 8.71E�8; cluster 6 - pvalue 2.92xE�3; cluster 11 - pvalue 1.97E�3)
and two are subclasses of class LumB (cluster 2 - pvalue 3.93E�14; cluster 10 -
pvalue 5.14E�3). The influence of each view on the final cluster is also reported.
While it is obvious that the clusters are obtained considering all the genomic
data views, the information needed to identify a specific subclass can be more
relevant in a particular data type instead over the others. For example, the
clusters 3, 6 and 11 of the OXF.BRC.1 dataset are both labelled as LumA.
miRNA expression contributes for the 100% to define the cluster 11, the gene
expression is mainly determining the cluster 3 (57%), while for cluster 6 they
are equally important. This could mean, for example, that patients in cluster 11
are particularly characterised by miRNA expression while patients in cluster 3
by gene expression. For all the six datasets, the results showed that the matrix
factorisation method gives lower classification error and better accuracy than
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the approach with general linear integration
As shown in Figure 3.4.2, the integrative clustering performed generally bet-

ter that the clustering on each single data view. In the TCGA.BRCA dataset,
the mean cluster impurity is about 26% when patients are grouped by the gene
expression and 43% when they are grouped by their miRNA expression pro-
files. However, combining the gene and the miRNA expression profiles, 26, 50%

of error in unsupervised mode and 9% in semi-supervised mode are obtained,
respectively. Only in a few cases, the patient grouping based on a single data
view performs better than the one obtained with multiple data types.

Figure 3.4.3 depicts the comparison between the two integration methods,
either with or without prior information. The matrix factorisation based method
reaches the higher stability (about 85%) in all the cases. With respect to the
cluster impurity, the difference is almost always negligible. The greatest dif-
ference occurs when passing from the unsupervised to the semi-supervised ap-
proach. The cluster impurity for the unsupervised clustering is about 30%

and about 7% for semi-supervised. Therefore, for more accurate sub-typing
of classes semi-supervised integration was used, which maintains high stability
and reduces the classification error compared to the classes. However, in case
of unbalanced patient classes, the prior information is needed to increase the
prediction.

Since we tested different algorithms at each step of our methodology, we
aimed at understanding if a common pipeline for all the datasets could be
applied. After the execution of all the analyses, we observed that the best
algorithms for the first and second steps strongly depend on the data. We
found that K-means is the best algorithm for step 3 for the TCGA.BRACA,
OXF.BRCA.1 and OXF.BRCA.2 datasets (Table 3.2).

At the last step, the matrix factorisation approach provided lower errors
and greater stability as compared with the general linear integration methods
on most of the datasets. This result corroborates our hypothesis that a late
integration approach is better for it allows using the best algorithms for each
data type.

In order to evaluate the performance of the proposed method, we systemat-
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0,00%
10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%
100,00%

unsupervised	
selected	prototypes

semisupervised		
selected	prototypes

unsupervised	 	all	
features

semisupervised		all	
features

Matrix	Factorization	Stability GLI	Stability

Matrix	Factorization	Error GLI	Error

Figure 3.4.3: Difference between alternative integration methods: The mean
cluster stability is reported. Clustering stability was calculated by comparing
the unsupervised and the semi-supervised mode, both using either all the fea-
tures or only the selected prototypes
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Table 3.2: Summary of combination of algorithms for each view that give the
best grouping of patients. The symbol (-) means that feature selection was not
executed. Symbol (DM) means that same classification error was obtained with
all the algorithms used.

( a ) ( b ) (c) (d)

Dataset Views Feature Feature Patients Late

Clustering Selection Clustering integration

TCGA.BRCA RNASeq Pam CAT-score Kmeans MF
miRNASeq Pam CAT-score Pam

TCGA.OV Gene Expression Pam Random Forest DM MF
Protein Expression Pam - DM
miRNA Expression Pam - DM

TCGA.GBM Gene Expressions Spectral CAT-score Kmeans MF
miRNA Expression Ward - Kmeans

OXF.BRCA.1 Gene Expressions Pam Random Forest Ward GLI
miRNA Expression Pam Random Forest Kmeans

OXF.BRCA.2 Gene Expressions Pvcluster CAT-score Kmeans MF
miRNA Expressions Pam Random Forest Kmeans

MSKCC Gene Expressions Pam CAT-score Kmeans MF
miRNA Expressions Pam - Pam

CNV Spectral CAT-score Kmeans
Clinical - - Pam
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Table 3.3: Validation Results: The mean classification error, normalized mu-
tual information (NMI) and stability, on all datasets, are shown, measuring the
agreement between the clusters resulting from an approach and the real pa-
tient classification. Bold font in percentage indicates best performance in the
experiments.

Feature Integration Algorithm Error NMI Stability

Single View All Feature - Ward 30,08% 26% 86%
- Kmeans 30,93% 25% 51%
- Pamk 30,75% 24% 94%

Selected Prototype - Ward 30,72% 26% 89%
- Kmeans 30,36% 25% 52%
- Pamk 30,78% 24% 96%

Multi-View All Feature Early Tw-kmeans 37,10% 24% 69%
All Feature Intermediate SNF 30,83% 22% 83%
All Feature in Cluster of Selected Prototype Intermediate SNF 31,31% 18% 82%
Selected Prototype Late / unsupervised MF/GLI 27,47% 28% 85%

Selected Prototype Late / semi-supervised MF/GLI 6,30% 63% 84%

ically compared it with Tw-Kmeans and SNF algorithms (Table 3.3). Anyhow,
we did not compare our method with iClust, as it has been shown to have worse
performance than SNF, with which we deal in this study [93]. We confirmed
that late integration works more efficiently in integrating different views of ge-
nomic data. This is due to the large complexity and difference between the
views. When views have different numerical and statistical characterisations, it
is more convenient to individually analyse single data types and then combine
the results in a multi-view analysis. This becomes more and more important as
the number of views involved in the analysis increases.

3.5 Discussion

Biomedical research, gives focus on the identification of patients’ subtypes to
produce accurate diagnosis and targeted treatments in the field of precision
medicine [69]. Initially this problem was addressed by identifying groups of
patients who shared similar patterns of gene expression [116–118].

Thanks to the advancement of omics techniques, capable of producing data
related to different molecular aspects of the cell, research has moved on supple-
mentary techniques. In fact, efforts have been made in the use of multi-view
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clustering techniques that identify subtypes of patients considering different in-
formation at the same time (for example, gene expression, mirna expression,
protein expression, etc) [62]. Obviously, the joint use of different types of data
poses different problems such as the use of suitable metrics to all experiments
or the type of integration. To address some of these a new data integration
methodology, called MVDA, was proposed. MVDA can integrate different om-
ics experiments in a late integration manner with the aim of identify patients
subtyping. The methodology is composed of four steps using state of the art
algorithms. It was evaluated on six cancer benchmark datasets and compared
with classical single view clustering algorithms and two state of the art multi-
view algorithms: TW-kmeans and SNF.

TW-KMeans [91] and SNF [93] were selected for comparison with MVDA,
because each of them represents a different data integration methodology: early -
(TW-Kmeans), intermediate - (SNF) and late - (MVDA) integration. Moreover,
TW-Kmeans is the multi-view version of the classical K-means algorithm, SNF
uses a spectral clustering algorithm (based on k-means) applied to the fused
kernels, while in MVDA the multi-view clustering is performed by using factor-
isation approaches. This is not a partitive clustering algorithm, but it evaluates
the probability of each point to be part of each meta-clusters, and then assigns
each point to the meta-cluster with the highest membership. Between all of
theme, TW-Kmeans is the only method that was not proposed for clustering
biological data. But, it has the advantage to have a double weighting scheme,
meaning that two vectors are associated to the multi-view clustering solutions:
the former specifying the contribution of each variable, and the latter specify-
ing the contribution of each view. This is not the case neither for MVDA nor
for SNF, in fact MVDA gives information only regarding the contribution of
each view, while SNF does not give any information. On the other side, the
late integration methodology proposed for MVDA, offers several significant ad-
vantages: (1) the optimal algorithm and similarity measure can be chosen with
respect to each single view. Since the clustering solutions are strongly affected
by these two factors, this point should not be underestimated. In fact, the data
in each view can have not comparable distribution, and then applying the same
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metric and algorithm in each view could not lead to the best solution. This
is the main disadvantage of the TW-Kmeans method where all the views are
concatenated together and treated as a unique bigger dataset. SNF solves the
problem, because it first creates a kernel that can be specific for each view, and
then fuses them together. (2) Moreover, each view can be processed independ-
ently from the others, then the process can be naturally parallelized; This is
also the case for SNF. On the other hand, the computation with TW-KMeans
can be slower because the number of features is higher, being the combination
of all the views. The performed analysis shows that the integrative clustering
outperforms the single view approaches on all the datasets. Moreover, MVDA
prove to be stable on perturbation dataset analyses performed by executing
clustering on perturbed datasets removing one patient at a time and evaluating
the normalized mutual information between all the resulting clusterings. Fur-
thermore, the analysis suggests that the use of a late integration technique lead
to better classification results. This is probably because, with late integration
technique, many operations can be performed before the integration, such as
the best algorithms for dimensionality reduction, feature selection and patients
clustering can be applied.
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Chapter 4
Integrated Network of Systems
bIology Effects of nanomaterials
(INSIdEnano)

This chapter describes INSIdEnano (Integrated Network of Systems bIology
Effects of nanomaterials), a novel tool for the systematic contextualisation of
the effects of nanomaterials in the biomedical context. The methodology and
the data used to construct the database and the tool are described in section
4.2. Also example of tool usage are reported.

4.1 Introduction

Due to their physical, electronic, and biological characteristics, engineered nano-
materials (ENMs) are increasingly used in a wide spectrum of applications such
as energy production, vehicles construction, architecture, computers manufac-
turing, medicine and in various everyday consumer products [119, 120].

Interactions between nanomaterials and the humans seem to be inevitable

59
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[121]. Indeed nanomaterials in the air, like nanoparticles emitted from laser
printers, are easily inhaled through breathing and therefore affect the respiratory
system [122, 123]. Others, instead, such as sunscreen or body lotions entering
the bloodstream through the skin [124]. Others are even administered as drugs
[125, 126].

Even if considerable advanced was performed in the last years, the under-
standing of the biological effects of the huge number of existing and emerging
ENMs is partially unknown and there is still a lack of tools for the contextualisa-
tion of nanomaterials. Transcriptomic studies, performed with DNA microarray,
may help in characterising the mode-of-action (MoA) of ENMs, opening new
possibilities for their safety valuation based on systems biology approaches.

Systems biology approaches have already been applied to study complex phe-
nomena. A well-established principle in biomedical research is the concept that
the pattern of molecular alteration, of any phenotypic perturbation, can be used
as its signature. By exploiting this principle, many computational strategies to
explore similarities between drugs MoA and to perform drug repositioning task
have been proposed [127–131]. Moreover systems biology approaches have been
applied to study the interactions between different diseases [132] or to predict
the toxicology of specific compounds [133].

Here the hypothesis is that similar strategies could be used to contextualise
nanomaterials with respect to human diseases, drug treatments, and chemical
exposures. A considerable amount of data related to these biological entities is
already publicly available. The use of systems biology techniques to integrate
and analyse them, could lead to a better understanding of the molecular effects
of ENM. The idea is to compare the behaviour of gene mode of action (MoA) in
cells exposed to nanomaterials with the one of cells treated with drugs or chem-
icals, and with the gene MoA of diseases. This goal was reached by constructing
a network of interactions between the four phenotypic entities (ENMs, drugs,
chemicals and diseases), where the nodes are the entities and the edges between
them represents how similar or dissimilar is their gene MoA.

Moreover, the INSIdE nano tool was developed to scan the network in search
of heterogeneous cliques (a clique is a completely connected sub-network) that
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Serra, Angela, et al. “INSIdE nano: a novel computational tool for the contextualization of engineered nanomaterials (ENM) mode of action ”.2nd Nanosafety Forum for Young Scientists – Visby, Settebre 2016

Figure 4.2.1: The data used in INSIdEnano

contains one ENM, a drug, a chemical and a disease. These cliques are the en-
vironment in which a nanomaterial can be contextualise. Indeed, by comparing
its effects on the genes with respect to the one of a drug that cure the disease,
one can hypothesise that the nanomaterial can be used as adjutants of the drugs
to treat the disease if their effects on the genes are the same. Moreover, a nano-
material can be supposed to be toxic if it has the same effect on the genes such
as the one of a chemical that cause the disease.

4.2 Materials and Methods

INSIdEnano is a graphical tool able to contextualise the molecular effects of
nanomaterials perturbations by systematically comparing their pattern of mo-
lecular alterations with different types of perturbations (diseases, drugs, etc).

4.2.1 Input Data

INSIdEnano was design to integrate a number of public available dataset related
to nanomaterials, drugs, chemicals and diseases. See figure 4.2.1 part A. Raw
gene expression data related to in-vitro experiment about the exposure of 28
nanomaterials (see Table 4.1 for details) to different human cell was downloaded
from the NanoMiner database web page [134]. The raw data files (coming from
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three technologies: Affimetrix, Illumina and Agilent) were imported into R and
pre-processed by using a nested batch effect removing process. Figure 4.2.2
shows the work-flow of the pre-processing framework. First, probes of each
chipset were re-annotated according to NCBI Entrez Gene Database [135, 136].

For each chipset background correction and probe summarization was per-
formed. This resulted in a separate expression data matrix for each microarray
study that were integrated in a big data matrix that was further quantile norm-
alised. ComBat [147] and SVA [148, 149] were used for removing known batch
effects and other unwanted variations in each microarray study. In details, Com-
Bat was exploited to adjust each microarray study for known batch covariates,
such as the dye-effect, as well as the slide and the array position. The model
matrix used in ComBat included the exposure as the variable of interest and
other covariates, such as the cell type, the exposure time and the dose to be pre-
served during the batch effect removal. Moreover, the microarray studies were
also adjusted for the batches/covariates variables related to any pre-treatments.
However, covariates/batches confounded with the outcome of interest were not
considered. Principal component analysis (PCA) was used to investigate the
variance in each expression data matrix before and after applying ComBat, fol-
lowed by ANOVA analyses to explore the associations between the covariates
of interest and the most relevant components. Indeed, after removing batch
effects with ComBat, if the ENM exposure variable of interest was not signific-
antly associated to the first principal component, the SVA method was used.
The SVA algorithm allows identifying and removing unknown and sources of
variation while protecting the variance correlated to the variables of interest.
SVA was exploited to discover batch effects, which were subsequently removed
using ComBat. Gene expression data for drug treatments was downloaded from
the Connectivity Map (CMap) web page [127]. Raw data for 615 drugs was
downloaded and pre-processed as in Napolitano et al [129]. Raw data files were
quality checked in order to discard suboptimal data points. Then, the probes
were re-annotated using the NCBI Entrez Gene database similarly to the pro-
cess used in the NanoMiner data set, and the final matrix was normalised with
the quantile method from the RMA algorithm, as described above. Next, the
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Table 4.1: Nanomaterials description

Name Description Ref
TiO2T200 Submicron TiO2(T-200) [137]
TiO2T20 Submicron TiO2(T-20) [137]
TiO2T7 Ultrainfe TiO2(T-7) [137]
TiO2NB Titanium Nanobelts [138]
TiO2 NanoTiO2 (Titanium) [139]
RS Eudragit RS nanoparticles [140]
AuNP Gold - EGFP oligonucleotide complex [141]
ZnO Zinc Oxide - IBU-tec advanced materials AG [139, 142]
ZnO-1 Zinc - IBU-tec advanced materials AG; [142]
ZnO-2 Zinc - mandelic acid coated; [142]
ZnO-3 Zinc - mercaptopropyl-trimethoxysilane coated [142]
ZnO-4 Zinc - methoxyl coated [142]
ZnO-5 Zinc - diethylene glycol modified; [142]
ZnO-9 Zinc - folic acid modified [142]
ZnCl2 Zinc chloride [139]
GSNO S-nitrosoglutathione [143]
UP Ultrafine Particle [144]
MWCNT Multi Wallet Carbon Nanotube [138]
CBNP Nano-carbon Black [139]
SiO2 Silicon dioxide [139]
PSNP Polysthylene nanoparticles [145]
AgNP Silver nanoparticles [145]
Ag2CO3 Silver nanoparticles [145]
Al203 Aluminum Oxide [139]
microZnO microZnO [139]
WC WC nanoparticles [146]
WCCo WC-Co nanoparticles [146]
Fe203 Iron (III) oxide [139]

A	collection of	
cross	platform
microarray
studies

(case-control)

Re-annotation
and	Probe	
selection

Probe-gene	
mapping

Quantile	
normalisation

Combat	+	
PCA	+	SVA

Integrated
Microarray

Data

Figure 4.2.2: Outline to the microarray data integration steps at interpretative
level.



i
i

“Template” — 2017/6/9 — 16:42 — page 64 — #64 i
i

i
i

i
i

64
4. INTEGRATED NETWORK OF SYSTEMS BIOLOGY EFFECTS OF

NANOMATERIALS (INSIDENANO)

batch effect was estimated and removed by using the ComBat algorithm.
Manually curated information about chemical-gene and disease-gene inter-

action were retrieved from the Comparative Toxicogenomics Database (CTD)
website [150] for 2288 chemicals and 585 diseases. For each disease-gene in-
teraction, a score representing the strength of association is provided. The
distribution of these scores was investigated and used to define a threshold to
filter out associations. A connection between a disease-gene and chemical-gene
was considered reliable when its strength of association was higher than the 95th
percentile of the overall distribution of the scores. Disease-genes associations are
not based on gene expression data. On the other hand, the connections between
chemicals and genes indicate whether the genes are up or down regulated by the
chemicals. Moreover, only the connections between chemicals and genes from
the human genome were considered.

4.2.2 Integration Process

The fact that the a phenotypic perturbation can be identify by its pattern
of molecular alteration is a well-established idea in biomedical research. The
comparison of such molecular signature have been used to develop many com-
putational strategies in order to explore similarities between drugs MoA and
perform drugs repositioning tasks [127–130].

The main effort in this kind of analysis is the identification of a good strategy
to perform these comparisons. For example Lamb et al. [127] created a collec-
tion of 563 gene expression profiles, called "Connectivity Map", with the aim of
systematically characterise small-molecule perturbations (and their correspond-
ing vehicle controls) in human cell lines and infer functional connections between
them, diseases and drugs action. They identify each expression profile in their
dataset, with a query signature consisting in a list of genes correlated with the
biological state of interest. The list is ranked, from the most up-regulated to
the most down-regulated gene, according to their differential expression relative
to the control. Then, each list of genes is compared to the other by means of
a nonparametric strategy based on the Kolmogorov-Smirnov statistic as they
described in [151–153].
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The hypothesis is that similar strategies could be used to contextualise nan-
omaterials with respect to human diseases, drug treatments, and chemical ex-
posures. In fact, to compare nanomaterials exposure with drug treatment, each
nanomaterials and drugs in the INSIdE nano was represented by a ranked list
of genes resulting from the differentially expressed analysis relative to their con-
trols. The genes are ranked from the most up- to the most down- regulated
according to the following score: ±logFC · �log(Pval) where logFC is the
logarithm of the genes fold change and Pval is the adjusted p-value (the ad-
justment is performed with the FDR method) coming from the analysis. The
similarity between each couple of lists were evaluated by using the Kendall Tau
Distance [154], that is a ranked based non parametric strategy already used in
bioinformatics to compare ranked gene lists [155, 156].

On the other hand, each chemical and disease available in INSIdE nano was
represented by a set of genes with no prior information related to their order.
See figure 4.2.1 part B. To compare chemicals with diseases the Jaccard Index
was used. The Jaccard index has already been used in literature to compare sets
of genes alone [157, 158] or integrated with other similarities measures [129].

The Gene Sets Enrichment Analysis (GSEA) [153] was used to compare the
similarity between nanomaterials or drugs, represented by ordered lists of genes,
and chemicals or diseases represented by sets of genes (See Figure 4.2.3).

Kendall Tau distance

The Kendall Tau distance between two ranked lists T1 and T2 is defined as
follow:

K(⌧1, ⌧2) =
X

{i,j}2P

K̄
i,j

(⌧1, ⌧2) (4.2.1)

where P is the set of unordered pairs of distinct elements in ⌧1 and ⌧2, K̄
i,j

(⌧1, ⌧2) =

0 if i and j are in the same order in ⌧1 and ⌧2, K̄
i,j

(⌧1, ⌧2) = 1 if i and j are
in the opposite order in ⌧1 and ⌧2. Its values range between 0 and n(n � 1),
where n is the length of the list. A value of 0 means that elements in the list
are in the same order; A value of n(n � 1) means that elements in the list are
in the opposite order. The values were normalised in the range [�1, 1], where
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NANOMATERIALS (INSIDENANO)• A series of metrics for genes lists similarities were built.
• A network with 3,516 nodes and 12,362,256 edges was construct.

Data Integration strategy

Serra, Angela, et al. “INSIdE nano: a novel computational tool for the contextualization of engineered nanomaterials (ENM) mode of action ”.2nd Nanosafety Forum for Young Scientists – Visby, Settebre 2016

Figure 4.2.3: Integration Process

-1 means that the two list have opposite order, and 1 means that they have the
same order.

Jaccard Index

The Jaccard Index between two sets A and B is defined as:

J(A, B) =
|A \ B|
|A [ B|

This measure is 0 if the intersection between A and B is empty, while it is 1 if it
contains exactly the same elements. For each chemical, two sets of genes were
considered: those whose expression is up-regulated and those whose expression
is down-regulated by the chemical exposure. For the down-regulated genes, the
Jaccard Index was multiplied by -1 in order to take into account the effects on
the genes.
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Gene Sets Enrichment Analysis

The GSEA was implemented by using the Kolmogorov-Smirnov test [159, 160].
It is used to compare a sample distribution with a reference probability dis-
tribution. The empirical distribution function F

n

for n iid observations X
i

is
defined as

F
n

(x) =
1

n

nX

i=1

I[�1, x](x
i

) (4.2.2)

where
I[�1, x](X

i

)

is the indicator function defined on a set X that indicates the membership of
an element to a subset A of X, having the value 1 for all elements of A and the
value 0 for all elements of X not in A. The Kolmogorov-Smirnov statistic for a
given cumulative distribution function F (x) is

D
n

= sup
x

|F
n

(x) � F (x)|

As in [128], the Kolmogorov-Smirnov statistic was used without the absolute
value in order to preserve the sign. This helps understanding if the genes in the
sets are up or down-regulated. The value of the statistic is used as weight for
the edges in the network.

Data Normalisation

These three measures were used to build a pairwise similarity matrix between
all the considered elements. The distributions of the values coming from the
three similarities were quite different and had different ranges. In order to make
them comparable they were transformed in uniform distributions in the range
[0, 1] by means of the cumulative function as shown in Figure 4.2.4. In fact
if a distribution X has the (cumulative) distribution function F (x) = P (X <

x), then F (X) has a uniform distribution on [0, 1]. The signs have been left
unchanged to keep track of similar (+) or dissimilar (-) behaviour between each
pair of elements.
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ECDF RANK

Raw
Measures

Uniform
Measures

Final Ranked
Measure

Figure 4.2.4: Normalization Process

Similarity Network Inference

A well-established concept in biomedical literature is to represents complex
phenotypes and their interactions as network and to make inferences about
them by using network theory results [130, 132]. Then the pairwise similarity
matrix, obtained from the previous step, was used as an adjacency matrix to
build a final interaction network, that represents the core of INSIdEnano that
has 3,516 nodes and 12,362,256 edges. Because of the network is completely
connected, there is a need to apply a threshold to retain only the most relevant
connections. Instead of apply a predetermined threshold, a ranking system was
applied. See figures 4.2.5 and 4.2.4. For each vertex, its neighbours were ranked
based on the similarity score, then when the network is queried the user can set
a percentage of the top edges to select (e.g. first 10%,20%,30% of the rank).
However, rankings are not symmetric, meaning that if a node A is in the top x%

of the nodes connected to node B, is not always true that B is in the x% of the
nodes connected to node A. To solve this problem, a more stringent threshold
is applied by computing the mutual neighbourhood of a node. It is defined as:

N (i) = {j : rank
i

(j)  th ^ rank
j

(i)  th}

where rank
i

(j) is the position of node j in the ranked list of nodes connected to
i and th is the user defined threshold.
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5 Phenotypic Network Inference

The pairwise similarity matrix was used as an adjacency matrix to construct a weighted undirected
network where the nodes are the entities and the similarities between them represent the edge
weights.

Each similarity measure has a di�erent range of values. In order to make them comparable, these
values were scaled in the uniform range 0-1 by means of the cumulative function.

Unlike the similarity value, the signs have not been altered, and then edges in the network have
a sign that indicate if the correlation between a couple of nodes is positive or negative.

The resulting network is completely connected. In order to reduce the number of nodes and
analyse only strong connections, we used a ranking system to cut edges, see figure 4

For each vertex we ranked its neighbours basing on the similarity score; then we can query the
network by setting a percentage of the top edges to select (e.g. first 10%,20%,30% of the rank).

Because rankings are not symmetric, when we cut the ranked list we compute the mutual neigh-
bourhood of a node i defined as:

N (i) = {j : (rank
i

(j)  th) ^ (rank
j

(i)  th)}

where rank
i

(j) is the position of node j in the ranked list of nodes connected to i and th is the
user defined threshold.

Figure 4: The complete connected network is pruned by using a method based on ranked lists
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Figure 4.2.5: The complete connected network is pruned by using a method
based on ranked list

4.2.3 Validation of the Similarities Measures

The pairwise phenotype similarities, that are based on the MoA, were compared
with other independently similarities based on different characteristics such as
the molecular structure of the drugs and chemicals, the symptoms of the dis-
eases, the use in clinical practice of a drug to treat certain diseases and the
pathogenic exposures to a chemical that can cause a disease.

The idea to validate the similarity measures used, by comparing them with
other independent, is not a new technique in systems biology. For example, Zhou
et al. [132], compared the similarities between the diseases based on symptoms,
with similarities between the diseases based on genes affected by them. They
verified that the overlap between the two measurements was significant by per-
forming a permutation test.

Here the comparison was performed by means of the Mantel Test. The Man-
tel test is used to evaluate the correlation between two similarity matrices by
adopting a procedure that is a kind of permutation test [161]. The drugs smiles
were downloaded from the Drug Bank Database (https://www.drugbank.ca/).
The chemical smiles were downloaded from the Chemspider Database (http:
//www.chemspider.com/). The pairwise similarity between drugs and chem-
icals smiles were evaluated with the Optimal string alignment algorithm im-
plemented in the R stringdist package [162] The associations between drugs
and diseases based on their clinical usage were downloaded from the MEDI
Prescription Database (https://medschool.vanderbilt.edu) [163, 164]. The
associations between chemicals and diseases were downloaded from the Com-

https://www.drugbank.ca/
http://www.chemspider.com/
http://www.chemspider.com/
https://medschool.vanderbilt.edu
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INSIdEnano Others Coverage
Disease - Disease 585 426 72, 82%

Drug - Drug (Target) 615 410 66, 67%
Disease - Disease 615 608 98, 86%

Chemical - Chemical 2288 2236 97, 73%

Table 4.2: For each category of object the number of elements in INSIdE nano
is reported (column INISIdEnano). Moreover, the number of element used to
perform the Mantel test (column Others) and its percentage of coverage (column
Coverage) is shown.

parative Toxicogenomics Database (http://ctdbase.org/). The similarities
between diseases comes from a recent study published in Nature by Zhou et al.
[132] where they used a biomedical literature database to construct a symptom-
based human disease network and investigate the connection between clinical
manifestations of diseases and their underlying molecular interactions.

The other similarity are not available for all the elements in INSIdE nano,
but they are numerous enough to cover at least 60% of objects in each category.
The exact number of element used to perform the Mantel Test is reported in
Table 4.2.

4.2.4 Nanomaterials characterisation

Graphs (or networks) can efficiently represent complex phenomena and they
can be rapidly analysed with ad hoc algorithms that consider the topological
relatedness of their constituents. The main hypothesis is that patterns of sim-
ilarity between sets of phenotypes could be used as an indication of biological
association. In previous studies network based models were used to perform
drug repositioning tasks [130] and to construct network of interactions between
diseases based on their symptoms [132]. Both the works used substructure of
the network to make inferences between the entities.

For example Iorio et al. [130], starting from transcriptomic data related to
drugs treatment on human cells, constructed a network of interactions between
drugs to characterise their mode of action. Each drug was represented by the

http://ctdbase.org/
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ranked list of genes sorted by their differential expression value with respect of
their control. Then the similarities between each couple of drug, that represents
the edges of the network, were computed by using the Inverse Total Enrichment
Score (TES) that is based on the Kolmogorov-Smirnov test [159, 160]. Then they
scanned the network in search of communities, to identify groups of drugs with
similar effects. Moreover, to repositioning a new drug, the distances between its
molecular alteration pattern and the one of the drugs in the communities were
calculated. Then the drugs were predicted to have the same behaviour of those
in the closest community.

Zhou et al [132], constructed a Human diseases network based on symptoms
similarity. They parsed thousands of research articles in PubMed [165] related
to diseases, computed the term frequency of each symptom (Mesh term[166])
associated to each disease, and then used a bipartite network projection method
to compute similarities between diseases based on how many symptoms did they
share. Then they created a network of diseases interactions based on how many
genes or proteins are shared between each couple of disease. Then, in order
to identify similarities between diseases they used global measures coming from
network theory to characterise couple of diseases or disease communities. For
example, they used the Dijkstra’s algorithm[167] to compute the shortest path
between diseases, then using this information as a dissimilarity measures they
clustered diseases with the complete linkage algorithm.

The idea behind INSIdE nano is a bit different from the others. While in
both Iorio’s and Zhou’s works the idea was to scan the network in search of
homogeneous groups of nodes or to characterise nodes based on network theory
global measures. Here, instead, INSIdE nano was scanned in search of hetero-
geneous clique sub-networks, that are quadruplet structures of heterogeneous
nodes (a disease, a drug, a chemical and a ENM) completely interconnected
by strong patterns of similarity (or anti-similarity). Figure 4.2.6 reports the
pseudo-code of the cliques search method.

The study of the interactions between the elements in the clique allow to
make inferences between the similarities in the behaviour of nanomaterials and
the other elements. For example, the interactions with diseases, can suggest
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Procedure CliqueSearch:

Input:    nanomaterials, drugs, chemicals, diseases
Output: list of all the heterogeneous cliques of size k=4. Each clique contains a 
nanomaterial, a drug, a chemical and a disease.

CliquesList ←  list()

for n in nanomaterials:
drugs_n ← drugs connected to n
for dr in drugs_n:

chem_dr ← chemicals connected to dr
for c in chem_dr:

disease_c ← diseases connected to c
for d in disease_c:

if (n, dr, c, d) is a clique and (n, dr, c, d) is not in CliquesList:
add (n, dr, c, d) to CliquesList

end if
end for

end for
end for

end for

return CliquesList

Figure 4.2.6: Clique search pseudo code.
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associations between the patterns of gene alteration due to the disease and
the one due to the nanomaterials. With respect to drugs it is possible to make
inference related to the nanomaterials drug-ability and their use in therapeutics:
a nanomaterial can be a co-adjutant for a specific drug to treat a disease, if the
nano and the drug have the same effect on the genes affected by the disease.
On the other hand, a nanomaterial can be thought to be toxic, if it behaves like
a chemical that cause a specific disease.

It is interesting to note that the approach used in nano inside, allows the
use of transcriptome data for in-vitro experiments, to infer the effect of nano-
materials on humans. This is a big advantage as it eliminates the cost and the
time required to carry out experiments in vivo.

INSIdE nano tool description

INSIdEnano is a web-based tool (available at http://inano.biobyte.de) that
highlights connections between phenotypic entities based on their effects on
genes. All the data prepossessing and the integration strategy was implemented
in R. The graphical tool and the routine to scan the network were implemented
in Python and Javascript using the d3 library for the Graphical User Inter-
face (GUI). The system was developed in a client-server structure: the client is
responsible for managing the user interface, collecting the user input and dis-
playing the outputs. The server, instead, processes the data from the database
according to the user inputs, and outputs the results to the client.

The system implements two major types of functions: the former a query
analysis of the phenotypic network, where the user can retrieve specific informa-
tion about selected items, the latter is an exploratory analysis of the phenotypic
network. A complete tutorial is available on-line at http://inano.biobyte.

de/help.cgi. The tool provides two different types of queries. The former,
called simple query, allows the user to investigate connections of a specific ele-
ment in the network. Given a node and a threshold, the tool shows all its neigh-
bours divided into four categories: nanomaterials, diseases, drugs and chemicals.
The latter, called conditional query analysis, allows the users to query the net-
work by applying different filters and search for the cliques and it is the core of

http://inano.biobyte.de
http://inano.biobyte.de/help.cgi
http://inano.biobyte.de/help.cgi


i
i

“Template” — 2017/6/9 — 16:42 — page 74 — #74 i
i

i
i

i
i

74
4. INTEGRATED NETWORK OF SYSTEMS BIOLOGY EFFECTS OF

NANOMATERIALS (INSIDENANO)

the tool. Since the purpose of the analysis is to compare the behaviour of an
element, with respect to the others, the user must specify at least two different
kind of item. Moreover, the level of similarity necessary to report a connection
between selected items, the number of items that must be in the same resulting
cliques and the number of query items being connected to the other nodes in the
sub-network, are requested as input. First, the tool retrieve the sub-network of
all the elements, connected to the query items, that satisfy the user requirement.
Then it scans the network in search of cliques. The cliques can contain three
heterogeneous elements, that will be any one of the possible combinations of
three elements between nanos, drugs, chemicals and diseases in the sub-network
(eg. a nano, a drug, a chemical; a nano, a drug, a disease; etc), or they will
contain exactly 4 elements (a nano, a chemical, a drug and a disease). Those
cliques are then grouped with respect to the nature of the connections between
each couple of items that they contain. As a result of the analysis the tool give
the opportunity to visualise the sub-network of all the nodes connected to the
query inputs that satisfy the user requirements. It displays the list of all the
cliques with the opportunity to the user to analyse each one of them and to
inspect the genes underlying the connections. Moreover, there are direct link
to external source of information that the user can follow to have deep insights
into each phenotype.

Thus, INSIdE nano is thought to be an exploratory tool through which the
user can make new inferences about phenotypic connections. The inference
process can be cyclic, as shown in 4.2.7. The purpose of the analysis is to char-
acterise the behaviour of nanomaterials using the conditional query tool. This
tool takes as compulsory input objects of at least two different classes (nano,
drug, chemical or disease). If the user wants to investigate only an object, he
may identify other entities of interest through the single query tool and then use
the conditional query. On the other hand, if the user wants to investigate the
connections between two (or more than two) objects, he can go to the condi-
tional query tool directly. The outputs of the tool will enable the user to verify
his hypothesis (sub-network and lists of clique) and to study the phenotypic
entities in more detail (external link). This process can, however, lead to the
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Input:	One	item	of		
interest

Simple	Query	
Analysis

Inspection	of	most	
similar	Drugs,	
Chemicals	and	

Diseases

Conditional	Query
Input:	a	couple,	

triple	or	quadruple	
of	items	of	interest

Inspection	of	items	
interactions	in	the	
sub-network	and	

cliques

Link	to	external	
resources	for	

further	inspections

Inspection	of	 the	
genes	affecting	the	

interactions

End

New HypothesisNew Hypothesis

Figure 4.2.7: INSIdE nano workflow

consideration of new hypotheses, and then the process can be repeated more
and more refining the initial analysis.

A tool with a similar exploratory analysis is ToxEvaluator. It was developed
by the Pfizer company to facilitate the interpretation of toxicity findings for
chemicals substances by using prior knowledge [133]. It includes proprietary re-
sources such as in vitro pharmacological activity, in vivo preclinical toxicology
study findings and more that 4 million compound structure libraries. It uses a
proprietary tool to link intended pharmacological targets with toxicology-related
gene information (ToxReporter [168]), computes compounds similarity and in-
cludes functions to predict unintended pharmacology (Polypharmacology). The
Polypharmacology tool consists of a collection of 771 (one for each target Incor-
porated in the model) individual classifiers trained with internal screening data
and external bioassay data [169, 170]. Moreover, given a compound the tool give
in output a list of similar compounds based on the Tanimoto similarity [171]
algorithm applied to their structure-encoding molecular fingerprint descriptors
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[172].
The main difference with INSIdE nano is that ToxEvaluator tool is target

specific, in fact, given an input compound it returns the probability that this
compound will bind the targets present in their dataset. On the other hand,
INSIdE nano is based on a different principle: the genes are used to evaluate
the similarities between object and the identification of toxicity or anti-toxicity
effects of the nanomaterials is performed by compare the effect of the nanoma-
terials on all the gene (present in the studies) with the one of other phenotypic
entities.

4.3 Results

4.3.1 Network Description

The final network underling the INSIdE nano tool is composed by 3.516 nodes
and 12.362.256 edges. Nodes are divided into four categories: 28 nanomaterials,
615 drugs, 2288 chemical and 585 disease.The number of known connection
between diseases and drugs is 3.383 (0, 94% of the total) and the number of
known connections between diseases and chemicals is 8.960 (0, 67% of the total).

The edges weight distribution was investigated. It is comprised between -1
and 1, where 1 means that the molecular alteration pattern of two entities is the
same, and -1 meaning that it is opposite. The distribution is shown in figure
4.3.1 from which is easy to see that the majority of the edges have positive sign.

Moreover, the properties of the network were investigated. The clustering
coefficient [173] and the degree distribution were investigated. Since the net-
work is interrogated with different user-selected thresholds, the properties of
the networks were calculated to vary the threshold (from 10% to 90% in steps
of 10). The clustering coefficient increases as the threshold (Table 4.3). This
means that the more edges in the network, the higher the probability that the
nodes are grouped into clusters. Moreover, across all the thresholds, the average
path length is quite small (Table 4.3). This suggests that when using a higher
threshold the network behind INSIdE nano starts having the properties of a
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Figure 4.3.1: INSIdE nano weight distribution

small-world network.
To test if the INSIdE nano network has small-world characteristics, its clus-

tering coefficient C and average path length L, were compared with those of
random networks, that are known to have small clustering coefficient and short
average path length [173]. For each different threshold, 100 random networks
were generated by re-sampling the edges in the original network to be used as
null-model networks. The average of the mean shortest path length L

r

and
clustering coefficient C

r

over the null-model networks were evaluated. Then
the normalised shortest path � = L/L

r

and normalised clustering coefficient
� = C/C

r

was evaluated.
The resulting � are approximately equal to one for all the thresholds (Figure

4.3.2, part A) and � are greater than one for all the threshold (Figure 4.3.2, part
B), meaning that the INSIdE nano network is small-world for each threshold. In
fact, having � = 1 means that the mean shortest path of INSIdE nano network is
equal to the one of the random networks (that is known to be short). Moreover
having � > 1 means that the clustering coefficient of the INSIdE nano network
is higher that the one of random networks (that is usually small).

Furthermore, for each threshold (from 10% to 90%) the hubs in the network
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Th 10% 20% 30% 40% 50% 60% 70% 80% 90%
ClCoef 0.37 0.42 0.56 0.62 0.68 0.75 0.83 0.92 0.99

PathLen 2.00 1.86 1.77 1.68 1.59 1.50 1.40 1.30 1.21

Table 4.3: INSIdE nano network properties. The clustering coefficient (ClCoef)
and the average path length (PathLen) are reported in the table. The network
properties have been evaluated for different thresholds.

Chemicals NTimes Drugs NTimes
C547593 9 clindamycin 8

1-3MeOPh-3-2MeOOHPhC3 9 bufexamac 7
Torin1 cpd 9 bupropion 7

1-AI-1,5-DCA 9 dihydrostreptomycin 7
MPTP 9 trifluridine 7
Diseases NTimes Nanos NTimes

Akathisia, Drug-Induced 6 AuNP 4
Aphasia 6 PSNP 4
Asthenia 6 TiO2T20 3

Atrial Flutter 6 TiO2T7 3
Back Pain 6 AgNP 2

Table 4.4: The first five hubs for each category are reported

were identified. Their consistency between the different thresholds was evaluated
4.3.3. More than 55% of items were identified as hubs in 5/9 thresholds. The
most stable hubs were the chemicals, followed by drugs, the diseases and then
nanos. In table 4.4 the first five hubs for each class of phenotypic entities are
reported.

4.3.2 Nanomaterials Sub-network

Even though the aim of this work is to compare the molecular alteration patterns
of nanomaterials with other patterns, an analysis of the interactions between the
nanomaterials in the network was conducted. As we can see from Figure 4.3.4
part (A) nanomaterials made of the same elements are closer in the network.
For example, there is a group of zinc based nanomaterials that are completely
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Figure 4.3.3: The barplot (A) shows the number of hubs for each threshold. The
barplot (B) shows the percentage of items that were consistently considered hubs
in 1 threshold, 2 thresholds, 3 thresholds and so on.
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connected between them as well as a group of titanium based nanomaterials.
The same behaviour is shown by the hierarchical clustering of the nanomaterials
reported in Figure 4.3.4 part (B). This reinforces the belief that the similarity
measure used (Kendall Tau distance) to compare the molecular changes pattern
of nanomaterials is suitable for the analysis.

4.3.3 Nanomaterials-Drugs connections

The similarities between ENMs and Drugs were analysed by counting how many
times each ENMs was connected with a drug of a certain ATC code. The
Anatomical Therapeutic Chemical (ATC) Classification System is used for the
classification of active ingredients of drugs according to the organ or system on
which they act and their therapeutic, pharmacological and chemical properties.
It is controlled by the World Health Organisation Collaborating Centre for Drug
Statistics Methodology (WHOCC) [174]. For each nanomaterial, the number of
connections between each class of drugs was computed. Positive and negative
connection were treated separately. Each count is normalised by the number of
drugs in each category. The results is shown in the stack plot in Figure 4.3.5.

4.3.4 Nanomaterials-Disease connections

It was also possible to analyse the similarities between nanomaterials and dis-
eases. For example, for each nanomaterial it can be interesting to investigate
which is the most strongly correlated disease of a certain category. Figures 4.3.6
and reports the most strong associated respiratory disease to each one of the 28
nanomaterials included in INSIdE nano.

4.3.5 Connections Validation

To validate the connections between the different phenotypic entities, their simil-
arity matrices were compared with other similarities matrices based on different
metrics independently computed by means of the Mantel Test. Given n objects
and two similarity matrices S1 and S2 the Mantell Test is used to evaluate if
the two matrices are correlated or no. The null hypothesis test is that there
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Figure 4.3.5: Number of connections between nanomaterials and drugs
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(A) Connection strength between ENMs and respiratory diseases

(B) Connection strength between ENMs and dermatological diseases
Figure 4.3.6: The bar plots show the association of ENM MoA and the mo-
lecular alterations for a set of respiratory diseases. For each nanomaterial, the
most strongly connected disease with respect to the network is depicted. The
connection strength is represented in each bar by height.
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is no relation between the two matrices. First of all the correlation between
the n(n � 1)/2 distances is evaluated, then the rows and column of the matrix
are permuted and the correlation is evaluated for each permutation. The signi-
ficance of the observed correlation is the proportion of such permutations that
lead to a correlation coefficient higher than the first one. The Mantel Test con-
firmed the biological relevance of the phenotype similarities calculated based on
the MoA compared with other similarities independently computed considering
alternative characteristics, such as the symptoms for the diseases (Mantel’s test
P < 1E � 05), the molecular structure of the drugs (Mantel’s test P < 0.01)
and chemicals (Mantel’s test P < 1E � 05), respectively (See Table 4.5). This
is an important result, in fact, it shows that the measures used to evaluate the
similarities between objects are reliable, unlike what happened in other works,
such as in Iorio et al. [130], where they found no significant correlation between
measures built starting from the lists of genes and the information on the chem-
ical structure of the medications. Moreover, a Kolmogorov-Smirnof test was
performed by comparing the ranked lists of the drugs-diseases connections and
the chemicals-diseases connections (based on the connection strength) with the
sets of known drugs-diseases and chemical-diseases connections. The tests had
significantly p-values (0.001 and 0.002 respectively), indicating that the know
connections are distributed in the top of the ranked lists and that most of the
strongest connection in the network are known in literature.

4.5).

4.3.6 Relevant cliques

INSIdE nano was scanned in search of cliques of heterogeneous nodes (one
nano, one drug, one chemical and one disease). All the cliques identified with
a threshold lower that 40% were considered relevant. Moreover, the number of
known connections within the cliques increases their relevance. A clique with
both disease-drug and disease-chemical known connections is considered more
relevant than those in which only one of this information is known. This is be-
cause contextualise nanomaterials in these cliques is simpler, as it requires less
investigation. Figure 4.3.7 shows how many of the relevant cliques associated to
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INSIdE nano (MoA) Similarity by Mantel Test
Drugs - Drugs molecular targets 1E�05

Drugs - Drugs chemical structures 1E�02

Drugs - Chemicals chemical structure 1E�04

Drugs - Diseases use in clinical practice 1E�05

Chemicals - Chemicals chemical structure 1E�05

Chemical - Diseases pathogenic exposures 1E�04

Diseases - Diseases symptoms 1E�05

Table 4.5: Comparison of the INSIdE NANO associations based on MoA similar-
ity against independent sets of associations representative of other biochemical
aspects. Mantel’s test P is reported, under the null hypothesis that the two
matrices compared are different (the lower the P, the more similar are the two
correlation matrices to each other).

each nanomaterials has both this connection known, or only one of them. It is
hi-lighted that the number of cliques with two known connection is lower than
the others.

An important aspect in nanomaterials characterisation is the study of the
drugs involved in his clique. For each nanomaterial, his relevant clique identified
with a lower threshold of 30% is achieved, two known connections were studied.
As can be seen in the Figure 4.3.8, nanomaterials based on metal, such as AuNP,
TiO2T20 TiO2T7 have a high prevalence of connections with drugs related to
the nervous system. Others nanomaterials, such as TiO2NB, PSNP, RS, WC
have a high number of connection with drugs affecting the cardiovascular system.

It is also interesting to identify which are the disease that are involved in
the relevant cliques related to nanomaterials. As an example, all the relevant
cliques involving AuNP were analysed (see figure 4.3.9. It was found to be major
associated with circulatory systems disease, most symptoms and signs not well
defined and mental and neuro-developmental disorders.

4.3.7 Use-case study

Here and example of analysis in included. Assuming that the user wants to
investigate the relationships between Asthma and multi-wallet carbon nanotube



i
i

“Template” — 2017/6/9 — 16:42 — page 86 — #86 i
i

i
i

i
i

86
4. INTEGRATED NETWORK OF SYSTEMS BIOLOGY EFFECTS OF

NANOMATERIALS (INSIDENANO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Chemical/Drug-Disease	Known Chemical-Disease	Known Drug-Disease	Known

Figure 4.3.7: The bar-plot shows the percentage of relevant cliques associated to
each nanomaterials that have both the disease-drug and disease chemical con-
nections already known (blue), that have only the disease-chemical connection
known (orange) or that have only the disease-drug connection known (grey).
All the cliques were retrieved with a threshold lower that 40%.
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Figure 4.3.8: Drugs involved in relevant cliques. All the cliques were retrieved
with a threshold lower that 30% and have two known connections.
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Figure 4.3.9: Diseases involved in relevant AuNP cliques. The cliques considered
was retrieved with a threshold lower than 40% and have two known connections.

Figure 4.3.10: Conditional Query between MWCNT and Asthma

(MWCNT). Then the use can query the conditional tool by giving MWCNT
and Asthma as input. An example of query can be the one depicted in Figure
4.3.10. With these parameter the user set a threshold of 70%, he asked that
all the element in the sub-network must be connected both to Asthma and
MWCNT, and that both of them must be in the resulting cliques as shown in
Figure 4.3.11.

As a results the tool displays a list of cliques, that contains both Asthma
and MWCNT (see Figure 4.3.12). The user can filter the list by switch on the
’Filter by known interactions’ button. In this way, only the cliques, where at
least on between the disease-drug and disease-chemical connections is known.
Moreover, the user can start to contextualise the nanomaterial with respect to
the other elements by applying filters on the edges. For example in this case, the
user asked to have all the cliques where the nanomaterial has different behaviour
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Figure 4.3.11: Conditional Query between MWCNT and Asthma, with a
threshold of 70% and 2 minimum connected items, and both Asthma and MW-
CNT needed to be in the same cliques.

Figure 4.3.12: List of cliques resulting from the conditional query between MW-
CNT and Asthma.

from the drug, and positive behaviour with the disease and the chemical (see
Figure 4.3.13). This information can be used to infer knowledge about the fact
that the effect on the genes of the nanomaterial and chemical and nanomaterial
and disease is the same, meaning that the nano can cause the disease, and that
the nano and the drug have different effect on the genes. Moreover, the user
asked to select only the cliques where the drug and the disease has negative
connection, meaning that the drug can cure the disease. The final output is

Figure 4.3.13: Filters applied to the results
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a list of 87 cliques, 12 of them with 2 known connection. The user then can
investigate each clique, by clicking on its row in the table. In this case the user
selected the clique composed by MWCNT, minociclyne, Asthma and Particulate
Matter. Then he investigated the list of genes underlying the connection. The
list of genes confirmed the positivity/negativity of the connection: for example
if we consider MWCNT and Particulate matter, their connection is positive,
indeed their effect on the gene in the list is the same in 80% of the genes (see
Figure 4.3.14).

The user can then, investigate each single element in the clique, by clicking
on its name in the ’Clique information’ panel. For example by clicking on the
name of the drug (minociclyne) the pop-up window reported in Figure 4.3.15
is shown. The available information for drugs are the ATC code, and external
link to DrugBank, Wikipedia etc... For example, by clicking on the wikipedia
link the user will discover that minociclyne is effectively used to treat Asthma
thanks its immune suppressing effects [175].

4.4 Discussion

Many are the possible scenarios of exposure of humans to nanomaterials. For
example, when humans breathe millions of natural nanoparticles or byproducts
of engine combustion, deposit into the lung. Once in the lung, they are able of
overcoming the thin air-blood barrier to transmigrate into the blood [176]. It
has also been showed that nanoparticles can reach the brain directly by passing
the olfactory epithelium and the nervus olfactorius located in the roof of the
nose [177]. Moreover, very small particles (< 10nm) are capable of penetrating
through to the epidermis or dermis [178]. Another issue is the exposition of
workers to nanomaterials during industrial production processes [179]. One ex-
ample, are the carbon nanotubes, that thanks to their incredible tensile strength
are widely used in industries. However, recent studies demonstrate that long
thin carbon nanotubes showed the same effects of long thin asbestos fibres [180].
This is because exposition to this nanomaterial can lead to pleural abnormalities
such as mesothelioma.
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Figure 4.3.15: Minociline investigation

To accurately predict the hazards of these new materials for humans, dif-
ferent biological models are used to determine their potential exposure and
toxicity. Figure 4.4.1 elucidates the in vitro-in vivo relationship and its extra-
polation to humans. In vitro studies are understood as being very simplified
biological models that enable a rapid, low-cost estimation of the effects of xeno-
biotic substances or nanomaterials. A comparison of different cell types isolated
from different tissues or organisms enables the evaluation of more than just
the tissue-specific effects. Only animal experiments (in vivo) can provide suffi-
cient answers to the complex issues of absorption, distribution, metabolism, and
excretion (ADME). However, the constant improvement of in vitro models to
simulate complex multicellular systems [181–183] or entire organs [184] allows
an ever more differentiated investigation of possible mechanisms of action and
will reduce the need for animal experiments in the long run.

In this scenario, systems biology approaches assume extremely importance
due to the computational tool ability to interpret and integrate different in-
formation to construct predictive models able to describe the response of the
biological system to the nanomaterial perturbation.

Transcriptomics experiments, both performed with microarray or next gen-
eration sequencing, are the most likely approaches to survey effects and mech-
anisms within the toxicological sciences, because they can quantify changes in
gene expression through the detection of the number of mRNA copies. Mi-
croarrays are very popular in toxicological sciences, in fact, they can be applied
to a broad range of in vivo and in vitro models and they are provided with a
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Figure 4.4.1: The evaluation process of toxicity of nanoobjects for humans.

high level of available genomic annotations. As an example, in the frame of
the EU-fundend project, FP7-NANOIMMUNE, the NanoMiner transcriptomic
database was developed. It comprises a comprehensive set of data based on in
vitro studies of nanomaterials [185].

Therefore, INSIdE nano was proposed as an exploratory tool able to com-
pare the nanomaterials exposure mode-of-action with those of drugs treatment,
chemical exposure and human disease. The main idea is to infer information
regarding the ENMs behaviour by integrating the in-vitro studies coming from
the NanoMiner (ENM) and CMAP (drug) databases, and disease-genes and
chemicals-genes connections download from the CTD database. The integra-
tion process lead to the construction of a big network with phenotypic entities
as nodes and their strength of similarity/anti-similarity on the edges. Then the
network was scanned in search of cliques of four strongly interconnected nodes
(a nano, a drug, a disease and a chemical) that are used to compare the effect
of the nano on the genes with the one of the other entities. The analysis of
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the network showed that known connections between the phenotypic entitles
are retrieved and that this tool can open a new paradigm for future studies
on the characterization of nanomaterials effects and mode-of-action. In fact, it
is interesting to note that the approach used in nano inside, allows the use of
transcriptome data coming for in-vitro experiments, to infer the effect of nano-
materials on human diseases. This is a big advantage as it eliminates the cost
and the time required to carry out experiments in vivo.
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Chapter 5
Discussion

In the last years, the advancement of high-throughput technologies has led to
the production of large amounts of data. Most of them concerns different ex-
periments that characterise the same entity of interest, others that use the same
measures to characterize different phenotypic entities.

This aspect significantly increases the importance of data integration in the
bioinformatics fields. In fact, many approaches based on systems biology have
been designed to exploit such complex and rich data and to integrate them
to better characterise complex phenotypes. Nevertheless, nowadays, there is a
big gap between the amount of data produced and the knowledge obtained from
them. This thesis is an answer to this request, proposing computational methods
able to integrate and analyse the data to fill in this gap. In this PhD thesis two
new methodology for the integrative analysis of high throughput genomic have
been presented, the former called MVDA and the latter called INSIdEnano.
MVDA is an integrative tool, based on multi-view clustering techniques, that can
identify statistically relevant patients subtype. This problem is usually solved
by using transcriptomic data to identify groups of patients that share the same
gene patterns. The main idea underlying this research work is that to combine
more OMIC data for the same patients to obtain a better characterisation of

95
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their disease profile. This problem is usually solved by using transcriptomic
data to identify groups of patients that share the same gene patterns. The main
idea underlying this research work is that to combine more OMIC data for the
same patients to obtain a better characterisation of their disease profile. The
proposed methodology is a late integration approach based on clustering. It
works by evaluating the patient clusters in each single view and then combining
the clustering results of all the views by factorising the membership matrices.
The effectiveness and the performance of my method has been evaluated on six
multi-view cancer datasets related to breast cancer, glioblastoma, prostate and
ovarian cancer. The omics data used for the experiment are gene and miRNA
expression, RNASeq and miRNASeq, Protein Expression and Copy Number
Variation. In all the cases patient sub-classes, with statistical significance were
found, identifying novel sub-groups previously not emphasised in literature. To
obtain higher accuracy, the experiments have been also conducted by using
prior information, with respect to patients’ classification, as a new view in the
integration process. The method outperformed the single view clustering on
all the datasets; moreover, it performed better as compared to other multi-
view clustering algorithms and, unlike other existing methods, it can quantify
the contribution of single views on the results. The method has been also
shown to be stable after applying perturbation to the datasets by removing one
patient at a time and evaluating the normalised mutual information between all
the resulting clusterings. These observations suggest that integration of prior
information with genomic features in the sub-typing analysis is an effective
strategy in identifying disease subgroups.

Despite that, further experiments should be performed to evaluate the bio-
logical differences, at the molecular level, between the sub-classes.

The main drawback of MVDA methodology is its computational complexity.
On the other side it allows to have high flexibility in the patient sub-type ana-
lysis. In fact, the user can choose the most appropriate clustering algorithm or
whether to perform or not the feature selection phase to identify the most sig-
nificant prototypes. Therefore, it is an effective tool for integrating multi-view
homogeneous data that can provide support for the scientific community
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INSIdE nano is a tool for the contextualization of nanomaterials mode-of-
action. It integrates gene expression data related to: (1) nanomaterials expos-
ure on human cells (2) drugs treatment of human cells (3) known connections
between diseases and genes (4) known connections between chemicals and genes.
The tool is based on the idea that it is possible to contextualise the molecular ef-
fects of nanomaterials perturbations by comparing their patterns of alterations
with respect to those of other phenotypic entities (drugs, diseases and chem-
icals). This tool could greatly increase the knowledge on the ENM molecular
effects and in turn contribute to the definition of relevant pathways of toxicity
as well as help in predicting the potential involvement of ENM in pathogenetic
events or in novel therapeutic strategies. Based on the expression signature
associated to each phenotype, the strength of similarity between each pair of
perturbations was evaluated and used to build a large network of phenotypes. To
ensure the usability of INSIdE nano, a robust and scalable computational infra-
structure was developed to scan this large phenotypic network, and a web-based
effective graphic user interface was built. Particularly, INSIdE nano was scanned
to search clique sub-networks, i.e. quadruplet structures of heterogeneous nodes
(a disease, a drug, a chemical and a nanomaterial) completely interconnected
by strong patterns of similarity (or anti-similarity). The predictions have been
evaluated for a set of known associations between diseases and drugs, based
on drug indications in clinical practice, and between diseases and chemicals,
based on literature-based causal exposure evidence, and focused on the possible
involvement of nanomaterials in the most robust cliques. The evaluation of IN-
SIdE nano confirmed that it highlights known disease-drug and disease-chemical
connections. Moreover, disease similarities agree with the information based on
their clinical features, as well as drugs and chemicals, mirroring their resemb-
lance based on the chemical structure. Altogether, the results suggest that
INSIdE nano can also be successfully used to contextualise the molecular effects
of ENMs and infer their connections to other better studied phenotypes, speed-
ing up their safety assessment as well as opening new perspectives concerning
their usefulness in biomedicine. From a technical point of view the integrative
analysis performed by the two tools are different. The integration performed in
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Figure 5.0.1: Difference between the multi-view integration methodology used
in MVDA and the meta-analysis methodology used in INSIdE nano. The multi-
view methodology (A) integrates different experiments performed on the same
samples. The Meta-analysis methodology (B) integrate the results of the same
experiment on different samples. In the first case the goal is to find clustering
of samples by considering their similarities in all the views. In the second case
the goal is to find similarities between differed samples by comparing how they
affect the same features.

MVDA can be thought to be horizontal across the views (See Figure 5.0.1 Part
A). In fact, the tool requires to have different omics experiments regarding the
same patients. The aim of the integration is to evaluate the different measure-
ments performed on the same samples, to identify and enhance the information
common across the views, but also highlight the differences that exist between
them, which probably will characterize the specific subclasses of patients. On
the other hand, the integration strategy proposed in INSIdE nano is a vertical
integration across different entities on the same features (See Figure 5.0.1 Part
B). In fact, the integration is performed on the same set of features (the genes)
evaluated in different experiments related to four specific entities.

Giving the nature of the data, these two integrative strategies can be com-
bined to better characterize phenotypic entities. For example, in the precision
medicine field, a useful tool would be one that can identify the patients’ sub-
classes and suggests what the possible factors that cause the disease and the right
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drugs treatment and prescription for each of them. Such tool could be imple-
mented by integrating several genomic data to identify the molecular alteration
pattern of each disease subtype. These alterations could then be integrated and
compared with the molecular changes caused by drugs, chemical substances or
environmental factors, to identify which of them can be the underlying causes
of the disease and which could, however, cure it.
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Chapter 6
Conclusions and future work

Due to the advancement of omics technologies and the development of new sys-
tems biology approaches, there is a huge need of methodologies able to integrate
and analyse biological data to better cope with clinical, environmental and open
research problems. In this PhD thesis, I have proposed two integrative meth-
odologies that solve two relevant biological problems. MVDA is a multi-view
methodology that aims to discover new statistically relevant patient sub-classes.
Identifying patients’ subtypes of a specific diseases is a challenging task espe-
cially in the early diagnosis. This is a crucial point for the treatment, because
not all the patients affected by the same disease have the same prognosis or
need the same drug treatment. INSIdEnano (Integrated Network of Systems
bIology Effects of nanomaterials), is a novel tool for the systematic contextu-
alisation of the effects of engineered nanomaterials (ENMs) in the biomedical
context. The idea behind the tool is to use analytical strategies to contextualise
or position the ENM with respect to relevant phenotypes that are better known,
(such as diseases, drug treatments, and other chemical exposures) by comparing
their pattern of molecular alteration. The main hypothesis is that suggestive
patterns of similarity between sets of phenotypes could be an indication of a
biological association to be further tested in toxicological or therapeutic frames.

101
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As the final part of this research a critical analysis of the proposed techniques
was carried out by identifying some weaknesses and possible solutions to be
developed in the future. Since the integration performed in MVDA is a late
integration one, it is not easy to identify the actual contribution of each feature
to the results and it lacks of information related to the relationships between
the multi-features that characterise a subclass of patients. This is an aspect
that could be studied and expanded, for example, by using the canonical cor-
relation analysis. Another solution would be to add a weight to the features to
give a confidence level of the feature contribution to results. Moreover, a better
biological characterisation of the biological phenotype of each subclass can be
identified. This can be done by creating a network of interaction between genes,
miRNAs, proteins etc. that characterise the subclasses. This network can be
then scanned for searching structural motifs. INSIdE nano has been designed as
a building block system of four modules integrated together by using the right
similarity measures. This scheme makes INSIdE nano easily expandable with
other information blocks such as tissue specific information. This would allow
a more precise contextualisation of the nanomaterials and increase the actual
level of knowledge that can be inferred. The main limitation of the current state
of the system is that to add new phenotypic entities to the system, there is a
need of experiments performed on the same genes underlying the actual data-
base. One attractive scenario would be to make INSIdE nano an online learning
system, where users can add other phenotypic entities (nodes) or information
on the connections (e.g. prior knowledge on the existence/non-existence of a
connection), and the system will automatically modify its structure to incor-
porate these data. For example, the existence of information known a priori
on two elements connection is a key shortcoming in the current system, and
could be increased after confirming the information entered by users. Moreover,
the network in INSIdE nano could be integrated as a multi-level network with
epigenetic and metabolic layers. This would allow to perform more complex
queries that can contextualise nanomaterials in an even wider scenario. INSId-
Enano can be also used to contextualise new experimental drugs, and infer their
behaviour on the cell without performing too many experiments in the wet lab.
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To achieve this, the new drug must be integrated to the network by calculating
the appropriate measures. After that the network can be scanned in searching
cliques involving that drug with a chemical and a disease. Moreover, in the field
of data integration in bioinformatics, there is a lack of a complete framework
of multi-view learning that includes the various methods proposed so far. Such
tools would be of great support for researchers that would like to apply these
tools to new kinds of data. Moreover, there is no a general criterion to choose
a priori a method among the others. The choice of the methodology mainly
depends on the statistical problem, on the type of analysis to be performed, on
the type of data to be integrated and on the integration stage. In conclusion,
despite the limitations outlined, results showed in the thesis are almost always
very encouraging and this suggests that this research area is very promising
when working with outmost problems with biomedical, complex and big data.
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Appendix A
Differentially expressed genes
analysis

Let us assume, for simplicity, that for each gene G a set of measurements
ac

1, . . . , a
c

nc
and at

1, . . . , a
t

nt
(where n

c

and n
t

are the number of control and
treated samples) representing the expression level are available in both con-
trol and treatment situations. Microarray experiments typically aim to identify
whether the expression level is significantly different between the biological con-
ditions under examination [186].

One approach commonly used in the literature is based on the analysis of
the log fold change of the genes [21, 187–189]. The log fold change (logFC) is
defined as follow:

logFC = log2(ac

/a
t

) (A.0.1)

where a
c

and a
t

are the mean expression values of the gene in the control and
in the treatment conditions, respectively. Following this approach, a gene is
declared to have a differentially expressed level, if its log fold change is higher
than a constant factor, typically 2. Inspection of gene expression data suggests,
however, that such a simple "2-fold rule" is unlikely to yield optimal results,
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since a factor of 2 can have quite different significance in different regions of
the spectrum of expression levels [190]. Moreover, an analysis solely based on
fold change however does not allow the assessment of significance of expression
differences in the presence of biological and experimental variations, which may
differ from gene to gene.

More strict statistical evaluation has been established and the number of
methodological papers introducing novel statistical approaches has been in-
creased with the number of biological papers presenting microarray results [191–
193]. Usually, in gene-wise analyses, p-values are computed for each gene present
on the microarray by using the t-test or some other analytical strategies such as
the ANOVA, which helps to estimate the contribution of experimental factors
with respect to the distribution of the measured gene expression [194].

Suppose that Y
jk

is the expression level of gene j in the array k(j = 1, . . . , n; k =

1, . . . , K1, K1 + 1, . . . , K1 + K2) and that the first K1 and last K2 arrays are
obtained under the two conditions (i.e., controls and treatments) respectively.

A general statistical model is

Y
jk

= a
j

+ b
j

x
k

+ ✏
jk

(A.0.2)

where x
k

= 1 for 1  k  K1 and x
k

= 0 for K1 + 1  k  K1 + K2 and ✏
jk

ia a random error with mean 0. Hence a
j

+ b
j

and a
j

are the mean expression
levels of gene j under the two conditions respectively. Determine if a gene has
differential expression is equivalent to testing for the null hypothesis H0 : b

j

= 0

against H1 : b
j

6= 0.

A statistical test consists of two parts, the former is the construction of a
summary statistics, while the latter is to determine the significance level (or
p-value) associated to the statistics. Usually the p-value is evaluated based on
the null distribution of the test statistics (i.e. under the H0 hypothesis) which
may be specified or estimated via model assumption (e.g. permutation test).

In a t-test, the empirical means Y
j(1) and Y

j(2) and variances s2
j(1) and s2

j(2)

are used to compute a normalised distance between the two populations (control
and treatment) in the form
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z
j

=
(Y

j(1) � Y
j(2))s

s2
j(1)

K1
+

s2
j(2)

K2

(A.0.3)

From statistical literature it is known that, under the normality assumption
for Y

jk

, z
j

follows a Student distribution with

d
j

=
(s2

j(1)/K1 + s2
j(2)/K2)2

(sk

j(1)/K1)2/(K1 � 1) + (sk

j(2)/K2)2/(K2 � 1)
(A.0.4)

degree of freedom. When z
j

exceeds a certain threshold, depending on the
selected confidence level, the two populations are considered to be different. This
cut-off is usually based on a multiple testing criterion such as the Bonferroni
correction [195] or the false discovery rate [195–197]. Post-hoc corrections are
also recommended because the number of tested genes is much greater than the
amount of samples replicated across two or more biological conditions.

The fundamental problem with t-test for microarray data, however, is that
the repetition numbers K1 and/or K2 are often small and can lead to significant
underestimates of the variance. Moreover the t-test, such as any other statistical
model, makes assumptions on the nature of the data.

The model for the 2-sample t-test with pooled variance states that the
samples have different means but the same variance. If both samples are suffi-
ciently large, the Welch’s t-test [198] can be used, which allows the samples to
have different means and different variances. Another assumption of the t-test
is that each sample comes from a population that is close to Normal.

Sometimes, in order to follow these assumptions, the model can be manipu-
lated or the data can be normalised. For example, the t-test is quite insensitive
(robust) to non-normality as long as data are not too skewed, but is quite sens-
itive to skewness. Gene expression data is usually skewed [199], and so, taking
logarithms of data tend to make the noise more symmetric and hence closer to
normal.

Since the most differentially expressed genes are those with higher log fold
change and significant p-value, these two types of information are combined.
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The following score can be assigned to each gene:

abs(FC) ⇥ �log(Pval) (A.0.5)

where FC is the fold change and Pval is the p-value obtained from the
statistical test. Since significant p-values are small numbers (lower that 0.05),
their negative logarithm will be a high number. Genes with higher score values
will be the ones with a higher difference in their expression values and with
lower p-values. This score is then used to obtain a ranked list of genes where
the most differentially expressed genes are at the top.

Since the sign of the log fold change give information of the fact that the
gene are up-regulated (+) or down regulated (-), a list with two relevant tails
can be created, having the most up-regulated genes at the top and the most
down-regulated genes at the bottom. This is obtained by removing the absolute
value of the logFC from the score formula.
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Appendix B
Nanomaterials

Between the various substances to which the living organisms are exposed there
are nanomaterials. Nanomaterials are defined as those materials with at least
one dimension ranging between 1nm and 1000nm (10�9m) [200, 201], see Figure
B.0.1.

There are two different kinds of nanomaterials following their origin. The
former are the particles that are naturally occurring (such as volcanic ash, soot
from forest fires) or byproducts of combustion processes (such as welding, diesel
engines) [202, 203]. They normally have heterogeneous physical and chemical
properties and are often referred to as ultra-fine particles [204]. The latter

Figure B.0.1: Nanomaterial’s Size
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Figure B.0.2: The promise of nanotechnology to improve human health includes
diagnostics, drug delivery, imaging, and therapy.Figure from [216]

are the engineered nanomaterials (ENM) that are intentionally produced and
designed for various purposes and usually have very specific chemical properties
related to shape, size, surface properties [205].

Structural properties affect nanomaterials behaviour more than particle com-
position itself [206]. Indeed, the ratio between the surface area and the volume is
much greater in ENMs than in their conventional bulk forms, enhancing ENMs
strength and chemical reactivity [207]. Moreover, quantum effects, at the nano
scale level, affect more the nanomaterials properties giving rise to novel optical,
electrical and magnetic behaviours. Nanomaterials have already been available
for commercial use for several years. Nowadays, they can be found in a wide
range of commercial products and everyday items [208, 209].

For example, nanocoatings and nanocomposites are used to produce win-
dows, sports goods, tires, bicycles and automobiles [210]. UV-blocking coatings
on glass bottles are used to protect beverages from damage by sunlight [211].
ENMs are also used to make objects last longer such as the butyl-rubber/nano-
clay composites used to cover tennis balls [212]. Other examples are the nano-
scale titanium dioxide and zinc oxide that find applications in cosmetics and
sunscreen [213], and the nanoscale silica that are used as fillers in a range of
products, including cosmetics and dental fillings [214]. Moreover, ENMs are
even more attractive because they are used in medicine [215, 216] for purposes
of diagnosis, imaging and drug delivery. See figure B.0.2 .

Even if nanomaterials are all characterised by extremely small size, they can
exist in single, fused, aggregated or agglomerated forms with spherical, tubu-
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Figure B.0.3: Classification of Nanomaterials (a) 0D spheres and clusters, (b)
1D nanofibers, wires, and rods, (c) 2D films, plates, and networks, (d) 3D
nanomaterials.
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lar, and irregular shapes. Common types of nanomaterials include nanotubes,
dendrimers, quantum dots and fullerenes. Following Siegel [217], they can be
grouped based on the number of dimensions in which they are in the nano-
scale level: they can be divided into zero dimensional, one dimensional, two
dimensional and three dimensional nano materials as shown in figure B.0.3.

The zero dimensional (0-D) nanomaterials have Nano-dimensions in all the
three directions [218]. Some examples are metallic nanoparticles such as gold
and silver nanoparticles. Most of these nanoparticles have a spherical shape with
a diameter in the 1 � 50nm range. Moreover, cubes and polygons shapes are
also found for this kind of nanomaterials. One dimensional(1-D) nanostructures,
have one dimension outside the nanometer range. These include nanowires, nan-
otubes and nanorods [219]. These materials are several micrometer long, but
with a diameter of only a few nanometer. Two dimensional(2-D) nanomaterials
have two dimensions outside the nanometer range [220]. These include different
kinds of Nano films such as coatings and thin-film-multilayers, nano sheets or
nano-walls. The area of the nano films can be large (several square micrometer),
but the thickness is always in nano scale range. Three Dimensional(3-D) struc-
tures have all dimensions outside the nano meter range. These include bulk
materials composed of the individual blocks which are in the nanometer scale
(1 � 100nm [221].

On the basis of their structural configuration, nanomaterials can be classified
into four types:

Carbon Based Nano materials: The nature of this kind of nanomaterials is
hollow spheres, ellipsoids, or tubes. Spherical and ellipsoidal configured carbon
nanomaterials are defined as fullerenes, while cylindrical ones are described as
nanotubes. Graphite is widely use to engineer various types of carbon-based
nanomaterials (CBNs), including single or multi-walled nanotubes, fullerenes,
nanodiamonds, and graphene. Carbon Nanotubes (CTNs) are used in a wide
range of biomedical applications such as Cell and tissue labeling and imaging,
drugs delivery, Reinforcing tissue engineering scaffolds, etc. Despite many suc-
cessful applications in biomedical engineering, there is a growing concern for
safety with CNTs. Some recent in vitro studies have reported increased cytotox-
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icity of CNTs due to their cellular uptake, agglomeration, and induced oxidative
stress [222].

Metal Based Nano Material: These nanomaterials include nanogold, nanosil-
ver and metal oxides, such as titanium dioxide and closely packed semiconduct-
ors like quantum dots [223]. These materials find applications to solve many
engineering problems such as to reduce the impact of car exhaust gases on the
environment or to create self cleaning windows by the decomposition of dirt
[224].

Dendrimers: Highly branched, star-shaped macromolecules with nanometer-
scale dimensions. Dendrimers are defined by three components: a central core,
an interior dendritic structure (the branches), and an exterior surface with func-
tional surface groups. Applications highlighted in recent literature include drug
delivery, gene transfection, catalysis, energy harvesting, photo activity, molecu-
lar weight and size determination, rheology modification, and nanoscale science
and technology [225, 226].

Composites: Multiphase solid materials where at least one of the phases has
one, two or three dimensions in nanoscale. The most common examples of these
materials are colloids, gels and copolymers [227]. Nanotechnology has gained a
great deal of public interest due to the needs and applications of nanomaterials
in many areas of human endeavours, including industry, agriculture, business,
medicine and public health. Environmental exposure to nanomaterials is inevit-
able as nanomaterials become part of our daily life, and as a result, nanotoxicity
research is gaining attention [228].
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Appendix C
Complex Network Theory

Complex network theory has an important role in a wide range of disciplines,
ranging from engineering, social sciences, communications to systems biology
[229–233].

For example, in the last decade, the Internet and the World Wide Web
(WWW) networks, had a huge increase in size and importance. Network the-
ory was widely applied to the development systematic methods for the analysis
and understanding of social networks properties, such as Facebook [234, 235].
Moreover, in ecology and sociology, network theory have been used to perform
studies on food-webs [236] and human social networks [237]. These methodo-
logies have been also applied to solve public health problems and to perform
epidemiological studies on the spread of diseases[238].

The networks are a suitable tool to model complex entities and their inter-
actions. There are many problems that can be solved using these structures.
For example, they allow to infer information about the global structure of the
connections (network topology), to identify groups of entities which have homo-
geneous characteristics (communities), to calculate similarity between entities
based on the number of paths that join them together. Most of these problems
have been applied to study interactions between biological phenotypes.

117
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118 C. COMPLEX NETWORK THEORY

Complex biological systems can be represented and analysed as computable
networks. There are different kinds of biological networks under study in the
field of systems biology, the most common ones are: protein-protein interactions
(PPIs) networks, gene regulatory networks, gene co-expression networks.

In PPI networks, proteins are nodes and their interactions are edges [239].
PPIs mainly represent information of how different proteins are coordinate to
operate with other proteins to perform the biological processes within the cell
[240]. For many of the proteins their complete sequence is already known, but
their molecular function need to be fully determined. This prediction can be
performed by comparing their interactions with other bio-molecules.

Gene regulatory networks are directed graphs that represent a collection of
molecular regulators (DNA, RNA, protein) that interact with each other and
with other substances in the cell, such as transcription factors [241], to govern
the gene expression levels of mRNA and proteins [242]. They are often studies
to identify gene motifs, that are small sets of recurring regulation patterns, that
are the basic building blocks of transcription networks [243].

Gene co-expression networks are undirected graphs where the nodes are the
genes and there is an edge between a couple of genes if they are significantly
co-expressed in the samples [244].

Network models are also used to study interactions between different kinds of
phenotypic entities. Many studies related to the interactions between genes and
diseases have been performed, analysing complex networks where the diseases
and the genes represent the nodes and the edges between them represent their
interaction strength [245, 246]. For example, DisGeNET [246] is an network
based exploratory platform developed to understand the underlying mechanisms
of complex diseases. In fact, many efforts have been made to identify connections
between genes and diseases [247, 248], but there are increasing evidences that
most diseases arise due to complex interactions among environmental risk factors
and multiple genetic variants [249].

Due to the importance that networks has in the biological field, their basic
definitions are reported in the following section.
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Figure C.0.1: Undirected and Directed Graphs representation

Basic Definitions

A graph (or equivalently, a network) is a mathematical abstraction that repres-
ents a set of objects, called nodes, and their relationships, called edges. The
concept of network is cross disciplinary and it is independent from the kind of
objects and relations that represents. Formally, a graph G is defined as the pair
G = (V, E), where V = v1, . . . , vn

is the finite set of objects representing the
nodes of the graph, and E = e1, . . . , em

is the finite set of objects representing
the set of edges. Each edge in E is a connection between a pair of nodes (x, y) in
V . If there is a relevant sorting order in the pair (x, y) then the graph G will be
said to be oriented (or directed) and x will be said to be the source of the edge
and y the destination. On the other side, if there is no relevant order, the graph
G will be said to be unoriented (or undirected). In terms of information flow
into the network, in an oriented graph, the information can transit only from
x to y. On the contrary, in an undirected graph, the information can flow in
both ways. Moreover nodes and edges can have attributes that identify specific
properties of the objects and their interactions represented in the graph. For
example, nodes can have labels representing their name, size, colour, etc., while
usually edges can have a numeric weight that represents the connection strength
between the two end nodes (in this case the graph is said to be weighted). In a
visual representation the nodes of a graph are usually denoted as circle and the
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edges are denoted as arrows going from the source to the destination. Some-
times undirected edges are represented as lines without arrows. In figure C.0.1
an example of an undirected (a) and a directed graph (b) are shown.

C.0.1 Network properties

Graph density

The graph density shows how sparse or dense a graph is according to the number
of connections per node set and is defined as density = 2|E|

|V |(|V |�1) . A sparse
graph is a graph where |E| = O(|V |k) and 2 > k > 1. A complete graph is a
graph in which every pair of distinct vertices is connected by a unique edge.

Degree Centrality

Given a node i, the degree centrality Cd is defined as the number of edges
incident on the node i. Degree Centrality shows that an important node is
involved in a large number of interactions. For undirected graph the degree is
unique. On the other hand, for directed graphs, each node is characterised by
two degree centrality: the "in-degree" counting the number of edges that enter
the node, and the "out-degree" counting the number of edges that exit the node.
Nodes with very high degree centrality are called hubs since they are connected
to many neighbours.

Clustering Coefficient

The clustering coefficient is the measurement that shows the tendency of a graph
to be divided into clusters. A cluster is a subset of vertices that contains lots
of edges connecting these vertices to each other. Assuming that i is a vertex
with degree deg(i) = k in an undirected graph G and that there are e edges
between the k neighbours of i in G, then the Local Clustering Coefficient of i in
G is given by C

i

= 2e

k(k�1) . Thus, C
i

measures the ratio of the number of edges
between the neighbours of i to the total possible number of such edges, which
is k(k � 1)/2. It takes values as 0  C

i

 1. The average Clustering Coefficient
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of the whole network Coverage is given by Coverage = 1
N

P
N

i=n

Ei
ki(ki�1) where

N = |V | is the number of vertices. The closer the local clustering coefficient is
to 1, the more likely it is for the network to form clusters.

Scale-free Network

Assuming that k is the number of links originating from a given node and P (k)

the probability that the degree of a randomly chosen vertex equals k, a scale-
free network exhibits a power law distribution P (k) ⇠ k�� where � denotes
the degree exponent. A scale-free network can be constructed by progressively
adding nodes to an existing network and introducing links to existing nodes
with preferential attachment so that the probability of linking to a given node
i is proportional to the number of existing links k

i

that the node has.Thus the
connectivity of one node i to any other node j should approximately follow the
rule: P (links to node i) ⇠ kiP

j kj
. The degree distribution P (k) has become

one of the most prominent characteristics in network topology. In terms of nu-
merical estimation, a more reliable property, very similar to the previous, is the
cumulative degree distribution P

c

(k). For a power law distribution P (k) ⇠ k��

the cumulative degree distribution is of the form P (k) ⇠ k���1 and describes
the probability of a random chosen node in the network to have a degree greater
than k.

Cliques

Given an undirected graph G = (V, E), a clique C is a subset of the vertices,
C ✓ V , such that every two distinct vertices are adjacent. The size of a clique
comes from the number of vertices it contains. The smallest one contains two
vertices with one edge. A maximal clique is a clique that cannot be extended
by including one more adjacent vertex, i.e. a maximum clique is a clique of the
largest possible size in a given graph. The clique problem refers to the problem
of finding the largest clique in any graph G. This problem is NP-complete,
and as such, many consider that it is unlikely that an efficient algorithm for
finding the largest clique of a graph exists. Figure C.0.2 shows a graph with two
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Figure C.0.2: A clique is a sub-network completely connected. In this figure
two of the existing cliques are highlighted in the graph. The former is composed
of the red nodes while the latter of the green nodes in the completely connected
sub-networks.

cliques. Detection and analysis of these structures has found many biological
applications: identifying groups of consistently co-expressed genes in microarray
datasets, finding cis-regulatory motifs or matching three-dimensional structures
of molecules [250, 251].

Adjacency Matrix

Given a graph G = (V, E) with n nodes the adjacency matrix representation
consists of a nxn matrix A = (aij) such that a

ij

= 1 if there is an edge that
connect the node i and the node j or otherwise a

ij

= 0. If G is weighted graph,
the edges can assumes positive or negative values, in that case if there is an
edge between the node i and the node j, the a

ij

would be equal to the weight of
the edge w

ij

. For undirected graphs the matrix is symmetric because a
ij

= a
ji

.
Adjacency matrices require space of ✓(|V |2) and are best suited for dense and
not for sparse graphs.
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