
Dottorato di Ricerca in Management and Information Technology

XV ciclo Nuova Serie

Università di Salerno

Reducing the View Selection Problem through
Code Modeling: Static and Dynamic approaches

Valentina Indelli Pisano

December 2016

Chairman: Supervisor:

Prof. A. De Lucia Prof.ssa G. Tortora

Abstract

Data warehouse systems aim to support decision making by providing users with the

appropriate information at the right time. This task is particularly challenging in business

contexts where large amount of data is produced at a high speed. To this end, data

warehouses have been equipped with Online Analytical Processing tools that help users

to make fast and precise decisions through the execution of complex queries. Since the

computation of these queries is time consuming, data warehouses precompute a set of

materialized views answering to the workload queries.

This thesis work defines a process to determine the minimal set of workload queries

and the set of views to materialize. The set of queries is represented by an optimized

lattice structure used to select the views to be materialized according to the processing

time costs and the view storage space. The minimal set of required Online Analytical Pro-

cessing queries is computed by analyzing the data model defined with the visual language

CoDe (Complexity Design). The latter allows to conceptually organize the visualization

of data reports and to generate visualizations of data obtained from data-mart queries.

CoDe adopts a hybrid modeling process combining two main methodologies: user-driven

and data-driven. The first aims to create a model according to the user knowledge, re-

quirements, and analysis needs, whilst the latter has in charge to concretize data and their

relationships in the model through Online Analytical Processing queries.

Since the materialized views change over time, we also propose a dynamic process that

allows users to (i) upgrade the CoDe model with a context-aware editor, (ii) build an

optimized lattice structure able to minimize the effort to recalculate it, and (iii) propose

the new set of views to materialize. Moreover, the process applies a Markov strategy

iii

to predict whether the views need to be recalculate or not according to the changes of

the model. The effectiveness of the proposed techniques has been evaluated on a real-

world data warehouse. The results revealed that the Markov strategy gives a better set of

solutions in term of storage space and total processing cost.

iv

Contents

Title Page i

Abstract iii

Contents v

List of Figures . viii

List of Tables . x

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Outline . 4

2 Related Work 5

2.1 VSP in a static environment . 5

2.1.1 Deterministic approaches . 5

2.1.2 Randomized approaches . 8

2.1.3 Hybrid approaches . 9

2.1.4 Query rewriting . 9

2.1.5 Discussion . 10

2.2 VSP in a dynamic environment . 11

2.2.1 Cache updating techniques . 11

2.2.2 Incremental view maintenance . 13

2.2.3 Discussion . 16

2.3 Data warehouse model evolution . 17

v

2.3.1 Schema evolution . 18

2.3.2 Schema versioning . 22

2.4 Discussion . 24

3 Conceptual Organization of Report Visualization: The CoDe Paradigm 25

3.1 The Graphic Language CoDe . 26

3.2 The CoDe process . 31

3.2.1 CoDe Modeling phase . 32

3.2.2 OLAP operation pattern definition 32

3.2.3 OLAP Operation phase . 36

3.2.4 Report visualization phase . 37

4 The VSP problem 38

4.1 Problem Formulation . 38

4.1.1 Cost model . 39

4.2 Data structure for the view selection problem 39

4.2.1 AND / OR Graph . 40

4.2.2 Multi-View Processing Plan (MVPP) 41

4.2.3 Lattice . 41

5 A static approach to VSP problem 43

5.1 Code Modelling . 43

5.2 OLAP Operation Pattern Definition . 45

5.2.1 Eligible patterns generation . 46

5.2.2 Selection of one OLAP eligible pattern 47

5.2.3 Creation of the lattice structure . 50

5.3 OLAP Operation Optimization . 51

5.3.1 Minimum spanning tree generation 51

5.3.2 Heuristic and views selection . 52

vi

6 A dynamic approach to VSP problem 55

6.1 The CoDe model evolution . 55

6.1.1 The CoDe Dynamic modeling . 56

6.1.2 The optimized lattice creation . 67

7 A probabilistic model to improve the dynamic approach 70

7.1 Markov analysis and view selection . 70

8 Case Study 73

8.1 Static approach . 73

8.2 Dynamic approach . 79

8.2.1 Addition of a component to the model 82

8.3 Probabilistic approach . 86

9 Conclusions 89

9.1 Thesis Summary . 89

9.2 Perspectives . 91

10 Appendix 92

References 94

vii

List of Figures

3.1 Resources information item and its representation in CoDe. 26

3.2 Definition of the term All_Sales. 27

3.3 Example of AGGREGATION function. 27

3.4 Example of SUM function. 28

3.5 Example of NEST function. 28

3.6 Example of UNION function. 29

3.7 Example of SHARE function. 29

3.8 Example of Relation, ICON and COLOR. 30

3.9 The CoDe process. 32

3.10 CoDe model for the data-mart Sales . 33

3.11 A multidimensional cube (a) and OLAP operations (b) performed to extract

the report in Fig. 3.1(a). 34

3.12 The operation pattern for the CoDe Term. 35

3.13 The Resources.Energy report. 36

3.14 Graphical representation of the data-mart Sales 37

4.1 An example of AND-OR view graph. 40

4.2 An example of MVPP. 41

4.3 An example of Data Cube Lattice. 42

5.1 Dimensional Fact Model of the Sales data-mart. 44

5.2 The OLAP Operation Pattern Definition phase. 46

5.3 The prefix tree. 49

viii

5.4 The OLAP Operation Optimization phase. 51

6.1 The Code Dynamic process. 56

6.2 Report on the Feb 24 1997 for the product family drink, food and non-

consumable. 57

6.3 CoDe Model for the information item Food D24. 57

6.4 Addition of a new component. 58

6.5 Addition of SUM function. 58

6.6 Addition of EQUAL function. 58

6.7 Addition of an item for the EQUAL function. 59

6.8 Addition of the item Total_Profit. 59

6.9 Addition of another component to the item. 60

6.10 Error message. 60

6.11 Code Model with the Total_Profit item. 60

6.12 Addition of the NEST function. 61

6.13 Final CoDe model. 61

6.14 Example of classifier method. 66

7.1 The Markov optimization. 71

8.1 The CoDe model. 73

8.2 The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows). 77

8.3 CoDe model for the data-mart Sales concerning the cost and profit of the

food category in the WA state for the day 24 (a), and its graphical repre-

sentation (b). 79

8.4 The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows) constructed on the CoDe model in Fig. 8.3(a). 81

8.5 The CoDe model with the new component FoodD25. 83

8.6 The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows) constructed on the CoDe model in Fig.8.5. 85

ix

List of Tables

2.1 Static view selection approaches . 10

2.2 Dynamic view selection approaches . 17

3.1 Graphical representation of a report. 26

3.2 Summary of the mapping among Code syntax and OLAP operation patterns. 34

5.1 Coefficients to compute V
s

and P
c

. 50

6.1 Context-sensitive grammar. 62

6.2 Application of the min-max technique. 67

8.1 Eligible OLAP operation patterns for the term Drink. 74

8.2 Eligible OLAP operation patterns for SUM1. 74

8.3 Vocabulary table. 75

8.4 Switchable strings and OLAP unique operation patterns. 76

8.5 Processing time and storage space of adopted algorithms applied on the

lattice structure of Fig. 8.2. 78

8.6 Comparison of processing times of two consecutive executions. 78

8.7 Algorithms evaluation on the entire Sales data-mart by using the CoDe

model in Fig.3.10. 78

8.8 Switchable strings and OLAP unique operation patterns for the CoDe model in

Fig. 8.3(a). 80

8.9 Processing time and storage space of adopted algorithms applied on the

lattice structure of Fig. 8.4. 82

x

8.10 Switchable strings and OLAP unique operation patterns for the CoDe model in

Fig. 8.5. 83

8.11 The SEQ_MATCH execution. 84

8.12 The SEQ_MATCH output. 84

8.13 Algorithms evaluation by using the CoDe model in Fig. 8.5 86

8.14 The V N1 vector . 86

8.15 The V N
i

vector . 87

8.16 The V N
i+1 vector . 87

8.17 Markov Algorithm evaluation . 88

8.18 Algorithms evaluation corresponding to the CoDe model in Fig.8.5. 88

10.1 The Q0 ⇤ V 0 Matrix . 92

10.2 The Q ⇤ V Matrix . 93

xi

Chapter 1

Introduction

In recent years, the use of decision support systems based on data warehouses is widely

increasing in different application domains, such as marketing, business research, demo-

graphic analysis, security, and medical field. A data warehouse (DW) is an integrated

collection of information extracted from distributed and heterogeneous database systems.

Differently from a database, which is a planned collection of information, usually stored as

a set of related lists of similar items designed to handle transactions, a DW collects and

stores integrated sets of historical data organised in a way to make analysis fast and easy.

According to [32], a DW is a subject-oriented, integrated, time-varying, non-volatile collec-

tion of data that is used primarily in organizational decision making. Moreover, these data

are redundantly stored, cleaned from inconsistencies, and transformed for optimal access

and performance. To this end, with respect to a relational database, a DW environment

can include an extraction, transformation, and loading (ETL) solution, data mining capa-

bilities, client analysis tools, and so forth. For example, in the business world, a DW for

market research might incorporate sales information, such as the number of sold products,

their price, the number of customers, information about the delivered invoices. By combin-

ing all of these information in a DW, a company manager can analyse gains, trends about

sold items, and takes decisions about new marketing strategies. As a consequence, a DW

can be used as a decision support system ensuring the user to get the appropriate data at

the right time. Therefore, in a context like the business world, where a large volume of

data is produced, the speed with which the information are computed represents a crucial

2 Chapter 1. Introduction

aspect. In order to satisfy the need of business managers and to help them to make fast

and precise decisions, DWs have to include efficient On-line Analytical Processing (OLAP)

tools able to process complex queries [70].

With the widespread use of DWs, the size and complexity of OLAP queries have con-

siderably increased, so the query processing costs impact on the performance and the pro-

ductivity of decision support systems. Moreover, the execution of high frequency queries

on-the-fly every time is expensive, produces wasted effort, and makes the data warehousing

extremely slow. Thus, improving the performances of data warehousing processes is one

of the most crucial aspect to boost the productivity of companies.

1.1 Motivation

In the last two decades several approaches have been proposed to speed up the data ware-

housing process, such as advanced indexes, parallel query processing, and materialized

views [2, 18, 21, 54, 69]. The latter is the most common investigated approach in the lit-

erature. A materialized view is an ‘information of interest’ used by business managers to

takes advantageous decisions. In particular, the materialized views are queries that instead

of being computed from scratch are already calculated, stored, and maintained.

On the one hand, materialising the views every time requires a large amount of memory,

and on the other hand, not materialising any view requires lots of redundant on-the-fly

computations. Thus, it is important to identify the set of views to materialize with the

lowest query processing costs and storage space. In the literature this issue has been

investigated in many studies [1, 29, 62, 73] and it is known as the view selection problem

(VSP). Formally, given a database schema and a query workload, the VSP is the problem

of selecting an appropriate and minimal set of materialized views under fixed constraints

(i.e., the storage space) [42]. A query workload is a set of queries that corresponds to

the user requests submitted to the DW [51, 39, 26]. In order to define the set of workload

queries and the minimal set of materialized views a set-up phase on the DW is required.

In particular, to select the right set of workload queries it is required an analysis phase

that can be performed by calculating the frequent data usage on the DW. Furthermore,

also to select the appropriate set of views it is required a training phase on the DW.

This phases are time consuming, increases the overall costs and produces wasted time.

Chapter 1. Introduction 3

In the literature several approaches has been proposed to mitigate the VSP by selecting

minimal set of materialized views under fixed constraints [52, 48, 42, 27, 53]. However, to

our knowledge, no research tries to avoid the overhead caused by such set-up phases.

To address this issue we use CoDe that let us to know a priori the data of interest and

the relationships among them in order to answer to the user requests and optimize the

views selection process.

The language CoDe [56, 55], by exploiting the business manager knowledge, allows

specifying the relevant data, the relationships among them, and how such information

should be represented. CoDe is a visual language that allows to conceptually organize

the visualization of reports, it adopts an hybrid modeling process combining two main

methodologies: user-driven and data-driven. The first one aims to create a model according

to the user knowledge, requirements, and analysis needs, whilst the latter has in charge to

organize data and their relationships in the model through OLAP queries.

In this thesis we present a basic approach that exploits the CoDe modeling language

to find the set of workload queries and to mitigate the VSP. This approach extends the

CoDe process by enabling the selection of the minimal number of required OLAP queries,

compact them, and create a lattice structure avoiding the explosion of the number of

nodes. The lattice is a directed acyclic graph (DAG), where the nodes represent the

views (or queries), while the edges represent the derivability relations between views. This

representation allows queries to be answered from the result of other queries, optimizing

the query processing costs.

However, the nature of the selected views is uncertain because DW schemas, and their

data, can change frequently. As a consequence, the model and the views have to be up-

graded or constructed from scratch, requiring the maintenance of the schema. To this end,

we extend our previous approach by proposing dynamic process that (i) allows managers to

upgrade the CoDe model with a new context-aware editor, (ii) builds an optimized lattice

structure that minimizes the re-computation of the views, and (iii) proposes the new set

of views to materialize.

Nevertheless, the re-computation of the views, each time the model changes, produces

an overhead in the data warehouse process. Thus, we exploit a Markov strategy to predict

if a new set of views improves the performances. In particular, we adapt a probabilistic

approach to the CoDe dynamic process that exploits the impact frequency of the OLAP

4 Chapter 1. Introduction

queries on the possible new views, and suggests the subset of views to pick up for materi-

alization, and those to be replaced.

In order to validate the static, dynamic, and probabilistic approaches we have analysed

their performances on the Foodmart DW [45]. Foodmart maintains information about a

franchising of big supermarkets located in the United States, Mexico, and Canada. In

particular, the data-mart Sales has been selected to analyse the sales of these stores, the

customers information, and the products assortment [31,67].

1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 outlines related work.

Chapter 3 provides an overview of the CoDe modeling, its syntax and semantic. Chapter

4 defines the view selection problem, while Chapters 5, 6, and 7 describe the optimization

approach to define a workload query and to select the materialized views by exploiting

static, dynamic and probabilistic methodologies, respectively. Chapter 8 provides the

details of an experimentation and a discussion of the obtained results. Final remarks are

discussed in Chapter 9.

Chapter 2

Related Work

The view selection problem (VSP) has been the subject of a considerable amount of previ-

ous work. In the following we first discuss the most popular approaches defined in literature

that select materialized views to speed up decision support queries in static environments,

then the ones for dynamic environments. Finally, we also consider the approaches address-

ing the schema evolution problem.

2.1 VSP in a static environment

The VSP plays a central role in the design and query of a DW [70]. Many approaches have

been proposed to address this problem, such as deterministic, genetics, hybrid, and query

rewriting algorithms [22,42, 27].

2.1.1 Deterministic approaches

Harinarayan et al. in [29] presented a greedy algorithm to select a set of materialized views

using a constraint on the maximum number of views to materialize and a framework lattice

to express dependencies between such views. The lattice data cube is a directed acyclic

graph (DAG) whose nodes represent the views (or query) characterized by the attributes of

the group-by clause, while edges denote relations of derivability between views (see Section

4.2.3). The benefit of this representation is that some queries can be answered from the

result of others optimizing the query processing costs. The idea of this algorithm is to

select the views to materialize in the direction of maximizing the total benefits, ending

after k iterations and returning the k selected views to be materialized. The total benefit

6 Chapter 2. Related Work

is denoted by the expression B(v, S), where v is the view to choose to take into account

those materialized S. The greedy algorithm returns a selection of views in the lattice that

approximates very well the optimal solution, representing a lower-bound of 63% compared

to the optimal solution. However, they did not take into account the view maintenance

costs and the storage space constraints. Moreover, the lattice representation is suitable

and easy to implement in low dimensional deterministic cases but the main disadvantage

of this representation is that the number of nodes in the lattice structure is exponential

relative to the number of dimensions. Our first goal was to develop a framework lattice

more scalable than theirs to select the views taking into account this information and

making our solution closer to the real problem.

In [62] the VSP is addressed by exploiting a greedy algorithm which picks the views

focusing its choice on a benefit metric, such metric is based on the probability which each

view being queried. In particular, they propose PBS-U that picks aggregates in order

of their probability weighted size. They try to minimize the following ratio: | v | /p
v

,

where | v | is the size of aggregate view v, and p, is the frequency with which v is queried.

Moreover, they examine the materialized view selection problem when subsets of aggregates

can be computed using chunks [17]. The idea of chunks is motivated by MOLAP system

which use multi dimensional arrays to represent the data. Instead of storing a large array

in simple row or column major order they are divided into ranges, and chunks are created

based on this division. They show that the benefit of the views selected by PBS using

chunks can be greater than the benefit of the optimal set of views selected without chunk

based pre computation. However, this solution is not suitable for us because we need to

know a priori the frequency with which the view is expected to be queried.

Yang et al. [71] proposed a heuristic algorithm which utilizes a Multiple View Processing

Plan (MVPP) to obtain an optimal materialized view selection. The MVPP is a DAG

representing a query processing plan (or strategy) to obtain the response views of these

queries in a warehouse (see Section 4.2.2). Basically, the execution plan of a query can be

more than one and among them we can find the optimal one. So a MVPP can be obtained

by considering all the optimal plans of each query. The proposed algorithm takes in input

a MVPP with the following parameters: the set of nodes, the set of the directed edges

that indicate the order relation between nodes, the processing and maintenance costs, the

access and upgrade frequencies. The authors use a tree structure which every node is a

Chapter 2. Related Work 7

potential candidate to the materialization. If a node is considered a good candidate, the

savings will calculate taking into account the materialization costs and subtracting the cost

maintenance. If the result is a positive value, the node is added to the tree, otherwise is

deleted with all its descendants from the candidate set. In particular the following heuristic

was adopted to reduce the search space: if the views v1 and v2 are related where v1 is the

son of v2 and if the materialization of v1 returns no benefit, then v2 is not considered.

In this way, they assert to achieve the best combination of performance and maintenance

costs. However, this algorithm did not consider the storage space constraints. Moreover,

the MVPP representation is suitable for depicting relationships among queries to the base

relations through intermediate and shared temporary views. From the MVPP graph, the

size of intermediate views can be found or computed easily and provided as input to

the view selection for materialization algorithm. But the cost involved in generation of

an MVPP graph from the query workload of a data warehouse is high when the query

processing plan changes and input workload is very large.

A framework to solve the views selection problem is presented by H. Gupta in [23] that

exploit AND-OR Views Graph. A AND-OR graph is one of the most common DAG used

in the literature and it is the union of all possible execution plans of each query. It is

composed of two types of nodes: operation node, and equivalence node (see Section 4.2.1).

The author presents greedy heuristics that in polynomial time make the views selection

by using AND-OR graphs in order to minimize the total processing cost of the workload

queries. Gupta does not consider the maintenance views cost but his heuristic takes into

account a constraint on the storage space.

This work was extended by the same Gupta H. with the collaboration of Mumick I.S.

[24], [25]. In these articles they take into account the maintenance views cost and develop an

algorithm that minimize the total views maintenance and the total processing costs, taking

into account a limited storage space. Proofs are presented to show that this algorithm is

guaranteed to provide a solution that is fairly close to the optimal solution. However, the

graph generation process becomes costly for complex and huge query workloads.

Other deterministic approaches are represented by the works [57, 44, 3]. The authors

Roy et al. in [57], introduce the benefits and significant improvements in multi-query

optimization techniques used in conjunction with a greedy heuristic. This heuristic allows

to iteratively pick from an AND-OR graph the set of views to materialize, which minimize

8 Chapter 2. Related Work

the processing cost of the queries that make up the workload. This study was extended by

H. Mistry et al. in [44] in order to optimize the maintenance costs of materialized views.

This article in addition to the speed of query processing workload based on the selected

view, it shows an algorithm that creates an efficient maintenance plan materialized view,

which uses the expressions in common between the different expressions of maintained

views. However, these works are studying solutions which do not take account of any

constraints on resources.

The view selection algorithm proposed by X. Baril et al. [3] is based on the idea of a

view level in the query graph. Thus, each view has a level associated, starting from the

root that his level is one, and so on in ascending order. The framework used for the view

representation is a variant of an AND-OR graph, called Multi-View Materialization Graph

(MVMG), it allows expressing common sub expressions of aggregate SQL queries. The

approach deal with the view selection problem under a storage space constraint and split

it in two phases. The first one performs a local optimization heuristic, calculating for each

view in MVMG the local benefit to materialize it, and pre-selecting a set of candidates

views that reduce the processing costs, without increasing significantly the maintenance

costs. Such heuristic calculates the total costs for each level of the graph MVMG and selects

the views belonging to the level which has the minimum total cost, in term of development

and maintenance, of all the views that compose it. The second phase selects from the

set of view candidates for each query, the views to materialize that maximize the overall

benefits taking into account a space constraint. The proposed algorithm has polynomial

complexity and improves the performance of the algorithm proposed in [71], because the

latter provides a solution based on MVPP which tends to materialize the views closer to

the leaf node (base relations), making the processing and maintenance costs higher. The

difference to our proposed work is that they based them approach on the use of SQL queries

and not OLAP queries.

2.1.2 Randomized approaches

Genetic algorithms generate solutions using techniques inspired by the natural selection

laws and biological evolution. The base strategy starts with an initial random population of

solutions (chromosomes) and generates new populations mixing randomly (crossover) and

changing (mutation) the best solutions that are evaluated through a function called fitness,

Chapter 2. Related Work 9

then stops it execution when there is no improvement to the fitness function evaluated on

the current population. Some genetic solutions were proposed, such as [25], they use a

MVPP framework to represent the set of views that concur to materialization. The set of

materialized views is chosen in terms of reduction on the processing costs and maintenance

costs. However, for the random characteristics, these algorithms do not give an optimal

solution. A solution to this problem can be to add a penalty value to the fitness function

to ensure that non-optimum solutions are discarded, anyway this should be investigated.

2.1.3 Hybrid approaches

Other approaches are represented by the hybrid algorithms. Zhang et al. in [73] applied

their hybrid solution combining greedy and genetic algorithms to solve three types of

problems. The first one addressed the optimization of queries, the second concerned the

choice of the best execution plan for each query and the third was about the views selection

problem. However, such algorithms are characterized by a high computational complexity,

which makes them not a good choice.

2.1.4 Query rewriting

Another different approach to the view selection problem is the rewritten of query (Query

Rewriting). This strategy not only selects the views to materialize, but rewrites completely

the query workload based to optimize its processing time. So the input to the view selection

problem is no longer a multi-query DAG, but the definition of the same queries. The

problem is modelled as a research problem by exploiting a set of transformation rules,

which detect and use common sub expressions between the query workload and ensure

that each of them can be answered using only materialized views.

The work proposed by Park C.S. et al. in [51] introduces an algorithm for the OLAP

query rewrite that significantly improves the utilization of materialized views with respect

to most of the approaches proposed in the literature and analysed in the survey [27],

because it considers the characteristics of the DW and the OLAP query. The authors

start by defining a ’Normal Form’ of typical OLAP queries expressed in SQL and based

on a structure, very similar to the one proposed in [29], called Dimension Hierarchies

Lattice (DH), and present the conditions under a materialized view can be used in the

rewriting of a given OLAP query. In particular, these conditions are specified by the partial

10 Chapter 2. Related Work

ordering relations expressed by the lattice structure between the components (selection

attributes and aggregation) of their normal forms. The query rewrite method consists of

three major steps. The first step select the views to materialize through a greedy algorithm

of quadratic complexity compared to the number of views in the lattice structure. The

second step generates the query blocks for materialized views using query regions on the

lattice structure, that represent areas that share the predicates of the query selection.

Finally, the third step integrates the query blocks in a compact final rewrite of all the

query workload. However the drawback of the query rewriting is that the number of

possible rewritings of a query using views is exponential in the size of the query.

2.1.5 Discussion

Based on the selected works, we observe that the problem that affecs the deterministic and

heuristic algorithms is the scalability. Thus, these methods are effective only with a small

number of views. To overcome this problem several randomized and evolutionary algo-

rithms have been introduced. However, they have limitations as well. Genetic Algorithms

(GA) are able to perform better in multi-directional search over a set of candidate views in

the search space. Thus, such algorithms can provide effective search performance and find

a solution near a global optimum in the view selection problem. Moreover, a limitation of

the evolutionary algorithms is that it is hard to acquire good initial solutions, and therefore

in the view selection problem, GA-based approaches converge slowly. To summarize this

section we propose the following table 2.1.

Table 2.1: Static view selection approaches
Pro Cons

Deterministic Polynomial complexity Non-optimum solutions

Randomized Find a point near the global optimum

There is no guaranteed

convergence to global

minimum and the convergence

is usually slow

Hybrid Best set of solutions High computational complexity

Query rewriting

Compute the set of materialized

views and also find

a complete rewriting of

the queries over it

High computational complexity

Chapter 2. Related Work 11

2.2 VSP in a dynamic environment

Static view selection algorithms still suffer from a variety of problems, first of all they rely

on a pre-compiled query workload, and may not perform well for ad-hoc queries. Second,

the space maintenance, and time constraints may change over time while the materialized

views set is fixed, once selected. Finally, the space and the maintenance constraints are

usually unable to be minimized at the same time. Thus, to adapt the problem to an actual

one, monitoring and reconfiguration should be performed. The DW has a dynamic nature,

and since it supports the decision making process then its data or even its schema have

to be changed. Consequently, the materialized views defined upon such DW have to be

updated. Thus, in the view selection process, these changes should be taken into account

and dynamic view selection techniques should be investigated [37]. In the literature several

works has been outlined such as [60, 38, 17, 15] that concerns cache updating algorithms

and [50,75, 59,47,19] that concerns incremental views maintenance algorithms.

2.2.1 Cache updating techniques

With the caching strategies, the cache is initially empty and data are inserted or deleted

from the cache during the query processing. Materialization could be performed even if

no queries have been processed and materialized views have to be updated in response of

changes on the base relations [42]. Caching can be divided into physical and semantic. The

first one refers to the mechanism employed in operating systems and traditional relational

databases, where some physical storage unit such as a page or a tuple is kept in cache.

Semantic caching keeps track of the semantic description of the cached data [60,38,17,15]

and takes advantage of high level knowledge about the data being cached. We take into

account only the semantic caching that is referred to views or queries, since the cache

manager knows both the data and their query expressions.

WATCHMAN [60] is a cache manager for OLAP queries. It is based on two algorithms

for cache replacement and for cache admission and perform a simple ’hit or miss’ strategy

that relies on temporal locality of queries to gain benefits. The admission and cache

replacement algorithms are denoted as LNC-A (Least Normalized Cost Admission) and

LNC-R (Least Normalized Cost Replacement). LNC-A and LNC-R aim at minimizing the

execution time of queries that miss the cache instead of minimizing the hit ratio. Usually

12 Chapter 2. Related Work

the criterion for deciding which query to cache is based upon its probability of reference in

the future, however such probability is not precise and based on the past reference pattern

by assuming that these patterns are stable. Both algorithm use a profit metric, reported

in the following, based for each retrieved set on its average rate of reference, its size, and

execution cost of the associated query.

The algorithm LNC-R in order to capture the actual execution costs (or savings) of a

retrieved set it uses other additional parameters in addition to the reference pattern: �
i

which is the average rate of reference to query Q
i

, S
i

that is the size of the set retrieved

by query the Q
i

, and c
i

the cost of execution of query the Q
i

. LNC-R aims at minimizing

the cost savings ratio (CSR) defined as:

CSR =

P
i

c
i

h
iP

i

c
i

r
i

(2.1)

where h
i

is the number of times that references to query Q
i

were satisfied from cache, and

r
i

is the total number of references to query Q
i

.

The algorithm LNC-A prevents caching of retrieved sets which may cause response time

degradation. Thus, it should cache a retrieved set only if it improves the overall profit. In

particular, given a set C of replacement candidates for a retrieved set RS
i

, the procedure

decides to cache RS
i

only if RS
i

has a higher profit than all the retrieved sets in C. The

profit is defined as follow:

profit(C) =

P
RS

j

2C �
j

c
i

P
RS

j

2C S
j

(2.2)

where RS
i

= c

i

s

i

.

DynaMat [38]is a system that dynamically materializes information at multiple levels

of granularity in order to match the workload but also takes into account the maintenance

costs, the time to update the views, and the space availability. DynaMat constantly moni-

tors incoming queries and materializes the best set of views subject to the space constraints,

it work is performed in two phases. The first one is the ’on line’ phase where the system

answers queries posed to the warehouse using a Fragment Locator to determine whether or

not already materialized results can be efficiently used to answer the query, a cost model

authors have defined to perform this phase. A Directory Index supports sub linear search

in order to find candidate materialized views. Then the result is computed and given to

Chapter 2. Related Work 13

the user and it is tested by the Admission Control Entity which decides whether or not it is

beneficial to store it in the Pool. During the on-line phase, the goal of the system is to an-

swer as many queries as possible from the pool and at the same time DynaMat will quickly

adapt to new query patterns and efficiently utilize the system resources. The second is an

’off line’ phase, during which the updates are stored in the warehouse and the materialized

results in the Pool are refreshed. DynaMat is more flexible than WATCHMAN, but it does

not allow combinations of cached views to answer queries.

Deshpande et al. in [17] propose to use chunks, which are organized in a hierarchy of

aggregation levels. Chunk caching is a kind of semantic caching specific to chunk based

organization [74]. Chunks have finer granularity than views or tables and are thus more

flexible and may be more efficient in answering overlapping queries mainly involving aggre-

gations. A multidimensional query is then decomposed to chunks at the same aggregation

level, with missing chunks computed from raw data. This work is further extended in [16]

to allow aggregation from lower level cached chunks. As metrics of caching Deshpande et

al. in [17] utilize the CLOCK algorithm which discards the oldest data cached and that is

an efficient approximation of LRU.

2.2.2 Incremental view maintenance

The incremental maintenance of materialized views is a well studied problem, and efficient

maintenance algorithms are used to reduce the huge amounts of data transfer at runtime.

When updates occur to a database there are two distinct execution strategies to update

all affected materialized views whether incrementally or not. In particular, the first is

the immediate update, where all affected views are immediately updated. This strategy

creates an overhead for the processing of the up dates but minimizes the query response

time for queries accessing the view. The second is the deferred update, where all affected

views stay outdated until an access to them is made. This strategy avoids the system

overhead associated with immediate up date propagation but slows down query evaluation

for queries accessing outdated views. Both immediate and deferred maintenance guarantee

that the view is consistent with the underlying database at the time the view is accessed.

In [50], authors propose the EVE system(Evolvable View Environment). They define

that each component is composed by attribute, relation or condition that has attached

two evolution parameters. The dispensable parameter specifies if or not the component

14 Chapter 2. Related Work

must be present in any evolved view selection. The replaceable parameter specifies if the

component could be replaced or not in the view evolution process. Then define the pc

containment constraint in order to describe if a view is equivalent, subset or superset of

an initial view whilst the evolution parameters allow the user to specify criteria based on

which view will evolve. In the EVE system they use several algorithms such as the POC

algorithm [49]. It uses containment constraint information for replacing the deleted rela-

tion with another relation such that the redefined view satisfies the evolution parameters.

However, this algorithm has two major drawbacks. The first is that it can be applied only

if the relation is still available even after the evolution. Secondly it is composed by inter-

mediate steps that could considerably increase the size of the intermediate views requiring

unnecessarily overhead in term of source IO time and overall computation time. Thus,

they propose other strategies such as: the re-materialization strategy, that computes the

view from scratch given its new definition. SYNCMAB strategy that uses the containment

information between the relation and its replacement given by a PC constraint and apply

defined maintenance strategies. SYNCMAA strategy that applies specialized techniques

to compute the view when the relation is not available. Finally, redefinition strategy that

apply maintenance techniques for view redefinition for each change necessary to obtain the

new definition of a view.

Another incremental maintenance technique is outlined in [75] that illustrates in terms

of obtaining modification information from different sources, then ranks them by ascending

order, next inserts them into the message queue, then removing modification information

from the message queue and finally carry on incremental changes and modification opera-

tions. The experimental result also shows the cost reduction in view maintenance.

Ghosh et al. in [19] exploit the linear regression on attributes to find the co-relations

between such attributes. They adopt an incremental view maintenance policy based on

attribute affinity to update the materialized views at run time without using extra space

and minimizing the data transfer between the secondary memory and primary memory.

They exploit an Attribute Affinity Matrix (AAM) to classifies views taking into account the

relations between the attributes of each view. The last column of AAM represents the total

deviation of each attribute from the other attributes. Moreover they define the Important

Attribute and Affinity Matrix (IAAM) that store information about the materialized view

set. The first row of IAAM represents the number of occurrences of each attributes and

Chapter 2. Related Work 15

the second row represents the total deviation of corresponding attribute.

The attributes that have no relations in common with the other attributes are labelled

as ’unmatched’. When a view is selected the method keeps an amount of space to store

the views that have attributes labelled as ’unmatched’. Each time a query is submitted,

such procedure looks for a materialized view, if the view is found, the total use of each

attribute for each involved query, is incremented. Instead, if no view is identified that

can respond to the request, a view with the highest number of related attributes with the

involved query is kept. For the ’unmatched’ attributes, the procedure can calculates the

’total use’ value of the attribute in the secondary memory, if it has a value greater than the

attributes belonging to the view already materialized, then such attribute is merged with

the attributes of the materialized view. Otherwise, it can checks if there is a tie between

the attribute occurrences, and use the AAM to break the tie. Then the ’total deviation’

of the attributes (the one in the main and the other in the secondary memory) is verified.

If the ’total deviation’ attribute in secondary memory is less than the attribute in main

memory, then the attribute is added, although they do not merge. But, if there is no space

left, the system calculates the important attributes in the views. The attribute that has the

highest number of occurrences and least amount of total deviation is considered as the most

important attribute. With respect others methodologies this method instead of replacing

the entire materialized views it replaces the attributes only from the primary memory.

Indeed, it reduces the data transfer between primary and secondary memory, which has

better time complexity over the existing system which replaces the entire materialized

view.

Ghosh et al. in [20] proposed an approach that exploits a Markov strategy in order

to select the set of views to materialize on large amount of data transfer. Their solution

replaces the unused materialized views from primary memory with new views from sec-

ondary memory that are likely to be used frequently. The method is divided in two phases:

the Initial Probability and the Stable Probability.

Initial Probability. The first step takes in input a set of materialized views stored in

the secondary memory and a set of queries computing such views. A (m ⇤ n) Hit Matrix

(VHM) is created, based on the input, where m denotes the number of distinct queries and

n the number of views. If queries are using an initial view V
i

and continue hitting in it

the corresponding cell value of V
i

will be marked as ‘HIT’. The moment the query misses

16 Chapter 2. Related Work

V
i

and hits in another view V
j

the iteration stops and calculate the probability of the next

query will hit in V
j

. A query that hits in a view means that such query is responded by such

view and the view is a complete or partial answer to such query. This process continues

for each view located in the secondary memory.

Steady State Probability Calculation. This step crates a (n ⇤ n) Initial Probability

Matrix where each cell contains the probability that queries hit in a specific view for the

first time, then the probability that the next query will hit in that particular view and also

the probability that the next query will hit the other views. The future state of the system

is calculated by the Markov analysis. Successively, after the computation of the Initial

Probability Matrix then it is introduced a transition matrix T that calculates the future

states of the system V Nvn(i) by multiplying present state with Initial Probability Matrix.

Where V N is the probability of hit at present, vn the initial starting state, and i is the i-th

future period. For example, by supposing to have three views stored in secondary memory,

the T matrix has the following structure [V 1v1(1)V 2v1(1)V 3v1(1)], where the probability

of a query hitting in the 1st view for the first time, given that the query hits in the 1st

view is 1. So the value of T will be [1.00.00.0]. Then T will be multiplied with Initial

Probability Matrix and this operation will be repeated until a steady state probability

is achieved. Successively, when the step converges then the views that has the highest

probability are transferred from secondary memory to primary memory. Their solution

is different from ours because we considerate that views are stored in secondary memory,

then they did not take into account the storage space constrains.

2.2.3 Discussion

All the cache updating techniques restrict the query language to a relatively simple class so

that the interrelationship modelling between candidate views or between views and queries

is usually analogous to some geometric relationship that is efficient to reason about. In

principle, the relationship between views and queries can be handled using the techniques

of answering queries using views [64, 27]. Another most significant issue in view caching

is the admission and replacement control, i.e., how to decide which view is admitted and

which view is replaced. If space allows, caching data is in general beneficial. The situation

is more complicated, if the free space is not sufficient for the new view. The benefits of use

the cache methods are low overhead, efficiency and flexibility, but the limitation regards

Chapter 2. Related Work 17

Table 2.2: Dynamic view selection approaches
Pro Cons

Incremental

view maintenance

A view can be

exploited even

before it is fully materialized

Do not concentrate on reducing

time complexity as well

as space complexity

Cache updating
Low overhead, efficiency

and flexibility

Admission and replacement

control if there is

not enough space for

the new view

the admission and replacement control if there is not enough space for the new view.

The incremental view maintenance techniques deal with different methodologies of

materialized view maintenance but do not concentrate on reducing time complexity as

well as space complexity. However, reduction of these two types of complexity is inherently

necessary as these systems deal with huge amount of data at run-time.

To summarize this section we propose the following table 2.2.

2.3 Data warehouse model evolution

One of the key points for the success of data warehouse process is the design of the model

according to the available data sources and analytical requirements. However, as the

business environment evolves, there may be some changes in the content, the structure of

the data sources, and the analysis requirements. The main purpose of a DW is to provide

analytical support for decision making, and a DW scheme and its data can evolve at the

same time. In particular in a DW scheme can be added or removed dimensions, measures,

levels. Differently data can be inserted, deleted and updated in the DW.

For example, Kimball et al. [36] introduced three types of ’slowly changing dimensions’,

which consist of three possible ways to deal with volumes changes. The basic assumption

is that an identifier can not change, but the descriptors do. The first way is to update the

attribute value but in this case, the historicization of changes is not available. Then, this

solution if the updated attribute is involved to perform the analysis, has bad consequences

on the coherence analysis. The second type allows keeping all the versions of the attribute

value creating another valid record for a period of time. The disadvantage of this approach

is the loss of a comparison between all versions. This is due because the links between the

18 Chapter 2. Related Work

evolutions are not preserved even if the information is stored. The last type is the creation

of another descriptor to track the old value in the same record, and then we maintain the

link between the two versions. However, if there are several evolutions, there is a problem

to consider the different versions with changes of different attributes not present at the

same time. Kimball’s study takes into account the needs of most users, and stresses the

need to keep track of the history and the links between evolutions. In fact, the main goal

of a DW is to support a correct analysis over the time and to ensure good decisions. This

goal mainly depends on the capacity of the DW to be a good mirror of reality.

To the best of our knowledge, the model evolution of the data warehouse problem can be

classified into two different approaches, that are: schema evolution [1, 2, 3, 4], and schema

versioning [5, 6].

2.3.1 Schema evolution

This approach, also named model evolution, focuses on dimensions updates [30, 6], facts

and attributes updates [8], and instances updates [46].

In [30], authors proposed a formal model of dimension updates that include the defi-

nition of primitive operators to perform these updates and a study of the effect of these

updates. Those operators are:

• Generalize operators : allow the creation of new level to roll up a pre-existent level.

Authors use the example of the dimension ’store’ to which they defined a new level

’type of store’ that generalizes the dimension ’store’

• Specialize operators: add a new level to a dimension. Authors specialize the dimen-

sion ’day’ with the level ’hour’, and then the level ’hour’ specializes the dimension

’day’.

• Relate levels operators: define a roll up function between two independent levels of

the same dimension. Authors defined a relation between the level ’category’ and the

level ’brand’. Those two levels were independent.

• Unrelated levels operators: delete a relation between two levels. Authors deleted the

relation between the levels ’company’, ’category’ and the level ’brand’.

Chapter 2. Related Work 19

• Delete level operator : delete a level then to define new relations between levels.

Authors deleted the level ’branch’ then a direct relation between the levels ’category’

and ’item’ was defined.

• Add instance operator : add an instance to a level in the dimension. Authors added

the instance item five to the level ’item’.

• Delete instance operator :delete an instance of a level. Authors deleted the instance

item four of the level ’item’.

After defining operators to manage dimension updates, they proposed some data cube

adaptation after the Delete level update, Add level update, Delete Instance update, Add

Instance update by computing for each cube view an expression to maintain it.

In [6] authors proposed an extension to the work presented in [30] and defined the Ware-

house Evolution System (WHES) a prototype to support dimensions and cubes update.

In fact, they extended the SQL language and create the Multidimensional Data definition

Language (MDL). The latter allows defining operators to support evolution of dimensions

and cubes. Where the cube is the fact table and the axis is the dimension in the relational

schema. For dimensions update, authors defined the following operators:

• Create Dimension: that allows the creation of a new dimension (with its name, its

properties and its levels).

• Drop Dimension: it allows the removing of an existing dimension (with its name, its

properties and its levels).

• Rename Dimension: it allows the update of the name of a given dimension.

• Add Level : this operator allows the insertion of a new level to a given dimension.

• Delete Level : this operator allows the removing of a level from a given dimension.

• Rename Level : it allows changing the name of a given level.

• Add Property : that add a property or an attribute to a given dimension or a given

level.

• Delete Property : that delete a property from a dimension or from a level.

20 Chapter 2. Related Work

While, for cube updates, authors defined the following operators:

• Create Cube: this operator creates of a new cube.

• Drop Cube: this operator deletes of a given cube.

• Rename Cube: this operator allows changing of the name of a given cube.

• Add Measure: this operator allows the insertion of a measure to a given cube.

• Delete Measure: this operator deletes of a measure from a given cube.

• Rename Measure: it changes the name of a given measure.

• Add Axis : this operator allows the insertion of an axis of analyse to a given cube.

• Delete Axis: it the deletion of a given axis of analyse from a cube.

In [8], authors defined a formal framework to describe evolutions of multidimensional

schemas and instances. The framework is based on a formal conceptual description of

a multidimensional schema and a corresponding schema evolution algebra. This formal

description constitutes the data model. That was defined as follows: a MD model ⌘ is a

6 tuple (F,L,A, gran, class, attr) where F is a finite set of fact names, L is a finite set

of dimension level names, A is a finite set of attributes names, Gran is a function that

associates a fact with a set of dimension level names, Class is a relation defined on the

level name, Attr is a function mapping an attribute to a given fact or to a given dimension

level. After defining the data model, authors presented a set of formal evolution operations,

listed in the following, and grouped by those which have effect on the model and those

which have no effect on the model. The following evolution operations have no effects on

the model:

• Insert level : it consists on extending the MD model by a new dimension level. This

operation has no effects on instances.

• Delete level : it consists on deleting a dimension level from an MD model but the

deleted dimension must not be connected to the fact. This operation has no effects

on instances.

Chapter 2. Related Work 21

• Insert attribute: it consists on creating new attribute without attaching it to a di-

mension level or fact. This operation has no effects on instances.

• Delete attribute: it consists on deleting an attribute which is a disconnected attribute.

This operation has no affects on instances.

• Insert classification relationship: it consists on defining a classification relationship

between two existing dimension levels. This operation has no effect on instances.

• Delete classification relationship: it consists on deleting a classification relationship

without deleting the corresponding dimension levels. This operation has no effect on

instance.

The following evolution operations have effects on the model:

• Connect attribute to dimension level : it consists on connecting an existing attribute

to a dimension level. This operation has an effect on the instance. In fact, it should

define a new function for each new attribute to assign an attribute value to each

member of the corresponding level.

• Disconnect attribute from dimension level : it consists on disconnecting an attribute

from a dimension level. This operation has an effect on the instance since it should

eliminate the deleted attribute functions.

• Connect attribute to fact : it consists on connecting an existing attribute to a fact.

This operation has an effect on the instance. In fact, it should define a function that

maps coordinates of the cube to measures.

• Disconnect attribute from fact : it consists on disconnecting an existing attribute from

a fact. This operation has an effect on instance. In fact, it should delete the function

that maps coordinates to measures.

• Insert fact : it consists on extending the MD model by a new fact and without

attaching dimension levels to this fact. It should define dimensions for this fact

separately. This operation has no effect on the instance but has an effect on the

MD model since it should define a new function that associates a fact with a set of

dimension level names.

22 Chapter 2. Related Work

• Delete fact : it consists on removing an existing fact from the MD model but this fact

must not be connected to any dimension and do not contain any attributes. This

operation has no effect on the instance but has an effect on the MD model since the

name of the deleted fact will be removed from the finite set of fact names.

• Insert dimension into fact : it consists on inserting a dimension at a given dimension

level into an existing fact. This operation has as an effect the computing of the new

fact.

• Delete dimension: it consists on deleting a dimension which is connected to a fact

from it. This operation has as an effect the deleting of the function that maps

coordinates of the cube to measures.

In [46] authors propose an approach to querying a multi version data warehouse. They

extended a SQL language and built a multi version query language interface (MVDW)

with functionalities that express queries to address several DW versions, present their

partial results annotated with version and meta-data information and, if possible, integrate

partial results into a single homogeneous result set. The meta-data information allows to

appropriately analyse the results under schema changes and dimension instance structure

changes in DW versions.

2.3.2 Schema versioning

This approach, also named temporal modelling, focuses on keeping different versions of a

given DW [4,10].

In [4] authors define the concept of schema versioning, that consists in keeping the

history of all versions by temporal extension or by physical storing of different versions.

They distinguish two types of versions: a real versions and an alternative version. The

real versions support changes related to external data sources (changes in the real world)

but the alternative versions support changes caused by the what-if analysis. Maintaining

real and alternative versions of the whole data warehouse allows them to run queries that

span multiple versions and compare various factors computed in those versions and to

create and manage alternative virtual business scenarios required for the what-if analysis.

To illustrate the two different type of version they consider an example of a police data

warehouse, storing information about committed violations and tickets given to drivers, in

Chapter 2. Related Work 23

given locations (cities located in provinces) at given periods of time. Violations are orga-

nized into severity groups that define minimum and maximum fines allowed for violations.

As real version, they presented the case of changing the borders of regions (i.e. the city

Konin moved from the region A to the region B). Assuming that the police may analyse

those data in order to find out how many violations were committed in a set of given

cities at certain periods of time. Cities are grouped into administrative regions, whereas

violations are organized into groups. In this case an old DW version would store data

before an administrative-territorial change, and a new DW version would store data after

that change. As alternative version, authors presented a virtual scenario. Assuming that

a certain percent of fines paid by drivers in a city feeds the local budget, the police may

investigate how the budget would increase if they moved a violation from the group of

ordinary violations to a group of more severe ones. In order to create such a simulating

environment, a data warehouse must be able to create alternative versions of schema and

data and manage these versions. Moreover, in this scenario a new version of fact data

will also be created from the previous version, so the decision maker can compare the real

situation with the virtual one. In their proposed approach every version has a valid time so

as time constraints on versions. They stored in a given DW version only data that are new

or changed, in a given version and other data related to a parent version, and then shared

by its child versions. To model this, a prototype multi version DW was implemented in

visual C++.

In [10], provided a new conceptual model to track history but also to compare data,

mapped into static structure. In order to keep the links between members versions, they

introduce the concepts of Mapping Relationships and Confidence Factor that are used to

build a Multi version Fact Table. Then to modify the structure of the temporal multidi-

mensional schema, they provide to four basic operators: Insert, Exclude, Associate and

Reclassify. For each change, a new version was defined in order to keep trace and to re-

spect the definition of a DW (time variant). Each version is valid within a time valid

interval. This solution was developed with the visual basic interface on the commercial

OLAP environment.

24 Chapter 2. Related Work

2.4 Discussion

All the approaches we have analysed, select, fully or partially updates the materialized

view set during a maintenance downtime in a warehousing environment. This set-up phase

has two drawbacks because is time consuming and increases the overall costs, then since

data warehouse is used as decision support system then such phase can be a disadvantage

because the user need particular information as quickly as possible. Indeed, in this thesis

we present a process that avoid the set-up phase by exploiting CoDe that allow the user

to know a priori the data of interest and the relationships among them 3.

Chapter 3

Conceptual Organization of Report Visualization:

The CoDe Paradigm

This chapter outlines a logic paradigm to conceptually organize relevant data and the

relationships among them, and proposes a methodology to design visual representations

of such relationships given in tabular form by exploiting a visual language named CoDe

(Complexity Design) [14].

The CoDe-based graph composition modeling allows to visualize relationships between

information in the same image following the definition of efficiency of a visualization given

by Bertin [7]: "The most efficient (graphic) construction are those in which any question,

whatever its type and level, can be answered in a single instant of perception, that is, in

a single image". This representation named CoDe model can be considered a high-level

cognitive map of the complex information underlying the ground data. The choice of the

final visualization layout in terms of standard graphs is left to a visualization interface

which provides the necessary implementation constructs.

Information extracted in tabular form using the OLAP operations [12] is visually rep-

resented by different graphs that are suitably aggregated to simultaneously visualize the

data values and their interrelationships through the CoDe process. With this approach,

conceptual links between data become evident improving both the understanding and the

management of information stored in the DW.

Expressiveness of the CoDe language is guaranteed by the natural paradigm choice of

the First Order Logic (FOL) [58].

26Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

3.1 The Graphic Language CoDe

In this section we introduce the CoDe syntax and some useful concept in order to outline

the CoDe process.

A report is a double-entry table (see Table 3.1), where title_name denotes a single

information item, each C
i

denotes a category and value
i

its corresponding value. The

tuple [value1, ..., value
n

] is referred to as data series.

Table 3.1: Graphical representation of a report.

title_name

C1 ... C
n

value1 ... value
n

Following [7], a graph is the visualization of the information carried out by a report.

Thus, we call information item a graph and its associated report.

Resources (Companies)

Energy Chemicals RawMaterials

10668 9876 14240
(a) Resources report.

(b) Resources visualization.

Companies[Energy, Chemicals, RawMaterials]

(c) CoDe term representing Resources item.

Figure 3.1: Resources information item and its representation in CoDe.

Fig. 3.1 shows an information item describing the resources consumption (in terms of

energy, chemicals and raw-materials) used by a company. In particular, Fig. 3.1(a) depicts

the Resources report whereas Fig. 3.1(b) shows its corresponding graph in terms of a Pie

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm27

standard graph. According to the FOL paradigm, CoDe represents the information item

Resources as the logical term shown in Fig. 3.1(c).

Summarizing the CoDe language allows to organize visualizations involving more than

one type of graphs that have to be composed and aggregated. Through the CoDe model

the user can visually represent information items and their interrelationships at different

levels of abstraction keeping consistency between items and ground data. The CoDe model

can thus be considered a conceptual map of the complex information underlying the visual-

ization of the ground data. The syntax of the CoDe language consist of Terms, Functions

and Relations. A Term is an array of components, is identified by a name and has as-

sociated data extracted from data-mart. In Fig. 3.2, components in the square brackets

represent members or dimensional attributes, whilst the name can specify measures and/or

hierarchies. In particular, the name All_Sales indicates the measure Sales with the max-

imum level of aggregation, and the three components denotes the members belonging to

the dimensional attribute Product Family. Practically, it corresponds to the total sales for

the three members.

Figure 3.2: Definition of the term All_Sales.

Figure 3.3: Example of AGGREGATION function.

A Function is adopted to link terms provided as input by defining constraints and

correspondences among their components. The function AGGREGATION is used to

group several terms having the same components into a single term preserving the original

data values for each component. The output term includes both the involved terms and the

28Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

AGGR label. In Fig. 3.3 we show such function (with label ProductFamily_Sales_1997)

that allows to group the sales of the drink, food and non-consumable components for the

four quarters in the year 1997.

The function SUM
i

has two input terms. As a pre-condition the value of i-th component

in the second term is the sum of the data series in the first one. Fig. 3.4 shows three

function SUM1, SUM2 and SUM3 associate the sum of all the values of data series drink,

food and non-consumable to the term All_Sales.

Figure 3.4: Example of SUM function.

The function NEST
i

has a symmetric definition with respect to the SUM
i

function. It

applies to two input terms where one component in a report has a value aggregated from

data in the other one.

Figure 3.5: Example of NEST function.

In Fig. 3.5 is represented such function, in this example the term All_Sales is given in

input to the functions NEST1, NEST2 and NEST3 in order to detail the sales of its three

components drinks, food and non-consumable distinct by Product Category. The details

are represented by the Drink_Sales, Food_Sales and Non-Consumable_Sales terms. In

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm29

addition, to each nest function is applied ICON that adds an icon in the generated report.

The three terms Drink_Sales, Food_Sales and Non-Consumable_Sales on the right

side of Fig. 3.10 represent the data series (distinct by product family) containing the

values of total incomes made in the stores of three different American states, such as

California (CA), Oregon (OR) and Washington (WA).

Figure 3.6: Example of UNION function.

The UNION function is the same as the aggregation function, but different sets of

components are allowed in the input terms. The representation of the output CoDe term

is denoted by the UNION label. In Fig. 3.6, the three reports Drink_Sales, Food_Sales

and Non-Consumable_Sales has been aggregated in the term StoreState_Sales by using

this function.

Figure 3.7: Example of SHARE function.

30Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

The function SHARE
i

shares all the n components of the input term on the i-th

position of the other n output ones, respectively. In the example in Fig. 3.7 this function

is defined between All_Sales and StoreState_Sales.

A Relation is a logic connection existing between two terms. An example is shown in

the top right part of Fig. 3.8 where the term All_Sales(CA, OR, WA) is related with the

term StoreState_Sales through a thick arrow. The first term represents the report relative

to the total receipts of the sales made on any family of products from the shops located in

the CA, OR and WA states.

Figure 3.8: Example of Relation, ICON and COLOR.

The output is a graphical representation of the input terms augmented with links

among correspondences of each couple of components. Moreover, ICON and COLOR are

applied on All_Sales(CA, OR, WA). In particular, the ICON(USA) displays in the final

visualization the total incomes of the sales on the United States geographical map, and

COLOR(CA, OR, WA) highlights the three states with different colours on such map.

The two terms All_Profit and All_Cost represent profits and costs respect with the to-

tal sales for each product family. These data series are aggregated with the AGGREGATION

function, which groups them for each product family. The recursive relation applied on

the aggregation, adds to the final visualization the total incomes related to the sales for

the product families drink, food and non-consumable.

The function EQUAL
i

has two input terms T1[D1, ..., Di

, ..., D
h

] and T2[C1, ..., Cj

, ..., C
n

],

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm31

where the i-th component of term T1 is equal and has the same associated value of the

j-th component of T2. At the top side of the Fig. 3.10 the three functions EQUAL1,1,

EQUAL2,2, and EQUAL3,3 and the AGGREGATION named Product_Cost_Profit, de-

fine an identity between the value of the i-th component of All_Sales and the i-th compo-

nent given in output by the recursive Relation applied on the AGGREGATION function

(8i = 1, 2, 3).

Finally, the bidirectional relation between the two terms All_Sales produces two dif-

ferent visual representations and one-to-one graphical links among the their components.

Further details on the CoDe visual language syntax are available in [56].

3.2 The CoDe process

Different approaches have been presented to perform data visualization [65, 41]. They

allows to view the data with different types of visual representations and to switch from

a display to another, but they maintain the visualizations separated and not connected to

each other. The conceptual visualization obtained in the CoDe process through the CoDe

model represents information and their relationships at different levels of abstraction in

the same visualization.

The CoDe process is composed of four phases as detailed in the following and showed

in Fig. 3.9:

1. Code Modeling. It produces as output the cognitive map describing information items

and their relationships. This phase is performed by the company manager, which is

the expert of the specific domain.

2. OLAP operation pattern definition. It is used to define the sequences of operations

needed to extract all the information.

3. OLAP operation. The OLAP operation patterns are mapped into OLAP queries,

which are used to extract in a tabular form the information from the data-mart.

4. Report Visualization. It produces the final visualization that represents all data as a

single image [7].

In Fig. 3.9 rounded rectangles represent process phases, whilst rectangles represent

intermediate artifacts produced at the end of each phase.

32Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

Figure 3.9: The CoDe process.

3.2.1 CoDe Modeling phase

The first phase concerns the CoDe model generation. The business manager produces a

model composed of the main concepts and relations that represents the cognitive map of

information to be visualized. In Fig. 3.10 we show an example of CoDe model.

3.2.2 OLAP operation pattern definition

The OLAP Operation Pattern Definition and OLAP Operation phases dynamically

generate reports corresponding to information items of the CoDe model. These reports are

extracted from a data mart represented as a multidimensional cube.

The construction of a report from a data mart maps the cube dimensions on a structure

composed by one horizontal axis (corresponding to the components in the report) and one

or more vertical axes (corresponding to the data series values). The resulting report is

extracted by applying a combination of selection and/or aggregation slicing/dicing/piv-

oting/rolling/drilling dimensional operators (i.e., the OLAP operations that allow multi-

dimensional data analysis) [12]. We define operation pattern the combination of OLAP

operations to be performed. Operation patterns are expressed considering only meta-data

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm33

Figure 3.10: CoDe model for the data-mart Sales

of the data mart. The actual execution of operation patterns to extract data is performed

during the OLAP Operation phase at the end of the design process.

The operation pattern to extract information for any CoDe Term is shown in the

first row of Table 3.2, where each label represents a single OLAP operation, whilst the

symbol h (resp. v) in the parentheses denotes the horizontal (resp. vertical) axis on

which the operation is performed (the multiplicity is expressed by the ⇤ symbol). The

parameter m after the symbol ; represents the set of members (separated by the comma)

on which the OLAP operation is performed. In particular, pivoting(h [v;m) is used to

rotate the dimensional members m on any single dimension, rollup(h;m)/rollup(v;m) or

drilldown(h;m)/drilldown(v;m) are performed on the horizontal/vertical axis in order to

decrease or increase the details of the set m, respectively, dicing(h;m) is performed on

the horizontal axis to select a subset of dimensional members m and to exclude the others

(if present), and slicing(v;m) is executed on the vertical axis to reduce the number of

selected dimensional members to the ones in m.

Five steps labeled from (a) to (e) are used to build the report. In particular: (a)

pivoting(h [v) is used to rotate the cube on any dimension, (b) rolling(h) or drilling(h)

are performed on the horizontal axis in order to decrease or increase the details of the

report categories, respectively, (c) dicing(h) is performed on the horizontal axis to select

34Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

Table 3.2: Summary of the mapping among Code syntax and OLAP operation patterns.

CoDe syntax OLAP operation pattern

CoDe Term pivoting(h [v)⇤[rollup(h)|drilldown(h)]⇤dicing(h)[rollup(v)|drilldown(v)]⇤slicing(v)

SUM
i

rollup(h)⇤pivoting(hi [v)dicing(h1 . . . hi . . . hn)

NEST
i

slicing(h1 . . . hi�1hi+1 . . . hn)drilldown(hi)⇤

EQUAL
ij

slicing(h1 . . . hi�1hi+1 . . . hn)pivoting(hj [v)dicing(h1 . . . hj . . . hm)

SHARE
i

8j = 1, . . . , n slicing(h1 . . . hj�1hj+1 . . . hn)pivoting(hi [v)]dicing(h1 . . . hi . . . hm)

AGGREGATION /

UNION

pivoting(h [v)⇤[rollup(h)|drilldown(h)]⇤dicing(h) [rollup(v)|drilldown(v)]⇤slicing(v)

RELATION 8j = 1, . . . , n slicing(h1 . . . hj�1hj+1 . . . hn) drilldown(hi)⇤

To ease the readability the OLAP operation patterns, we have omitted the set of members on which the

OLAP operations is performed.

a subset of dimensional attributes and to exclude the others, (d) rolling(v) or drilling(v)

are similar to (b) but they are performed on the vertical axis, and (e) slicing(v) is executed

on the vertical axis to reduce the number of selected dimensions.

Fig. 3.11(a) shows the multidimensional cube (with four dimensions: Companies,

Resources, Locations, and Pollution) providing information about the production by

companies located in Italy with respect to resources employed and pollution produced,

whereas Fig. 3.11(b) shows the application of a specific instance of the operation pattern

given in Fig. 3.12 to extract the report displayed in Fig. 3.1(a).

The first OLAP operation is pivoting, which rotates the cube to place the Resources

(a) (b)

Figure 3.11: A multidimensional cube (a) and OLAP operations (b) performed to extract

the report in Fig. 3.1(a).

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm35

OLAP operation pattern for the CoDe Term

pivoting(h [v;m)⇤[rollup(h;m)|drilldown(h;m)]⇤

dicing(h;m)[rollup(v;m)|drilldown(v;m)]⇤slicing(v;m)

Figure 3.12: The operation pattern for the CoDe Term.

dimension on the horizontal axis. Remaining dimensions of the cube are considered on the

vertical axis (see subfigure (1) of Fig. 3.11(b)). A drilling operation is performed on the

horizontal axis (i.e., Resources) in order to increase the details (see subfigure (2)). A dicing

operation on the horizontal axis is then performed to select a subset of Resources attributes

by excluding the Water attribute (see subfigure (3)). Since Companies represents the final

dimension attribute to be computed, rolling or drilling operations are not needed on the

vertical axes (i.e., Companies, Locations and Pollution) to aggregate data or to increase the

details, respectively. Finally, a slicing operation on the vertical axis reduces the dimensions

to Companies (see subfigure (4)) and produces the report.

A careful reader could observe that the order of OLAP operations performed to obtain

the same report may not be unique. The OLAP operation patterns allow to organize the

visualization at a suitable abstract level without taking into account the ground data. In

other words, the effective queries are a consequence of the visualization design phase, and

not vice versa, since they are applied when the CoDe model design activity ends.

The OLAP Operation Pattern Definition phase produces a set of operation patterns

able to generate reports corresponding to CoDe terms defined in the CoDe model. Since

OLAP operations can share data, we can find a partial order between these operation

patterns. We thus organize the set of operation patterns as a query lattice structure [40,29]

to determine in what order OLAP operations have to be executed.

More precisely, considering a multidimensional cube C, with d dimensions, let us denote

with op
A

and op
B

two OLAP operation patterns applied on C that respectively provide

two dimensional attribute tuples A = (a1, a2, ..., a
d

) and B = (b1, b2, ..., b
d

), where each a
i

and b
i

are attributes in the hierarchy for the i-th dimension. Then, a partial ordering �

on the set Q of the OLAP operation patterns can be defined by setting op
A

� op
B

if and only if for any i, 1  i  d, the dimensional attribute a
i

in A can be computed

by OLAP operations given in op
A

applied on the attributes in B.

The partial ordering � allows to define a lattice on the set Q since any couple of

OLAP operation patterns has a least upper bound and a greatest lower bound. Moreover

36Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm

Resources.Energy (Companies)

Diesel Electricity Fuel Methane

762 5715 423 3768

Figure 3.13: The Resources.Energy report.

the empty operation pattern, which corresponds to the overall DW is the top element with

respect to the partial ordering relation � [29].

As an example, let op
Resources

and op
Energy

be the two OLAP operation patterns

respectively providing report Resources in Fig. 3.1(a) and report Resources.Energy in Fig.

3.13. The latter specifies resources employed by companies in terms of energy consumption.

The related attribute tuples are in the following hierarchical relation:

(Companies,Energy, none, none) �
d

(Companies,Resources, none, none)
(3.1)

Since Pollution and Locations dimensions are not considered in the reports we specify

none attributes in the relation (3.1).

The operation pattern op
Resources

is described in Fig. 3.11(b). In order to define the

operation pattern op
Energy

we can start from the attribute tuple provided by op
Resources

.

A dicing operation allows to select Energy from Resources attributes, then a drilling

operation increases details providing the actual data of the Resources.Energy report.

We thus can assert that op
Energy

� op
Resources

and that the computation of op
Energy

made from the results of op
Resources

reduces the number of OLAP operations performed

on the multidimensional cube.

It is worth noting that CoDe modeling does not negatively affect the OLAP query

implementation, thus it does not degrade the performances. Moreover, the CoDe modeling

of graph composition exploiting the query lattice structure allows to optimize the OLAP

operations.

3.2.3 OLAP Operation phase

The OLAP Operation phase extracts data from the multidimensional cube through

the OLAP operation patterns organized in the lattice structure. OLAP processing could

Chapter 3. Conceptual Organization of Report Visualization: The CoDe Paradigm37

Figure 3.14: Graphical representation of the data-mart Sales

be slow so the use of the lattice structure improves the performance reducing the total

number of OLAP operations to be performed. In fact, by exploiting the partial ordering

relation between OLAP operation patterns we compute the results of some OLAP operation

patterns starting from the results of another one. Thus we find the minimal set of OLAP

operations generating the required OLAP operation patterns. This set allows to reduce

the access to raw data in order to provide the required reports [29].

3.2.4 Report visualization phase

The Report Visualization phase displays the visualization of extracted reports and

their relationships according to the CoDe model. In Fig. 3.14 we show the generated

report from the CoDe model of Fig.3.10. In particular, the visualization is implemented

taking into account the units of related data series in order to preserve the ratio between

the quantitative data extracted from the multidimensional cube. During this phase the

designer selects the type of standard graph to draw the reports and places them in specific

locations of the drawing area. Moreover, additional information labels or visual symbols

can improve visualization details.

Chapter 4

The VSP problem

In the early eighties, researchers started to investigate the issue about the optimization of

the data warehouse process. Some of the most crucial aspect in very large databases is to

reduce query response time, and improve the DW performance and scalability, for efficiently

supporting the process of decision making, as it is a key to gain competitive advantage

for business company. In order to speed up the DW process the use of materialized views

is a common technique [5] as access to a set of materialized views is much faster than

recomputing it. The appropriate set of view is the set with the lowest query processing

cost, but there are other parameters to take into account. One of them can be howmany

viewsw can be materialized. Materializing all the workload queries give the lowest query

processing cost but the highest view maintenance cost because these views have to be

maintained in order to keep them consistent with the source data. Another parameter to

take into account is the storage space occupied by these view. Indeed, the set of views that

answer to the workload queries can be too large for the available storage space. Thus, there

is a need for selecting a set of views to materialize by considering all of three parameters:

query processing cost, view maintenance cost and storage space. The problem of choosing

which views to materialize by choosing the right trade off between these three parameters

is known as the view selection problem.

4.1 Problem Formulation

The problem of view selection (VSP) is known to be NP-complete by a reduction from

minimum set cover [34] and it can be formulated as follows. Given a query workload

Q = {q1, q2, . . . , qq} defined over the lattice L composed of n nodes (i.e., v1, . . . , vn), the

Chapter 4. The VSP problem 39

problem is to select an appropriate set of views to materialize M = {mv1,mv2, . . . ,mv
m

}

(with m  n) such that Q is answered starting from M with the lowest processing cost

under a limited amount of resources, e.g., storage space [42].

4.1.1 Cost model

The cost model is an important issue for the view selection process [13]. The main objec-

tive in view selection problem is the minimization of the weighted query processing cost,

defined by the formula:

Query Processing Cost =
X

Q

i

2Q
f
Qi

⇤Q
c

(Q
i

,M) (4.1)

where f
Q

i

is the query frequency of the query Q
i

and Q
c

(Q
i

,M) is the processing cost

corresponding to Q
i

given a set of materialized views M.

Because materialized views have to be kept up to date, the view maintenance cost

has to be considered. This cost is weighted by the update frequency indicating the fre-

quency of updating materialized views. The view maintenance cost is computed as follows:

V iew Maintenance Cost =
X

V

i

2M
f
u

(V
i

) ⇤M
c

(V
i

,M) (4.2)

where f
u

(V
i

) is the update frequency of the view V
i

and M
c

(V
i

,M) is the maintenance

cost of V
i

given a set of materialized views M . The cost model is extended for distributed

setting by taking into account the communication cost which is the cost for transferring

data from its origin to the node that initiated the query. Given a query Q
i

which is asked

at a node N
j

and denoting by V
k

a view used to answer Q
i

, the communication cost is zero

if V
k

is materialized at N
j

.

4.2 Data structure for the view selection problem

In view selection problem, data structures are used as support to represent the view selec-

tion. In the following subsections we present some of the most commonly directed acyclic

40 Chapter 4. The VSP problem

Figure 4.1: An example of AND-OR view graph.

graphs (DAG) used in the literature to represent all the views [29,71,72,23,57] and select

the set of views to materialize.

A Directed Acyclic Graph is a finite directed graph with no directed cycles, which is formed

by a collection of vertices and directed edges, with each edge directed from one vertex to

another, such that there is no way to start at any vertex V and follow a sequence of

edges that can loops back to V again. Equivalently, a DAG is a directed graph that has a

topological ordering where every edge is directed from earlier to later in the sequence

4.2.1 AND / OR Graph

The AND-OR view graph described by Roy [57, 23] is a Directed Acyclic Graph (DAG)

composed of two types of nodes: Operation nodes and Equivalence nodes. An operation

node represents an algebraic expression (i.e. Select-Projection-Join). An equivalence node

represents a set of logical expressions that are equivalent (i.e., that give the same result).

The AND-OR view graph is structured as follows. An operation node has only equivalence

nodes as children and an equivalence node has only operation nodes as children. The root

nodes are the query results and the leaf nodes represent the base relations.

An example of AND-OR view graph is shown in Figure 4.1, where circles represent

operation nodes and boxes represent equivalence nodes. An AND view graph is a graph

with only one way to answer a query. On the contrary an OR view graph is an AND-OR

view graph in which any node is an equivalence node that can be computed from any one of

its children. Summarizing, if there is only one way to answer a query or update the graph

is said AND View Graph, and we have a single execution plan for each query, otherwise,

if there are multiple ways for every query we talk about OR View Graph.

Chapter 4. The VSP problem 41

Figure 4.2: An example of MVPP.

4.2.2 Multi-View Processing Plan (MVPP)

The MVPP defined by Yang et al. in [72, 71] is a directed acyclic graph where the root

nodes represent the queries, while the leaf nodes are the relations, and all other intermediate

nodes represent algebraic expressions as selection, projection, join or aggregation views that

contribute to the construction of a given query. Any vertex which is an intermediate or a

final result of a query is denoted as a view. The cost for each operation node is usually

labelled at the right hand side of each node. The query access frequencies arelabelledd on

the top of each query node An example of MVPP is shown in Figure 4.2.

The difference between an MVPP representation and an AND-OR graphs is that an

intermediate node in the MVPP exclusively represents an algebraic operation.

4.2.3 Lattice

On-line analytical processing (OLAP) systems builds data cubes with multiple dimensions.

Data cubes are made up of two elements: dimensions and measures that represent the

actual data values. Most OLAP systems can build data cubes with many more dimensions.

Harinarayan and al. [29] propose a structure to model such multiple dimensions data cube

called Lattice. The Data Cube Lattice is a DAG whose nodes represent queries (or views)

and the edges represent the derivability relation between views. Such relation is denoted

42 Chapter 4. The VSP problem

Figure 4.3: An example of Data Cube Lattice.

by the 6 operator. For example by considering two queries Q1 and Q2. Q1 6 Q2 can

be defined if Q1 can be answered using only the results of Q2. It is said that Q1 is

dependent on Q2. The dimension of the data cube consists of more than one attribute

and the dimensions are organized as hierarchies of these attributes. An example of lattice

composed by eight views is shown in Figure 4.3.

Chapter 5

A static approach to VSP problem

In this chapter we consider a set of heuristic and algorithms that exploits the CoDe mod-

eling to find the set of workload queries, to mitigate the view selection problem (VSP) and

finally to select the set of views to materialize through two different approaches defined

in [29, 62].

The optimization approach is composed of three phases:

A. Code Modeling. It produces as output a model describing information items and their

relationships. This phase is performed by the company manager that is the expert

of the specific domain.

B. OLAP Operation Pattern Definition. It is used to define the sequences of operations

needed to extract all the information.

C. OLAP Operation Optimization. In order to speed-up the data extraction, this phase

selects the set of views to be materialized and maps the OLAP operation patterns

into OLAP queries, which are used to extract information from the data-mart.

The extracted information is used to display the final report taking into account data series

and their relationships [7] according to the CoDe process.

5.1 Code Modelling

The CoDe Modeling phase produces a CoDe model (see Fig. 3.10), describing information

items and their relationships. The CoDe model is related to the Dimensional Fact Model

of the Sales data-mart showed in Fig. 5.1.

44 Chapter 5. A static approach to VSP problem

Figure 5.1: Dimensional Fact Model of the Sales data-mart.

It consists of a fact schema SALES with measures Sales, Cost, and Profit, and dimen-

sions Customers, Store, Product and Time. The maximum level of aggregation (named

ALL
dw

) is represented by ALL for Products, ALL for Stores ed ALL for Customers, other-

wise in the absence of an ALL level, as for the Time dimension, the members at the top are

all those contained in the Year level. The company manager, as the expert of the specific

domain, generates the CoDe model showed in Fig. 3.10 associated to the Sales data-mart.

In particular, Drink, Food and Non-Consumable are referred to the income perceived in

the four quarters (labelled with Q1, Q2, Q3, Q4) in the 1997 (measure Store Sales) for the

respective products. To these terms is applied the function AGGREGATION (with label

PRODUCT FAMILY SALES 1997), which allows grouping the reports drink, food and

non-consumable for the four quarters in the year 1997. The term Total_Sales correspond

to the total sales for each item family in the year 1997. The three function SUM1, SUM2

and SUM3 associate the sum of all the values of the data series Drink, Food and Non-

Consumable to the term Total_Sales. The latter is given in input to the functions NEST1,

NEST2 and NEST3 in order to detail the values of its three components Drinks, Food and

Non-Consumable in the cumulative data set. The functions give in output the new three

reports Drink_Category, Food_Category and Non-Consumable_Category. In addition,

to Total_Sales is applied ICON that represents the three components with an icon identi-

Chapter 5. A static approach to VSP problem 45

fying the final display of the report produced by CoDe. The tree terms Drink_StoreState,

Food_StoreState and Non-Consumable_StoreState on the right side of Fig. 3.10 repre-

sent the data series containing the values of the total incomes made in the stores of three

different American states, such as California (CA), Oregon (OR) and Washington (WA)

in the year 1997, always distinct by product family. These reports have been aggregated

using the UNION function, instead the bidirectional function LINKS relates them with

the Sales_StoreState term which represents the report relative to the total receipts of the

sales made on any family of products from the shops located in California, Oregon and

Washington. Moreover, ICON and COLOR are applied on the Sales_StoreState term,

in particular ICON(USA) displays in the final visualization the total incomes of the sales

on the geographical map of the USA, and COLOR(CA, OR, WA) highlights the three

states indicated in parentheses on such map. The SHARE1 function defined between

Total_Sales and Drink_StoreState, Food_StoreState and Non-Consumable_StoreState

builds a complex graphic in the final visualization. The two terms Total_Profit and To-

tal_Cost represent the profits and the costs respect with the total sales for each product

family in the 1997. These data series are aggregated with the function AGGREGATION,

which groups the profits and the costs for each product family. The recursive LINK rela-

tion add to the final visualization the total incomes (measure Store Sales) related to the

sales for the product families Drink, Food and Non-Consumable. Finally, the three func-

tions EQUAL1,1, EQUAL2,2, and EQUAL3,3 and the AGGREGATION named PROD-

UCT COST AND PROFIT, define an identity between the value of the i-th component

of Total_Sales and the i-th component given in output by the LINK relationship on the

AGGREGATION function.

5.2 OLAP Operation Pattern Definition

This phase takes in input the CoDe model in Fig. 3.10, computes the sequence of operation

patterns and then provides as output a lattice representing the set of candidate views to

materialize in the DW. Such phase is composed of three steps (see Fig. 5.2).

46 Chapter 5. A static approach to VSP problem

Figure 5.2: The OLAP Operation Pattern Definition phase.

5.2.1 Eligible patterns generation

Starting from the CoDe model, this phase selects the attributes in the DFM on which

a finite sequence of OLAP operations has to be executed (named eligible pattern). The

eligible pattern is determined taking into account the OLAP operation patterns for each

term and for every term derived from the functions and/or relations in the CoDe model.

Two examples of eligible pattern generation for the CoDe Term and for the SUM
i

function

are provided in Algorithm 1 and Algorithm 2, respectively. The Algorithm 1 generates the

eligible pattern for the CoDe Term. In particular, it computes the set of attributes to

perform the OLAP operation by exploiting the input/output attributes of a term (lines

2-9), while at line 10 the eligible pattern is created by following the OLAP pattern defined

for that term. The symbol ! denotes that the OLAP operation produces the same result

independently from the order of dimensional members on which it is applied, while the

symbol [denotes the operations that can be executed in any order. Finally, at lines 11-12

the computed dimensional members and the eligible pattern are associated to the term.

Similarly, the Algorithm 2 computes the set of attributes needed to perform the OLAP

operations by exploiting the input/output attributes of the terms involved in the SUM

function.

Chapter 5. A static approach to VSP problem 47

5.2.2 Selection of one OLAP eligible pattern

The previous phase generates a set of eligible patterns for each term, function and re-

lation in the CoDe model. This phase adopts the heuristic strategy to select one eli-

Algorithm 1 Eligible pattern for the CoDe Term.
Require: The CoDe model

1. for all term in the CoDe model do

2. cols1={set of measures: Sales, Cost, Profit}

3. rows1={set of dimensional members that belongs to ALL
dw

}

4. cols2={set of dimensional members used to compute the column attributes of the term (i.e.,

components)}

5. rows2={set of measures/hierarchies used to compute the row attributes of the term}

6. pivoting
v/h

={set of dimensional members of cols1/rows1 present in rows2/cols2 to compute the

vertical/horizontal pivoting}

7. slicing
v

={set of dimensional members of rows1 not present in rows2 to compute the vertical

slicing}

8. dicing
h

={set of dimensional members used to compute the col attributes of the term}

9. drilling
h/v

={set of dimensional members represented by ancestors recursively computed of the

dimensional members in cols2/rows2 present in cols1/rows1}

10. eligible = [pivoting(h; pivoting
h

) [pivoting(v; pivoting
v

)]!

[drilldown(h; drilling
h

)]![dicing(h; dicing
h

)]

[drilldown(v; drilling
v

)]![slicing(v; slicing
v

)]!

11. term.rows/cols = eligible.rows/cols

12. term.eligible_pattern = eligible.olap_pattern

13. end for

Algorithm 2 Eligible pattern for the SUM
i

function.
Require: The SUM

i

function between the T1 and T2 terms in the CoDe model

1. cols1/rows1={set of dimensional members used to compute T1.cols/T1.rows}

2. cols2/rows2={set of dimensional members used to compute T2.cols/T1.rows}

3. rolling
h

={set of dimensional members of cols1 to be aggregated to obtain the set of attributes of cols2}

4. pivoting
i

={the i-th attribute of rows2}

5. pivoting
v

={set of dimensional members of rows1}

6. dicing
h

={set of dimensional members of cols2}

7. eligible = [rolling(h; rolling
h

)]!

[pivoting(h; pivoting
i

) [pivoting(v; pivoting
v

)]!

[dicing(h; dicing
h

)]

8. SUM
i

.eligible_pattern = eligible.olap_pattern

48 Chapter 5. A static approach to VSP problem

Algorithm 3 LCP(S, root).
Require: S = {s1, s2, . . . , sn}, root

1. for all s
i

in S with 0 characters do

2. addLabelNode(root, "s
i

")

3. remove s
i

from S

4. end for

5. if |S| == 1 then

6. addLabelNode(root, "s1"(s1))

7. remove s1 from S

8. end if

9. if |S| == 0 then

10. return

11. end if

12. V = sort(unique_characters(S))

13. i = 1

14. while |S| � 1 do

15. c = V [i]

16. S
c

= select strings in S starting with c

17. remove S
c

from S

18. if |S
c

| >1 then

19. node=createChild(root)

20. setLabelEdge(root, node, c)

21. else

22. node=root

23. end if

24. remove the first character c from the strings in S
c

25. LCP(S
c

, node)

26. i++

27. end while

28. return

gible pattern from each set. The selected one is the longest common prefix (LCP) of

OLAP operations also considering their permutation. This strategy is implemented in

the Algorithm 3. In order to simplify the description of the algorithm, we represent each

OLAP operation in the eligible pattern with a unique label. For example, let the eligible

pattern [pivoting(h;m1,m2, ...,mn

)]!slicing(v;m
k

) and the labels a = pivoting(h;m1),

b = pivoting(h;m2), c = pivoting(h;m
n

), d = slicing(v;m
k

), thus, the eligible pattern is

represented as the string {a, b, c}, d where the a, b, c labels can be swapped.

Chapter 5. A static approach to VSP problem 49

Figure 5.3: The prefix tree.

The Algorithm 3 builds a prefix tree and adopts a greedy strategy to selects the prefixes,

through a breadth-first search on the maximum number of strings exchangeable that share

a prefix, and a depth-search on the maximum length of the common prefixes. The LCP

algorithm is used by Algorithm 4 to determine one of OLAP eligible patterns, split it into

a sequence of OLAP operations, associate a unique label to each single OLAP operation,

and finally select the longest common prefix. As an example, given the sets of eligible

patterns: S1 = {a, c};S2 = {a, b, c};S3 = {a, d}, e, f ;S4 = {a, d}, f ;S5 = {a, d}, e. The

algorithm LCP generates the prefix tree in Fig. 5.3, obtaining the set of unique eligible

patterns S1 = a, c;S2 = a, c, b;S3 = a, d, e, f ;S4 = a, d, e;S5 = a, d, f .

Algorithm 4 Selection of OLAP eligible patterns.
Require: Set E of all eligible patterns

1. map each OLAP operations in E with an unique character

2. root = create a new node

3. LCP(E, root)

4. for all string s
i

2 E do

5. prefix = concatenation of characters on the path from the root to the node labeled with s
i

6. remove from the selected string s
i

the characters in prefix

7. build the unique OLAP eligible pattern by concatenating prefix with the string s
i

8. end for

50 Chapter 5. A static approach to VSP problem

5.2.3 Creation of the lattice structure

A lattice structure is created by using the OLAP eligible patterns. The lattice is a directed

acyclic graph and is defined as follow: i) Each node in the lattice represents a view that

has to be computed on the DW. ii) Let u and v two views, each edge between u and v

represents an OLAP operation that applied on u computes v. iii) There exists a partial

order � between views in the lattice: v � u if and only if v can be computed starting from

u (dependency). iv) There is the aggregated view "ALL" in the lattice, upon which every

view is computed. The ancestors of v is the set {s|s � v}. Thus, v is computed starting

from any of its ancestors, i.e., the views it transitively depends on, applying the sequence

of OLAP operations specified on the edges among any s and v. To tackle the state-space

explosion problem [68], the views of the lattice structure are merged by exploiting the

common prefixes of unique eligible patterns.

Table 5.1: Coefficients to compute V
s

and P
c

.
OLAP Operation Rows

v

Cols
v

Coefficient m
o

pivoting(h) or pivoting(v) rows cols 2.5 ⇤ 10�3

slicing(h) 1 cols

5.0 ⇤ 10�3
slicing(v) rows 1

dicing(h) rows� 1 cols

dicing(v) rows cols� 1

rollup(h) rows/2 cols

10.0 ⇤ 10�3
rollup(v) rows cols/2

drilldown(h) 2 ⇤ rows cols

drilldown(v) rows 2 ⇤ cols
The coefficient o is 5 ⇤ 10�3 and it is fixed for all the OLAP operations (m

o

and o are expressed in secs.).

To define the processing cost of a view, we compute a cost model by considering the

processing cost of each single OLAP operation that produces that view. This processing

cost (i.e., P
c

) is a linear function applied on the view size (i.e., V
s

) and it is expressd by

the formula P
c

= m
o

⇤ V
s

+ o, where m
o

is a multiplying coefficient depending on the

OLAP operation and o is a fixed cost (e.g., the overhead of running a query on a negligible

DW size). These two coefficients have been empirically determined by executing all the

Chapter 5. A static approach to VSP problem 51

five OLAP operations on different DWs. The view size V
s

is computed by multiplying the

Rows
v

and Cols
v

coefficients (i.e., the number of rows and the columns obtained from the

OLAP operation). Table 5.1 summarizes the coefficients for computing the view size and

processing costs in terms of OLAP operations.

5.3 OLAP Operation Optimization

This phase takes as input the lattice and gives as output the set of views to be materialized.

Figure 5.4 details the two steps composing this phase.

Figure 5.4: The OLAP Operation Optimization phase.

5.3.1 Minimum spanning tree generation

The problem of view selection (VSP) is known to be NP-complete by a reduction from

minimum set cover [34] and it can be formulated as follows. Given a query workload

Q = {q1, q2, . . . , qq} defined over the lattice L composed of n nodes (i.e., v1, . . . , vn), the

problem is to select an appropriate set of views to materialize M = {mv1,mv2, . . . ,mv
m

}

(with m  n) such that Q is answered starting from M with the lowest processing cost

under a limited amount of resources, e.g., storage space [42]. Since the lattice structure

does not have an unique path from the root to each node, a MST is computed to select

the paths that starting from the root node generate the views (answering the workload

query Q) with the lowest processing costs. This is performed by considering as weights the

set of P
c

required to compute OLAP operations among each couple of directly connected

nodes in the lattice. Then, each node in the MST has associated a couple of weights that

52 Chapter 5. A static approach to VSP problem

represent the view processing cost and the view size. These values are computed as follows:

i) T (root, node) is the processing cost of all the OLAP operations from the root to node,

and is the given by:

X

op2path(root,node)

P
c

(op) (5.1)

where path computes the sequence of OLAP operations among two nodes in the MST. ii)

Starting from the rows and columns of the view represented by the root of MST, S(node)

is computed as the product of Rows
node

and Cols
node

. These values are updated taking

into account the OLAP operations present in the path from root to node and coefficients

in Table 5.1.

5.3.2 Heuristic and views selection

On the MST, the VSP can be reduced to an optimization problem where we are interested

to minimize the following objective function:

min
X

q

j

2Q
T (mv

r

, v
j

) (5.2)

where
P

mv

i

2M
Size(mv

i

)  S and r 2 1, . . . ,m

and T (mv
r

, v
j

) is the processing cost of the view v
j

that answers the query q
j

, starting

from the materialized view mv
r

and S is the available total storage space. The problem

can be approached by following two steps: 1) Calculate the processing cost and the view

size for each node in MST where M = ; (i.e., no materialization has been computed); 2)

Add in M the set of nodes present in the MST that minimizes the objective function and

respects the space constraints [31,67].

Many algorithms have been proposed to select properly the set M [1, 29, 25, 11, 2, 61].

Most of all focused on the concept of a benefit metric and differ from each others in the

definition of this metric. Informally, the benefit to materialize a view is the savings we

obtain choosing to materialize such view instead of another one. Given an instance of

the VSP problem, Shukla et al. [62] introduce a benefit metric called Average Query Cost

(AvQC) computed as follow:

Chapter 5. A static approach to VSP problem 53

nX

j=1

p
j

· T (mv
j

, v
j

) (5.3)

where p1, . . . , pn represent the probabilities that queries q1, . . . , qn occur. These queries

are answered by the views v1, . . . , vn, starting from the materialized view mv1, . . . ,mv
n

.

This approach differs from ours because the authors want to minimize the ratio between

the size of the query to pick up, and the probability of its occurrence. In the case the

materialized views have not an equal probability of being queried, the user has to assign

such probabilities. However, the frequency (i.e., the probability) a materialized view is

expected to be queried is not always a priori known, and this frequency may change during

the DW process.

Differently, Harinarayan at al. define in [29] two different benefit metrics taking into

account the processing cost and the space occupied by the materialized views. The first

one is defined as follows and is used in the Algorithm 5.

Let v a view in the MST, for each view w � v (i.e., w in the MST that covers v):

Inv(v,M) =
X

w�v

I(v, w,M) (5.4)

where I(v, w,M) =

8
>>><

>>>:

T (u,w)� T (v, w)

if T (u,w) > T (v, w)

0 otherwise

and u is the materialized view in M with the lowest cost that is covered by w. Summarizing,

the cost of evaluating w by using v is compared wrt. The cost of evaluating w by using

a materialized view u. If v helps (i.e., the cost of v is less than the cost of u), then the

Algorithm 5 HRU
T

Require: The MST, k

1. M = {root}
2. for i = 0 to k do

3. if 9v 2 MST\M that maximizes Inv(v,M) then

4. M = M [v

5. end if

6. end for

7. return M

54 Chapter 5. A static approach to VSP problem

Algorithm 6 HRU
S

Require: The MST, s

1. M = {root}
2. while s > 0 do

3. if 9v 2 MST\M that maximizes Inv(v,M) and s� Size(v) > 0 then

4. M = M [v

5. s = s� Size(v)

6. end if

7. end while

8. return M

difference represents part of the benefit of v in case it is selected as a materialized view.

The total benefit Inv(v,M) is the sum over all views that cover v. The algorithm HRU
T

maximizes the benefit (line 3), by adding the selected view in the set M (line 4) until the

fixed limit (i.e., k) on the number of view to materialize is reached. At line 7 the algorithm

returns the set M containing the selected view to materialize.

The second benefit metric, is defined as follows and is used in the Algorithm 6.

InvS(v,M) =
Inv(v,M)

Size(v)
(5.5)

The metric considers the view space occupied by M , and is calculated as the ratio between

the investment to compute v and all its descendant, and the space to materialize it. The

algorithm HRU
S

maximizes the total benefit (line 3), by adding the view v in M (line 4)

as long as the upper-bound of the disk space (i.e., s) is not been reached. The algorithm

does not consider the space occupied by the root which is always materialized. At line 8

the algorithm returns the set M containing the selected view to materialize.

Chapter 6

A dynamic approach to VSP problem

The static selection of views contradicts the dynamic nature of a decision support system.

Indeed, a company manager looks for data and trends, that are information that changes

overtime, thus a static selection of views can quickly become outdated. The DW adminis-

trator should monitor these trends and re-calibrate the DW scheme and its data, then he

should check the consistency of the set of materialized views as it can evolve, consequently.

This task can be hard and time consuming. To mitigate this situation we exploit the CoDe

process to handle the model evolution shown in the following Chapter.

6.1 The CoDe model evolution

In this section we present a dynamic process by exploiting the CoDe paradigm. This pro-

cess focus to add new items or new components to the CoDe model by optimizing the

static CoDe process proposed in 5. The two new phases are showed in Fig. 6.1. The

CoDe Dynamic modeling phase allows the manager to modify (add, remove or update)

the information items present in the CoDe model with the help of a semi-automated editor

presented in the following Section 6.1.1.

The optimized lattice creation step optimizes the construction of the lattice structure

exploiting shared paths through the SEQ_MATCH algorithm, which selects the subse-

quence of stings with the most occurrences in common, in order to classify them and build

the lattice structure.

56 Chapter 6. A dynamic approach to VSP problem

Figure 6.1: The Code Dynamic process.

6.1.1 The CoDe Dynamic modeling

The CoDe Dynamic modeling phase exploits a context-sensitive editor based on a context-

sensitive grammar to support the manager in designing step by step a new model starting

from the old one. The goal of such editor is to help the manager in making the best choice

by listing all the possible options, sorted exploiting the min-max strategy and a check

validation function. In the next subsections all the listed techniques are described.

The context-sensitive editor

In order to introduce the editor and show the evolutionary process, we take into account

the Sales data-mart (presented in Chapter 5, Fig. 5.1) and analyses the sales of the day 24

February 1997. In Table 6.2 are shown the actual data extracted from the FOODMART

DW, while Fig. 6.3 shows the CoDe model that we want to update.

The editor takes in input the model, that have only one information item named

Chapter 6. A dynamic approach to VSP problem 57

Figure 6.2: Report on the Feb 24 1997 for the product family drink, food and non-

consumable.

Figure 6.3: CoDe Model for the information item Food D24.

FoodD24[Food], then it shows a graphic window (see Fig. 6.4) containing all the pos-

sible suggestions to build dynamically the model. Each option has a priority value, given

from the min-max strategy, for example the addition of a new component has a higher

priority with respect to the addition of a new information item.

The manager selects the new component FoodD25[Food] that is added to the model,

then the editor presents the next option window, shown in Fig. 6.5.

Every time a new item is added to the model the check validation function is called.

At this point, the next choice is to add the SUM function that automatically generates the

Total_Sales[Food] information item. The obtained model is shown in Fig. 6.6.

58 Chapter 6. A dynamic approach to VSP problem

Figure 6.4: Addition of a new component.

Figure 6.5: Addition of SUM function.

Figure 6.6: Addition of EQUAL function.

Chapter 6. A dynamic approach to VSP problem 59

The manager adds the EQUAL function (Fig.6.7) and by selecting the Total_Sales[Food]

information item the editor allows him to create a new item. Then the item named

Total_Profit and a component named Food are added to the CoDe model (see Fig.

6.8).

Figure 6.7: Addition of an item for the EQUAL function.

Figure 6.8: Addition of the item Total_Profit.

If the manager tries to add another component to Total_Profit (as we can see in

Fig. 6.9), the editor does not allow this action showing an error message (Fig. 6.10). The

generated model is show in Fig. 6.11.

By selecting the item Total_Sales[Food] the manager can apply the NEST function.

The editor shows the following window Fig.6.12 to allow him to choose on which item

(hierarchically inferior with respect the Total_Sales[Food] item) apply this function. Once

selected the NEST element, the action is performed and the component is created. Fig.

60 Chapter 6. A dynamic approach to VSP problem

Figure 6.9: Addition of another component to the item.

Figure 6.10: Error message.

Figure 6.11: Code Model with the Total_Profit item.

Chapter 6. A dynamic approach to VSP problem 61

Figure 6.12: Addition of the NEST function.

Figure 6.13: Final CoDe model.

6.13 shows the final CoDe model that will be given in input to the OLAP operation pattern

definition phase. It is worth to notice that in the control window, the manager is always

allowed to terminate or cancel the design phase.

Context-sensitive grammar definition

In this subsection we introduce the context-sensitive grammar that is built according to

the syntax of CoDe paradigm. A context-sensitive grammar is needed to build the model,

by providing the right syntax rules. For example, if the manager wants introduce the SUM

function, the grammar leads the editor to build the model in conformity with the SUM

rules defined in Chapter 3.

The production 1 and 2 create an Information Item and a component that are associated

62 Chapter 6. A dynamic approach to VSP problem

Table 6.1: Context-sensitive grammar.

1 = A ! InformationItem

2 = B ! Element

3 = C1 ! A[Bi]|B| = 1

4 = Cn ! A[B1 . . . Bn]|B| > 1

5 = AB ! C1

6 = AB1B2 . . . Bn ! Cn

7 = C1? [· · ·[? . . . C1 ! AGGR1

8 = CnU? [· · ·[? . . . Cn ! AGGRn

9 = C1|Cn . . . C1|Cn ! UNIONn

10 = D1 ! C1

11 = Dn ! Cn

12 = G !?B1 + · · ·+?Bn

13 = SUM ! A[G]

14 = T ! [SUM1 . . . SUMn]

15 = Hi !?B.children

16 = NEST ! A[Hi]

17 = Dn ! NEST

18 = SHAREi ! Bi ⇤ Ci

19 = Di ! SHAREi

20 = EQUAL !?Bi = Bj

to the symbols A and B respectively. The production 3 and 4 build a complete item, the

production 3 indicates that the item must contain only one component, while the meaning

of the index n indicates that the production 4 can contain two or more components. The

production 5 links the symbol A to the symbol B to generate a new Information Item named

C1, production 6 specifies the same but for n components. The productions 7 and 8 are

associated with the AGGREGATION function. The production 7 combines the all non-

terminals C1 and aggregates it with the non-terminal AGGR1. After each symbol of union

[is presents the symbol ? that indicates the validation function. Such function checks that

each non-terminal C1 presents in the model has the same component. The production 8

performs the same tasks as the 7 but for n components. The production 9 performs the

UNION function, each non-terminal C
i

appears as the OR of C1 and C
n

. This allows the

function of joining items that have different number of components, but this characteristic

Chapter 6. A dynamic approach to VSP problem 63

cannot be checked by the validation function. The next two productions, 10 and 11, running

a transitive operation by associating the non-terminal C to the non-terminal D. The first

one for one component, while the latter is performed for n components. This will be

useful to associate the results of the productions to the non-terminal D. The productions

12, 13 and 14 are related to the SUM function. In the production 12 all components B
i

present in an information item C
i

are summed and the result is associated in the non-

terminal G. In this case the validation function checks if each value is numeric. The

non-terminal G contains the SUM of all components that belong to an item. Production

13 add this value to an item of a new component then associated to the non-terminal SUM .

Production 14 inserts all the results of the all SUM function present in the model in a new

item. The production 15 associates to the non-terminal H the children of a component B.

The children have a lower hierarchical level with respect the component. The validation

function ? on the B component, performs a check if there are lower hierarchical levels and

if not H has an empty value. In the production 16 all the components H calculated in the

previous step for the component B are associated with a new item. Even in this case a

validation function is performed on the value of H, because if has an empty value then the

NEST cannot be applied. Production 17 stores the value of the NEST function to the item

D
n

. Production 18 applies the SHARE function by associating each component to a new

information item. The result is stored into the new item D
n

(production 19). Finally, the

last production defines the EQUAL function, that performs a graphic comparison between

two components (B
i

and B
j

). The validation function checks if these two components

occupy the same memory area. It is worth to notice that the ICON and COLOR operator

are not been included into the grammar because they are visual operators that enhance

the final report and do not manipulate any data series.

Check validation function definition

In the last decades computer systems are evolving by becoming more complex, thus a main

challenge is to provide formalisms, techniques, and tools that ensure an efficient design

of correct and well-functioning systems despite their complexity. Model checking [9] is

a formal automatic verification technique which allows for desired properties of a given

system to be verified on the basis of a suitable model through systematic inspection of all

states of the model. The system validation is performed in three phases, described in the

64 Chapter 6. A dynamic approach to VSP problem

following:

• Modeling phase: the extraction of the model and its properties definition.

• Running phase: run the model checker to check the validity of the property in the

system model, the reachability tree generation.

• Analysis phase: if the properties are satisfied or violated.

Modeling. The inputs to the model checker are a model of the system under consider-

ation and a formal characterization of the property to be checked. The model describes

the behaviour of systems, usually a finite-state automata is used to check if a property is

correct or not. States include information about the current values of variables, the pre-

viously executed statement. Transitions describe how the system evolves from one state

into another.

Running phase. The model checker first has to be initialized by appropriately setting the

various options then the actual model checking takes place. This is basically done with an

algorithmic approach in which the validity of the property under consideration is checked

in all states of the system model.

Analysis phase. This phase concerns analysing the results. So a property can be valid

or not. In case the property is valid, the following property can be checked, or, in case

all properties have been checked and are all valid, is concluded that the model is correct.

Whenever a property is falsified, the negative result may have different causes, this im-

plies the understanding of the cause, a correction of the model, and the restarted of the

verification process.

In our solution the states of the finite-state automata are associated with the non-

terminals of the grammar. The model checking has been exploited for the following func-

tions:

• NEST

• EQUAL

• AGGREGATION

The validation function on the NEST function checks if the items involved are at the same

hierarchical level, while the EQUAL and AGGREGATION function check if they belong to

Chapter 6. A dynamic approach to VSP problem 65

the same dimension and if they respect the rules defined in the CoDe paradigm (Chapter

3).

Data mining, its techniques and the descriptive statistics

The data extraction or data mining (DM) [66,28], is an information technology whose goal

is to find useful information in large collections of data, information that would otherwise

remain unknown. In recent years, the sector is undergoing a strong expansion due to the

increase in available databases and the interest of the companies that are discovering the

potential and the results that are obtained with the use of this discipline. The data mining

are generally divided into two broad categories:

• Predictive use: the aim of this analysis is to predict a particular attribute (objective

function) from known attributes (predictors).

• Descriptive use: the goal is to identify recurring patterns (frequent pattern), groups of

similar data (cluster), anomalies or sequential patterns that characterize the analysed

data.

Following the stage of DM is necessary to use post-processing techniques that allow

validating and display the results obtained. The DM provides different types of analysis:

• Predictive analysis: this analysis has as the goal to build a predictive model from a

set of known attributes. There are two different techniques: classification, used in

order to predict the value of discrete variables and the regression, used for continuous

variables.

• Associative analysis: this analysis is used to identify frequent patterns that describe

particular characteristics of the data. The identified patterns are generally expressed

in the form of association rules.

• Based on cluster analysis: this analysis aims to identify data in a number of groups,

called clusters, in which the data are very similar within the same group and signifi-

cantly different between different clusters.

• Analysis of anomalies: this analysis is responsible for identifying small groups of

data whose characteristics are significantly different from the others.

66 Chapter 6. A dynamic approach to VSP problem

The classification technique. Among the DM techniques we take into account the

classification technique. The classification technique [35] has the goal of identifying the

value assumed by the attribute of an object, starting from the known values of other

attributes. This supervised method uses a set of data where the values to predict are

known. The data are divided into two groups called the training set and test set. Usually

about the 70% of them become part of the training set and the remaining 30% instead

set up the test. Through the training set phase, the ranking algorithm tries to deduce the

rules to determine the value of the attribute sought, starting from the values of available

attributes. When the rules have been identified, the actual validity is checked in order to

calculate the percentage of the right predicted values. In our study we predict if, given a

new input information, it constitutes a new item, or it can be added as a component of the

item that already exists, by using our data we can create the training and the test set then

we added to these data an attribute, named label that allows classifying the new data in a

category. After the phase of creating the rule, there is the validation phase, which consists

in check whether or not rules are valid. Fig. 6.14 shows an example of a classification

method. In particular, when the item FoodD24 and DrinkD25 are given in input and

they are not present as information items in the model, such method adds two new items

to the model. Differently when the item FoodD25 is given in input and there is another

item with the same label FOOD because a new component is added to the model.

Figure 6.14: Example of classifier method.

The Descriptive statistics. The descriptive statistics [33] is a set of techniques used to

describe the basic features of the data collected in an experiment. Such techniques pro-

vide a summary of the collected measurements. With descriptive statistics it is allowed to

describe, represent and summarize, what is observed or what the data show in their essen-

tial features (also named population). The descriptive statistics uses measures to describe

Chapter 6. A dynamic approach to VSP problem 67

Day Drink Food Non cons.

X24 0 36 17

Y25 167 1676 509

Table 6.2: Application of the min-max technique.

a data set, the most commonly measures are: measures of central tendency (i.e. mean,

median and mode) and measures of variability or dispersion (i.e. the standard deviation

(or variance), the minimum and maximum values of the variables, kurtosis and skewness).

Contrariwise to represent a data set, the most commonly graphical representations used,

are: the dotplot, frequency, frequency histogram, absolute frequency, relative frequency,

cumulative frequency, boxplot, and probability plot.

In this thesis we exploit the descriptive statistics to properly sort the different options

(i.e. add a component, add a function, etc). For example, assuming to take into account two

days, 24 and 25 and the three family products Drink, Food e Non Consumable. Assuming

to have in the model only the item FoodD24, we want to know if we should add a new

item (i.e., NonConsumableD24) or a new component (i.e., FoodD25). The symbol X24

represents the day 25 while the symbol Y25 the day 25. Applying the min-max technique,

the results are shown in Table 6.1.1 that shows the values of each product for the days 24

and 25, respectively. If we analyse the two items FoodD25 and not ConsumableD24, the

first has value of 1676 while the second has value of 17. Thus, according to the min-max

technique, the addition of a new component in the model has higher priority with respect

to the addition of the new item. Thus, the manager will visualize as first choice, the Adding

a new component option.

6.1.2 The optimized lattice creation

The optimized lattice creation phase is part of the CoDe dynamic process. Thus, after the

manager has generated the new CoDe model, we have to reapply the CoDe process, in

particular the eligible patterns generation and the selection of the unique eligible patterns.

68 Chapter 6. A dynamic approach to VSP problem

Successively, we apply such phase in order to minimize the changes on the multidimensional

lattice exploiting the previous one.

The lattice optimization phase defines the algorithm SEQ_MATCH that takes in

input the old lattice, the old vocabulary table, the new OLAP operations and the new

vocabulary table. SEQ_MATCH compares the old and new OLAP operations in order

to distinguish three types of states:

• equal when the old OLAP operation has the same elements as compared to the

sequence of the new OLAP operation. For example: the string S6 (Equal [24]) = a

t m n d with the string S16 (Equal [24-25]) = a t m n d).

• similar when the new OLAP operation has at least one common value starting from

the beginning of the sequence. For example: the string S3 (Total Profit [24]) = a b

d e n f g h i j k l and the string S14 (Total Profit [24-25]) = n a b d e f g h i j k).

• different when the first value of the new OLAP operations sequence is different with

respect to all old OLAP operations.

The Algorithm 6.1.2 starts by comparing all the new OLAP operation patterns with

the old OLAP operation patterns, and makes a recursive call by returning if is there are

equal, similar, or different paths. If the selected new pattern is labelled as different a new

path to the root is added, while if the new pattern is labelled as similar the procedure

search which is the shared path and add only the remaining different nodes, and finally if

the new pattern is labelled as equal all the paths will reuse.

Chapter 6. A dynamic approach to VSP problem 69

Algorithm 7 The SEQ_MATCH Algorithm.
Require: V

old

, OLAP.opold, V
new

, OLAP.opnew

1. NEW_S =

2. OLD_S =

3. n = number of operations in OLD_S =

4. i = number of operations in NEW_S =

5. S
i

[] = newS
i

[n]

6. for i = 0 to length(NEW_S), i++ do

7. for j = 0 to length(OLD_S), j ++ do

8. SEQ_MATCH_INT (NEW_S[i], OLD_S[j])

9. if NEW_S[i] ==0 SIMILAR0
then

10. S
i

[j]= associated value for similar

11. end if

12. end for

13. a = max(S
i

)

14. index[i] = position(a)

15. if NEW_S[i] ==0 EQUAL0
then

16. return OLD_S[i]

17. end if

18. if NEW_S[i] ==0 DIFFERENT 0
then

19. continue;

20. end if

21. end for

22. SEQ_MATCH_INT (x : nsequence, y : msequence)

23. LIST_SEQ = emptylist

24. while i > 0 and j > 0 do

25. if x[i] = y[i] then

26. LIST_SEQ = x[i] + LIST_SEQ

27. i = i+ 1

28. j = j + 1

29. else

30. return LIST_SEQ

31. end if

32. end while

33. if length(LIST_SEQ) == n and m then

34. return

0EQUAL0

35. end if

36. if length(LIST_SEQ) >= 1 then

37. return

0SIMILAR0

38. end if

39. if length(LIST_SEQ) == 0 then

40. return

0DIFFERENT 0

41. end if

42. return

Chapter 7

A probabilistic model to improve the dynamic

approach

Since the DW schemes and their data can frequently be changed, the re computation of the

associated materialized views does not always guarantee performance improvements in the

DW process. This is due to the overhead of the process for generating the new minimal set

of views. This chapter presents a solution to alleviate this problem, based on the Markov

strategy proposed in [20] and adapted on the CoDe dynamic process. The Markov solution

has been chosen because it keeps all the historical information about the gains computed

on the previous selected views. In particular, it allows to choose whether or not recalculate

the set of views taking into account if there is a gain in computing such new set. Fig. 7.1

show in which point of the CoDe dynamic process the proposed solution, named Markov

analysis and views selection, is collocated.

7.1 Markov analysis and view selection

The Markov analysis and view selection phase is applied every time the manager updates

the CoDe model, by adding or removing items, components or functions. The Markov

strategy through a probability calculus, selects the set of views to materialize taking into

account the impact frequency over the time of the new OLAP queries on the possible set

of views to materialize. Thus, the new set of views will be materialized only if the per-

formance will increase with respect to the cost in term of updating time. In particular,

we adapt the procedure proposed by [20] and define an algorithm that classifies the views

by their importance by computing two probabilities: the Initial Probability and the Stable

Chapter 7. A probabilistic model to improve the dynamic approach 71

Figure 7.1: The Markov optimization.

Probability, and then selects the views to materialize, as shown in Algorithm 8. In par-

ticular, the algorithm takes as input the set of the OLAP patterns Q0, the set of views

V 0 computed on a CoDe model, the set of the new OLAP patterns Q, and the new set of

views V computed by re-applying the CoDe process on the updated model where items,

components or functions have been added or removed. Such algorithm at lines 1-2, builds

two Initial Probability matrices Q0
m

⇤V 0
n

and Q
i

⇤V
j

. Each cell in the matrices is computed

by dividing the number of labels (i.e., each OLAP operation pattern and each views is rep-

resented by a set of label), calculated on the views and the OLAP patterns that match, by

the maximum length of an OLAP pattern. At line 3, the algorithm calculates a new V ⇤V

matrix, where its values are probability distributions representing how the materialization

of a specific view affects the computation of the other views. The number of rows and

columns of the V ⇤ V is the number of the views present in the lattice. Such V ⇤ V matrix

is computed by considering two cases as follows:

Case 1. If items, components or functions have been added in the CoDe model the algo-

rithm calculates the Q
m

⇤ V
n

starting from the Q
i

⇤ V
j

matrix by removing the rows

72 Chapter 7. A probabilistic model to improve the dynamic approach

corresponding to the new views and the columns corresponding to the new OLAP

patterns. Then, it multiplies the Q0
m

⇤ V 0
n

matrix by the transposed sub matrix

QT

m

⇤ V
n

and it adds to the obtained V ⇤ V matrix the values of the rows and the

columns previously removed.

Case 2. If items, components or functions have been deleted, the algorithm removes from

the Q0
m

⇤V 0
n

matrix the rows corresponding to the views not present in the new lattice

and the columns corresponding to the OLAP patterns not present in the workload

query set. The V ⇤V matrix is obtained by the product with the new Q0
m

⇤V 0
n

matrix

and the transposed matrix QT

i

⇤ V
j

.

Algorithm 8 The Markov algorithm.
Require: Q0, V 0, Q, V, "

1. Probability_Matrix
old

= Initial_Probability_Calculation(Q0, V 0)

2. Probability_Matrix
new

= Initial_Probability_Calculation(Q,V)

3. Previous_Transition_Matrix = Initial_Probability_Matrix(Q0
m

⇤ V 0
n

, Q
i

⇤ V
j

)

4. i = 1

5. V N
i

= {set of views already materialized}
6. repeat

7. V N
i+1 = Previous_Transition_Matrix ⇤ V N

i

8. lms = leastMeanSquare(V N
i+1, V N

i

)

9. i++

10. until lms � "

11. return selectV iews(V N
i

)

Let S the set of materialized views, the algorithm at line 4, computes the Impact

Probability Vector V N1. Such vector contains a value for each view in the lattice. If that

view has already been materialized this value is 1/Size(S), otherwise is zero. At line 7, the

algorithm multiplies the V ⇤ V matrix by the vector V N
i

until a steady state probability

is achieved. This steady state is reached when the least mean square [63] between two

consecutive Impact Probability Vectors (i.e., V N
i

and V N
i+1) will be minor with respect

to a fixed threshold ". Finally, at line 11, the algorithm selects the views in the vector

which values are greater than a threshold and taking into account a limit on the storage

space. The threshold is computed as the average of the values in the vector.

Chapter 8

Case Study

In this chapter we present several case studies for the three different approaches. We have

evaluated the processing time of each operation and the storage space value with the Saiku

2.4 suite [43] installed on laptop with a 2.93 GHz i3 processor, 4 GB of RAM and Windows

7. Then in order to obtain clean values, to avoid the caching effect during the execution

of multiple queries we cleaned the memory cache before of each execution.

8.1 Static approach

In this case study, we show the static optimization process on the CoDe model of Fig. 8.1.

Figure 8.1: The CoDe model.

In such model the terms Drink, Food and Non-consumable representing the data series

for each product family sold in the Foodmart stores which are respectively drinks, food

products and not edible products. These data series are referred to the sales in four quarters

(i.e., Q1, Q2, Q3, Q4) of the 1997, and on them is applied an aggregation function (i.e.,

AGGR) that allows grouping the sales of drink, food and non-consumable for four quarters.

The All_Sales term represents the cumulative data series of the total sales made in the

1997 for each product family, and the SUM1, SUM2, and SUM3 functions are used to

74 Chapter 8. Case Study

Table 8.1: Eligible OLAP operation patterns for the term Drink.

1) [pivoting(h; [Time].[1997],[Time].[1998])]!

2) drilldown(h; [Time].[1997])

3)
dicing(h; [Measures].[Sales],

[Time].[1997].[Q1], [Time].[1997].[Q2],

[Time].[1997].[Q3], [Time].[1997].[Q4])

4) drilldown(v; [Product].[All Products])

5)
[slicing(v; [Store].[All Stores], [Customers].[All Cus-

tomers],

[Product].[All Products].[Food],

[Product].[All Products].[Not-Consumable])]!

Table 8.2: Eligible OLAP operation patterns for SUM1.

1)
[rollup(h; [Time].[1997].[Q1], [Time].[1997].[Q2],

[Time].[1997].[Q3],[Time].[1997].[Q4])]!

2)
[pivoting(v; [Time].[1997])[

pivoting(h; [Product].[All Products].[Drink])]!

3)
dicing(h; [Measures].[Sales],

[Product].[All Products].[Drink],

[Product].[All Products].[Food],

[Product].[All Products].[Non-Consumable])

map the sum of data series Drink, Food and Non-consumable, respectively. The first

step of the OLAP Operation Pattern Definition phase generates the eligible patterns for

the four terms Drink, Food, Non-Consumable, All_Sales, and for the functions AGGR

ProductFamily_Sales_1997, SUM1, SUM2, and SUM3. Tables 8.1 and 8.2 show the

outputs obtained for the term Drink and the function SUM, respectively.

The second step selects the unique OLAP patterns, decomposing the OLAP operation

patterns of each dimensional members and by renaming them with a unique labels. The

output is a vocabulary table shown in Table 8.3.

The set Ss of switchable strings replacing each OLAP operation with a label is built, and

Chapter 8. Case Study 75

Table 8.3: Vocabulary table.

a = pivoting(h; [Time].[1997])

b = pivoting(h; [Time].[1998])

c = drilldown(h; [Time].[1997])

d = dicing(h; [Measures].[Sales])

e = dicing(h; [Time].[1997].[Q1])

f = dicing(h; [Time].[1997].[Q2])

g = dicing(h; [Time].[1997].[Q3])

h = dicing(h; [Time].[1997].[Q4])

i = drilldown(v; [Product].[All Products])

j = slicing(v; [Store].[All Stores])

k = slicing(v; [Customers].[All Customers])

x = rollup(h; [Time].[1997].[Q4])

l = slicing(v; [Product].[All Products].[Food])

m = slicing(v; [Product].[All Products].[Non-Consumable])

n = slicing(v; [Product].[All Products].[Drink])

o = pivoting(h; [Product].[All Products])

p = drilldown(h; [Product].[All Products])

q = dicing(h; [Product].[All Products].[Drink])

r = dicing(h; [Product].[All Products].[Food])

s = dicing(h; [Product].[All Products].[Non-Consumable])

t = slicing(v; [Time].[1998])

u = rollup(h; [Time].[1997].[Q1])

v = rollup(h; [Time].[1997].[Q2])

w = rollup(h; [Time].[1997].[Q3])

y = pivoting(v; [Time].[1997])

z = pivoting(h; [Product].[All Products].[Food])

↵ = pivoting(h; [Product].[All Products].[Drink])

� = pivoting(h; [Product].[All Products].[Non-Consumable])

for each switchable string in Ss, the OLAP operation patterns is computed by following the

path on the prefix tree (see Table 8.4). However, since the SUM functions do not share

the first input term then the OLAP unique operation, patterns are casually computed

respecting the dimensional operation order. The output of this step is shown in the right

side part of the Table 8.4.

76 Chapter 8. Case Study

Table 8.4: Switchable strings and OLAP unique operation patterns.

S1-Drink = {a, b} c d e f g h i {j, k, l, m} a b c d e f g h i j k l m

S2-Food = {b, a} c d e f g h i {n, m, j, k} a b c d e f g h i j k m n

S3-Non-Consumable = {b, a} c d e f g h i {j, n, k, l} a b c d e f g h i j k l n

S4-All Sales = o p d q r s {t, j, k} o p d q r s t j k

S5-AGGR = {a, b} c d e f g h i {j, k} a b c d e f g h i j k

S6-SUM1 = {u, v, w ,x} {y, ↵} d q r s u v w x y ↵ d q r s

S7-SUM2 = {u, v, w, x} {y, z} d q r s u v w x y z d q r s

S8-SUM3 = {u ,v ,w ,x} {y, �} d q r s u v w x y � d q r s

The last step aims to build the lattice structure (see Fig. 8.2). In such structure, the

edges represent OLAP operations, the nodes correspond to the generated views, and each

view has a path which starts from the root. The OLAP Operation Optimization phase

generates the MST from the lattice structure. Figure 8.2 shows the MST with the view

space and the processing cost computed for each node in according to the proposed cost

model, the nodes coloured in grey represent the views of the workload. Once generated the

MST, the views to materialize by applying the solution proposed by [29, 62] are selected.

The HRU
T

procedure (with k = 3) selects the views: root, v3, v9 and v18. The HRU
S

procedure with storage space s = 81 (given multiplying 3 by the average size of views in

the MST), selects the views: root, v9, v11, v23. Finally, the AvQC algorithm proposed

by Shukla et al. [62], by assuming that all aggregates have an equal probability of being

queried, selects the views: root, v10, v23, v24.

Table 8.5 summarizes the results of the three algorithms. In particular, Size(M) indi-

cates the size occupied by the materialized views, Time(V, M) indicates the total processing

time to produce all the views V in the MST, whilst Time(Q, M) is the processing time of

the materialized views that answer to the workload queries. The algorithm HRU
S

reduces

the total processing time to answer the workload queries and the used storage space (78MB

wrt. HRU
T

that uses 171MB). On the contrary, HRU
T

has a better performance in term

of processing time when all the views have to be calculated. Moreover, AvQC has similar

results in term of storage space and worst processing time wrt. HRU
S

.

Table 8.6 shows the results of the three algorithms when two consecutive executions are

performed. In particular, the processing times are improved in the range of 34-36% in the

second execution. Moreover, HRU
S

gives better performance than the HRU
T

, reducing

its processing time to 0.34 seconds. The overall improvement of HRU
S

is 62% after the

Chapter 8. Case Study 77

Figure 8.2: The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows).

first execution and 98% after the second one, comparing with the algorithm that does not

materialize views. The improvement of HRU
S

is of 5%wrt. the two other algorithms.

To demonstrate the scalability of the proposed process on the entire Sales data-mart,

we have used the whole CoDe model in Fig. 3.10 obtaining comparable results. Indeed,

78 Chapter 8. Case Study

Table 8.5: Processing time and storage space of adopted algorithms applied on the lattice

structure of Fig. 8.2.

No Mat. AvQC HRUT HRUS

Selected views root
root, v10,

v23, v24

root, v3,

v9, v18

root, v9,

v11, v23

Size(M) - 66MB 171MB 78MB

Time(V, M) 47.19s 16.55s 8.66s 15.49s

Time(Q, M) 18.25s 7.38s 7.42s 6.91s

Table 8.6: Comparison of processing times of two consecutive executions.

No Mat. AvQC HRUT HRUS

1st
execution-Time(Q, M) 18.25s 7.38s 7.42s 6.91s

1st
execution-Profit - 59% 59% 62%

2nd
execution-Time(Q, M) 18.25s 1.09s 1.11s 0.34s

2nd
execution-Profit - 93% 93% 98%

Table 8.7: Algorithms evaluation on the entire Sales data-mart by using the CoDe model

in Fig.3.10.

No Mat. HRUT HRUS

Sizep(M) - 327MB 177MB

Timet(V,M) 95.05s 45.41s 32.28s

Timet(Q,M) 38.10s 18.75s 15.16s

Profit - 51% 60%

the algorithm HRU
S

(with s = 180) reaches an improvement of 60% wrt the algorithm

that does not materialize views and reduces the processing time obtaining an improvement

of 9% with respect the algorithm HRU
T

exploiting the materialized views when workload

queries have to be answered. In addition, HRU
S

uses less storage space than the other

algorithm. In conclusion, the results assess that the algorithm HRU
S

maintains good

performance also on a complex CoDe model.

Chapter 8. Case Study 79

(a)

(b)

Figure 8.3: CoDe model for the data-mart Sales concerning the cost and profit of the

food category in the WA state for the day 24 (a), and its graphical representation (b).

8.2 Dynamic approach

In order to show the dynamic process, the optimization process has been applied on the

CoDe model of Fig. 8.3(a). Successively, we provide to add a new component to the model

and present the dynamic optimization process.

In particular, this model regards the cost and profit of the food category of markets

in the Washington state (i.e., WA), but taking into account the fixed day (i.e., February

24, 1997) for the product family food sold in the Foodmart stores. The NEST function

80 Chapter 8. Case Study

increases the level of detail of the product Food, it is applied on the Total_Sales term

and give as output the report Food_Category. The visual operator ICON represents the

component Food_Category with a highlighted icon that is showed in the final report. The

Food_Store_State term contains the total incomes of the all sales, subdivided by product

type, made in the Washington (WA) stores. While the Sales_Store_State term represents

the total incomes of the all sales for any family products, in Washington (WA). These two

terms are connected by the function LINK. The visual operators ICON and COLOR are

applied on the Sales_StoreState term. The ICON operator is used to show on the USA

map, for any states take into account, the total incomes for any family products. The

COLOR (WA) operator highlights such states. The AGGREGATION function joins the

two data series Total_Profit and Total_Cost, representing the profit from sales and the

cost of the sold goods, respectively. The LINK function add to the final visualization the

Store_Sales value (given by Total_Cost+Total_Profit). Finally, the SHARE function

is defined between the FoodD24 and Food_Store_State terms, the function builds a

CoDe complex term by sharing the Food D24 component on the respective connected

report. The generated report is shown in Fig. 8.3(b).

The first step of the OLAP Operation Pattern Definition phase generates the eligible

patterns for all the terms and functions, then the second step selects the unique OLAP

patterns by generating the set Ss of switchable strings (see Table 8.8). The last step aims

to build the lattice structure shown in Fig.8.4. The nodes coloured in grey represent the

views of the workload.

The first step of the OLAP Operation Optimization phase generates the MST from

the lattice structure. Figure 8.4 shows the MST with the view space and the processing

Table 8.8: Switchable strings and OLAP unique operation patterns for the CoDe model in Fig.

8.3(a).

S1-Food[food] = a b c d e {f g h i j k l} a b c d e f g h i j k l

S2-TotalCost[food] = a b m d e {f g h i j k l} a b m d e f g h i j k l

S3-TotalProfit[food] = a b n d e {f g h i j k l} a b n d e f g h i j k l

S4-Aggr.CostandProfit = a b m n d e {f g h i j k l} a b m n d e f g h i j k l

S5-FoodStoreState[food] = o p c q e r {g s h i j l} o p c q e r g s h i j l

S6-Equal = {a t} m n d a t m n d

S7-SalesStoreState[food]) = o p c q e r {g s h i j l} o p c q e r g s h i j l

S8-Link = p p

Chapter 8. Case Study 81

Figure 8.4: The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows) constructed on the CoDe model in Fig. 8.3(a).

cost computed for each node in according to the proposed cost model. Finally, the views

to materialize by applying the solution proposed by [29, 62] are selected. The HRU
T

procedure (with k = 3) selects the views: root, v2, v59 and v48. The HRU
S

procedure

with storage space s = 114, selects the views: root, v22, v42, v12, v13, v54, v46, v2, v32.

The AvQC procedure, by assuming that all aggregates have an equal probability of being

queried, selects the views: root, v12, v22, v42, v32, v54, v4, v14, v34, v46.

The HRU
T

procedure (with k = 3) selects the views: root, v2, v48 and v59. The HRU
S

procedure with storage space s = 114 selects the views: root, v2, v12, v13, v22, v32, v42, v46,

v54. Finally, the algorithm proposed by Shukla et al. [62], by assuming that all aggregates

82 Chapter 8. Case Study

Table 8.9: Processing time and storage space of adopted algorithms applied on the lattice

structure of Fig. 8.4.

No Mat. AvQC HRUT HRUS

Selected views root
root, v2,

v12, v34, v43

root, v2,

v48, v59

root, v2, v12, v13,

v22, v32, v42, v46, v54

Size(M) - 96MB 298MB 111MB

Time(V, M) 48.70s 21.11s 25.75s 17.16s

Time(Q, M) 24.07s 17.03s 16.89s 15.50s

Profit - 29% 30% 36%

have an equal probability of being queried, selects the views: root, v2, v12, v34, and v43.

Table 8.9 summarizes the obtained results of the three algorithms. In particular, the

algorithm HRU
S

reduces the total processing time to answer the workload queries and

the used storage space (111MB wrt. HRU
T

that uses 298MB). In this case HRU
T

has a

worse performance in term of processing time when all the views have to be calculated.

Moreover, AvQC has better results in term of storage space but worst processing time

wrt. HRU
S

. It is worth noting that the obtained results are worse considering the ones

obtained on the previous CoDe model (i.e., 36% vs. 62%), due the presence of a higher

number of leaf nodes onto the MST corresponding to the workload queries wrt the MST

depicted in Fig. 8.2. This aspect highlights how the results are affected by the lattice

structure.

8.2.1 Addition of a component to the model

The component added to the CoDe model is FoodD25 which is at the same hierarchical

level as FoodD24. It represents the data series for the product family food in the February

25, 1997. The generated model is shown in Fig.8.5, where the SUM function is applied to

the item FOOD[D24, D25] and its results are reported in the item Total_Sales.

After the CoDe model generation, the CoDe Dynamic process provides the OLAP Op-

eration pattern definition phase (as specified in Chapter 6). The first step generates the

OLAP eligible patterns for the CoDe terms and functions, while the second step selects

the unique OLAP patterns, decomposing the OLAP operation patterns of each dimen-

sional members by renaming them with a unique labels and generates the set of switchable

strings (showed in Table 8.10). Successively, the optimized lattice creation step calls the

Chapter 8. Case Study 83

Figure 8.5: The CoDe model with the new component FoodD25.

Table 8.10: Switchable strings and OLAP unique operation patterns for the CoDe model in Fig.

8.5.

S1-Food[food] = a b c d e {f g h i j k l} a b c d e f g h i j k l

S2-TotalCost[food] = a b m d e {f g h i j k l} a b m d e f g h i j k l

S3-TotalProfit[food] = a b n d e {f g h i j k l} a b n d e f g h i j k l

S4-Aggr.CostandProfit = a b m n d e {f g h i j k l} a b m n d e f g h i j k l

S5-FoodStoreState[food] = o p c q e r {g s h i j l} o p c q e r g s h i j l

S6-Equal = {a t} m n d a t m n d

S7-SalesStoreState[food]) = o p c q e r {g s h i j l} o p c q e r g s h i j l

S8-Link = p p

S9-FoodCategory[food] = a u c e {f g h i j k l} a u c e f g h i j k l

S10-Nest[food]) = u u

S11-Food[24� 25]) = v w c x y r {f g s z} v w c x y r f g s z

S12-TotalSales[24� 25] = a b c d e {f g h i j k} a b c d e f g h i j k

S13-Sum[24� 25] = {↵ �} {t a} c d ↵ t a c d

S14-FoodCategory[24� 25] = a u c e {f g h i j k} a u c e f g h i j k

S15-Nest[24� 25] = u u

S16-FoodStoreState[24� 25] = o p c q e r {g s h i j k z} o p c q e r g s h i j k z

S17-TotalCost[24� 25] = a b m d e {f g h i j k} a b m d e f g h i j k

S18-TotalProfit[24� 25] = a b n d e {f g h i j k} a b n d e f g h i j k

S19-Agg.Cost&Profit[24� 25] = a b m n d e {f g h i j k} a b m n d e f g h i j k

S20-Equal[24� 25] = {a t} m n d a t m n d

S21-SalesStoreState[24� 25] = o p c q e r {g s h i j k z} o p c q e r g s h i j k z

S22-Link[24� 25] = p p

SEQ_MATCH algorithm 6.1.2. Such algorithm builds Table 8.11 where rows correspond

to the new paths and columns represent the paths belonging to the initial CoDe model.

Each cell is computed by matching the strings, the value 0 indicates that the strings have

84 Chapter 8. Case Study

Table 8.11: The SEQ_MATCH execution.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S11 0 0 0 0 0 0 0 0 0 0

S12 11 2 2 2 0 1 0 0 1 0

S13 0 0 0 0 0 0 0 0 0 0

S14 1 1 1 1 0 1 0 0 10 0

S15 0 0 0 0 0 0 0 0 0 1

S16 0 0 0 0 0 11 0 11 11 0

S17 2 11 2 3 0 1 0 0 1 0

S18 2 2 11 2 0 1 0 0 1 0

S19 2 3 2 12 0 1 0 0 1 0

S20 1 1 1 1 0 5 0 0 1 0

S21 0 0 0 0 11 0 11 11 0 0

S22 0 0 0 0 11 0 11 11 0 0

Table 8.12: The SEQ_MATCH output.

paht S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

string match different similar to S1 different similar to S9 equal S10 similar to S5 similar to S2 similar to S3 similar to S4 equal S6 similar to S5 similar to S5

no labels in common, while a value greater than one indicates that there is at least one

common value. Then, for each row we search the grater value and we associate one of the

three different states (i.e., different, equal to, similar to) with the correspondent column, as

show in Table 8.12. For example, to the S11 and S13 strings is assigned the label Different

because all the values of the two rows are zero. Then, to the S20 string is assigned the label

Equal to S6 because its path match with the string S6. Finally,y to the remaining paths are

assigned the label Similar to. Once we obtained a mapping between the new and the old

paths the optimized lattice creation step generates the lattice structure, shown in Fig. 8.6.

The OLAP Operation Optimization phase generates the MST from the lattice structure.

Figure 8.6 shows the MST (dashed arrows) with the view space and the processing cost

computed for each node in according to the proposed cost model, the nodes coloured in

grey represent the workload query.

Finally, the views to materialize are selected, by applying the solution proposed by

[29, 62]. The HRU
T

procedure (with k = 3) selects the views: root, v2, v59 and v48. The

Chapter 8. Case Study 85

Figure 8.6: The lattice structure with the OLAP operations and the corresponding MST

(dashed arrows) constructed on the CoDe model in Fig.8.5.

HRU
S

procedure with storage space s = 111 (given multiplying 3 by the average size of

views in the MST), selects the views: root, v41, v21, v11, v13, v85, v78, v46, v2. Finally, the

algorithm proposed by Shukla et al. [62], by assuming that all aggregates have an equal

probability of being queried, selects the views: root, v11, v21, v41, v31, v78, v85, v4, v14, v34,

v46, v24, v73.

Table 8.13 summarizes the results of the three algorithms. In particular, the greedy

algorithm HRU
S

(S = 111) reduces its processing time with respect HRU
T

(20.06s wrt.

20.18s). The AvQC has better performance with respect the two algorithms in term of

processing time (19.77s) and profit (15% wrt. 14% of others two algorithms).

86 Chapter 8. Case Study

Table 8.13: Algorithms evaluation by using the CoDe model in Fig. 8.5
No Mat. AvQC HRU

T

HRU
S

Selected views -
root, v11, v21, v41, v78,

v85, v4, v14, v34, v46, v24
root, v2, v59, v48

root, v41, v21, v11, v13,

v85, v78, v46, v2
Size(M) - 108 298 111

Time(V, M) 57.29 26.78s 33.52s 26.03s

Time(Q,M) 23.36s 19.77s 20.18s 20.06s

Profit - 15% 14% 14%

Table 8.14: The V N1 vector
V1 V2 V4 V5 V11

0 1/8 0 0 1/8

V13 V14 V15 V21 V24

1/8 0 0 1/8 0

V25 V31 V34 V35 V41

0 0 0 0 1/8

V59 V60 V61 V67 V59

0 0 0 0 0

V87 V31 V69 V70 V73

0 0 0 0 0

V74 V78 V80 V82 V41

0 1/8 0 0 0

V43 V44 V46 V48 V85

0 0 1/8 0 1/8

8.3 Probabilistic approach

In this case study, we show the probabilistic approach on the two CoDe models of Fig. 6.3

and Fig.8.5.

The Markov algorithm builds the Q0 ⇤ V 0 matrix (shown in Chapter 10, Table10.1),

where the rows represent the view of the MST (see Fig. 8.4) and columns represent the

unique OLAP patterns (see Table. 8.8) of the CoDe model of Fig.6.3. Then it builds the

Q ⇤ V matrix (shown in Chapter 10, Table10.2), where the rows represent the view of the

MST (see Fig. 8.6) and columns represent the unique OLAP patterns (see Table. 8.10) of

the CoDe model of Fig. 8.5 on which the item FoodD25 has been added. Such matrices

are obtained by dividing the number of labels (calculated on the views and OLAP patterns

that match) by the value of the OLAP pattern with the maximum length.

Chapter 8. Case Study 87

Table 8.15: The V N
i

vector
V1 V2 V4 V5 V11

0.0071 0.0040 0.022 0.009 0.033

V13 V14 V15 V21 V24

0.006 0.001 0.0014 0.036 0.0064

V25 V31 V34 V35 V41

0.006 0.04 0.0009 0.0002 0.034

V59 V60 V61 V67 V59

0.0029 0.01 0.0069 0.005 0.002

V87 V31 V69 V70 V73

0.007 0.0002 0.0083 0.0002 0.0052

V74 V78 V80 V82 V41

0.0014 0.0033 0.0073 0.002 0.0082

V43 V44 V46 V48 V85

0.0002 0.005 0.027 0.007 0.009

Table 8.16: The V N
i+1 vector

V1 V2 V4 V5 V11

0.0069 0.0039 0.019 0.0088 0.032

V13 V14 V15 V21 V24

0.0059 0.0009 0.0011 0.034 0.0062

V25 V31 V34 V35 V41

0.006 0.039 0.0004 0.0001 0.033

V59 V60 V61 V67 V59

0.0029 0.009 0.0069 0.005 0.002

V87 V31 V69 V70 V73

0.0069 0.0001 0.0082 0.0001 0.0053

V74 V78 V80 V82 V41

0.0012 0.0032 0.0072 0.0019 0.0081

V43 V44 V46 V48 V85

0.0001 0.0049 0.026 0.0069 0.008

Successively, the Markov Algorithm 8 builds the Initial Probability Matrix V ⇤ V that

is given multiplying Q0 ⇤V 0 and the transposed sub matrices of Q ⇤V . Then, it creates the

Impact Probability Vectors V N1 shown in Fig. 8.14, that represents the set of view already

materialized for the CoDe model in Fig. 6.3 and multiplies it by the V ⇤ V matrix. The

obtained vector V N2 is multiplied by the V ⇤ V matrix until it converges. The vector will

converge when the least mean square between V N
i+1 and V N

i

will be minor with respect

88 Chapter 8. Case Study

Table 8.17: Markov Algorithm evaluation
No-Mat Markov

Views -
root, v11, v21,

v31, v41, v46
Size - 35

Time(Q,M) 20.07s 12.94s

Profit - 36%

Table 8.18: Algorithms evaluation corresponding to the CoDe model in Fig.8.5.
No-Mat AvQC HRU

S

HRU
T

Markov

Views -
root,v12, v22,v42,

v32,v54,v4,v14,

v34,v46

root,v22,v42,v12,

v13,v54,v46,v2,

v32

root, v2, v59,v48
root, v11, v21,

v31, v41, v46

Size - 84 111 289 35

Time(Q,M) 20.07s 14.93s 16s 16.89s 12.94s

Profit - 26% 21% 16% 36%

the threshold " = 0.05. The two vectors are showed in Fig.8.15 and Fig.8.16. Finally, the

Markov algorithm selects the new set of views to materialize: V11, V21, V31, V41 and V46.

Table 8.17 highlights the processing time and the storage space values whit respect to the

approach without materialization.

In Table 8.18 we summarize the results obtained from the four algorithms (i.e., HRU
S

,

HRU
T

, AvQC, Markov) by applying the dynamic CoDe process on the CoDe model of

Fig.8.5. As we can see the AvQC and the Markov procedure have better performance in

term of total processing time to answer the workload queries (14.93s and 12.94s). Moreover,

the Markov algorithm selects a set of views that occupies less space than the other solutions,

it takes up the 42% less than the AvQC procedure. Thus, the Markov algorithm gives a

better set of solutions.

Chapter 9

Conclusions

A data warehouse is a read-only analytical database that is used as the foundation of a

decision support system. In particular, users can analyse situations and make decisions

through the execution of complex queries. Since the computation of these queries is time

consuming, data warehouses pre compute a set of materialized views answering to the

workload queries. In order to define the right set of workload queries and the minimal set

of precomputed views, an analysis phase on the data warehouse is needed. However, this

approach requires a time consuming set-up phase that increases the overall costs.

CoDe is a visual language that represents high level information exploiting a CoDe

model. The company manager expert of a specific domain, through such model, designs

what information have to be visualized.

9.1 Thesis Summary

In this thesis we propose three different approaches that exploit the CoDe modeling lan-

guage to find the set of workload queries that answers the user requests and mitigates

the problem to find a minimal set of views to materialize. The proposed approaches are

summarized below.

A static approach to the VSP problem. We have proposed a set of heuristics

and algorithms that allows the company manager to design the CoDe model, to choose the

workload query, and to find the right set of views to materialize [31,67]. In particular, we

presented:

• an algorithm to generate the eligible patterns for all the CoDe terms and functions;

90 Chapter 9. Conclusions

• an algorithm to select the minimal number of required OLAP queries;

• a heuristic to create a lattice structure that allows obtaining all the possible paths

that answer the workload queries;

• an algorithm to map the lattice structure into a MST in order to avoid the explosion

of the number of nodes;

• three greedy algorithms to select the set of views to materialize (i.e., HRU
T

, HRU
S

,

AvQC).

A dynamic approach to the VSP problem. Since the information in DW changes

overtime, we take into account the problem of the CoDe model evolution. In particular,

we proposed:

• a context-aware editor, based on a context sensitive grammar, that supports the

manager in the specification of the model by suggesting the items to add, remove, or

replace;

• a validation function that checks the syntax of the CoDe functions;

• a min-max strategy that sorts all the possible actions the manager can perform to

update the CoDe model;

• an algorithm that exploits historical information to compute or update the lattice

structure.

A probabilistic approach to the VSP problem. In order to reduce the overhead

for generating a new minimal set of views, we have adapted a Markov strategy into our

CoDe dynamic process, that exploits a small set of historical information concerning the

costs to materialize the views. In particular, the proposed algorithm identifies the views

to be materialized by evaluating the impact frequency of the OLAP queries on them.

The proposed approaches have been evaluated on a real DW. In particular, the static

approach showed an improvement on the processing time in the range of 36-62% for the

algorithm HRU
S

with respect to the solution which does not perform any materialization,

and 7% with respect to an approach that exploits the materialized views maximizing the

benefit per unit space based on their probability to be queried (i.e., AvQC). In the case of

Chapter 9. Conclusions 91

two consecutive executions, the algorithm HRU
S

reaches an improvement of at least 98%

after the second execution. This value is quite constant in the successive iterations. By

considering a whole CoDe model, the results confirm the ones obtained on a sub-part of

the model. In particular, the algorithms HRU
T

and HRU
S

reach an improvement of 51%

and 60%, respectively. When a new component is added, the AvQC outperforms the other

two algorithms in term of processing time (19.77s). Finally, by applying the probabilistic

approach, the AvQC and the Markov procedure achieve better performance with respect

to the other algorithms, in term of total processing time to answer the workload queries

(14.93s and 12.94s). Moreover, the Markov algorithm selects a set of views that occupies

less space than the other solutions taking up the 42% less than the AvQC procedure. Thus,

the Markov algorithm returns a better set of solutions.

9.2 Perspectives

To consolidate the results presented in this paper we plan to test the proposed process on

larger DWs. Moreover, in the future, we plan to take into account other techniques to sorts

all the possible options in the context-aware editor with respect to the min-max strategy

and focus our study towards other probabilistic techniques to mitigate the problem to find

a minimal set of views to materialize taking into account the previously selected views. In

addition, we shall consider adding new functionalities based on data mining techniques,

which allow investigating the CoDe model and help the company manager to easily perform

statistical analysis and to find patterns on selected data.

Chapter 10

Appendix

Table 10.1: The Q0 ⇤ V 0 Matrix
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

V1 1/13 1/13 1/13 1/13 0 1/13 0 0 1/13 0

V2 1/13 1/13 1/13 1/13 0 0 0 0 0 0

V4 1/13 1/13 2/13 2/13 0 2/13 0 0 0 0

V5 1/13 1/13 1/13 1/13 1/13 0 1/13 0 1/13 0

V12 11/13 11/13 12/13 12/13 6/13 3/13 6/13 0 9/13 0

V13 0 1/13 0 1/13 0 1/13 0 0 0 0

V14 1/13 1/13 1/13 1/13 0 1/13 0 0 0 0

V15 1/13 1/13 1/13 1/13 1/13 0 1/13 0 1/13 0

V22 11/13 11/13 12/13 12/13 6/13 3/13 6/13 0 9/13 0

V24 1/13 1/13 2/13 2/13 0 2/13 0 0 0 0

V25 1/13 1/13 1/13 1/13 1/13 0 1/13 0 1/13 0

V32 11/13 12/13 12/13 13/13 6/13 4/13 6/13 0 9/13 0

V34 2/13 1/13 1/13 1/13 1/13 1/13 1/13 0 1/13 0

V35 1/13 1/13 1/13 1/13 1/13 0 1/13 0 1/13 0

V42 12/13 11/13 11/13 11/13 7/13 2/13 7/13 0 10/13 0

V56 1/13 1/13 1/13 1/13 0 2/13 0 0 1/13 0

V43 0 0 0 0 1/13 0 1/13 0 0 0

V44 0 0 0 0 1/13 0 1/13 1/13 0 0

V46 1/13 0 0 0 2/13 0 2/13 0 1/13 0

V48 1/13 1/13 1/13 1/13 2/13 0 2/13 0 1/13 0

V54 7/13 6/13 6/13 6/13 12/13 0 12/13 1/13 7/13 0

V59 0 0 0 0 0 0 0 0 1/13 1/13

V60 1/13 0 0 0 1/13 0 1/13 0 1/13 0

V61 1/13 1/13 1/13 1/13 1/13 0 1/13 0 1/13 0

V68 10/13 9/13 10/13 9/13 7/13 1/13 7/13 0 11/13 1/13

To ease the readability we show the transposed matrix.

Chapter 10. Appendix 93

T
ab

le
10

.2
:

T
he

Q
⇤
V

M
at

ri
x

V
1

V
2

V
4

V
5

V
11

V
13

V
14

V
15

V
21

V
24

V
25

V
31

V
34

V
35

V
41

V
59

V
60

V
61

V
67

V
59

V
87

V
31

V
69

V
70

V
73

V
74

V
78

V
80

V
82

V
41

V
43

V
44

V
46

V
48

V
85

S1
1/
13

1/
13

0
1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

6/
13

2/
13

1/
13

6/
13

0
1/
13

1/
13

6/
13

0
1/
13

1/
13

0
0

1/
13

0
2/
13

0
1/

13
2/
13

0
0

1/
13

1/
13

4/
13

S2
1/
13

1/
13

0
1/
13

6/
13

1/
13

0
1/
13

6/
13

0
1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

2/
13

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/

13
4/
13

S3
1/
13

1/
13

2/
13

1/
13

6/
13

0
0

1/
13

6/
13

2/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

2/
13

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/
13

4/
13

S4
1/

13
1/
13

2/
13

1/
13

6/
13

1/
13

0
1/
13

6/
13

2/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

3/
1/

13
3

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/
13

4/
13

S5
0

0
0

1/
13

3/
1/

13
3

0
0

1/
13

3/
1/

13
3

0
1/
13

3/
1/

13
3

1/
13

1/
13

3/
1/

13
3

0
1/
13

1/
13

3/
1/

13
3

0
0

0
0

0
1/

13
0

2/
13

0
0

1/
13

1/
13

1/
13

2/
13

2/
13

4/
13

S6
1/
13

1/
13

2/
13

0
0

1/
13

0
0

0
2/
13

0
0

1/
13

0
0

0
0

0
0

0
1/

13
3/

1/
13
3

0
0

0
0

0
0

1/
13

1/
13

0
0

0
0

0

S7
0

0
0

1/
13

3/
1/

13
3

0
0

1/
13

3/
1/

13
3

0
1/
13

3/
1/

13
3

1/
13

1/
13

3/
1/

13
3

0
1/
13

1/
13

3/
1/

13
3

0
0

0
0

0
1/

13
1/
13

2/
13

0
1/

13
1/
13

1/
13

2/
13

2/
13

4/
13

S8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/
13

0
0

0

S9
1/
13

1/
13

0
1/
13

6/
13

0
1/
13

6/
13

0
1/
13

6/
13

1/
13

1/
13

6/
13

0
1/
13

1/
13

6/
13

0
1/
13

0
1/

13
1/
13

0
2/

13
1/

13
1/
13

0
0

1/
13

1/
13

5

S1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

13
0

0
0

0
0

0
0

0
0

0
0

0

S1
1

0
0

0
0

2/
13

0
0

0
2/
13

0
0

2/
13

1/
13

0
2/

13
0

1/
13

0
2/
13

0
0

0
0

1/
13

3/
1/

13
3

1/
13

3/
1/

13
3

1/
13

0
1/
13

0
0

1/
13

2/
13

2/
13

S1
2

1/
13

1/
13

1/
13

1/
13

6/
13

0
1/
13

1/
13

6/
13

1/
13

1/
13

6/
13

2/
13

1/
13

6/
13

0
1/

13
1/
13

6/
13

0
1/
13

1/
13

0
0

1/
13

0
2/

13
1/

13
2/
13

0
0

1/
13

1/
13

4/
13

S1
3

1/
13

1/
13

0
0

0
1/
13

0
0

1/
13

0
0

2/
13

0
0

1/
13

1/
13

0
0

1/
13

2/
13

1/
13

0
0

1/
13

0
0

1/
13

2/
13

2/
13

0
0

1/
13

1/
13

0

S1
4

1/
13

1/
13

0
1/
13

6/
13

0
0

1/
13

6/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
1/
13

1/
13

6/
13

0
1/
13

0
1/

13
0

1/
13

0
2/

13
1/

13
1/
13

0
0

1/
13

1/
13

5

S1
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1/

13
0

0
0

0
0

0
0

0
0

0
0

0

S1
6

0
0

0
1/

13
3/

1/
13
3

0
0

1/
13

3/
1/

13
3

0
1/
13

3/
1/

13
3

1/
13

1/
13

3/
1/

13
3

0
1/
13

1/
13

3/
1/

13
3

0
0

0
0

0
1/

13
1/
13

2/
13

1/
13

0
1/
13

1/
13

1/
13

2/
13

2/
13

5

S1
7

1/
13

1/
13

1/
13

1/
13

6/
13

1/
13

1/
13

1/
13

6/
13

1/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

2/
13

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/
13

5

S1
8

1/
13

1/
13

1/
13

1/
13

6/
13

0
1/
13

1/
13

6/
13

1/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/
13

2/
13

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/
13

5

S1
9

1/
13

1/
13

2/
13

1/
13

6/
13

1/
13

0
1/
13

6/
13

2/
13

1/
13

6/
13

1/
13

1/
13

6/
13

0
0

1/
13

6/
13

0
1/

13
3/

1/
13
3

0
0

0
0

2/
13

0
1/

13
1/
13

0
0

0
1/
13

5

S2
0

1/
13

1/
13

2/
13

0
0

1/
13

0
0

0
2/
13

0
0

1/
13

0
0

0
0

0
0

0
2/

13
3/

1/
13
3

0
0

0
0

0
0

2/
13

1/
13

0
0

0
0

0

S2
1

0
0

0
1/
13

3/
1/

13
3

0
0

1/
13

3/
1/

13
3

0
1/
13

3/
1/

13
3

1/
13

1/
13

3/
1/

13
3

0
1/
13

1/
13

3/
1/

13
3

0
0

0
0

0
1/
13

1/
13

2/
13

1/
13

0
1/

13
1/
13

1/
13

2/
13

2/
13

6/
13

S2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1/
13

0
0

0

References

[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection

of materialized views and indexes in SQL databases. In Proceedings of the 26th In-

ternational Conference on Very Large Data Bases (VLDB), pages 496–505. Morgan

Kaufmann Publishers Inc., 2000.

[2] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized views selection

in a multidimensional database. In VLDB, volume 97, pages 156–165, 1997.

[3] Xavier Baril and Zohra Bellahsene. Selection of materialized views: A cost-based ap-

proach. In Proceedings of the 15th International Conference on Advanced Information

Systems Engineering (CAiSE), pages 665–680. Springer, 2003.

[4] B Bebel, J Eder, C Koncilia, et al. Creation and nlanagenlent of ve sions in muhiversion

data warehouses. In ACM SAC, volume 2004, 2004.

[5] Randall G. Bello, Karl Dias, Alan Downing, James J. Feenan, Jr., James L. Finnerty,

William D. Norcott, Harry Sun, Andrew Witkowski, and Mohamed Ziauddin. Mate-

rialized views in oracle. In Proceedings of the 24rd International Conference on Very

Large Data Bases (VLDB), pages 659–664. Morgan Kaufmann Publishers Inc., 1998.

[6] Edgard Benitez-Guerrero, Christine Collet, and Michel Adiba. The WHES approach

to data warehouse evolution. E-Gnosis, 2, 2004.

[7] Jacques Bertin. Semiology of graphics: diagrams, networks, maps. 1983.

[8] Markus Blaschka, Carsten Sapia, and Gabriele Hofling. On schema evolution in mul-

tidimensional databases. In Proceedings of the 1st International Conference on Data

Warehousing and Knowledge Discovery (DAWAK), pages 153–164. Springer, 1999.

References 95

[9] Bruno Blaskovic, Petar Kneievic, and Mirko Randic. Model checking approach for

communication procedures validation. In Proceedings of International Conference on

Trends in Communications (EUROCON), volume 2, pages 532–535. IEEE Press, 2001.

[10] Mathurin Body, Maryvonne Miquel, Yvan Bédard, and Anne Tchounikine. A multi-

dimensional and multiversion structure for OLAP applications. In Proceedings of the

5th ACM International Workshop on Data Warehousing and OLAP (DOLAP), pages

1–6. ACM Press, 2002.

[11] G.K.Y. Chan, Q. Li, and L. Feng. Optimized design of materialized views in a real-

life data warehousing environment. International Journal of Information Technology,

7(1):30–54, 2001.

[12] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP

technology. SIGMOD Rec., 26(1):65–74, March 1997.

[13] Rada Chirkova, Alon Y Halevy, and Dan Suciu. A formal perspective on the view

selection problem. The International Journal on Very Large Data Bases (VLDBJ),

11(3):216–237, 2002.

[14] Maria I Ciuccarelli, Paolo Sessa and Maurizio Tucci. CoDe: A graphic language for

complex system visualization. In Proceedings of Italian Association for Information

Systems (ItAIS), 2010.

[15] Shaul Dar, Michael J Franklin, Bjorn T Jonsson, Divesh Srivastava, Michael Tan,

et al. Semantic data caching and replacement. In Proceedings of the 22th International

Conference on Very Large Data Bases, pages 330–341. Morgan Kaufmann Publishers

Inc., 1996.

[16] Prasad M Deshpande and Jeffrey F Naughton. Aggregate aware caching for multi-

dimensional queries. In Proceedings of the 7th International Conference on Extending

Database Technology (EDBT), pages 167–182. Springer, 2000.

[17] Prasad M Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F. Naughton.

Caching multidimensional queries using chunks. In Proceedings of the ACM Interna-

tional Conference on Management of Data (SIGMOD), pages 259–270. ACM Press,

1998.

96 References

[18] Chandrashekhar A Dhote and MS ALi. Materialized view selection in data warehous-

ing. In Proceedings of the 4th International Conference on Information Technology

(ITNG), pages 843–847. IEEE Press, 2007.

[19] Partha Ghosh and Soumya Sen. Dynamic incremental maintenance of materialized

view based on attribute affinity. In Proceedings of International Conference on Data

Science & Engineering (ICDSE), pages 12–17. IEEE Press, 2014.

[20] Partha Ghosh and Soumya Sen. Materialized view replacement using markov’s analy-

sis. In Proceedings of IEEE International Conference on Industrial Technology (ICIT),

pages 771–775. IEEE Press, 2014.

[21] Jonathan Goldstein and Perke Larson. Optimizing queries using materialized views:

a practical, scalable solution. In ACM SIGMOD Record, volume 30, pages 331–342.

ACM Press, 2001.

[22] Rajib Goswami, Dhruba Kr Bhattacharyya, Malayananda Dutta, and Jugal K Kalita.

Approaches and issues in view selection for materialising in data warehouse. Interna-

tional Journal of Business Information Systems, 21(1):17–47, 2016.

[23] Himanshu Gupta. Selection of views to materialize in a data warehouse. In Proceedings

of the International Conference on Database Theory (ICDT), pages 98–112. Springer,

1997.

[24] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize under

a maintenance cost constraint. In Proceedings of the International Conference on

Database Theory (ICDT), pages 453–470. Springer, 1999.

[25] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize in a

data warehouse. IEEE Transactions on Knowledge and Data Engineering (TKDE),

17(1):24–43, 2005.

[26] Dirk Habich, Wolfgang Lehner, and Michael Just. Materialized views in the presence of

reporting functions. In Proceedings of the 18th International Conference on Scientific

and Statistical Database Management (SSDBM), pages 159–168. IEEE CS Press, 2006.

[27] Alon Y Halevy. Answering queries using views: A survey. The International Journal

on Very Large Data Bases (VLDBJ), 10(4):270–294, 2001.

References 97

[28] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

[29] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data

cubes efficiently. In Proceedings of the International Conference on Management of

Data (SIGMOD), pages 205–216, 1996.

[30] Carlos A Hurtado, Alberto O Mendelzon, and Alejandro A Vaisman. Maintaining

data cubes under dimension updates. In Proceedings of 15th International Conference

on Data Engineering (ICDE), pages 346–355. IEEE Press, 1999.

[31] Valentina Indelli Pisano, Michele Risi, and Genoveffa Tortora. Exploiting CoDe mod-

eling for the optimization of OLAP queries. In Proceedings of the 11th International

Conference on Digital Information Management (ICDIM). IEEE CS Press, 2016.

[32] William H Inmon. Building the data warehouse. John wiley & sons, 2005.

[33] Seema Jaggi. Descriptive statistics and exploratory data analysis. Indian Agricultural

Statistics Research Institute, pages 1–18, 2003.

[34] Howard Karloff and Milena Mihail. On the complexity of the view-selection problem.

In Proceedings of the 18th Symposium on Principles of Database Systems (PODS),

pages 167–173, 1999.

[35] Gopalan Kesavaraj and Sreekumar Sukumaran. A study on classification techniques

in data mining. In Proceedings of 4th International Conference on Computing, Com-

munications and Networking Technologies (ICCCNT), pages 1–7. IEEE Press, 2013.

[36] Ralph Kimball and Margy Ross. The data warehouse toolkit: The complete guide to

dimensional modeling. John Wiley & Sons, 2011.

[37] Donald Kossmann. The state of the art in distributed query processing. ACM Com-

puting Surveys (CSUR), 32(4):422–469, 2000.

[38] Yannis Kotidis and Nick Roussopoulos. Dynamat: a dynamic view management sys-

tem for data warehouses. In ACM SIGMOD Record, volume 28, pages 371–382. ACM

Press, 1999.

98 References

[39] Wolfgang Lehner, Wolfgang Hummer, and Lutz Schlesinger. Processing reporting

function views in a data warehouse environment. In Proceedings of the 18th Interna-

tional Conference on Data Engineering (ICDE), pages 176–185, 2002.

[40] Jia Liu, Yongwei Wu, and Guangwen Yang. Optimization of data retrievals in pro-

cessing data integration queries. In Proceedings of the International Conference on

Frontier of Computer Science and Technology (FCST). IEEE CS Press, 2009.

[41] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for visual

analysis. IEEE Transactions on Visualization and Computer Graphics, 13(6):1137–

1144, 2007.

[42] Imene Mami and Zohra Bellahsene. A Survey of View Selection Methods. SIGMOD

Record, 41(1):20–29, 2012.

[43] Meteorite Saiku. Open Source Analysis Suite. http://analytical-labs.com.

[44] Hoshi Mistry, Prasan Roy, S Sudarshan, and Krithi Ramamritham. Materialized view

selection and maintenance using multi-query optimization. In ACM SIGMOD Record,

volume 30, pages 307–318. ACM Press, 2001.

[45] Mondrian Pentaho. Foodmart. http://mondrian.pentaho.com.

[46] Tadeusz Morzy and Robert Wrembel. On querying versions of multiversion data ware-

house. In Proceedings of the 7th ACM International Workshop on Data Warehousing

and OLAP (DOLAP), pages 92–101. ACM Press, 2004.

[47] Stephan Muller, Lars Butzmann, Kai Howelmeyer, Stefan Klauck, and Hasso Plat-

tner. Efficient view maintenance for enterprise applications in columnar in-memory

databases. In Proceedings of the 17th IEEE International Enterprise Distributed Ob-

ject Computing Conference (EDOC), pages 249–258. IEEE Press, 2013.

[48] Surendra Nahar, Sartaj Sahni, and Eugene Shragowitz. Simulated annealing and

combinatorial optimization. In Proceedings of the 23rd ACM/IEEE design automation

conference, pages 293–299. IEEE Press, 1986.

[49] Anisoara Nica and Elke A Rundensteiner. Using containment information for view

evolution in dynamic distributed environments. In Database and Expert Systems Ap-

References 99

plications, 1998. Proceedings. Ninth International Workshop on, pages 212–217. IEEE,

1998.

[50] Anisoara Nica and Elke A Rundensteiner. View maintenance after view synchro-

nization. In Proceedings of International Symposium on Database Engineering and

Applications (IDEAS), pages 215–223. IEEE Press, 1999.

[51] Chang-Sup Park, Myoung-Ho Kim, and Yoon-Joon Lee. Rewriting OLAP queries

using materialized views and dimension hierarchies in data warehouses. In Proceedings

of the 17th International Conference on Data Eng. (ICDE), pages 515–523, 2001.

[52] Jiratta Phuboon-ob and R Auepanwiriyakul. Analysis and comparison of algorithm

for selecting materialized views in a data warehousing environment, 2006.

[53] Jiratta Phuboon-ob and Raweewan Auepanwiriyakul. Selecting materialized views

using two-phase optimization with multiple view processing plan. World Academy of

Science, Engineering and Technology, 27, 2007.

[54] Paulraj Ponniah. Data warehousing fundamentals: A comprehensive guide for IT

professionals. John Wiley & Sons, 2004.

[55] Michele Risi, Maria I. Sessa, Genoveffa Tortora, and Maurizio Tucci. Visualizing

information in data warehouses reports. In Proceedings of the Symposium on Advanced

Database Systems (SEBD), pages 246–257, 2011.

[56] Michele Risi, Maria Immacolata Sessa, Maurizio Tucci, and Genoveffa Tortora. CoDe

modeling of graph composition for data warehouse report visualization. IEEE Trans-

actions on Knowledge and Data Engineering, 26(3):563–576, 2014.

[57] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. Efficient and

extensible algorithms for multi query optimization. In ACM SIGMOD Record, vol-

ume 29, pages 249–260. ACM Press, 2000.

[58] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall, 2009.

[59] Shinichirou Saeki, Subhash Bhalla, and Masaki Hasegawa. Parallel generation of base

relation snapshots for materialized view maintenance in data warehouse environment.

100 References

In Proceedings of International Conference on Parallel Processing Workshops, pages

383–390. IEEE Press, 2002.

[60] Peter Scheuermann, Junho Shim, and Radek Vingralek. Watchman: A data warehouse

intelligent cache manager. In Proceedings of the 22th International Conference on Very

Large Data Bases, pages 51–62. Morgan Kaufmann Publishers Inc., 1996.

[61] Biren Shah, Vijay Ramachandran, and Karthik Ramachandran. A hybrid approach

for data warehouse view selection. International Journal of Data Warehousing and

Mining, 2(2):1–37, 2006.

[62] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized view selection

for multidimensional datasets. In Proceedings of the 24rd Intlernational Conference

on Very Large Data Bases (VLDB), pages 488–499, 1998.

[63] DG Simpson. Introduction to rousseeuw (1984) least median of squares regression. In

Breakthroughs in Statistics, pages 433–461. Springer, 1997.

[64] Divesh Srivastava, Shaul Dar, HV Jagadish, and Alon Y Levy. Answering queries

with aggregation using views. In VLDB, volume 96, pages 318–329, 1996.

[65] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and visual-

ization of multidimensional relational databases. IEEE Transactions on Visualization

and Computer Graphics, 8(1):52–65, 2002.

[66] Kurt Thearling. An introduction to data mining. Direct Marketing Magazine, pages

28–31, 1999.

[67] Valentina Indelli Pisano, Michele Risi, Genoveffa Tortora. How reduce the view se-

lection problem through the code modeling. Journal on Advances in Theoretical and

Applied Informatics (JADI), 2(2):19–30, 2016.

[68] Antti Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, the Volumes Are Based on the Advanced Course on

Petri Nets, pages 429–528. Springer-Verlag, 1998.

References 101

[69] Sirirut Vanichayobon and Gruenwald Le. Indexing techniques for data warehouses

queries. The University of Oklahoma, School of Computer Science, Technical Report,

1999.

[70] Jennifer Widom. Research problems in data warehousing. In Proceedings of the 4th

International Conference on Information and Knowledge Management (CIKM), pages

25–30. ACM Press, 1995.

[71] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized view

design in data warehousing environment. In Proceedings of the 23rd International

Conference on Very Large Data Bases (VLDB), pages 136–145. Morgan Kaufmann

Publishers Inc., 1997.

[72] Jian Yang, Kamalakar Karlapalem, and Qing Li. A framework for designing material-

ized views in data warehousing environment. In Proceedings of the 17th International

Conference on Distributed Computing Systems, pages 458–465. IEEE Press, 1997.

[73] Chuan Zhang, Xin Yao, and Jian Yang. An evolutionary approach to materialized

views selection in a data warehouse environment. IEEE Transactions on Systems,

Man, and Cybernetics, Part C, 31(3):282–294, 2001.

[74] Yihong Zhao, Prasad M Deshpande, and Jeffrey F Naughton. An array-based al-

gorithm for simultaneous multidimensional aggregates. In ACM SIGMOD Record,

volume 26, pages 159–170. ACM Press, 1997.

[75] Lijuan Zhou, Qian Shi, and Haijun Geng. The minimum incremental maintenance of

materialized views in data warehouse. In Proceedings of the 2nd International Asia

Conference on Informatics in Control, Automation and Robotics (CAR), volume 3,

pages 220–223. IEEE Press, 2010.

102 References

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables

	Introduction
	Motivation
	Thesis Outline

	Related Work
	VSP in a static environment
	Deterministic approaches
	Randomized approaches
	Hybrid approaches
	Query rewriting
	Discussion

	VSP in a dynamic environment
	Cache updating techniques
	Incremental view maintenance
	Discussion

	Data warehouse model evolution
	Schema evolution
	Schema versioning

	Discussion

	Conceptual Organization of Report Visualization: The CoDe Paradigm
	The Graphic Language CoDe
	The CoDe process
	CoDe Modeling phase
	OLAP operation pattern definition
	OLAP Operation phase
	Report visualization phase

	The VSP problem
	Problem Formulation
	Cost model

	Data structure for the view selection problem
	AND / OR Graph
	Multi-View Processing Plan (MVPP)
	Lattice

	A static approach to VSP problem
	Code Modelling
	OLAP Operation Pattern Definition
	Eligible patterns generation
	Selection of one OLAP eligible pattern
	Creation of the lattice structure

	OLAP Operation Optimization
	Minimum spanning tree generation
	Heuristic and views selection

	A dynamic approach to VSP problem
	The CoDe model evolution
	The CoDe Dynamic modeling
	The optimized lattice creation

	A probabilistic model to improve the dynamic approach
	Markov analysis and view selection

	Case Study
	Static approach
	Dynamic approach
	Addition of a component to the model

	Probabilistic approach

	Conclusions
	Thesis Summary
	Perspectives

	Appendix
	References

