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Chapter 1

Introduction

In recent years, the analysis of issues associated with road traffic
within urban and suburban areas has taken a leading role in trying
to implement efficient plans of transport regulations by taking ad-
vantage of the available infrastructure. The increasing popularity
of vehicles, the decentralization of industrial areas and towns and
a public transport service often lacking resulted in a sharp increase
in the overall demand for transport, with a relative traffic increase.
Consequently, the occurrence frequency of slowdowns phenomena
and the strong congestion has greatly multiplied and caused a se-
ries of inconveniences and poor services for citizens such as the
increased risk of accidents and air and noise pollution (just think
of the waste gas of cars and noise of the engines running). In order
to solve the problem of urban mobility, it is possible to act with a
rational management of infrastructure and a road-artery planning
program using simulators able to identify critical points in the
design phase and evaluate the correctness of the proposed inter-
ventions. Therefore, it is important to use mathematical models
to predict the evolution of the traffic starting from the knowledge
of quantities such as cars density at a given time instant. Traffic
prediction models can be classified in microscopic and macroscopic
according to detailed level used. The microscopic models analyze
the behavior of each single vehicle, while the macroscopic ones con-
sider situations that arise from the interaction of many particles
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based on concepts of the fluid dynamics.

The first macroscopic fluid dynamic model for single road dates
back to the years 50’s when J. Lighthill and G. Whitham, two ex-
perts of fluid dynamics (and independently P. Richards), realized
that the equations describing the flux of water (partial differential
equations known as Euler equations or Navier-Stokes equations,
which express the conservation of mass, momentum and energy)
could be able to also capture the dynamics of the traffic flux. The
basic idea is to consider a wide spatial scale, which is equivalent to
observing the phenomenon “very far”, in order to consider vehicles
as small particles (with no distinction between trucks, cars, buses,
etc.) and to assume that the density has a continuous distribution.
In any case, it is reasonable to assume the conservation of the num-
ber of vehicles in a road section without outputs or inputs, thus
arriving at a conservation law that is a particular partial differen-
tial equation, where the variable is a quantity that is conserved,
i.e. an amount that can be neither created nor destroyed.

Although the first model based on the conservation laws was
applied to traffic on single road, the fluid dynamic models are a
wide range of application; in fact, they may be used to describe the
evolution of the traffic of road networks of large towns or highways
of great states, streams of data on telecommunications networks,
fluxes of goods on production chains, gas networks, power grids,
blood flux, etc. In other words, these models are capable of de-
scribing real systems in which something is preserved: the average
number of vehicles along a road, of packets network on Internet,
the number of goods produced in a production chain, etc.

The aim of the Thesis is to review macroscopic fluid dynamic
models dealing with traffic flow on road networks and to propose
new solutions for the dynamics at intersections based on the inte-
gration of optimization criteria about the vehicular flow and rules
for the distribution of traffic.

In detail, the Thesis is organized as follows.

In Chapter 2, we firstly introduce the physical variables that
regulate road traffic and the relation that links them with each
other, and then some fluid dynamic macroscopic models for traf-
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fic on a single road are presented. We start describing in detail
the first order model of Lighthill, Whitham and Richards (LWR
model). Then we pass to the second order models (i.e. systems
of two equations) proposed by Payne and Whitham and by Aw
and Rascle. Various other more complex models are included, e.g.
Zhang, third order, multi-lane.

In Chapter 3 we describe the road network model based on
the conservation laws. For the ends that do not touch an inter-
section and are not infinite, initial conditions are assigned and
the corresponding boundary value problems are solved. In order
to complete the model, it is necessary to assign the dynamics at
intersections. A possible requirement is the conservation of the
density flux through intersections, expressed by the equality be-
tween incoming and outgoing fluxes. However, in some cases the
conservation is not strictly necessary from the modeling point of
view. This may be a modeling choice or it may be due to ab-
sorption at vertices, e.g. for the presence of queues. In any case,
the only conservation of density at intersections is not sufficient
to describe uniquely the dynamics. Usually, it is possible to as-
sign some traffic distribution rules from incoming arcs to outgoing
ones, together with flux (or other functional) maximization. In
some cases, additional rules must be used. For instance, for an in-
tersection of a road network with two incoming and one outgoing
roads, one has to describe the right of way of the two incoming
roads. In general, the dynamics at intersections can be described
by giving the solution to Riemann problems, which are Cauchy
problems with constant initial data on each road. We start by
giving the definition of Riemann Solver (RS). Roughly speaking,
a RS is a map assigning the solutions to Riemann problems as
functions of their initial data. Then, we consider new models for
the simple case of a single conservation law. Starting from two
basic RS, we consider four additional rules, justified by modeling
choices. Finally, we determine which rules effectively individuate
a RS and which of the latter possess good properties to generate
a well-posed theory.

Chapter 4 is dedicated entirely to numerical schemes used for



the discretization of the conservation law and the solution of the
dynamic at intersections. In detail, Godunov scheme, used for the
determination of density values for road sections in different time
instants starting from the initial density value of each road on the
analyzed road network, will be described.

Chapter 5 describes numerical results about experimentation
of some of the defined models based on Riemann Solver solutions
that are implemented within a road traffic simulator prototype by
reproducing the behaviour of vehicular densities on a road network
with appropriate dynamics at intersections. Then, we compare
these results in order to prove the correctness of each model, and to
point out the most suitable solution that better models the specific
dynamics at intersections with the aim of optimizing traffic flow.

Finally, Chapter 6 presents some conclusions about experi-
mentation of models based on Riemann Solver by suggesting how
numerical results of the simulation can be understood for predict-
ing risks on roads and can be useful for planning maintenance of
road networks.



Chapter 2

Macroscopic Traffic Models

Main goal of macroscopic traffic models is the description of the
evolution of vehicle positions basing on macroscopic variables like
density and average speed of vehicles. Vehicular traffic can be
considered as a flowing rider; for this reason, it is quite natural
to associate the traffic flux to flow of a fluid and treat it accord-
ingly. The first fluid-dynamic model for single road dates back
to the 50s by J. Lighthill, Whitham [29] and Richards [25] and it
is based on conservation of the average number of cars in a road
segment without entry and exit ways. From a mathematical point
of view, fluid-dynamic models are represented as equations or hy-
perbolic and nonlinear conservation laws systems, whose solutions
are generally discontinuous and they must be analyzed within the
scope of entropic weak solutions. Another example of model, de-
scribed by two equations, were proposed by Payne (1971) [22] [23]
and Whitham (1974) [28] but, unfortunately, it was proved by Da-
ganzo [9] that these models are not good to describe traffic flux.
His theory was based on the demonstration that cars could ex-
hibit negative speed. Finally, Aw and Rascle (2000) [1] overcome
Dangazo’ observations by proposing a second order model that
became a starting point for a lot of other traffic models.

Although there is a copious literature on traffic flux models
for single road, in one or more lanes, only few contributions were
concerned to the case of traffic networks. In fact, Holden-Risebro
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(1995) and Piccoli et al. (2005) obtained first results about traf-
fic networks [14]. Existence and uniqueness of solutions for traffic
networks with simple intersections (i.e. two incoming and two out-
going roads) was given by considering a method based on Riemann
problems at intersections (Cauchy problems with constant initial
data on each incoming and outgoing road) and a suitable version
of Wave Front-Tracking algorithm by Bressan.

Main advantage of fluid-dynamic approach is that by using
a parsimonious number of parameters, models are capable of de-
scribing evolution of network load at each time instant and disclos-
ing some phenomena such as formation of queues and their prop-
agation as a result of sudden changes or special circumstances. In
addition, the theory allows the development of efficient numeric
schemas also for large networks, thanks to the modeling of the flux
at the intersections in a simple and computationally way, which
makes use of linear programming problems.

In this section, we first introduce variables regulating vehicular
traffic on networks used within macroscopic traffic models and
then we describe some of these models proposed in literature.

2.1 Variables regulating vehicular traffic

Analogy with fluids of fluid-dynamic approach leads us to focus
on some physical parameters such as flux, concentration (in terms
of spatial density) and speed.

Vehicular traffic can be modeled as a mono-dimensional incom-
pressibile fluid under the following hypothesis:

1. Traffic flux is preserved and is regulated by a conservation
law.

2. There is a correspondence between speed and density and
between flux and density that results into an equation of
state.
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2.1.1 Velocity

Velocity (or speed) of an object is defined as total space distance
divided by used time; about vehicular traffic, velocity vi of each
car is given by relation

vi(t) = dxi(t)
dt

,

where xi(t) is car position at time t.

In many situations, number of cars is so high that it is difficult
to keep track of each of them; therefore, instead of measuring
speed of every single car, for each point in the space and for each
time instant a speed range v(x, t) is considered as

v(xi(t), t) = vi(t).

In this way overtaking among cars is not considered because,
in point of overtaking, the speed would assume different values at
the same instant.

2.1.2 Flux

Traffic flux (or flow) is defined as the average number of cars per
unit of time (for example, one hour), measured by a fixed observer
in a given position and, then, it is function of the position x and
time t, f(x, t).

Selection of the time interval for measuring the flux is crucial.
It is assumed that there is a measuring interval which is:

• long enough, so that during this interval a high number of
cars passes through observation point (thus eliminating sud-
den fluctuations);

• small enough, so that variations within the traffic flux is not
soften by averaging about a period of time too long.



8 2. Macroscopic Traffic Models

2.1.3 Density

Traffic density is the number of cars (per lane) for spatial mea-
surement unit (for example a kilometer) where car term means
any vehicle.

Assuming that all cars have length L and distance between two
of them is d (see Figure 2.1), the density is defined as

ρ = 1
L+d

.

Figure 2.1 Traffic density is inverse of spacing

Even for the density, the length of interval in which the cars
are counted must be chosen so as to be large enough in order to be
able to contain a high number of them and small enough in order
not to lose local densities (changes of density).
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2.1.4 Relation among velocity, flux and density

There is a relation among velocity, flux and density quantities. We
consider one of the most simple traffic situations. We suppose that,
on a road, the traffic is moving at a constant velocity v0. Since each
car moves with the same velocity, the distance among vehicles is
constant and, for this reason, the traffic density is constant, ρ = ρ0

(see Figure 2.2).

Figure 2.2 Constant flow of vehicles

We calculate traffic flux. Since the velocity is constant, dis-
tance traveled is given by velocity multiplied time. In τ hours,
each car has traveled the distance v0τ ; for this reason, the number
of cars observed in τ hours is given by the number of cars within
interval of length v0τ (see Figure 2.3).

Figure 2.3 Distance traveled by a car in τ hours
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Since ρ0 is the number of cars per kilometer, ρ0v0τ is the num-
ber of cars observed in τ hours.

Traffic flux is given by

f = ρ0v0.

Although it was derived for a simplified case, in general the
fundamental law is valid:

f(x, t) = ρ(x, t)v(x, t),

that links the flux to the density and velocity.

2.2 Conservation law for vehicular traf-

fic

We consider a road interval with ends x = a and x = b (see Figure
2.4).

Figure 2.4 Incoming and outgoing cars within a road interval

Assuming that the density ρ(x, t) is continuous, the number of
cars N is given by the following integral:

N =
∫ b
a
ρ(x, t)dt. (1.1)
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So, the number of cars between x = a and x = b is constant.
Variation of vehicular number per time unit is given by difference
between the number of crossings per unit of time within x = a
(movements to the right) and the number of crossings (movements
to the left) within x = b, that is:

dN
dt

= f(a, t)− f(b, t), (1.2)

where the number of cars per time unit is the flux f(x, t).
By combining equations (1.1) and (1.2) we obtain:

d
dt

∫ b
a
ρ(x, t)dx = f(a, t)− f(b, t). (1.3)

This equation is called integral conservation law and spec-
ifies that changes in the number of cars are essentially due to the
flux through towards the ends of considered interval.

Equation (1.3) can be conveyed as local conservation law that
is valid within each position of the road and, in this case, the
ends of the road interval x = a and x = b can be considered
additional independent variables. Total derivative according to
Equation (1.3) must be replaced by a partial derivative:

∂
∂t

∫ b
a
ρ(x, t)dx = f(a, t)− f(b, t).

We observe that under suitable regularity assumptions for the
function ρ:

f(a, t)− f(b, t) = −
∫ b
a

∂
∂t

[ρ(x, t)]dx,

we have: ∫ b
a
[ ∂
∂t
ρ(x, t) + ∂

∂t
f(x, t)]dx = 0. (1.4)

Given the arbitrariness of the limits of integration it follows
that:

∂ρ
∂t

+ ∂f
∂x

= 0.

Being f = ρv it is possible to write the conservation law in the
following form:

∂ρ
∂t

+ ∂(ρv)
∂x

= 0. (1.5)
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2.3 Lighthill-Whitham-Richards Model

The fluid-dynamic model for single road (LWR model) is based
on two relations already seen:

f = ρv (1.6)

∂ρ
∂t

+ ∂f
∂x

= 0, (1.7)

that are valid for macroscopic variables of traffic as well as for
fluid but they are not enough to characterize the traffic flux.

If the velocity is known, Equation (1.5) is a partial differential
equation that allows to predict future traffic density from well-
known initial one (Cauchy problem). In order to solve this
equation it is important to analyze velocity field.

In the mid-50s Lightill Whitham and Richards developed a
model based on relations (1.6) and (1.7), by assuming that the
velocity depends only by density in each point, that is v = vρ.

Under this hypotesys, the flux f is function only of density

f = f(ρ).

According to this model, if the traffic density is very low cars
will travel at maximum speed vmax:

v(0) = vmax.

With increasing of density the presence of other cars will slow
car speed, thus

dv
dρ

= v′(ρ) ≤ 0.

At maximum density ρmax we have

v(ρmax) = 0.
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Notice that cars stop due to dense traffic conditions before they
crash. Then, ρmax <

1
L

, where L is the average length of a vehicle.
One possible curve v = v(ρ) is shown in Figure 2.5.

Figure 2.5 v = v(ρ) state

About v = v(ρ), there are some implicit assumptions:

• equal density, the speed of different drivers is the same.
Therefore, irregular behavior of individual drivers is ignored.
It would be more realistic to introduce a stochastic model
in which it is expected that at a certain density a percent-
age of drivers travels at a given speed and others at slightly
different speeds;

• high-speed car that is approaching to a slower traffic segment
must itself slow down. The model does not provide more
overtaking lanes on a single road;

• model does not consider finite time of reaction of drivers
nor finite response time required by motor to change speed
(acceleration and decelaration).

The flux expressed as f = ρv(ρ) has some general properties.
It is null if there is no traffic (ρ = 0) or if the traffic does not move
(v = 0 and ρ = ρmax); contrariwise, for 0 < ρ < ρmax traffic flux
must be positive.
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Figure 2.6 shows a flux state as a function of density. Maximum
traffic flux is called capacity of road.

Figure 2.6 Flow diagram as a function of density

Because

∂
∂x
f(ρ) = df

dρ
∂ρ
∂x

,

we can write the conservation law as

∂
∂t
ρ(x, t) + d

dρ
f(ρ(x, t)) · ∂

∂x
ρ(x, t) =

∂
∂t
ρ(x, t) + C(ρ(x, t)) · ∂

∂x
ρ(x, t) = 0, (1.8)

where C(ρ) = f ′(ρ).
Equation (1.8) is a partial differential equation derivative al-

most linear of hyperbolic type and can be resolved with appropri-
ate methods.

2.3.1 Fundamental Diagrams

The main assumption for Lighthill-Whitham-Richards Model is
that the average velocity v depends only by the density of the cars.
One reasonable property of v is that v is a decreasing function of
the density. The law that returns the flux as function of the density
is called fundamental diagram [14].



2.3. Lighthill-Whitham-Richards Model 15

Some different fundamental diagrams are described below. For
each diagram the velocity function v = v(ρ) is assigned, thus the
flux is simply calculated by multiplying the density ρ.

A first, and more simple, fundamental diagram considered by
Greenshield is generated by setting v to be a linear function of
the density (see Figure 2.7) [14], i.e.

v(ρ) = vmax(1− ρ
ρmax

). (1.9)

Figure 2.7 Velocity function and fundamental diagram for (1.9)

It is based on three main considerations:

1. the velocity decreases with increasing density, which corre-
sponds to dv

dρ
≤ 0;

2. the velocity is proportional to a maximum velocity vmax so
that in low density correspondence this is the vehicular ve-
locity;

3. the velocity is directly proportional to the difference ρmax−ρ,
where ρmax is the maximum density.

A second fundamental diagram was considered by Greenberg
and was supported by experimental data from the Lincolm Tunnel
in New York city. He set the velocity function as
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v(ρ) = v0 log(ρmax

ρ
), (1.10)

where v0 is a positive constant. In this case v(ρmax) = 0, while v
is is unbounded when ρ→ 0+, as shown in Figure 2.8 [14].

Figure 2.8 Velocity function and fundamental diagram for (1.10)

A third fundamental diagram is given by the Underwood
model, whose velocity function is

v(ρ) = vmaxe
(− ρ

ρmax
). (1.11)

This model assumes that the average velocity is non zero even
if the density is the maximal possible, as shown in Figure 2.9 [14].
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Figure 2.9 Velocity function and fundamental diagram for (1.11)

2.3.2 Riemann Problem

A recurring phenomenon in the dynamics of a fluid is the devel-
opment of discontinuity surfaces, such as sources of shock and
rarefaction waves, through which the properties of the fluid such
as pressure, density, and velocity change according to a strictly
fast mode.

The study of the dynamics of these surfaces has a long history,
and a fundamental contribution was offered by Riemann who more
than a hundred years ago calculated what it happens to a perfect
fluid which has, at a given initial instant, planar discontinuities in
the fluid variables.

This problem, known as the Riemann problem, provides
that there are different solutions, corresponding to the combina-
tions in which the shocks and rarefaction waves can propagate
along opposite direction in the unperturbed fluid.

Consider a conservation law

ρt + f(ρ)x = 0,

with initial condition

ρ(x, 0) =

{
ρ− if x ≤ 0
ρ+ if x > 0
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This is a Cauchy problem that has a Heavyside function as an
initial condition. Heavyside step function, also called function at
single step, is a discontinuous function which is zero for negative
arguments and one for positive ones.

ρ+ and ρ− values are respectively called right state and left
state (see Figure 2.10).

Figure 2.10 ρ+ and ρ− state

Such Riemann problem is very important because it is the first
step in order to define the solutions for Cauchy problem.

Riemann problem can be easily solved if we make some sim-
plifying assumptions about the flux function. In particular, let
f : R→ R of class C2 strictly convex, that is

f(αρ1 + (1− α)ρ2) ≤ αf(ρ1) + (1− α)f(ρ2),

∀ρ1, ρ2 ∈ R,∀α ∈]0, 1[. We denote by g the inverse function of
f . Under this assumption, it is possible to prove that if ρ− > ρ+,
Riemann problem has as solution

ρ(x, t) =

{
ρ−, if x < λt
ρ+ if x ≥ λt

where λ satisfies Rankine-Hugoniot condition, that is

λ = f(ρ+)−f(ρ−)
ρ+−ρ− .
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The wave velocity is positive if f(ρ+) > f(ρ−), while it is
negative if f(ρ+) < f(ρ−) (see Figure 2.11).

Figure 2.11 The solution to the Riemann problem when ρ− < ρ+

Otherwise, if ρ− < ρ+ the solution of Riemann problem is given
by a rarefaction wave defined as (see Figure 2.12)

ρ(x, t) =


ρ− if x < f 1(ρ−)t
g(x

t
) if f 1(ρ−)t ≤ x < f 1(ρ+)t

ρ+ if x > f 1(ρ+)t

Figure 2.12 The solution to the Riemann problem when ρ− > ρ+
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2.3.3 Shock and rarefactions development in
traffic models

Subsequent phase to the green traffic light. Assume that
cars are stopped behind a red traffic light, located at x = 0. Be-
cause the cars are very close to each other, we have that behind
the traffic light ρ = ρmax for x < 0. If the traffic light stops traffic
for a long enough time, we can assume that there is no traffic in
front of the traffic light and then ρ = 0 for x > 0.

Assume that, in t = 0, traffic light changes from red to green.
What is the density of cars in all subsequent instants? The partial
differential equation describing the conservation of the cars must
be solved with the initial condition (see Figure 2.13)

ρ(x, 0) =

{
ρmax if x < 0
0 if x > 0

Figure 2.13 Traffic density due extremely long phase

Because ρ− = ρmax > 0 = ρ+, Riemman problem has a rar-
efaction wave as unique solution (see Figure 2.14).
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Figure 2.14 Rarefaction wave

Uniform traffic stopped by a red traffic light. We inves-
tigate what happens to a uniform traffic flux with density ρ = ρ0

as result of a red traffic light located in x = 0. We analyze only
traffic behind at the traffic lights, ignoring what happens in front
of it. The red traffic light is modeled mathematically as follows.
In x = 0, the traffic is stopped (see Figure 2.15), that is we have
v = 0 and ρ = ρmax for t > 0.

Figure 2.15 Density as result of stopped vehicular traffic

Because ρ− = ρ0 < ρmax = ρ+, Riemann problem has a shock
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wave as a unique solution.

2.3.4 Lighthill-Whitham-Richards Model with
Viscosity

There are some critiques to the scalar model that are based on the
fact that equation

ρt + f(ρ)x = 0

generates discontinuities in finite time. In order to eliminate
discontinuities in the solution it is possible to consider the equation
with a viscosity term, i.e.

ρt + [f(ρ)− µρx]x = 0,

or equivalently

ρt + f ′(ρ)ρx = µρxx, (1.12)

where µ is a positive constant.

It is possible to show that this equation is not realistic for de-
scribing the evolution of the traffic. Consider the following initial-
boundary problem: the initial condition is given by

ρ0(x) =

{
1 if − 1 ≤ x ≤ 0
0 otherwise

while the boundary condition ρ(t, 0) = 1 holds for every t ≥ 0
(see Figure 2.16) [14].
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Figure 2.16 The initial configuration ρ0

The natural traffic evolution for this problem should be ρ(t, x) =
ρ0(x) for every t ≥ 0. This is indeed a solution to the inviscid
Lighthill-Whitham-Richards model with the boundary condition
ρ(t, 0) = 1 for every t ≥ 0. Instead, each stationary solution to
(1.12) satisfies

f ′(ρ)ρx = µρxx.

Thus, the function ρ0(x) is not a stationary solution to (1.12).
In detail, consider a solution ρ

′
(x) to (1.4). with boundary condi-

tion

ρ′(0) = 1, lim
x→+∞

ρ′(x) = 0

and

0∫
−∞

ρ′(x)dx = 1.

The previous condition implies that the number of cars before
x = 0 are the same as at time t = 0.

Since ρ′(x) is smooth, it is possible to deduce that ρ′(x) < 1
for x ∈ [−1, 0[. Finally, the solution to (1.12) tends to ρ′(x) as
t → +∞ and so some cars move backward, which is completely
unrealistic.
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2.4 Payne-Witham Model

Payne-Witham Model or PW model was proposed in the 1970 by
[23] and [28]. It uses two Partial Differential Equations (PDE) to
represent traffic dynamics.

Its general form is

ρt + (ρv)x = 0

vt + vvx = V (ρ)−v
τ
− (A(ρ))x

ρ
+ µvxx

ρ
. (1.13)

Table 2.1 [24] shows the different terms in this model. The
first PDE is the conservation of traffic ”mass” and the second one
tries to emulate the fluid momentum equation.

Term Meaning
V (ρ) Equilibrium Speed
τ Relaxation Time
V (ρ− v)/τ Relaxation
(A(ρ))x/ρ Anticipation
µρxx/ρ Viscosity

Table 2.1 Payne-Whitham Model Terms

The anticipation term is similar to the pressure term in fluids.
In some specific models, the term is given as

A(ρ) = c2
0ρ, (1.14)

for some constant c0. The relaxation term is there so that in
equilibrium the speed follows the value V (ρ). If the viscosity is
ignored and Equation (1.14) is used, then the PW model is similar
to isothermal flux as

ρt + (ρv)x = 0

vt + vvx = V (ρ)−v
τ
− (c20ρ)x

ρ
.
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Equation (1.13) can be written in a conservation form by using
the conservation of mass in the second equation to obtain

ρt + (ρv)x = 0

(ρv)t + (ρv2 + c2
0ρ)x = ρV (ρ)−v

τ
+ µvxx.

In the vector form the model becomes

ut + f(u)x = S,

where

u =

(
ρ
ρv

)
, f(u) =

(
ρv

v2 + c2
0ρ

)
and

S =

(
0

ρV (ρ)−v
τ

+ µvxx

)
. (1.15)

It is possible to write Equation (1.15) in a quasi-linear form as

ut + A(u)ux = S,

where

A(u) = ∂f
∂u

=

(
0 1

c2
0 − v2 2v

)
.

The two eigenvalues of this matrix are

λ1 = v + c0 and λ2 = v − c0

The corresponding eigenvectors are

v1 =

(
1

v + c0

)
and v2 =

(
1

v − c0

)
.

There has been some criticism of PW model, since it mimics the
fluid behavior too closely especially the fact that it shows isotropic
behavior, whereas the traffic behavior should be anisotropic. Isotropic
models like the fluid ones show that disturbances can travel in
all directions the same way. However, for vehicular traffic that
is moving forward the driver behavior should be affected by what
happens in the front and not in the back. This deficiency has been
overcome by other models, such as the AR and Zhang models.
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2.5 Aw-Rascle Model

This model is designed to model the anisotropic traffic behavior
and it is based on the system:

ρt + (ρv)x = 0

[v + p(ρ)]t + v [(v + p(ρ))]x = V (ρ)−v
τ

, (1.16)

where V (ρ) is the equilibrium speed and p(ρ) is the ”pressure”,
an increasing function of the density defined as

p(ρ) = c2
0ρ
γ,

where γ > 0 and c0 = 1.
For further analysis, the relaxation term is ignored. For smooth

solutions system the Equation (1.16) is equivalent to the following
system obtained by multiplying the first equation by p′(ρ) in (1.16)
and then adding that to the second equation. These operations
lead to to the model defined in the following form:

ρt + (ρv)x = 0

vt +
[
v − ρp′(ρ)

]
vx = 0.

The AR model in conservation form is given by:

ρt + (ρv)x = 0

[ρ(v + p(ρ))]t + [ρv(v + p(ρ))]x = 0.

Now, a new variable m = ρ(v + p(ρ)) is defined, so that the
model can be written as

ρt + (m− ρp)x = 0

mt +
(
m2

ρ
−mp

)
x

= 0.
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In the vector form this model becomes

ut + f(u)x = 0,

where

u =

(
ρ
m

)
, and f(u) =

(
m− ρ(p)
m2

ρ
−mp

)
.

It is possible to write this vector form equation in the quasi-
linear form and obtain the eigenvalues and eigenvectors for the
system.

The quasi-linear form is

ut + A(u)ux = 0,

where

A(u) = ∂f
∂u

=

(
−(γ + 1)p 1

−m2

ρ2 − γpm
ρ

2m
ρ
− p

)
.

The two eigenvalues of the matrix are

λ1 = v and λ2 = v − γp.

The corresponding eigenvectors are

v1 =

(
1
v + (γ + 1)p

)
and v2 =

(
1

v + p

)
.

2.6 Zhang Model

This model retains the anisotropic traffic property, because its
momentum equation is derived from a microscopic car following
model.

The Zhang model is based on the follwoing set of PDEs:

ρt + (ρv)x = 0



28 2. Macroscopic Traffic Models

vt + [v + ρV ′(ρ)]vx = V (ρ)−v
τ

.

Ignoring the relaxation term, the conservation form of this
model becomes

ρt + (ρv)x = 0

[ρ(v − V (ρ))]t + [ρv(v − V (ρ))]x = 0.

A new variable m = ρ(v − V (ρ)) is defined, so the model can
be written as

ρt + (m− ρP )x = 0

mt +
[
m2

ρ
−mP

]
x

= 0.

In the vector form, this model is

ut + f(u)x = 0,

where u =

(
ρ
m

)
and f(u) =

(
m+ ρV (ρ)
m2

ρ
+mV (ρ)

)
.

It is possible to write this vector form in the quasi-linear form
and obtain the eigenvalues and the eigenvectors for the system.
The quasi-linear form is

ut + A(u)ux = 0,

where

A(u) = ∂f
∂u

=

(
ρV ′(ρ) + V (ρ) 1

−m2

ρ2 +mV ′(ρ) 2m
ρ

+ V (ρ)

)
.

The two eigenvalues of this matrix are

λ1 = v and λ2 = v + ρV ′(ρ).

The corresponding eigenvectors are

v1 =

(
1

v − V (ρ)− ρV ′(ρ)

)
and v2 =

(
1

v − V (ρ)

)
.
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2.7 Third order Models

The first third order model was proposed in 1995 by Dirk Helbing.
The main idea was to consider non only equations for density
and velocity, but also for the variance θ that becomes important
for describing and predicting traffic jams on roads. In fact, fast
increment of the variance implies queue formation in car traffic.

The exact model proposed by Helbing is the following:

ρ(t, x) = ρt + (ρv)x = 0

vt + vvx + 1
ρ
(ρθ)x = 1

τ
(ve(ρ)− v) + µ

ρ
vxx

θt + vθx + 2θvx = 2µ
ρ
(vx)

2 + k
ρ
θxx + 2

τ
(θe(ρ)− θ),

where θe and ve are given smooth functions of the density ρ,
while µ, k, τ are positive constants. The coefficient k is called
kinetic coefficient. The quantity

J(t, x) := −kθx

describes a flux of speed variance leading to a spatial smoothing
of θ. The term originates from the finite reaction and bracking
time, which causes a delayed adaption of speed to traffic situation.
The term

2
τ
(θe(ρ)− θ)

results from the drivers’ attempt to drive with their desired
speeds and from drivers’ interactions, i.e. from deceleration in a
situation when a fast car can not overtake a slower one.

2.8 Multilane Model

Multiplane model is an extension of LWR model. The main nov-
elty is considering an unidirectional one-dimensional road with n
lanes.

The macroscopic variables considered here are the density ρ of
cars and the average speed v across all the lanes. Thus we have
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ρ =
n∑
i=1

ρi

and

ρv =
n∑
i=1

ρivi,

where ρi and viare respectively the density and the average
speed of cars in the i -th lane.

In a multilane road, it is possible to observe different traffic
behaviour based on the density of traffic. When traffic is low,
changing lane and overcome cars is easy and so the equilibrium
speed for cars is high. When traffic is high, these actions become
complicate and difficult, so that the equilibrium speed for cars is
low. The typical situation involves two different equilibria for the
average speed of cars. This is described by two functions w1(ρ)
and w2(ρ) defined on interval [0, ρmax] such that

w1(ρ) > w2(ρ),

for every ρ ∈ [0, ρmax[ and w1(ρmax) = w2(ρmax) = 0. When
the density ρ is less than a critical value ρ−1 , then the average
speed is described by the function w1, while when the density ρ
is greater than a value ρ−2 , then the average speed is described by
the function w2 (see Figure 2.17) [14].



2.8. Multilane Model 31

Figure 2.17 The functions w1 and w2 for the multilane model

Defining α = v − w1(ρ), the system is given by:

ρt + (ρv)x = 0

αt + vαx =

{
−α

ε
ρ < R(v)

(w2(ρ)−w1(ρ))−α
ε

ρ ≥ R(v)
(1.17)

where R(v) is a monotone non-decreasing function defined in
R+ satisfying

R(v) = ρ−2 , ∀0 ≤ v ≤ w2(ρ−2 )

and

R(v) = ρ−1 , ∀v ≥ w1(ρ−1 ),

and ε is a small positive constant.
Notice that (1.17) in terms of ρ and v becomes

ρt + (ρv)x = 0

vt + (v + ρw1
′(ρ))vx =

{
−w1(ρ)−v

ε
ρ < R(v)

(w2(ρ)−v
ε

ρ ≥ R(v)
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Chapter 3

Fluid-dynamic model for
vehicular traffic networks

3.1 Assumptions

A road network is composed of a finite numbers of roads (arcs) Ik,
k = 1, ..., N that are modeled by intervals [ak, bk] (with one of the
two ends possibly finite) joining up at intersections J (vertex).

For each intersection two sets, both non-empty, differ:

• Inc(J) set of incoming roads in intersection J .

• Out(J) set of outgoing roads from intersection J .

It is possible to represent a road network as an directed graph
(see Figure 3.1) where directed arc Ik = [ak, bk] is k-th road crossed
in the direction that goes from ak to bk; a node J represents an
intersection for which incoming roads are given by Inc(J) and
outgoing roads are given by Out(J).

For roads that do not join up at intersections (and that are
not infinite) assignment of boundary conditions is assumed and
corresponding boundary problem is solved (green and red nodes
in Figure 3.1).
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Figure 3.1 Example of simple road network

It is assumed that, for each arc Ik, initial distribution ρk,0 of
density ρk is known. Furthermore, it is assumed that the evolution
of the traffic on each road is described by a conservation law for
cars (LWR model):

ρt + f(ρ)x = 0,

where ρ : (x, t) ∈ R+ × R → ρ(x, t) ∈ [0, ρmax] is the car
density, f(ρ) = vρ is the flux and v = v(x, t) is the velocity.

It is assumed that the flux f ∈ C2([0, ρmax]) is a strictly concave
function, f(0) = f(ρmax) = 0 and has a single maximum point
within σ ∈]0, ρmax[.

In order to simplify the notation, we will suppose ρmax = 1.
Key role is played by intersections where the system is under-

determined, while using Rankine-Hugoniot condition that for an
intersection n×m (n incoming roads and m outgoing roads) is

n∑
i=1

f(ρi(t, bi)) =
n+m∑
j=n+1

f(ρj(t, bj)),
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where ρi, i = 1, ..., n, are densities on incoming roads, while
ρj, j = n + 1, ..., n + m are car densities on outgoing roads from
intersection.

Basic ingredient for solving Cauchy problems at intersections
(vertices) through wave-front-tracking method is represented by
the solution of Riemann problems, special Cauchy problem with
constant initial conditions on each incoming and outgoing road.
The discontinuity in this case is represented by the vertex itself.

In order to describe the dynamics at vertices, we introduce the
following definitions:

Definition 2.1 A Riemann Solver (RS) for the vertex J is
a map RS : [0, ρmax]n × [0, ρmax]m → [0, ρmax]n × [0, ρmax]m that
associates with Riemann data ρ0 = (ρ1,0, ..., ρn+m,0) at J a vector
ρ̄ = (ρ̄1, ..., ρ̄n+m), so that the solution on an incoming road Ii,
i = 1, ..., n is given by the waves produced by the Riemann problem
(ρi,0, ρ̄i), and on an outgoing road Ij, j = n + 1, ..., n + m by the
waves produced by the Riemann problem (ρ̄j, ρj,0). We require the
consistency condition

(CC) RS(RS(ρ)) = RS(ρ0)

A RS is further required to guarantee the fulfillment of the
following properties:

(H1) The waves generated form the vertex must have nega-
tive velocities on incoming arcs and positive velocities on outgoing
ones. This is a consistency condition to well describe the dynamics
at vertex.

(H2) Relation (2.1) holds for solutions to Riemann problems
at the vertex. This is necessary to have a weak solution at the
vertex.

(H3) The map ρ0 → f(ρ̄) is continuous. This is a regularity
condition, necessary to have a well-posed theory.

In order to ensure that Riemann problems have unique solution
at intersections, we assume the following rules by considering two
RS at vertices:

• (R1) We assume that:
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(A) the traffic of incoming roads is distributed on outgoing
roads according to fixed coefficients;

(B) fulfilling (A), drivers move in order to maximize the in-
coming flux.

• (R2) We assume that the flux through a vertex (intersection)
is maximized both over incoming and outgoing arcs (roads).

Given a n ×m intersection, in order to formalize assumption
(A) a traffic distribution matrix is fixed:

A = {αji}j=n+1,...,n+m;i=1,...,n ∈ Rm×n

such that

0 < αji < 1,
n+m∑
j=n+1

αji = 1

For each i = 1, ..., n and j = n + 1, ..., n + m elements of A,
αji, state probability that drivers coming from the i-th incoming
road decide to take the j-th outgoing road. We observe that only
rule (A) does not guarantee the uniqueness but, combined with
rule (B) makes solution of Riemann problems unique.

Notice that if m < n (that is the number of incoming roads is
greater than outgoing ones) it is necessary to introduce an addi-
tional rule.

For example, if m = 1 and n = 2 it is possible to define (and
fix) a priority parameter q ∈ [0, 1] and assign the following rule:

(C) not all cars can go in the outgoing road. Let C be the
amount of cars that can go in, then qC is the percentage of cars
from the first incoming road and (1−q)C is the percentage of cars
from the second incoming road.

Hereafter, we will denote with the term “RS Base” (or simply
“Base)” the Riemann Solver (R1) satisfying rules (A), (B) and
(C).

Now, we describe how to determine the solution of Riemann
problem.

Two sets are defined:
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Ωi = [0, f(ρ̄i,0)], i = 1, ..., n

Ωj = [0, f(ρ̄j,0)], j = n+ 1, ..., n+m

where

ρ̄i,0 =

{
ρi,0 if 0 ≤ ρi,0 ≤ σ
σ if σ ≤ ρi,0 ≤ 1

i = 1, ..., n

ρ̄j,0 =

{
σ if 0 ≤ ρi,0 ≤ σ
ρj,0 if σ ≤ ρi,0 ≤ 1

j = n+ 1, ..., n+m.

Maximum incoming and outgoing fluxes are given by:

Ω =
{(γ1, ..., γn) ∈ Ω1 × ...× Ωn | A · (γ1, ..., γn)t ∈ Ωn+1 × ...× Ωn+m}.

Notice that Ω is a convex set determined by linear constraints.
Moreover, Rule (A) implies (H2). Thus, Rule (B) is equivalent

to maximize only over incoming fluxes, then outgoing ones can be
determined by Rule (A).

Finally, Rule (A) and Rule (B) correspond to a Linear Pro-
gramming Problem: maximize the sum of fluxes from incoming
roads over the region Ω.

Such problem admits always a solution, which is unique pro-
vided the cost function gradient (here the vector with all com-
ponents equal to 1) is not orthogonal to the linear constraints
describing the set Ω.

Obtained the incoming fluxes that are solution of Riemann
problem γ̄i, i ∈ {1, ..., n}, in order to satisfy the rule (B), ρ̄i is
chosen such that

ρˆ
i ∈

{
{ρi,0}∪]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ
[σ, 1] if σ ≤ ρi,0 ≤ 1

i = 1, ...n, (2.1)

where τ : [0, 1]→ [0, 1] is an application such that:

1. f(τ(ρ)) = f(ρ) for each ρ ∈ [0, 1];
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2. τ(ρ) 6= ρ for each ρ ∈ [0, 1] \ {σ}.

Clearly, τ is well defined and satisfies the following conditions:

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1
σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ

By recalling rule (A) we have:

γ̄i =
n∑
j=1

αjiγ̄i, j = n+ 1, ..., n+m (2.2)

and

ρ̄j ∈ [0, 1]

such that

f(ρ̄j) = γ̄j

ρ̄j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1

j=n+1,...,n+m.

(2.3)

The solution on each road is given by solution of Riemann
problem with data (ρi,0, ρ̄i) for incoming roads and (ρ̄j, ρj,0) for
outgoing roads.

3.2 Solution of Riemann problem for

specific cases

Case 1: 2× 1 Intersection
We define a Riemann Solver at intersection satisfying rules

(A) and (B). In particular, we consider a 2 × 1 Intersection (two
incoming roads and one outgoing road). In this case, since m =
1 < 2 = n we need the additional rule (C).
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Figure 3.2 Example of 2× 1 Intersection

We analyze the intersection shown in Figure 3.2: in detail, 1
and 2 are incoming roads and 3 is the only outgoing road. The
solution of Riemann problem with initial datum (ρ1,0, ρ2,0, ρ3,0)
is created as follows. Because we want maximize the traffic flux
through the intersection (rule B) we set:

γ̄3 = min {γmax
1 + γmax

2 , γmax
3 },

where γmax
i , i = 1, 2 is maximum flux on incoming roads and

γmax
3 is the maximum flux on outgoing road [10].

γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, ρmax]
f(σ) if ρi,0 ∈ [ρmax, 1]

i = 1, 2

γmax
3 =

{
f(σ) if ρ3,0 ∈ [0, ρmax]
f(ρ3,0) if ρ3,0 ∈ [ρmax, 1]

Notice that matrix A defined by rule (A) is only column vector
(1,1), so any additional restriction is not given. This is due to the
fact that there is only a outgoing road and so cars must necessarily
flux towards this road.

Consider now on plane (γ1, λ2) the line

γ2 = 1−q
q
γ1

defined according to rule (C). Let P intersection point of such
line with line γ1 + γ2 = γ̄3.

Final fluxes must belong to region:
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Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , 0 ≤ γ1 + γ2 ≤ γ̄3, i = 1, 2}.

We must distinguish two different cases (see Figure 3.3):

• P belongs to Ω

• P is outside Ω

Figure 3.3 2× 1 Intersection: Case 1 and 2

In the first case, we let (γ̄1, γ̄2) = P while, in the second
case we let (γ̄1, γ̄2) = Q where Q is projection of P on Ω ∩
{(γ1, γ2) : γ1 + γ2 = γ̄3}. Once γ̄1 and γ̄2 have been determined
(and consequently γ̄3 by (2.2)) it is possible to univocally calcu-
late ρ̄i, i ∈ {1, 2, 3} by (2.1) and (2.3).

Case 2: 2× 2 Intersection

Consider case where n = 2 incoming roads and m = 2 outgoing
roads (see Figure 3.4).
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Figure 3.4 Example of 2× 2 Intersection

For an intersection J we state densities on incoming roads 1
and 2 as ρ1 and ρ2 and on outgoing roads 3 and 4 as ρ3 and ρ4,
and initial conditions as (ρ1,0, ρ2,0, ρ3,0, ρ4,0).

We define distribution matrix as

A =

(
α β

1− α 1− β

)
.

Let’s see how construct the solution of Riemann problem with
initial data defined previously.

Because we want maximize the traffic flux specified as Γ through-
out the intersection (rule B), we set

Γ = min {Γmax
in ,Γmax

out },

where Γmax
in = γmax

1 + γmax
2 and Γmax

out = γmax
3 + γmax

4 and maxi-
mum flux within incoming and outgoing roads, respectively, γmax

i ,
i = 1, 2 and γmax

j , j = 3, 4 are calculated:

γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, ρmax]
f(σ) if ρi,0 ∈ [ρmax, 1]

i = 1, 2

γmax
j =

{
f(σ) if ρj,0 ∈ [0, ρmax]
f(ρj,0) if ρj,0 ∈ [ρmax, 1]

j = 3, 4.



42 3. Fluid-dynamic model for vehicular traffic networks

Final fluxes must belong to the region:

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , 0 ≤ αγ1 + βγ2 ≤ γ3,

0 ≤ (1− α)γ1 + (1− β)γ2 ≤ γ4 i = 1, 2} ,

as shown in Figure 3.5.

Figure 3.5 2× 2 Intersection - Final fluxes region

3.3 Alternative Riemann Solver at In-

tersections

We describe some new models that can be defined starting from
RS (R1) and RS (R2). In detail, we define some additional rules
(N) for N=1,...,4 and then identify new RS as follows:

(i) we use rule (N) to determine the fluxes in incoming roads
(arcs). Then, by rule (A) it is possible to determine the
fluxes on outgoing roads. Thus, we get new RSs called (R1-
N);

(ii) we use (R2) to determine the through flux and rule (N) to
determine fluxes on incoming or outgoing roads. Thus, we
get new RSs called (R2-N).
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In order to simplify the presentation, we restrict ourselves to
the case of 2×2 intersections (vertices), i.e. intersections with two
incoming and two outgoing roads (arcs).

Notation 2.1: The incoming roads are I1 and I2, the out-
going ones are I3 and I4. The initial datum is denoted by ρ0 =
(ρ1,0, ..., ρ4,0) and the initial fluxes are denoted by γ0 = (γ1,0, ..., γ4,0).
The vector of fluxes over incpooming roads is γin = (γ1, γ2) and
over outgoing roads is γout = (γ3, γ4). The matrix A of rule (A) is(

α β
1− α 1− β

)
We also use the following notations:

Ωin = [0, γmax
1 ]× ...× [0, γmax

n ],

Ωout = [0, γmax
n+1]× ...× [0, γmax

n+m],

Ω̄in = {γ ∈ Ωin : A · γ ∈ Ωout}.

Notice that the region Ω̄in is determined by the linear con-
straints given by the maximal fluxes on each arc. We give the
following definition:

Definition 2.2: We say the the incoming arc (road) Ii is an
active constraint for J if γ(ρ̄i) = γmax

i .
Similarly for outgoing arcs (roads).
In detail, an incoming arc Ii is an active cotstraint if ρ̄i ∈ [0, σ]

and an outgoing arc Ij is an active constraint if ρ̄j ∈ [σ, ρmax].
Model 1. (Equilibrium and maximization)
We fix the rule:
(Rule 1). The incoming flux is determined by:

max
γin∈Ω̄in

v · γin,

where v ∈ {w ∈ R2 : wi ≥ 0, i = 1, 2} is fixed.
The physical meaning of the model is the following. The traf-

fic through the intersection (vertex) tends to an equilibrium of
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the flux ratios, while maximizing the total through flux. The pro-
portion equilibrium is determined by the physical features of the
intersection, e.g. by the fact that it represents a junction in which
a road is more important than the other.

Notice that the flux vector of the true solution may be quite
different from the expected equilibrium value v.

Hereafter, we will denote with the term “RS 1” the alternative
Riemann Solver described by Model 1.

Model 2. (Equilibrium then maximization)

We fix the rule:

(Rule 2). The incoming flux is determined by:

max
γin∈V ∩Ω̄in

γin · (1, 1),

where V = {tv : t ∈ R} and v ∈ R2 is fixed.

The physical meaning of the model is the following. The flux
proportions are now strictly fulfilled, then the flux is maximized
among the possible choices. In some senses, here the traffic flux is
more influenced by the physical structure of the intersection. For
instance, this solver may correspond to a junction with a traffic
light having a fixed schedule of red-green times, while the previous
one represents a light with a variable schedule. Thus, the timing
of the light is independent of the effective incoming traffic for this
solver, while it is adjusted according to the incoming traffic at
previous case.

Hereafter, we will denote with the term “RS 2” the alternative
Riemann Solver described by Model 2.

Model 3. (Variable equilibrium then maximization)

We fix the following rule:

(Rule 3). The incoming flux is determined by:

max
γin∈V (γ0)∩Ω̄in

γin · (1, 1),

where V (γ0) = {tv(γ0) : t ∈ R} and v : R2 → R2 is a fixed
function.
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The physical meaning of the model is the following. The flux
proportions are strictly fulfilled, then the flux is maximized among
the possible choices. However, the flux proportions depend on
incoming fluxes. This is, roughly speaking, an intermediate choice
between the previous two models.

Model 4. (Parametric equilibrium then maximization)
We fix the following rule:
(Rule 4). The incoming flux is determined by:

max
γin∈V (γ0,Θ)∩Ω̄in

γin · (1, 1),

where V (γ0,Θ) = {tv(γ0,Θ) : t ∈ R}, Θ ∈ Rp represents some
time evolving parameters and v : R2×Rp → R2 is a fixed function.

The physical meaning of the model is the following. The flux
proportions are strictly fulfilled, then the flux is maximized among
the possible choices. However, the flux proportions depend on
additional parameters Θ.

The parameters Θ may have different meanings:

• aggressivity parameters describing the attitude of the traffic
from some roads with respect to others;

• source-destination parameters describing the traffic type as
reported in [15];

• traffic population parameters distinguishing among vehicles
of different types as cars, trucks, buses, etc. as reported in
[4].

The parameters Θ may vary both inside the roads and time. A
possible evolution equation is derived by the following semi-linear
equation:

Θt + w(Θ, ρ)Θx = 0,

where w is the velocity depending on the density ρ. For ex-
ample, consider source-destination parameters. It is obvious to
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assume that the average velocity does not depend on such param-
eters (i.e. it is independent of the source or the destination of
vehicles). For this reason, one can set w(Θ, ρ) = v(ρ) [15] [19].

About multi-populations, it is obvious to assume that w de-
pends on the traffic type. In fact, one expects the average velocity
depends on the type of vehicle.

In the following subsections, we analyze the properties of the
vertex-dynamics corresponding to the additional rules just defined.

3.3.1 The Riemann Solver (R1-1)

It is necessary to impose some conditions in order to determine a
unique solution. In detail, we have the following:

Proposition 2.1: Assume that v is parallel either to the vector
(α, β) or to the vector ((1− α), (1− β)), then Rule (A) and Rule
(1) do not determine a unique solution for some initial data.

Proof : The region Ω̄in is determined also by the linear con-
straints:

αγ1 + βγ2 ≤ γmax
3 , (1− α)γ1 + (1− β)γ2 ≤ γmax

4 .

If the assumptions hold, the the vector v is orthogonal to one
of these constraints. So, it is clear that a unique solution may not
exist.

In order to overcome this problem, one possibility is to use
Rule (C) by considering v as priority vector. In detail, we define
the following rule:

(C
′
) we assume Rule (C) taking v as priority vector.

Proposition 2.2: We have the following:

(i) Rules (A), (1) and (C
′
) determine a unique solution for every

initial datum.

(ii) For the solution in (i), (CC) of Definition 2.1 holds true.

(iii) For the solution in (i), (H3) holds true.
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Proof : The first statement is verified by construction.
For (ii), observe that if Ii is an active constraint the the solution

does not produce any wave on Ii. If we apply the R1-1 to ρ̄. Then
the maximization of Rule (1) is done on a region enlarged only by
non-active constraints. for this reason. the solution is the same
for ρ. In other words, (CC) holds true.

Finally, for (iii) it is enough to notice that the linear constraints
over the incoming fluxes depend all in a continuous fashion on γ0,
thus on the initial datum. The latter determines both the region
Ω̄in and the maximal value solution of Rule (1).

3.3.2 The Riemann Solver (R1-2)

Rule (2) is the most efficient for determining solutions to Riemann
Problems, as shown below.

Proposition 2.3: We have the following:

(i) Rules (A) and (2) determine a unique solution for every ini-
tial datum.

(ii) For the solution in (i), (CC) of Definition 2.1 holds true.

(iii) For the solution in (i), (H3) holds true.

Proof : In order to prove (i), notice that the set S = V ∩ Ω̄in

is convex because intersection of convex sets. S is one dimen-
sional (segment) and non-empty because the origin belongs to
both sets. Finally, the set S is contained in the positive orthant
P = {γ ∈ R2 : γi > 0}. Therefore, S is not orthogonal to the vec-
tor (1, 1).

The proofs of (ii) and (iii) are as for Proposition 2.3.

3.3.3 The Riemann Solver (R1-3)

Set P = {γ ∈ R2 : γi > 0}. In order for the solution to have a
reasonable meaning, the map v should take values inside P , thus
it is possible to compone the map with the projection π of R2\{0}
on to S1, given by π(x) = x/ | x |.
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In addition, if the vector γ0 does not belong to P (e.g. initial
data with a zero flux form one or both incoming arc), then the
map v is not relevant to determine the solution, thus it is possible
to assume it is defined on P . Finally, to simplify the treatment
the following assumption is made.

(V) The map v is defined on P , takes values in P ∩ S1 and is
smooth.

Under assumption (V), it is possible to define the following set:

X(v) = {γ ∈ P ∩ S1 : v(γ) = γ}.

X(v) is the set of equilibrium for the map RS composed with
π, i.e. the set of points γ such that π(RS(γ)) = γ. Then, we have
the following:

Proposition 2.4: Consider Rules (A) and (3) with v(·) sat-
isfying (V), and the corresponding RS R1-3. Then, R1-3 satisfies
the compatibility condition (CC) of Definition 2.1 iff v(γ) ∈ X(v)
for every γ ∈ P .

Proof : Consider a vector γ ∈ P such that v(γ) /∈ X(v) and
assume α+β > 1 (the other case being similar). Then, consider an
initial datum ρ0 such that (γ1,0, γ2,0) = γ, γmax

3 = αv(γ)1 +βv(γ)2,
where v(γ)i are the components of v(γ) and finally γmax

4 = f(σ).
Then the vector of solutions fluxes over incoming arcs, namely
(f(ρ̄1), f(ρ̄2)) is parallel to v(γ). Now, R1 − 3(ρ̄) determines an
incoming flux on the line {tv(v(γ))t ≥ 0}. But v(v(γ)) 6= v(γ)
because v(γ) /∈ X(v), then necessarily R1− 3(ρˆ) = R1− 3(R1−
3(ρ0)) 6= R1− 3(ρ0).

In this way, in order to have the consistency property (CC)
by Proposition 2.4 the map v must take values inside X(v). It is
possible to put further restrictions on v for the sake of uniqueness:

Proposition 2.5: Consider Rules (A), (3) with v(·) satisfying
(V), and the corresponding RS R1-3. Then, R1-3 gives rise to
unique weak solutions to Riemann Problems at J iff X(v) is a
singleton. In this case R1-3 coincides with R1-2.

Proof : Assume by contradiction that X(v) is not a singleton.
Define Ω̄ = {γ : (Aγ)i ≤ f(σ), i = 1, 2}, i.e. the set of incoming

fluxes with respect to the constraints on free outgoing arcs. Take
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v1 6= v2 with vk ∈ X(v), k = 1, 2 and let v̄k = tkvk, where tk =
max

{
t : tvk ∈ Ω̄

}
. Consider a Riemann Problem at J with initial

datum ρk0 such that (γk1,0, γ
k
2,0) is parallel to vk and ρki,0, ρkj,0 are

good data. Then, (γ̄k1 , γ̄
k
2 ) = v̄k.

The Riemann Problem with initial datum ρ1
0 admits the solu-

tion given by R1− 3(ρ1
0) and the following weak solution. On the

incoming arcs Ii there are waves with negative velocities connect-
ing ρ1

i,0 with ρ̄2
i,0, while on the outgoing arcs Ij there are waves

with positive velocities connecting ρ̄2
j,0 with ρ1

j,0. This is possible
because all values are good data. At the vertex the datum is thus
given by ρ̄2. This proves that this is a weak solution compatible
with R1-3. The same happens inverting the roles of ρ1

0 and ρ2
0. By

contradiction, the proof is completed.

3.3.4 The Riemann Solver (R1-4)

This solver is entirely similar to solver R1-3 with the additional
dependence on parameters Θ. Thus, reasoning as in the proof of
Preposition 2.4 and 2.5 to have well-posed solutions, it is possible
to restrict to the following rule:

(Rule 4
′
). The incoming flux is determined by:

maxγin∈V (Θ)∩Ω̄in γin · (1, 1),

where V (Θ) = {tv(Θ) : t ∈ R}, Θ ∈ Rp represents some time-
evolving parameters and v : R2 −→ R2 is a fixed function.

The properties of such solver R1-4
′

are determined in a similar
manner to those of R1-2.

3.3.5 The Riemann Solver (R2-1)

In this case we first determine the through flux Γ via (R2). Then,
Rule (1) must be used on incoming arcs if Γ < Γin and on outgoing
ones if Γ < Γout. We set:

ΩΓ
in = {γin ∈ Ωin : γ1 + γ2 ≤ Γ},
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ΩΓ
out = {γout ∈ Ωout : γ3 + γ4 ≤ Γ}.

In both cases the linear constraints used to determine the ad-
missible region is orthogonal to the vector (1, 1), thus we have:

Proposition 2.6: If v is not parallel to (1, 1) then Rules (R2)
and (1) determine a unique solution for every initial datum.

Again, if the assumption of proposition 2.6 does not hold then
we can use Rule (C) taking v as priority vector. In this way the
same conclusions as Proposition 2.2 holds.

3.3.6 The Riemann Solver (R2-2)

In this case it is necessary to proceed differently with respect to
R2-1. In detail, if we first determine Γ and then use Rule (2) both
for incoming and outgoing arcs, the respective solutions may vio-
late (H2), thus the conservations of cars through the intersection.

For this reason, the strategy has to be inverted, namely:

• Firstly, Rule (2) is used both on incoming and outgoing arcs,
then the through flux is obtained taking the minimum be-
tween the two.

In detail, γ−in is defined by solving

maxγin∈V ∩Ωin γin · (1, 1)

and similarly γ−out by solving

maxγout∈V ∩Ωout γin · (1, 1).

Then, the through flux is defined by

Γ = min
{
γ−in1 + γ−in2 , γ−out1 + γ−out2

}
, (2.4)

Finally, the solutions fluxes are given by

γˆ
in = Γγ−in, γˆ

out = Γγ−out. (2.5)

In other words, this solver is defined using first Rule (2) and
then Rule (R2). It easy to check that this solver has the same
properties of solver R1-2.
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3.3.7 The Riemann Solver (R2-3)

In this case the steps are to first apply Rule (3) and then determine
the through flux. However, the definition suffers from the same
problems as for R1-3 both on incoming and outgoing arcs. In
particular, Propositions 2.4 and 2.5 imply that a well-posed theory
is possible only by reducing to case R2-2.

3.3.8 The Riemann Solver (R2-4)

This solver is entirely similar to solver 2-3 with the additional de-
pendence on parameter Θ. We can proceed as for R2-2 by defining
γ−in as the solution of

maxγin∈V (Θ)∩Ωin γin · (1, 1)

and similarly γ−out as the solution of

maxγout∈V (Θ)∩Ωout γin · (1, 1).

Then, it is possible to use (2.4) and (2.5) in order to define
the solution fluxes. The properties of such solver are the same as
those of solver R2-2.

3.4 Formulation of the Linear Program-

ming Model for Riemann Solver

In this section, formulation of the linear programming model as-
sociated to Riemann problem is defined.

Model variables are:

• γi with i ∈ {1, ..., n}, flux on incoming road i at the inter-
section J .

• γj with j ∈ {n+ 1, ..., n+m}, flux on outgoing road j at
the intersection J .
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• γmax
i with i ∈ {1, ..., n}, maximum flux on incoming road i.

• γmax
j with j ∈ {n+ 1, ..., n+m}, maximum flux on outgoing

road j.

• qi with i ∈ {1, ..., n}, coefficients relating to precedence
which must be respected on the roads, such values are be-
tween 0 and 1.

• αij with i ∈ {1, ..., n} and j ∈ {n+ 1, ..., n+m}, coefficients
that describe driver’s preference. These coefficients state the
traffic distribution from the incoming roads to outgoing ones
and are defined in the Distribution matrix of the rule (A).

The objective function (cost function) maximizes the flux on
incoming roads:

max
n∑
i=1

γi.

The constraints of the problem can be divided into:

• feasible region constraints :

0 ≤ γ1 ≤ γmax
1

...
0 ≤ γn ≤ γmax

n

• distribution constraints :

0 ≤
n∑
i=1

α1iγi ≤ γmax
1

...

0 ≤
n∑
i=1

αmiγn ≤ γmax
m .

If the number of incoming roads is greater than the number of
outgoing ones, the rule of precedence (C) is also valid. Given a
priority qi associated with the road i, the priority constraints are:

γ2 = q2
q1
γ1

γ3 = q3
q1
γ1

...
γn = qn

q1
γ1
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3.4.1 Assumptions for Alternative Riemann Solvers

About Rule (1) we assume the following condition:

• The objective function (cost function) maximizes the flux on
incoming roads:

max
n∑
i=1

v · γi,

where v is the priority vector associated with the incoming
road i for the intersection J .

About Rule (2) and Rule (3) we assume the following condi-
tions:

• feasible region constraints :

γi = t · vi, i ∈ [1, n] (by Rule (2)). (2.5)

Since 0 ≤ γi ≤ γmax
i , deriving from Equation (2.5) we have that

t · vi ≤ γmax
i , i.e.

t ≤ γmax
i

vi
, i ∈ [1, n].

• distribution constraints :

γi = t · vi, i ∈ [1, n] (by Rule (2)). (2.6)

Since 0 ≤
n∑
i=1

αjiγi ≤ γmax
i , deriving from Equation (2.6) we have

that

n∑
i=1

αjit · vi ≤ γmax
i , i.e.

t ≤ γmax
i

n∑
i=1

αjivi

, j ∈ [1,m].

• priority constraints:
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γi = t · vi, i ∈ [1, n] (by Rule (2)). (2.7)

Since γi = qi
q1
γ1, deriving from Equation (2.7) we have that

γi = qi
q1
t · v1, i.e.

γi = qi · t

that is already satisfied by rule (2). For this reason, priority
constraints for Rule (2) and Rule (3) are implicit.



Chapter 4

Numerical Schemes

Numerical methods are able to create an approximation of the
exact solution and to evaluate the error committed by replacing
the exact solution with the approximate one.

In this section, we will focus on some numerical methods for
the discretization of the solution of non-linear hyperbolic equa-
tions (PDEs) about conservation laws modeling vehicular flux. In
detail, we will describe one-dimensional case although most of the
concepts and methods that we will introduce remain valid also for
multi-dimensional case. We will pay specific attention to Godunov
schema for the numeric solution of PDEs.

4.1 Approximations of non-linear hy-

perbolic problems

In this subsection we introduce some schemes for the discretization
of the on-linear hyperbolic equations.

4.1.1 Approximation finite difference

Consider the hyperbolic equation

∂ρ
∂t

+ ∂
∂x
F (ρ) = 0, t > 0, x ∈ R (3.1)
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where F is a non-linear function of ρ, with the initial condition

ρ(x, 0) = ρ0(x), x ∈ R.

In order to solve this equation numerically, we use discretiza-
tion of space and time based on the finite difference method. The
plane (x, t) is discretized by means of the choice of a step of con-
stant time discretization ∆t = k, and constant space discretization
∆x = h such that

xj = j · h j = 0, 1, ...
xj+ 1

2
= xj + h

2
j = 0, 1, ...

tn = nk n = 0, 1, ...

Therefore, in the plane (x, t) a grid is created by considering
step of size h on axis x and step of size k on the axis t, as shown in
Figure 4.1.We find discrete solutions ρnj that approximate ρ(xj, t

n)
for each spatial step j and temporal one n.

Figure 4.1 Grid

We use an explicit finite difference schema as follows:

ρn+1
j = ρnj − ∆t

∆x
(Hn

j+ 1
2

−Hn
j− 1

2

), (3.2)
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where Hn
j+ 1

2

= H(ρnj , ρ
n
j+1), with H(·, ·) numeric flux.

Functional interpretation of the numerical flux is the follow

Hn
j+ 1

2

' 1
∆t

∫ tn+1

tn
F (ρ(xj+ 1

2
, t))dt,

that is Hn
j+ 1

2

approximates average flux by xj+ 1
2

within time

interval [tn, tn+1]. For a given numerical schema, truncation error
τnj at a point (xj, t

n) is the error that is created by presuming that
correct solution verify the same numeric schema. If the truncation
error τ(∆t, h) = maxj,n |τnj | tends towards zero when ∆t and h
indipendently tend towards zero then the numeric schema is called
consistent.

The numeric flux must verify

H(ρ̄, ρ̄) = F (ρ̄), (3.3)

when ρ̄ is a constant. Lax and Wendroff proved that, under
the condition (3.3), the functions ρ such that

ρ(tn, xj) = lim
∆t,h→0

ρnj

are weak solutions of initial problem. ρ is a weak solution of
(3.1) if satisfy the differential relation (3.1) for all points x ∈ R
except of those in which it is discontinuous. In these points it
does not make sense that (3.1) is valid but it is important that
Rankine-Hugoniot condition is verified:

F (ρr)− F (ρl) = σ(ρr − ρl),

where ρr and ρl state, respectively, right and left limit of ρ in
the discontinuity point. The weak solutions are not necessarily
unique. Among them, the weak solution pragmatically correct is
the entropic one.

Unfortunately, the weak solutions are not entropic ones. In
order to retrieve the entropic solutions, numeric schemas have to
introduce an appropriate numeric diffusion.

Equation (3.2) can be re-writed as
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ρn+1
j = G(ρnj−1, ρ

n
j , ρ

n
j+1). (3.4)

Equation (3.4) has some characteristics:

• it is monotonic if G is an increasing monotonic function for
each of its arguments;

• it is limited if ∃C > 0 such that supj,n |ρnj | ≤ C;

• it is fixed if the finite difference solutions ρn and vn derived
from two different initial data ρ0 and v0 verify, ∀n ≥ 0 such
that n∆t 6 T and ∀∆t and h sufficiently small,

||ρn − vn||∆ ≤ CT ||ρ0 − v0||∆,

where || · ||∆ is an appropriate discrete norm and the constant
CT > 0 is independent from ∆t and h.

4.1.2 Approximation with discontinuous finite
elements

An alternative approach to that adopted so far is based on the use
of discontinuous finite element. This choice is motivated by the
fact that the non-linear hyperbolic solutions may present problems
of discontinuity even in the presence of continuous initial data. For
the discretization of the problem (3.1) we now consider the spatial
approximation based on discontinuous finite elements. We search
∀t > 0ρh(t) ∈ Wh where Wh represents finite elements space and
such that we have ∀j = 0, 1, ...,m − 1 and ∀vh ∈ Pr(Ij) where
Pr(Ij) is space of Legendre polynomials∫
Ij

∂uh
∂t
vhdx−

∫
Ij
F (ρh)

∂vh
∂x
dx+Hj+1(ρh)vh̄(xj+1)−Hj(ρh)v

+
h (xj) =

0, (3.5)

where Ij = [xj, xj+1]. Initial datum ρ0
h is given by∫ 0

Ij
ρhvhdx =

∫
Ijρ0

vhdx j = 0, 1, ...,m− 1.
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Function Hj now denotes the non-linear numeric flux in point
xj and depends on values uh and xj, that is

Hj(ρh(t)) = Hj(ρh̄(xj, t), ρ
+
h (xj, t)).

If j = 0, it is necessary to put ρ−h (x0, t) = φ(t), that is the
datum on board in the left end (supposing, of course, this is inflow
point).

We observe that there are various possibilities of choice for
the function H. However, we want that these choices generate,
by (3.5), monotonic schemas that are stable and converge to the
entropic solution. In detail, we want that (3.5) is a monotonic
schema when r = 0 (r is the degree of Legendre polynomial).

In this case
∫
Ij
F (ρh)

∂vh
∂x

= 0 because being null the degree r

of Legendre polynomial vh, this will be constant and its derivative
with respect to x is null.

Then, if ρ
(j)
h is the constant value of ρh on Ij, Equation (3.5)

becomes

hj
∂
∂t
ρ

(j)
h (t)+H(ρ

(j)
h (t), ρ

(j+1)
h (t))−H(ρ

(j−1)
h (t), ρ

(j)
h (t)) = 0 (3.6)

with initial datum ρ
0,(j)
h = h−1

j

∫ xj+1

xj
ρ0dx within the interval

Ij, j = 0, 1, .., .m− 1 by having indicated with hj = xj+1− xj the
size of Ij.

In order that schema (3.6) is monotonic the flux H must be
monotonic.

Some examples of monotonic flux are described below.

• Godunov flux

H(v, w) =

{
minv6ρ6w F (ρ) if v ≤ w
maxw6ρ6v F (ρ) if v > w

• Engquist-Osher flux

H(v, w) =
∫ v

0
max(F ′(ρ), 0)du+ min(F ′(ρ), 0)du+ F (0).

• Lax-Friedrichs flux
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H(v, w) = 1
2

[F (v) + F (w)− δ(w − v)],

δ = max
infx ρ0(x)≤ρ≤supx ρ0(x)

|F ′(ρ)|

Godunov flux generates the least amount of numeric dissipa-
tion.

4.2 Numerical methods for vehicular

traffic networks

Numeric method for the vehicular traffic network model described
in Chapter 3 is designed by a generalization of the class of finite
difference methods defined for non-linear problems.

This numeric scheme:

• reflects the conservative nature of the initial problem;

• is influenced by the direction of the flux function: in fact, the
problem we are analyzing has a preferential spatial direction
in time; we want that by numerically solving the problem,
the approximate solution is created according to significant
density values relating to earlier instants of time;

• has numeric properties such as consistency, solidity and con-
vergence; these properties ensure that the approximate solu-
tion, starting from any initial data, is limited and free from
oscillations.

Godunov numeric method is the most appropriate one for the
discretization of the law of conservation at the base of the model
referred to above.
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4.2.1 Godunov method

The Godunov method was introduced in 1959 for the resolution
of the Euler equation about dynamic gas in the presence of shock
waves [17]. It is based on the solution of local Riemann problems.
The idea is to solve the problem at each time interval in each cell
of the spatial grid by separately treating a sequence of Riemann
problems.

In general, (unique) solution of the Riemann problem

ρt + f(ρ)x = 0, x ∈ R, t ∈ [0, 1]

with initial datum

ρ(x, 0) = ρ0(x) =

{
ρl if x < 0
ρr if x > 0

is self-similar, that is

ρ(x, t) = WR(x
t
; ρl, ρr),

where WR depends only on function flux F and it is composed
of two constant states ρl and ρr, that are separated by different
waves departing from the source and whose speeds are limited by

max {|F (ξ)|, ξ between ρl and ρr}.

We search for an approximate solution of this problem.
We assign an initial datum ρ0(x) and approximate it by v∆

representing a constant function sometimes defined in R×(0,+∞).
First step
The initial datum is approximate by sequence v0 = (v0

m) as
follows:

v0
m = 1

∆x

∫ x
m+ 1

2
x
m− 1

2

ρ0(x)dx.

We define function v∆ as
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v∆
0 (x) = v0

m, x ∈ (xm− 1
2
, xm+ 1

2
), m ∈ Z.

Similarly, given an approximation vnm of ρ at time t = tn we
set

v∆(x, tn) = vnm, x ∈ (xm− 1
2
, xm+ 1

2
), m ∈ Z.

This schema defines vnm recursively starting from v0
m.

v∆(x, tn) is the solution of the problem{
∂tv + ∂xF (v) = 0
v(x, tn) = v∆(x, tn)

x ∈ R, t ∈ (tn, tn+1) .

Since v∆ is part of L∞(R) (space of limited functions almost
everywhere on R), the problem has a unique entropic solution that
can be determined explicity at least for ∆t small enough.

Notice that if

∆t sup
m,n

{
sup

u∈I(unm,unm+1)

|F (ρ)|

}
≤ 1

2
∆x

a wave starting from xm− 1
2

will not reach straight lines x =
xm−1 and x = xm before time tn+1.

Second step
We define

vn+1
m = 1

∆x

∫ x
m+ 1

2
x
m− 1

2

v∆(x, tn+1)dx (3.8)

that represents the projection of the correct solution on a con-
stant interval function.

In order to get a simple expression for vn+1
m , we use Gauss-

Green formula to integrate Equation (3.8) on cell (xm− 1
2
, xm+ 1

2
)×

(0,∆t).
This is possible because ρ is a constant interval function and

satisfy Rankine - Hugoniot condition at discontinuity. We have
that
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0 =
∫ tn+1

tn

∫ x
m+ 1

2
x
m− 1

2

(∂tv + ∂xF (v))dxdt =
∫ x

m+ 1
2

x
m− 1

2

[v(x, tn+1)−

v(x, tn)]dx+
∫ tn+1

tn
[F (v(xm− 1

2
, t))− F (v(xm+ 1

2
, t))]dt.

A precondition for solidity of a numeric schema is that tem-
poral and spatial discretization step are linked together by the
following relation:

∆t ≤ ∆x
|a|

that is called CFL condition (by Courant, Friedrichs and Lewy)
and associated number (adimensional because a is a velocity) is
called CFL number.

Under CFL condition

∆t sup
m,n

{
sup

u∈I(unm,unm+1)

|F (ρ)|

}
≤ ∆x, (3.9)

waves do not affect solution in x = xm+ 1
2
, for t ∈ (tn, tn+1).

Then, solutions are locally given by Riemann problems and flux
in x = xm+ 1

2
, for t ∈ (tn, tn+1) is given by

F (ρ(xm, t)) = F (WR(0; vnm−1, v
n
m)).

Since the flux is invariant according to time and continuous,
we can extract it from integral sign and obtain

vn+1
m = vnm − ∆t

∆x
(F (WR(0; vnm, v

n
m+1))− F (WR(0; vnm−1, v

n
m))).

We have that

gG(ρ, v) = F (WR(0; ρ, v))

so that numeric flux gG has expression

gG(ρ, v) =

{
minw∈[ρ,v] F (w) if ρ ≤ v
maxw∈(ρ,v) F (w) if v ≤ ρ
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For specific case of this dissertation Godunov numeric flux is
the following:

gG(ρ, v) =


min(F (ρ), F (v)) if ρ ≤ v
F (ρ) if v < ρ < σ
F (σ) if v < σ < ρ
F (v) if σ < v < ρ

where σ depends on max of flux function F .
This schema, under condition (3.9) can be write as follows:

vn+1
m = vnm − ∆t

∆x
(gG(vnm, v

n+1
m )− gG(vnm−1, v

n
m)).

Boundary conditions
We suppose to assign a condition type to boundary x = 0:

ρ(0, t) = ρb(t), t > 0

and want to study equation only for x > 0.
We consider the problem

ρt + f(ρ)x = 0 x ∈ I, t ∈ [0, T ]
ρ(x, 0) = ρ0(x) x ∈ I
ρx(0, t) = ρb(t) t ∈ [0, T ]

where I is an open interval within R, ρ0 ∈ C1(I), ρ1(t) ∈
C1(0, T ), F ∈ C1(R).

It is not easy to find a function that satisfies the problem in the
classical sense, because in general you can not assume boundary
data. For example, we consider scalar problem{

ρt − ρx = 0 R+ × (0, T )
ρ(x, 0) = ρ0(x) R+ × {0}

This problem has a unique global solution ρ(x, t) = ρ0(x + t)
within (0,+∞) ×(0,+∞), so condition

ρ(0, t) = ρb(t), t ≥ 0 (3.10)
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is not consistent. On the other hand, for problem{
ρt + ρx = 0 R+ × (0, T )
ρ(x, 0) = ρ0(x) R+ × {0}

is necessary that condition (3.10) is set up. From previous ex-
ample, it is obvious that the need to assign a boundary condition is
related to the function flux. For example, the boundary condition
is applied when F ′(ρb) > 0 [2].

Then, we have

ρ(0, t) = ρb(t)

only for t values such that F ′(ρ(0, t)) > 0.
In detail, we proceed by inserting a ghost cell and defining

vn+1
0 = vn0 − ∆t

∆x
(gG(vn0 , v

n
1 )− gG(ρn1 , v

n
0 )),

where

ρn1 (t) = 1
∆t

∫ tn+1

tn
ρb(t)dt

replaces vn−1.
A boundary datum outgoing can be considered in a similar

way. Suppose x < L = xN . Then, formal condition is given by

ρ(L, t) = ρ2(t)

so we have

vn+1
N = vnN − ∆t

∆x
(gG(vnN , ρ

n
2 )− gG(vnN−1, v

n
N)),

where

ρn2 (t) = 1
∆t

∫ tn+1

tn
ρ2(t)dt

replaces vnN+1 that is a value of ghost cell.
Conditions at intersections
For incoming arcs into a node, we set:
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vn+1
N = vnN − ∆t

∆x
(γi − gG(vnN−1, v

n
N))

while for outgoing arcs we have that:

vn+1
0 = vn0 − ∆t

∆x
(gG(vn0 , v

n
1 )− γj),

where γi and γj are maximized fluxes (computed by Riemann
Solver described in Chapter 3) and subindices i and j indicates
respectively incoming and outgoing arcs.



Chapter 5

Experimentation and
Numerical Results

Main goal of this section is to analyze a real case study representing
a road network by simulating traffic flows with different models
based on Riemann Solver described in Chapter 3, for realizing if it
is possible to contribute to the improvement of network viability
by suggesting some different planning activities. The models used
for experimentation are RS Base, RS 1 and RS 2.

5.1 Operating Specifications

In order to analyze the vehicular traffic behaviour on a road net-
work by simulating it through the three different models and achieve
the main objectives, it is important to configure topological char-
acteristics of the network and define proper initial conditions.

5.1.1 Configuration parameters

The road network is constituted of a node set corresponding to
intersections and a directed arc set representing the roads.
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Figure 5.1 Road Network Graph

In detail, there are three types of arc, as shown in Figure 5.1:

• Incoming arc: it represents the incoming road into an inter-
section.

• Outgoing arc: it represents the outgoing road from an inter-
section.

• Internal arc: it represents the road between two active in-
tersections.

In addition, each arc is characterized by the following proper-
ties:

• Node pair (or single node for incoming or outgoing arcs, in
which case one extreme is ideally infinity) identifying the
intersections in which the arc is incoming or from which it
is coming out.

• Direction (being directed arcs) identifying the way of the
vehicular flux.

• Length identifying largeness of the roads.
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5.1.2 Input data

Simulation requires the following input data:

• Intersection activation: what are the incoming roads into
the intersection and what are the outgoing roads from inter-
section.

• Initial density (of the vehicles) along all network arches
(roads).

• Boundary data: if the incoming (or outgoing) road i has
an extreme infinity, it is necessary to indicate a hypothetical
density along the road as boundary datum (ρi,b with b =∞).

• Maximum velocity vmax and maximum density ρmax

(of the vehicles) if a parable function flux is used on the arc,
given by:

f(ρ) = vmax · ρ · (1−
ρ

ρmax

)

or maximum flux γmax, maximum density ρmax and sigma
σ (of vehicles) if a pulldown function flux is used on the arc, given
by:

f(ρ) =

{ γmax

σ
· ρ if 0 ≤ ρ ≤ σ

(σ−ρmax)·(ρ−σ)
γmax

+ γmax if σ < ρ ≤ ρmax

• Distribution coefficients αi,j between 0 and 1 on incom-
ing and outgoing arches for each n ×m node with n ≤ m,
representing the percentage of flux that from the incoming
road i goes to the outgoing road j. For example, Figure 5.2
shows how the incoming flux into the node from the unique
incoming road is distributed to the 70% on the road 2 and
to 30% on the road 3.
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Figure 5.2 Distribution coefficients

• Priority qi for n ×m nodes with n ≥ m, representing the
percentage of flux incoming into the node (intersection) from
the arch (road) i (see Figure 5.3).

Figure 5.3 Priority

• Temporal parameters: total duration of the simulation
(T ), size of the spatial discretization step (∆x) and size of
the temporal discretization step (∆t).

• Riemann Solver Model: choice of the Riemann Solver
Model through which run the simulation. The possible choices
are Base Riemann Solver (RS Base), Alternative Rie-
mann Solver 1 (RS 1) and Alternative Riemann Solver
2 (RS 2).

Figure 5.4 shows an example for the correct configuration of
the input parameters within the software simulator.
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Figure 5.4 Example of Simulator Configuration

5.1.3 Output data

The output resulting from the simulation is the estimated traffic
density on each discretized road of the network at any instant of
time on the whole duration of the simulation.

5.2 Case Study

Figure 5.5 shows the real road network considered for the simu-
lation of traffic flow whose information are derived by an OSM
map1. It represents a specific area of Salerno city constituted of
roads and appropriate intersections.

1OpenStreetMap is a collaborative project to create a free editable map of
the world. https://www.openstreetmap.org
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Figure 5.5 OSM Map of Salerno city

Figure 5.6 Case study - Road network
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In detail, Figure 5.6 shows the topology of the graph represent-
ing the road network of Figure 5.5 which consists of seven nodes
(from A to G representing the intersections) and seventeen
directed arcs (from 1 to 17 representing the roads).

Table 5.1 lists information about the numbered roads of Figure
5.6. The specific information is:

• ID: increasing numerical character identifying a specific road
of the network.

• Name: name associated with the road.

• Length: road length measured in meters.

• Internal road: flag value identifying if a specific road is an
internal road or not.

ID Name
Lenght
(meters)

Internal
road

1 Via Paolo De Granita 240 No
2 Via Costantino l’Africano 140 No
3 Via Vincenzo Pellecchia 140 No
4 Via Nizza 200 No
5 Via Zenone 140 Yes
6 Via Costantino l’Africano 130 Yes
7 Via Vincenzo Pellecchia 90 Yes
8 Via Nizza 190 Yes
9 Via Paolo De Granita 170 Yes
10 Via Giovanni Francesco Memoli 70 Yes
11 Via Nizza 70 No
12 Via Luigi Cacciatore 350 No
13 Via Luigi Cacciatore 150 No
14 Via Giovanni Francesco Memoli 80 Yes
15 Via Dalmazia 400 No
16 Via Dalmazia 70 No
17 Via Francesco Farao 80 No

Table 5.1 Case study - List of roads
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Table 5.2 lists information about the intersections labeled with
alphabetic characters of Figure 5.6. The information is:

• ID: alphabetic character identifying a specific intersection.

• Typology: n×m structure identifying a specific intersection
where n represents the number of incoming roads and m
represents the number of outgoing roads.

• Incoming road ID: list of the IDs associated with the in-
coming roads into a specific intersection.

• Outgoing road ID: list of the IDs associated with the out-
going roads from a specific intersection.

ID Typology Incoming road ID Outgoing road ID
A 2× 1 2, 5 6
B 1× 2 7 3, 5
C 2× 1 4, 8 7
D 2× 1 6, 9 1
E 1× 3 10 8, 9, 11
F 3× 1 12, 13, 14 10
G 2× 2 15, 17 14, 16

Table 5.2 Case study - List of intersections

For the experimentation we choose a parable function flux on
all roads and, for this reason, we set the following parameters:
ρmax = 1, σ = 0.5, vmax = 0.5, γmax = 0.5. We also consider all
roads initially empty (i.e. ρ0 = 0.0).

The network is so configured:

• For each incoming road of the network (red lines in the
graph of Figure 5.6): ρi,b = 0.3, for i = 2, 4, 12, 13, 15, 17.

• For each outgoing road of the network (blue lines in the
graph of figure 5.6): ρj,b = 0.3, for j = 1, 3, 11, 16.
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• For each internal road of the network (black lines in the
graph of Figure 5.6) there is no boundary data.

• Distribution and priority coefficients for any single in-
tersection are:

Intersection A: 2 × 1 junction with distribution matrix A =
(1, 1) and priorities q2 = 0.7 and q5 = 0.3.

Intersection B: 1 × 2 junction with distribution matrix A =(
0.5
0.5

)
and no priority (i.e. q7 = 1).

Intersection C: 2 × 1 junction with distribution matrix A =
(1, 1) and priorities q4 = 0.7 and q8 = 0.3.

Intersection D: 2 × 1 junction with distribution matrix A =
(1, 1) and priorities q6 = 0.7 and q9 = 0.3.

Intersection E : 1 × 3 junction with distribution matrix A = 0.34
0.33
0.33

 and no priority (i.e. q10 = 1).

Intersection F: 3 × 1 junction with distribution matrix A =
(1, 1, 1) and priorities q12 = 0.5, q13 = 0.3 and q14 = 0.2.

Intersection G : 2 × 2 junction with distribution matrix A =(
0.5 0.5
0.5 0.5

)
and priorities q15 = 0.7 and q17 = 0.3.

For the experimentation, we consider the length of each road
as normalized, a simulation time interval [0,T ], with T=60 (which
represents a time horizon of observation) and a numerical grid
with ∆x=0.125, ∆t = CFL×∆x where CFL=1. The number of
discrete time instants is given by the ratio T

∆t
=480 and accordingly

the time variable t is referred to these instants.

5.3 Experimentation results

This section shows the numerical results obtained by simulating
traffic flows on the road network designed for the case study de-
scribed in previous section.
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So that the results of the experimentation can be useful for
understanding the type of intervention to be implemented along
the road network in order to improve driveability, it was necessary
to analyze different situations by considering the main character-
istics of each model based on Riemann Solver (i.e. RS Base, RS 1
and RS 2) used for the simulations.

Summarizing some outputs resulted from Chapter 3, RS Base
models behaviour of vehicular flow across intersections by no sim-
ulating traffic lights. Differently, both RS 1 and RS 2 simulate
behaviour of vehicular flow across intersections by simulating traf-
fic lights at each intersection, where the first models traffic lights
having a variable schedule of red-green times while the second one
models a light with a fixed schedule.

Experimentation activities carried out were:

1. Simulation on the road network of vehicular flow by running
in the order RS base, RS 1 and RS 2 and their graphical com-
parison on some different typologies of intersections. Goal of
this activity was to highlight what approach (i.e. presence
or absence of traffic lights) could have been improved any
congestion situations by observing car densities.

2. Where it was necessary to have traffic lights at intersections
to optimize road traffic, we analyzed a typology of intersec-
tion where there was high congestion for evaluating how to
locally optimize the driveability by modifying the traffic light
cycle time, also assessing the impact on the entire network.

About Activity 1, for each incoming and outgoing road of
the intersections of the road network, a comparison graph among
adopted models highlighting cars density is presented.

Let’s consider n×m intersection where n is the number of in-
coming roads into the intersection and m is the number of outgoing
roads from intersection.

We analyzed behaviour of the simulation according to the dif-
ferent models for the two most meaningful classes of n×m inter-
sections in the road network:
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1. intersection with n < m and n=1 ;

2. intersection with n > m and m=1.

About class 1, being a single entry road at the intersection, the
presence of traffic lights is to be considered null as it is necessary
for cars to travel that road. For this reason, RS base is the only
model that can correctly simulate situations of this type. We refer
figures from 5.7 to 5.9 showing the results of the simulation of RS
Base for the Intersection B (1× 2 intersection).

Figure 5.7 Intersection B - Incoming Road ID7

Figure 5.7 shows the simulated behaviour of RS Base for the
incoming road (ID7) of the intersection.

At t=0, having assumed that the road is empty density val-
ues are all 0.0, then slowly increase to a fairly high value (>0.8)
suggesting a bit of slowdown close to the intersection due to the
need of traveling along one of the two outgoing roads according to
distribution coefficients.

Figure 5.8 shows the simulated behaviour of RS Base for the
first outgoing road (ID3) of the intersection.

Notice that cars flow along the road according to the distribu-
tion coefficients for the intersection B. Flux is evenly distributed
with the second outgoing road (ID 5) of the intersection because
both roads have the same probability (i.e. same distribution coef-
ficient equal to 0.5) to be crossed by cars.
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Figure 5.8 Intersection B - Outgoing Road ID3

Density values increase slowly with the aim of reaching a regime
value that does not exceed outgoing boundary one (=0.3) since the
road has an infinite extremity. Toward the end of the overall dura-
tion of the simulation, RS Base predicts lower density values due
to the definition of the model according to which the road does
not have a significant importance (i.e. priority is 0).

Figure 5.9 shows the simulated behaviour of RS Base for the
second outgoing road (ID5) of the intersection.

Figure 5.9 Intersection B - Outgoing Road ID5

At first, the model predicts low density values (<0.2), that are
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constant for a certain period of time, resulting from distribution
of cars flux along the road according to the specific coefficients.

Subsequently, towards the end of the overall duration of the
simulation it is noticed as density values increase since the cars
are reaching a new intersection (Intersection C). A congestion sit-
uation occurs because the road has low relevance (priority is 0.3),
then cars coming from the others incoming roads (i.e. road with
ID2 where priority is equal to 0.7) will cross the Intersection C
first.

About class 2, we refer figures from 5.10 to 5.12 showing the
results of the simulation of RS Base, RS 1 and RS 2 for the Inter-
section A (2× 1 intersection).

Graph legend is explained as follows. Graph x-axes represents
time instants while graph y-axes represents estimated density of
vehicles on road crossing the intersection. Blue color line repre-
sents the estimated density of vehicles on the road according to
RS Base. Violet color line represents the estimated density of ve-
hicles on the road according to Alternative Riemann Solver 1 (RS
1), while mustard color line represents the estimated density of
vehicles on the road according to Alternative Riemann Solver 2
(RS 2).

Figure 5.10 Intersection A - Incoming Road ID2

Figure 5.10 shows the simulated behaviour of the three models
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for the first incoming road (ID2) of the intersection.
It is highlighted as modeling of absence of traffic lights provided

by RS Base does not seem an optimal solution because density
values are higher than those resulting from RS 1 and RS 2 that
model presence of the traffic lights.

About RS 1, at t=0 density values are all 0.0 because we con-
sidered empty road but, subsequently, they correctly lowly increase
until to reach incoming boundary datum value (=0.3) because the
road has an infinite extremity. Also, density values of RS 1 change
along the time because it models the behaviour of a traffic light
with a variable schedule of red-green times. Near the intersec-
tion (at the end of the overall duration of the simulation), density
values have a uniform distribution (>0.8, and a little congestion
state occurs) resulting also by considering importance of the road
(priority is 0.7).

Notice that RS 2 has a very high car density at the beginning
of simulation (with a consequent presence of congestion) due to
incoming cars’ densities (according to boundary datum value) and
fixed schedule of red-green times of the traffic light resulting from
the behaviour of the model. In the following time instants, density
values have a uniform distribution resulting from the switch from
red to green (and vice versa).

Figure 5.11 Intersection A - Incoming Road ID5

Figure 5.11 shows the simulated behaviour of the three models
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for the second incoming road (ID5) of the intersection.
Also in this case, modeling of absence of traffic lights provided

by RS Base does not seem an optimal solution because density
values are higher than those resulting from RS 1 and RS 2 that
model presence of the traffic lights.

Both for RS 1 and RS 2, at t=0 density values are all 0.0
because the road is considered empty but at following time in-
stances they increase reaching a steady state with higher values
(>0.9) and causing a congestion state. It is correct that these
values are higher than those of road ID2 because road ID5 is less
important than road ID2 (i.e. priority is more less, 0.3 for ID5
and 0.7 for ID2).

Figure 5.12 Intersection A - Outgoing Road ID6

Figure 5.12 shows the simulated behaviour of the three models
for the outgoing road (ID6) of the intersection.

For each model, density values spread out according to dis-
tribution coefficients of matrix A and increase slowly reaching a
steady state with lower values (>0.7) compared to those of road
ID9 (>0.9) due its major relevance (priority is 0.7, while for road
ID9 it is 0.3). In fact, road ID6 and road ID9 are incoming for the
Intersection D of the road network.

From the execution of Activity 1 and from the consequent re-
sults obtained, we deduced a double consideration:
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• RS Base can be used to correctly simulate traffic flow across
1×m intersections because the presence of traffic lights on
the unique incoming road is irrelevant.

• About n ×m intersections, RS 1 and RS 2 seem to be the
most appropriate solutions for modelling this typology of
intersection by providing traffic lights with variable or fixed
schedule of red-green times. The optimal solution would
be installation of traffic lights on intersections with sensors
measuring continuously cars’ densities in real-time and adapt
in a variable way the schedule of red-green times (and so RS
1 could be useful for simulating traffic flow by adjusting road
parameters). But, in the real situations of everyday life often
this is not possible due to different problems such as lack of
funds or difficulty in managing sensors equipment. For this
reason, the solution is limited to adoption of traffic lights
which have to be adequately temporized (and so RS 2 could
be useful for simulating traffic flow) in order to optimize
car traffic by reducing or, if possible, avoiding congestion
states. This last consideration was the input for the following
Activity 2 of experimentation.

About Activity 2, the goal of experimentation was to analyze
a specific intersection of the road network in order to evaluate how
it would be possible optimize car traffic at intersection by regulat-
ing behaviour of vehicular flux through the choice of appropriate
schedule of red-green cycles for traffic lights arranged at intersec-
tion. This evaluation was carried out by simulating vehicular flow
on the road network through RS 2 model and a 2× 1 intersection
was considered.

Let be A and B the two incoming roads and C the outgoing
one of the intersection. The traffic light, in a generic time instant,
is red for a road and green for the other. In particular, if drivers
for road A see the red phase, then drivers of road be can be cir-
culate. Hence, road A is characterized by a null priority while
road B has a priority equal to 1. On the contrary, if drivers for
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road A see the green phase, they can circulate. Suppose that the
optimization procedure establishes that, from the road A a given
percentage of traffic flux, q, should go the outgoing road. In this
case, an adequate temporization of traffic light cycles is necessary.
In particular, let ∆v, ∆r, and T = ∆v + ∆r be, respectively, the
green time, the red one and the complete traffic light cycle. In this
case, as q represents the percentage of drivers who, from road A,
must cross the intersection on average, then such parameter can
be interpreted as the ratio among the green cycle and the total
traffic light cycle. For this reason, the road B is characterized by
an averaged priority equal to 1− q, or the ratio among the red cy-
cle and the total cycle time. As a consequence, if q is the optimal
road priority, it is useful to design the traffic cycles such that ∆v

= qT and ∆r = (1-q)T.

Intersection A with incoming roads ID2 and ID5 and outgoing
road ID6 was analyzed. Figures 5.13 and 5.14 show the simu-
lated behaviour of RS 2 on the two incoming roads with initial
parameters configured for the road network of case study.

Figure 5.13 Intersection A - Incoming Road ID2 - RS 2 Simulation
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Figure 5.14 Intersection A - Incoming Road ID5 - RS 2 Simulation

As we can see, both figures highlight the correctness of RS 2
model. In fact, for example in the first time interval [0,20], we
notice as the traffic light simulated is green for road ID5 and red
for road ID2 with consequent increase of vehicular densities for
road ID2 and decrease for road ID5. Otherwise, for example in
the time interval [20,40] we notice as the traffic light is red for
road ID5 and green for ID2, so we can conclude that RS 2 model
behaves as we expect.

In addition, a congestion state occurs at the intersection. In
order to evaluate how to optimize car traffic across the intersection
for decreasing the congestion, we compared different choices for
red-green cycles of traffic light trying to analyze what solution
would be the most appropriate also observing the impact on the
other roads of the network.

We simulated vehicular traffic with RS 2 model by assigned
three new priority pairs on the incoming roads (ID2 and ID5) of
the intersection A, different from the pair firstly assigned in the
road network configuration (Priority for road ID2 is equal to 0.7
and priority for road ID5 is equal to 0.3, as shown in Figures 5.13
and 5.14). In this way, basing on previous considerations about
traffic light for 2 × 1 intersections, we obtained three different
red-green cycles for the traffic light.

In detail, we chose the following priorities qi, for i=2,5:
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1. q2 = 0.8 and q5 = 0.2;

2. q2 = 0.5 and q5 = 0.5;

3. q2 = 0.3 and q5 = 0.7;

Figures 5.15 and 5.16 show vehicular flow on the two incoming
roads of the intersection (ID2 and ID5) with the chosen priorities.

Graph legend is explained as follows. Graph x-axes represents
time instants while graph y-axes represents estimated density of
vehicles on road crossing the intersection. Blue color line repre-
sents the estimated density of vehicles on the road according to
roads’ priorities and this is equivalent to a longer green cycle of
the traffic light for road ID5 and shorter for road ID2. Orange
color line represents the estimated density of vehicles on the road
according to roads’ priorities and this is equivalent to an equal
green cycle of the traffic light both for roads ID2 and ID5, while
green color line represents the estimated density of vehicles on the
road according to roads’ priorities and this is equivalent to a longer
green cycle of the traffic light for road ID2 and shorter for ID5.

Figure 5.15 Intersection A - Incoming Road ID2 - RS 2 Simulation with
different priorities
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Figure 5.16 Intersection A - Incoming Road ID5 - RS 2 Simulation with
different priorities

From both figures it seems obvious as the best solution for
reducing congestion state at intersection is the one in which the
road ID2 has priority equal to 0.3 and the road ID5 has priority
equal to 0.7.

In order to confirm this assumption, it is important to observe
and analyze the behaviour of this choice (also compared to others)
on the outgoing road of the intersection (i.e. road ID6). Figure
5.17 shows vehicular flow for this road.

Figure 5.17 Intersection A - Outgoing Road ID6 - RS 2 Simulation with
different priorities

Also for outgoing road ID6, the solution considering the pri-
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ority for road ID2 equal to 0.3 and for road ID5 equal to 0.7 is
the most appropriate because it decrease congestion states at the
intersection (in fact car density values are low).

However, we also analyzed the effect of this solution on other
roads of the network. As example, Figure 5.18 shows vehicular
traffic on the road ID7 that is important because it is the incoming
road for intersection C whose one outgoing road is ID5.

Figure 5.18 Intersection C - Incoming Road ID7 - RS 2 Simulation with
q2=0.3 and q5=0.7

As shown in figure, cars density is always less than 0.5 so there
are no congestion states on intersection C or, at least, are de-
creased.

In conclusion, from this set of experimentation activities, we
highlighted how the models based on Riemann Solver can be useful
for designing an optimal solution to enhancement of driveability
on a road network with intersections.





Chapter 6

Conclusions

Analysts, traffic engineers and programmers work together for
years to provide a set of information, tools and applications aimed
at improving driveability along the entire road network.

This information must be translated into modifications that,
though necessary, must be sufficient to meet the costs of manage-
ment and maintenance of the various authorities responsible for
urban roads and not.

Simulation of traffic flows may be helpful in order to iden-
tify critical areas and predict traffic evolution due to maintenance
works before they are made. Specifically, traffic flux can be opti-
mized by intervening, in some cases, simply on street signs, priority
or stop at intersections and on installation of traffic lights, and/or
by imposing speed limits on critical areas, therefore avoiding struc-
tural and invasive changes to topology of the road network.

In purely application perspective, results obtained by simula-
tion of traffic flows may be useful as support for authorities re-
sponsible for urban road network in order to make an appropriate
urban planning to the needs of the country, so to avoid traffic
congestion at certain areas or time slots and, as a result, bring
down the rate of air pollution or noise and minimize risks due to
overcrowding of vehicles on roads.
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