
DISSERTAÇÃO

Mestrado em Engenharia Electrotécnica

3DVQM: 3D Video Quality Monitor

Bruno Tomé dos Santos Feitor

Leiria, novembro de 2013

MASTER DISSERTATION

Electrical Engineering

3DVQM: 3D Video Quality Monitor

Bruno Tomé dos Santos Feitor

Master dissertation performed under the guidance of Professor Pedro Amado António

Assunção of Escola Superior de Tecnologia e Gestão of Instituto Politécnico de Leiria.

Leiria, November 2013

Faith it does not makes things

easy, it makes them possible.

(Luke 1:37)

Acknowledgments

I would like to thank to everyone that helped during this research work, and that made

it possible to accomplish.

I would like to express my gratitude to my adviser Professor Pedro António Amado

Assunção, who launched me in 3DVQM project. I’m thankful for his guidance and avail-

ability that were essential for the proper conduct of this research work. I also would like

to thank to the research group of 3DVQM project, Professor Luis Cruz and Professor Rui

Marinheiro, for sharing their knowledge and helping this research work.

I would like to thank the opportunity of working as researcher in this project that

had an important role in my professional an personal progress, and to thank Instituto de

Telecomunicações and Escola Superior de Tecnologia e Gestão of IPL, for the laboratory

facilities, that gave me conditions to accomplish this work.

I would like to acknowledge my research colleagues of Instituto de Telecomunicações

- Leiria, João Carreira, Lúıs Pinto, Pedro Correia, Lúıs Lucas and David Ferreira for the

friendship and the wonderful work environment. I also want to express my gratitude for my

graduation and non-graduation friends, for the moments outside the working environment,

friendship and support, which were important along this research work.

The last but not least, a special thanks to my parents, Paulo and Maria, and brothers

Samuel, Pedro and sister Daniela to whom I owe all that I have become. Thank you for

being there, without you all my accomplishments would not be possible.

iii

Abstract

This dissertation presents a research study and software implementation of an objective

quality monitor for 3D video streams transmitted over networks with non-guaranteed

packet delivery due to errors, congestion, excessive delay, etc. A review of Video Quality

Assessment (VQA) models available in the literature is first presented, addressing 2D and

3D video quality models that were selected as relevant for this research work.

A packet-layer VQA model is proposed based on header information from three dif-

ferent packet-layer levels: Network Abstraction Layer (NAL), Packetised Elementary

Streams (PES) and MPEG2 - Transport Stream (TS). Transmission errors leading to un-

decodable TS packets are assumed to result in a whole frame loss. The proposed method

estimates the size of the lost frames, which is used as a model parameter to predict their

objective quality, measured as the Structural Similarity Index Metric (SSIM).

In order to materialise the proposed VQA model, a software application was developed

that allows monitoring a corrupted 3D video stream quality. To make the monitoring

process as user friendly as possible, a Guide User Interface (GUI) was developed. With

this feature the user can interact with the application by controlling the input parameters

and customizing the results on the output display.

The results show that SSIM of isolated missing stereoscopic frames in 3D coded video

can be predicted with Root Mean Square Error (RMSE) accuracy of about 0.1 and Pearson

correlation coefficient of 0.8, taking the SSIM of uncorrupted frames as reference. It is

concluded that the proposed model is capable of estimating the SSIM quite accurately

using only the estimated sizes of single lost frames.

Keywords: 3D video, video quality assessment, monitor’s software.

v

Resumo

Esta dissertação apresenta um trabalho de investigação e implementação do software de

um monitor de qualidade objectiva que estima a degradação da qualidade de imagens

perdidas em fluxos de v́ıdeo 3D transmitidos através de redes que não garantem a entrega

de pacotes devido a erros de transmissão, congestionamento, atrasos, etc. Com o objectivo

de resumir os vários modelos de avaliação da qualidade de v́ıdeo (VQA) presentes na

literatura, foi feita uma revisão do estado da arte de modelos VQA para conteúdos 2D e

3D que pudessem contribuir para este trabalho de investigação.

O modelo VQA packet-layer proposto utiliza apenas informação presente nos

cabeçalhos de pacotes de três diferentes camadas: Network Abstraction Layer (NAL),

Packetised Elementary Streams (PES) eMPEG2 - Transport Stream (TS). Erros de trans-

missão que originam pacotes TS danificados correspondem a perda total de imagens. O

método proposto estima o tamanho das imagens perdidas, sendo este tamanho usado

para determinar a qualidade objectiva da imagem medida em Structural Similarity Index

Metric (SSIM).

Com o objectivo de materializar o modelo proposto, desenvolveu-se uma aplicação

que permite monitorizar a qualidade de um fluxo de v́ıdeo 3D corrompido. Esta aplicação

possui uma Guide User Interface (GUI) que aproxima o utilizador do processo de monito-

rização. Esta funcionalidade facilita a interacção do utilizador com o software do monitor

permitindo controlar os parâmetros de entrada da aplicação, bem como customizar os

resultados apresentados na interface.

Os resultados concluem que o SSIM das imagens 3D perdidas pode ser estimado recor-

rendo ao Root Mean Square Error (RMSE) com uma precisão de 0.1 aproximadamente,

e recorrendo ao coeficiente de correlação de Pearson de 0.8, utilizando como referência o

SSIM das imagens recebidas correctamente. Conclui-se que o modelo proposto permite

estimar o SSIM com precisão, utilizando apenas o tamanho das imagens perdidas.

Palavras chave: Vı́deo 3D, avaliação da qualidade de v́ıdeo, monitor software.

vii

Contents

Acknowledgments iii

Abstract v

Resumo vii

Contents x

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Context and motivation . 1

1.2 Objectives . 3

1.3 Outline . 4

2 Video quality assessment models 5

2.1 2D video quality models . 8

2.2 3D video quality models . 12

2.3 Summary . 21

3 Proposed NR packet-layer model 23

3.1 Network scenario . 23

3.2 Quality model overview . 25

3.3 Proposed NR model . 26

3.4 Simulation results . 33

ix

3.5 Summary . 37

4 Software implementation 39

4.1 Software overview . 39

4.2 High-level design . 40

4.3 Processing software . 44

4.4 Guide user interface . 45

4.4.1 Input parameters . 46

4.4.2 Output display . 47

4.4.3 Other features . 49

4.5 Summary . 50

5 Conclusion and future work 51

5.1 Conclusions . 51

5.2 Future work . 52

Bibliography 55

A Published papers 61

B Software documentation 63

x

List of Figures

1.1 Objective video quality measurements. 2

1.2 NR packet-layer application scenario. 3

2.1 Scope of the four types of VQA models [21]. 7

2.2 RTP packet-header extension [23]. 9

2.3 IPTV video quality monitoring model [25] and [24]. 12

2.4 3D video transmission chain [30]. 13

2.5 3D video transmission chain [33]. 14

2.6 Block diagram of the proposed Reduced-Reference quality metric [39]. . . . 16

2.7 The perceived quality of the DIBR video is affected by every block in the

processing chain: (1) Video Capture, (2) Depth Estimation, (3) Coding, (4)

Transmission, (5) 3D Wrapping, (6) Hole Filling, and (7) Display scaling

and formatting [42]. 17

2.8 Depth image-based rendering (DIBR) [42]. 18

2.9 Architecture of no-reference PSNR estimation in decoder side, proposed

in [46]. 19

2.10 3D NR quality model flowchart proposed in [48]. 20

3.1 Network stack scenario. 24

3.2 MPEG2-Transport Stream packet header parameters. 24

3.3 Packetised Elementary Stream packet header parameters. 25

3.4 Network Abstraction Layer packet header parameters. 25

3.5 Packet layer model structure . 26

3.6 Experimental procedure. 27

3.7 3D video sequences used to estimate the proposed video quality model. . . 28

3.8 Delta SSIM vs frame size for Dataset-2. 30

3.9 Delta SSIM vs frame size for Dataset-3. 31

xi

3.10 Different views of captured 3D video sequence in Escola Superior de Tec-

nologia e Gestão de Leiria. 33

3.11 Estimated SSIM vs. real SSIM of lost B-Frames. 35

3.12 Estimated SSIM vs. real SSIM of lost P-Frames. 36

4.1 Software overview diagram. 40

4.2 OOP classes features. 40

4.3 Classes dependencies diagram. 41

4.4 Classes methods diagram. 42

4.5 Monitor’s flowchart. 44

4.6 Guide user interface. 46

4.7 Input parameters. 47

4.8 Output display results. 48

4.9 Other features. 49

xii

List of Tables

3.1 QP’s, PSNR and bitrate. 27

3.2 Curve fitting coefficients for P-frames. 32

3.3 Curve fitting coefficients for B-frames. 32

3.4 Simulation results using Dataset-3 polinomial coefficients. 34

xiii

List of Abbreviations

2D Two-Dimensional, p. 7

3D Three-Dimensional, p. 1

AF Adaptation Field, p. 24

BLF Burst Loss Frequency , p. 9

CU coding units, p. 20

DIBR depth image based rendering, p. 16

DVB Digital Video Broadcasting, p. 1

EC Error Concealment, p. 10

FR Full Reference, p. 1

GGoP Group of Group-of-Pictures, p. 14

GOP Group of Pictures, p. 10

GUI Guide User Interface, p. v, 39

HVS Human Visual System, p. 13

HVS humam visual system, p. 6

IFR Invalid Frame Rate, p. 10

IP Internet Protocol, p. 1

ITU International Telecommunications Union , p. 6

MSE Mean Square Error, p. 10

MSE Mean Squared Error, p. 5

MVC Multiview Video Coding, p. 13

xv

NR No-Reference, p. 2

OOP Objective-Oriented Programming, p. 40

PLF Packet Loss Frequency, p. 11

PLR Packet Loss Rate, p. 6, 9

PSNR Peak signal-to-noise ratio, p. 5

QoE Quality of Experience, p. 1

QoS Quality of Service, p. 5

RR Reduced Reference, p. 2

SSIM Structural Similarity, p. 5, 20

VQA Video Quality Assessment, p. v, 3–5, 7

VQEG Video Quality Experts Group, p. 6

VQM Video Quality Metric, p. 15

fps frames per second, p. 12

xvi

Chapter 1

Introduction

This chapter presents an introduction to the research study carried out in the scope of

this dissertation. The motivation and the objectives of the research are highlighted and

the structure of the thesis is presented.

1.1 Context and motivation

In recent years, three-dimensional (3D) video quality evaluation has become an increas-

ingly relevant research field, especially when transmission over error prone network is

used, such as the near future three-dimensional broadcast services over internet protocol

(IP) or digital video broadcasting (DVB) networks [1] and [2]. Considering the users

as the common end consumers of multimedia content, they are also the most reliable

evaluators of the real quality experienced from the services provided by telecommuni-

cations operators. Thus a reliable video quality assessment would surely be based on

subjective tests [3] compliant with standardized procedures, that are defined to achieve

steady and reliable video quality evaluation through participants [4]). On the one hand,

since the human viewers are the final receivers, this method to evaluate the video quality

can yield the perfect an desired measures. On the other hand, subjective tests are time

consuming due to preparation, requirements and costs. Therefore, collecting information

regarding the users quality of experience (QoE) is not a feasible option in most real-time

services and applications, particularly in a broadcast scenario. Thus, estimation of sub-

jective quality in coded video streams transmitted over error non-guaranteed channels,

using objective metrics (computational algorithms) and simple parameters captured from

the coded stream itself and the transmission network, should be developed for practical

systems.

Based upon the type of information available for coded video quality evaluation, objec-

tive quality methods can be classified into: Full-Reference (FR) , Reduced-Reference (RR)

2 Chapter 1. Introduction

Encoder DecoderNNeettwwoorrkkNetwork

Quality

Monitor

C

Video stream A B

FR NR

RR
NR

RR

Figure 1.1: Objective video quality measurements.

and No-Reference (NR) methods. FR methods such as those described in [5–7] determine

the impaired video quality by comparing the distorted signal with the original one, i.e.

the reference. The requirement to access the original video makes the FR methods im-

practical for video quality monitoring at remote locations from the video encoder, where

the reference signal is not readily available. RR methods compute objective quality scores

using some kind of reduced information concerning the reference, which is sent through

a side channel [8–10]. However, RR methods have similar problems as the FR meth-

ods, since video quality assessment needs additional information from the video encoder

source. The growing need to measure the quality of compressed video streams at any

point of communications channel without needing supplementary information has been

fostering increased research attempt on the development of NR quality methods [11–14].

Figure 1.1 depicts several measurement points that can be used to evaluate de objec-

tive video quality. Measurement A matches to the uncompressed video available at the

encoder’s input in the communication system. Measurement B corresponds to the de-

compressed video available at the output of the decoder. Measurement B corresponds to

the encrypted bitstream itself, transmitted along the network. The closer to the decoder

that measurement C is taken, the more accurately it can characterize the video that will

be displayed to the viewer, because in a error prone network, video information is lost

along the network due to packet errors. FR methods compare the distorted signal with

the original signal, thus it requires measurements at both A (uncompressed video) and

B (decompressed video) stages. RR methods uses some kind of reduced information con-

cerning the reference and thus need measurements at A and either B or C. The original

video signal is not required in NR methods, and thus they can predict objective video

quality using only measurements at either B or C stages.

This dissertation presents a research study and software implementation of an objective

quality monitor for 3D video stream transmitted over error prone networks, in the presence

of single frame losses without needing to decode the compressed stream. Figure 1.2 shows

1.2. Objectives 3

a potential application scenario for the proposed NR 3D video quality monitoring system.

Since it only requires information that can be obtained from the transmission network,

such as the packets losses and the stream itself, this system is able to operate at any point

of the communication path.

3D Video

Encoder

3D Video

Decoder

NR Quality Monitor

L

R

L

R

Network

Figure 1.2: NR packet-layer application scenario.

1.2 Objectives

In this context, this research deals with 3D video quality monitoring, with the following

objectives.

• Study the impact of the frame-loss in the perceived 3D video quality. To

determine the perceived video quality in real-time applications NR, VQA models

must be used. Considering that video content may be encrypted along the network,

decoding the compressed streams is not possible. Objective metrics must be studied

from packet layer parameters, which can correlate with the perceived degradation

an thus the video quality.

• Develop a NR Video Quality Assessment (VQA) model for stereoscopic

video content. After finding out the impact of frame-loss in the perceived video

quality, the next step is to understand how this correlates and which parameters

are important. With such parameters a model must developed to determine de NR

objective quality for stereoscopic video.

• Implement the proposed model in a monitor software application. An-

other objective of this dissertation is to develop a monitor application to implement

the quality model in a pratical scenario. This application must read the network in-

formation that will allow to determine the objective video quality, and must produce

real-time graphical information. For that purpose a user interface should be used to

make the interaction with the application an intuitive and user-friendly operation.

4 Chapter 1. Introduction

1.3 Outline

This thesis contains five chapters and two appendixes. The current chapter introduces

the research work by presenting its context, motivations and objectives. The following

chapters are organised as follows.

Chapter 2 reviews the state-of-the-art concepts related to Video Quality Assessment

(VQA) methods for both 2D and 3D video content. The literature review describes sev-

eral types of VQA methods depending on their requirements and input level information.

These methods are analysed to find out which one fulfills this work’s goals and speci-

fications. Then several quality models for 2D and 3D video content are presented, to

understand how they work and which contribution they might bring to this study.

Chapter 3 presents the proposed NR VQA model for 3D video content, as well as

its implementation scenario and results. It is explained how the mathematical model

was inferred from the simulation studies, as well as how it was validated for 3D video

sequences. The simulation results are discussed in the end of the Chapter.

Chapter 5 concludes this dissertation and presents some suggestions for future work.

Appendix A presents the published papers, which includes some results and conclu-

sions presented in this dissertation, and Appendix B presents the monitor’s software

documentation.

Chapter 2

Video quality assessment models

Due to the exponential growth of video stream based services over IP networks, it is im-

portante to measure the impact of packet-loss and transmission errors in the perceived

video quality. There are two primary methods to evaluate the quality of 3D video: sub-

jective quality assessment and objective quality assessment [15]. The subjective quality

assessment method is based in psychological analysis that uses structured experimen-

tal designs and human participants to evaluate the quality of the video presented [16].

Accomplishing subjective quality assessment test is a long and expensive process [17].

Besides the need for considering these environmental factors, such as viewing distance,

lighting condition, and the choice of these test sequences, more complex issues are also

needed to be considered. For example, the observers’ conditions [16]. Therefore the in-

terest in no-reference (NR) Video Quality Assessment (VQA) models is increasing, since

they measure the objective quality at any stage of the network without needing the ref-

erence signal. Due to the increasing amount of 3D video content in broadcast industries,

the need for monitoring the Quality of Service (QoS) provided to the clients is gaining a

strong momentum. In this context, the NR VQA models are useful to telecommunications

operating companies because they allow automatic, standing and real-time monitoring of

theirs costumer’s Quality of Service (QoS).

A review of objective quality metrics such as Mean Squared Error (MSE) , Peak

signal-to-noise ratio (PSNR) and Structural Similarity (SSIM), was made in [18]. It is

well known that the most used quality metrics are MSE and PSNR. PSNR is very often

used to evaluate the performance of video compression standards (eg. H.264/AVC). The

PSNR and MSE mathematical expressions are described next,

MSE =
1

N

n=1
∑

N

(Xn − Yn)
2 (2.1)

6 Chapter 2. Video quality assessment models

PSNR = 10 log10
L2

MSE
(2.2)

where Xn and Yn are the corresponding pixel values in the original and distorted frames,

respectively. N is the total pixel numbers in a frame. In PSNR equation, L stands

for the maximum possible pixel value of the frame. For example, it will be 255 for the

pixels represented by using 8 bits per sample. The two pixel-based methods are easy to

computer. Moreover these metrics do not consider the perception of human visual sense.

So these evaluating results have a big gap in comparison with the subjective evaluation

results. Similar, limitation will occur in 3D video and thus these methods are not that

accurate in 3D video.

A popular image/video quality assessment metric that uses structural information was

proposed in [19]. It extracts the structural information that is relevant for the quality

perceived by the human visual system (HVS) .

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2
x + u2

y + c1)(σ2
x + σ2

y + c2)
(2.3)

where, signal x and y are the original and the distorted frame information, respectively.

ux, uy refer to the mean of the x and y, respectively. σx, σy and σxy denote the variance

of x, the variance of y and the covariance between x and y. c1, c2 are constants (c) to

avoid values of µ2
x+µ2

x and σ2
x+σ2

x very close to zero, respectively. SSIM has a significant

advantage in the motionless frames or changed slightly frames since it considers not only

the physical difference of the pixels but also the structure distortions. However in high

motion sequences it is not very accurate.

The NR VQA for both 2D and 3D video in real time applications requires objective

metrics. The objective video quality metrics are mainly validated by the Video Quality

Experts Group (VQEG) which results in International Telecommunications Union (ITU)

recommendations and standards for objective quality models. In accordance with ITU

standards objective VQA metrics can be classified according to the type of input pa-

rameters as packet-layer models, bitstream-level model, media layer model, and hybrid

model [20], as depicted in Figure 2.1.

As input information in packet layer models, several different types of parameters

can be used, such as, packet headers (e.g., RTP header, TS header), network parameters

(e.g., packet loss rate (PLR) , delay, jitter), and also codec configuration information.

On the one hand, the video signal is not available at this level, and this type of model

cannot precisely locate the impaired parts. On the other hand, this type of model is

suitable for real-time applications considering the low computation complexity required

to extract high level information from the video stream. As depicted in Figure 2.1,

7

Figure 2.1: Scope of the four types of VQA models [21].

the bitstream-level model also uses information from the compressed video bitstream in

addition to that of the packet headers. Hence, this type of model has access to the

encoding parameters, from which it is easier to determine the location of the impaired

parts of the video signal. Bitstream-level models have higher computational complexity

than the packet-layer model, but it is also more accurate. However, when the video

bitstream is encrypted in general it is not possible to use these type of models, because

the stream cannot be decoded in the middle of the network. In the case of media-layer

models, they operate at pixel level and so, content-dependent features that influence

video quality can be detected and evaluated (e.g., texture masking effects and motion

masking effects). However, if packet loss information is not used, that it is more difficult

to detect the distorted parts in the distorted video. As the name suggests an hybrid model

combines several features of the previous type of models. It employs the decoded signal

itself in addition to the bitstream and packet-header information to improve video quality

prediction. Considering the amount of information used in this model it can provide the

most accurate quality prediction performance. However, as expected, it is also much more

complex in terms of computational requirements.

Since the goal of this work is to monitoring the 3D video quality at network nodes

of the transmission networks, the NR packet-layer model is the VQA model that better

fulfills all the needs in the scenario under study. To understand how this type of models

work, a literature review was made in order to support the research. Although several

quality models were developed for two-dimensional (2D) video streams [21, 22], the case

of 3D video streams is not yet fully investigated.

This chapter contains a state-of-the-art concepts review related to Video Quality As-

sessment (VQA) methods for both 2D and 3D video content. These methods are analysed

8 Chapter 2. Video quality assessment models

to find out which one better suits this work’s goals and specifications. Several quality mod-

els are presented for 2D and 3D video content in Sections 2.1 and 2.2. To understand

how they work and which contribution they might provide to this study is the main goal

of the chapter.

2.1 2D video quality models

Regarding the impact of packet-loss and transmission errors in the video content, the QoE

reduction in function of the impaired section of the frame, and how it propagates due to

the temporal prediction was under study in [23]. RTP (X) packet-header specification was

used, since it allows the usage of a packet-header extension. Thus, an additional structure

and corresponding elements was defined by the authors, as depicted in Figure 2.2. The

first 32-bit word contains a profile-specific identifier (16 bits) and a length specifier (16

bits) that indicates the length of the extension in 32-bit units, excluding the 32 bits of

the extension header.

The method proposed in [23] consists in measuring the impaired section resulting the

packet-loss events. Therefore, a frame with an impaired level of 50%, means that half of

the frame was damaged by the packet-loss. In the first place it is determined the level

of the frame degradation and then the error propagation is measure (e.g., impairment

propagation to the upcoming frames).

To determine the degradation level the H.264/AVC slice header information was taken

into account, such as slice type and reference frames buffer indexes. The degradation

level is measured in a scale from 0 to 100, where 0 means that the frame was successfully

delivered, and 100 when it is completely loss. This model determines the impaired frame

level as follows:

E0 = 100
1

N

N−1
∑

S=0

1− f

(

L(S)

Lavg

)

, (2.4)

where:

S : identifies each slice in one frame.

N : number of slices in one frame.

L(S) : is the non-lost slice size, in bytes.

Lavg: estimated slice size if there were no losses.

Although the decoding process of H.264/AVC includes both temporal and spatial

prediction, in this case only temporal prediction is taken in to account since this the

one responsible for error propagation between adjacent frames. So, when the objective

2.1. 2D video quality models 9

Figure 2.2: RTP packet-header extension [23].

is to determine the frame degradation, several issues mus be considered. For instance,

not only the percentage of the impaired frame itself (E0), but also the propagation of

that impairment to the adjacent frames which rely upon this one (Ep). Given a frame x,

depending on a set of references yk, propagated error will be:

Ep = γ
∑

k

ωkE(yk), (2.5)

where:

E(yk): is the error level in the frame yk.

γ < 1: constant that is dependent with the error attenuation along the reference frames.

ωk: is a set of weight values associated with each of the reference images. It is used a

model where higher-level errors have a higher weight, as they propagate in a more

perceptible way. The model is:

wk =
E(yk)

∑

k E(yk)
, (2.6)

In the best case scenario, i.e., when there is no propagation of the E0 error, Ep and

E0 will overlap and the final error will be maximum of them. In the worst case scenario,

when there is propagation of the E0 error, the Ep and E0 are independent and final error

will be sum of them.

This model presents high correlation with the actual distortion when the error occurs

in the frame with the impaired area. If the error event occurs in the beginning of the

coded frame, then the impaired area in that frame will be bigger when intra prediction is

used. This model can be important for this work, since it allows to determine the impact

of packet-loss events in the perceived video quality. And as it can be seen in the model

equations, almost all parameters employed in this model can be adapted and used in 3D

video streaming scenarios.

Video system planning and in-service video quality monitoring were the scenarios

set side by side in [21], where it is concluded that the Packet Loss Rate (PLR), Burst

10 Chapter 2. Video quality assessment models

Loss Frequency (BLF) and Invalid Frame Rate (IFR) used in video system planning are

very effective, while for video monitoring systems they are not so effective. A 2D video

quality monitoring is also proposed in [21], which uses the spatio-temporal complexity

to extrapolate the video quality. This model connects the video content features with

the effectiveness of Error Concealment (EC) techniques, and also with the propagation

error effects. The visible artifacts duration and annoyance level caused in the costumer are

highly correlated with the perceived video quality. It can be seen high dependency between

the annoyance level and the error concealment, since error concealment reduces the impact

of lost information in the impaired video stream with the goal of minimising the perceived

video quality degradation. The inter-frame prediction used in video coding brings out

several temporal dependencies levels, between frames. During packet-loss events, this

dependency is reproduced in a propagation error which is responsible for visible artifacts

during loss periods. In general, a packet-loss event affecting an I-frame leads to an artifact

with a life-time of a Group of Pictures (GOP). If an open GOP structure is used, then the

length distortion period can be higher. Typically, a P-frame artifact life-time is smaller

than a I-frame. However, when there is a lot of motion in the adjacent packets of the

P-frame ones, then losing one of those can have significant impact. For B-frames, error

propagation does not happen. Both error concealment and error propagation are directly

related with the spatio-temporal complexity, of the adjacent lost packet and this is the

point exploited by this model.

The RTP packet-header sequence number field is used to detect packet-loss events

in a video sequence. To identify the different frame types, the timestamp field is used.

Historic frame size statistical evaluation is used to estimate the lost frame size. Experi-

mental results show that video monitoring method with input parameters packet-header

information and coding configurations, is able to determine video quality with the accu-

racy expected in real scenario. The work described in [21] contains useful information

for 3D video quality monitor deployment, since error concealment techniques and spatio-

temporal dependencies are also used in the 3D streaming. Besides the spatio-temporal

complexity, 3D video coding also takes advantage of the redundancy between views (i.e.,

inter-view prediction in H.264/AVC). Despite the unclear model implementation and re-

sults not very well detailed, the framework and approach used are interesting in the scope

of this dissertation.

One of the methods described in [22] is called No Parse and only uses network level

information, and thus without access to the specific information of the video sequence,

such as spatio-temporal activities and video signal error location. This method estimates

Mean Square Error (MSE) using PLR information. There are several issues associated

with this method, which is a very simple model when compared with the Quick Parse

and Full Parse methods, also presented by the same author. Firstly, No Parse only uses

2.1. 2D video quality models 11

linear approximation in multiple sequences, which is not so much accurate even when the

sequences are coded with the same configuration parameters, thus the video signal has an

high and unpredictable complexity. Secondly, linear approximation is not accurate when

there is multiple adjacente frame loss. Thirdly, even in the single-loss scenario with low

PLR, the same video sequence can have high MSE variance. Considering these topics,

measuring video quality using only packet-loss rate information cannot represent the

perceived sequence video quality with reliability. However, there are scenarios where the

bitrate and PLR are the only available information (e.g., encrypted bitstreams). In this

case, methods such as No Parse are very useful for video quality monitoring. This could

be the starting point for a 3D video quality monitor when no access to the compressed

bitstream is provided, and it could be optimized according to the amount of available

information.

A packet based parametric model which allows monitoring the video quality of IPTV

is presented in [24] and [25]. The packet header information is the input parameters,

as depicted in Figure 2.3. One cannot find the relationship between the packet content

and video quality, because decoded video stream is not available at network level. The

conducted experimental performance measures concludes that subjective video quality

degradation increases with the amount of packet-loss. Thus, the video quality (Vq) ex-

ponentially decreases with the increasing of Packet Loss Frequency (PLF) , i.e., number

of lost packets within 10 seconds interval. The experimental tests led to a mathematical

model that determines the video quality as described by the following expression:

Vq = 1 + Icexp

(

−
PLF

v4

)

, (2.7)

where 1+Ic is the video quality when the PLF is zero and v4 stands for video degradation

level due to packet-loss. Degradation level due to packet-loss is constant for a given bitrate,

thus v4 represents degradation level due to packet-loss for the highest experimentally

coded bitrate. This model was validated with correlation results above 0.9, between the

subjective tests and the estimated video quality. This model can be useful for this work,

since it allows to measure 2D video quality in a packet-loss scenario. Furthermore, it will

be explained how 3D video quality monitoring is related with 2D video quality.

Several video artifacts like blocking or pixelization, ghosting and frame freeze are

linked to video sequence QoE, during packet-loss events, in [26]. Frame size differs with

the amount of motion and frame content complexity, and thus it is concluded that the

motion complexity variation influence the number of impaired frames. The lesser the

motion information, the bigger the amount of impaired frames, hence the visible artifact

will be higher. Impairment duration is also affected by the GOP size, i.e., the bigger the

GOP size, the bigger the error propagation. Given the following GOP structure x : y, at z

12 Chapter 2. Video quality assessment models

Figure 2.3: IPTV video quality monitoring model [25] and [24].

frames per second (fps) , in the worst scenario (x+ y) (x+y)
z

seconds will be the maximum

error length. Even with previous errors, the video quality is restored when an I-frame

is properly received. Since this work links the frame size with the amount of motion,

and hence with video quality, the inherent conclusions are relevant for the development

of a NR video quality monitor. Also important is the amount of motion estimation using

frame size fields, which is available at packet headers level.

The characterization of the distortion introduced by the transmission channel is an-

other way to assess video quality. There are several models in the literature that charac-

terize the distortion introduced by the channel, for 2D video. For example, considering

low complexity models, the distortion inserted in the transmission process can be analyzed

as intra coding type and spatial-filtering, as described in [27]. A GOP based distortion

model, that analyzes the frame error propagation behaviour is proposed in [28]. The

proposed model in [29] uses intra and inter-frame prediction and deblocking-filtering to

determine MSE channel distortion information.

2.2 3D video quality models

Despite the amount of literature addressing transmission channel distortion models for

2D video, there is still a lot of open issues and work to be done for 3D video .

Error concealment techniques and spatio-temporal complexity (e.g., intra-frame and

inter-frame prediction) present in 2D video coding algorithms are also occurring in 3D

scenario. Since these are key topics in video quality evaluation, one can conclude that 3D

video quality models can be seen as an extension of existing models for 2D video. This

will be the line of thought of this work, where the proposed 3D video quality monitor will

rely upon the models referred in the last section.

However, in 3D world it is necessary take into account other aspects besides the ones

2.2. 3D video quality models 13

present in 2D video, such as inter-view prediction and 3D binocular artifacts (e.g., occlu-

sions, perspective distortions, depth distortions and the detection of binocular rivalry).

Figure 2.4 shows the block diagram of a typical transmission chain. Several blocks are

common to a 2D and 3D transmission chain but, in most cases, additional processing

steps are required for 3D, and the delivery of 3D signals causes new types of artifacts.

Thus, when compared with 2D video, 3D video quality assessment becomes much more

complex as depicted in Figure 2.4 and described next [30]:

• there are additional steps in the transmission chain that need to be addressed;

• the observer’s opinion may be considered as multidimensional, including factors like

visual fatigue and depth perception;

• more aspects of the Human Visual System (HVS) need to be addressed, e.g. binoc-

ular rivalry, binocular suppression.

These features need to be taken into account when monitoring objective 3D video

quality. For this purpose, a rate distortion optimization process for error resilience of

video coded with inter-view prediction was developed in [31]. A model that estimates the

distortion caused by H.264/Multiview Video Coding (MVC) video packet loss distortion

is presented in [32]. In 2D video the error propagation happens only in one dimension

(temporal intra-view), however for multiview video the error propagates through the

base-view reference frames but also through the auxiliar view frames, and thus it is a

two-dimension propagation (i.e., temporal and inter-view prediction).

The possibility of predicting 3D video quality using 2D quality metrics in packet loss

conditions for both left-and-right and colour-and-depth stereoscopic videos, is addressed

in [33]. The relationship between subjective quality measures and several objective quality

measures like PSNR, SSIM, and VQM for 3D video content are also investigated. Research

is being carried out covering the whole chain of 3D video from 3D capture to 3D display

technologies, as depicted in Figure 2.5. However, the effect of these technologies on the

perceptual aspects of 3D viewing has not been thoroughly investigated to date. Even

Figure 2.4: 3D video transmission chain [30].

14 Chapter 2. Video quality assessment models

though there are 2D objective quality models which are highly correlated with Human

Visual System (HVS), very little work has been carried out to find objective measurement

techniques for 3D video quality. Results show that the average VQM score of the left

and right video demonstrate similar trends compared to perceptual 3D quality scores.

Furthermore, it has been noted that the raw MOS scores from VQM are consistently worse

than viewer ratings. This suggests that the addition of the depth perception increases

the viewer satisfaction significantly, masking the effects of compression and transmission

impairments in the 3D video.

Figure 2.5: 3D video transmission chain [33].

The model proposed in [32] has the ability to deal with the two dimensions of the

propagation errors. This is a recursive model, which iteratively determines the current

frame distortion, using both views and previous frames. The theoretical model results

were compared with the experimental ones, in both subjective and objective evaluation.

The results show that the model determines the transmission channel distortions with high

accuracy, for both frame and Group-of-Pictures (GGoP) level. Video quality assessment

is directly connected to channel transmission distortion, thus to evaluate the objective

quality of a video stream it is necessary to characterize the channel regarding the distortion

inserted in the stream. Therefore, the model presented in [32] is important to systems that

need to evaluate 3D video quality, since it characterizes the distortion in a H.264/MVC

video transmission channel.

A NR quality assessment algorithm for 3D video and images is described in [34]. For

images, the algorithm extracts statistical disparity features, as well as spatial activity

indicators. In video scenario, the algorithm determines the QoE using the image spatial

activity indicators together with the set of motion compensation disparity differences.

Using a set of QoE 3D data available in [35] and [36], firstly it was shown that the

proposed algorithm correlates well with the user’s perception of quality. Secondly it was

observed that the comfort related to the stereoscopic view, decreases with the distance

to the reference point. And thirdly it is observed that this phenomenon pronounces more

high disparity indoor scenes.

2.2. 3D video quality models 15

Stereo video quality evaluation using 2D objective quality models is the goal of the

work presented in [37]. A good correlation between colour plus depth subjective and

objective video quality correlation was found by the authors. The subjective tests were

made to determine the image quality and the depth perception for a set of asymmetric

coded video sequences. The results show that the video quality determined objective

metrics such as Video Quality Metric (VQM) is highly correlated with the users perceived

depth and image quality.

In multi-view coding, the bit rate for the right eye view is lower than that for the left

eye view because the right view is encoded using inter-view technology. In addition, the

right view can be encoded at a much lower bit rate on the basis of binocular suppression.

Thus, the video quality for the left view can be different from that for the right view. The

work in [38] explores how such a video quality difference between the left and right views

affects the overall 3D video quality. To derive perceived quality characteristics, subjective

quality tests were conducted. It was concluded that the difference in quality between

the left and right views has little influence on the overall 3D video quality and that the

overall 3D video quality can be modeled using the 2D video quality for left and right

views. They also show that the subjective video quality can be modeled by a multiple

regression function, where the independent values are the image quality for the left and

right views.

A Reduced-Reference quality metric for 3D depth maps transmission based on edge

information is presented in [39]. The quality metric process using edge information as side-

information is shown in Figure 2.6. Initially, side-information (i.e., edge information) is

generated from the original depth map and then transmitted over the Reduced-Reference

channel to the receiver. Ideally, this RR channel should be lossless. In the case of in-

band transmission of side information, a high protection through unequal error protection

can be provided. At the receiver- side the edge information is also obtained from the

processed/received depth map. Then these two binary edge masks are compared to obtain

an index for the structural degradation of the depth map. In addition to this structural

comparison, contrast and luminance comparisons are performed based on the statistics

received from the sender-side. The final quality rating will reflect luminance, contrast

and structural degradations of the corrupted depth map with respect to its original depth

map sequence. An Edge-based SSIM metric is proposed in [40]. This metric presented

in eq. 2.8 is used to integrate luminance, contrast and structural information into the

metric.

EB − SSIM = [l(x, y)]α.[c(x, y)]β.[se(x, y)]
σ (2.8)

where Se(x, y) stands for structural comparison performed using the edge information

16 Chapter 2. Video quality assessment models

generated from the original and processed depth maps. Results of the proposed method

show a good approximation of the Full-Reference quality metric for all the considered

sequence types, PLRs and compression levels. This suggests that due to the practical

problems associated with Full-Reference methods (i.e., need for bandwidth), a Reduced-

Reference quality metric as described in this paper is an acceptable compromise for the

3D video research and development community. However, RR metrics need a side-channel

information which in real-time applications might be impossible, and thus the only way

to assess the stream video quality is to use NR quality metrics.

Figure 2.6: Block diagram of the proposed Reduced-Reference quality metric [39].

Factors that affect human perception of depth and visual comfort from stereoscopic

video were studied in [41]. Subjective quality assessment tests were conducted to extract

four factors: temporal variance, disparity variation in intra-frames, disparity variations in

inter-frames and disparity distribution of frame boundary areas. A no-reference stereo-

scopic video quality perception model (SV-QPM) was designed based on these four factors.

The SV-QPM does not require the depth map, but utilize the disparity information by

simple estimation, and the model parameters are estimated based on linear regression.

The experimental results show that model proposed in [41] exhibits high consistency with

subjective quality assessment results in terms of a Pearson correlation coefficient value of

0.808, and the prediction performance exhibits good consistency with zero outlier ratio

value.

A no-reference objective quality measure for stereoscopic 3D videos generated by depth

image based rendering (DIBR) was presented in [42]. As a first step, an ideal depth

estimate was derived for each pixel value, which was used to calculate three distortion

measures: temporal outliers (TO), temporal inconsistencies (TI), and spatial outliers

(SO). The proposed no-reference measure is composed by the combination of the three

measures. DIBR has many advantages over two-views approach including high bandwidth

efficiency, user interactivity, computational and cost efficiency, and 2D to 3D selectivity

2.2. 3D video quality models 17

[43]. DIBR also eliminates photometric asymmetries in between the two views, hence

both of them are generated from the same original image. Figure 2.7 depicts the factors

that affect the the perceived quality of DIBR-based stereoscopic 3D videos:

Figure 2.7: The perceived quality of the DIBR video is affected by every block in the
processing chain: (1) Video Capture, (2) Depth Estimation, (3) Coding, (4) Transmission,
(5) 3D Wrapping, (6) Hole Filling, and (7) Display scaling and formatting [42].

• accuracy of the estimated depth maps;

• quality of the 3D wrapping process in DIBR;

• quality of the hole-filling algorithm applied to cover the disoccluded areas in the

generated frames;

• compression artifacts for the 2D video and depth map;

• transmission errors and streaming losses;

• scaling and formatting algorithms in the 3D displays;

While 2D video quality is solely based on monocular color cues in one view, 3D video

quality on the other hand is a combination of binocular and monocular cues. In DIBR,

virtual views are generated by first projecting the pixels in the reference image to the

world coordinates using depth map and camera information. The resulting pixels in the

world coordinates are then sampled in the 2D plane from a different view-point to obtain

a DIBR estimated image. In Figure 2.8 one can see the reference camera Cr and virtual

camera Cv. Where Fr and Fv are the focal lengths of both cameras.Zc is the convergence

distance of two cameras. In [42] three measures were combined (e.g., temporal outliers

18 Chapter 2. Video quality assessment models

(TO), temporal inconsistencies (TI), and spatial outliers (SO)) into one no-reference 3D

vision-based quality measure for stereoscopic DIBR-based videos as follows:

NR− 3V QM = K(1− SO(SO ∩ TO))a(1− TI)b(1− TO)c (2.9)

where SO, TO, and TI are normalized to the range 0 to 1 and a, b, and c are constants

which were determined by running a few training sequences. (SO ∩ TO) is the logical

intersection of SO and TO included in the equation to avoid accounting the outlier dis-

tortion more than once. K is a constant for scaling where NR-3VQM ranges from, 0 for

lowest quality, to K, for highest quality. The overall quality measure is calculated as the

mean of the values in the matrix NR-3VQM.

Figure 2.8: Depth image-based rendering (DIBR) [42].

The performance of the NR measure proposed in [42] was verified using subjective

DMOS scores and compared to the full reference version of the proposed algorithm. The

results have shown that the predictions of the no-reference measure highly correlates with

subjective scores and is fairly close in performance to the full reference 3VQM.

A no-reference objective color video quality assessment metric was presented in [44].

It was defined a flow tensor between successive frames that is weighted by the perceptual

mask and used to define a NR color video quality metric. The inter-frame coherence and

the sharpness of edges in the successive frames was studied. Experiments performed on

video sequences indicate that the objective scores obtained by the proposed metric agree

2.2. 3D video quality models 19

well with the subjective assessment scores.

The relationship between the perceptual quality of stereoscopic images and visual

information was explored in [45], where the authors also proposed a no-reference quality

metric for stereoscopic images based on a model for binocular perception. This metric is a

top-down method, modeling the binocular quality perception of the human visual system

in the context of blurriness and blockiness. Perceptual blurriness and blockiness scores of

left and right images were computed using local blurriness, blockiness, and visual saliency

information and then combined into an overall quality index using the binocular quality

perception model. Experiments for image and video databases show that the proposed

metric provides consistent correlations with subjective quality scores. The results also

show that the proposed metric provides higher performance than existing FR methods

even though the proposed method is based on an NR approach.

Objective no-reference metrics for automatic color- and sharpness-mismatch detection

in video captured using stereo cameras were introduced in [46]. View matching and re-

construction are the features in the algorithms base. It was proposed a fast block-based

color-independent algorithm for stereo matching. The presented quality-assessment pro-

cedure reveals scenes distorted during film production or postproduction and enables film

comparison in terms of stereoscopic quality. For NR video quality assessment applications,

the PSNR values can precisely be predicted only if the parameters of distortion models

are estimated. The architecture of no-reference PSNR estimation is shown in Figure 2.9.

The PSNR for n-th frame fn can be predicted by the model without any references in

the decoder side. In order to predict the model parameters of the Laplacian mixture

distribution for all zero quantized coefficients case, an exponential regression scheme was

employed over quadtree depth levels of CUs. The proposed no-reference PSNR estimation

method yields fairly accurate results from 0.970 to 0.983 in correlation and from 0.530 to

0.890 in RMSE between the actual and the estimated PSNR values for HEVC test model

Figure 2.9: Architecture of no-reference PSNR estimation in decoder side, proposed in
[46].

20 Chapter 2. Video quality assessment models

(HM) encoded bitstreams, outperforming single probability density function (PDF) based

models.

A no-reference PSNR estimation method was presented in [47]. The presented no-

reference PSNR estimation method is based on a Laplacian mixture distribution, which

takes into account the distribution characteristics of residual transform coefficients in

different quadtree depths and coding types of coding units (CUs). The authors in [48]

present an 3D NR algorithm that predicts the quality of stereo images whether the dis-

tortion is symmetric or not (rivalrous). The algorithm extracts both 2D and 3D natural

statistical features from a stereopair to evaluate its quality. A distorted stereopair is first

classified into symmetrically os asymmetrically distorted using these features. In Figure

2.10 is shown a flowchart of the proposed model in [48]. Given a stereo image pair, an

estimated disparity map is generated by a Structural similarity (SSIM) based stereo algo-

rithm, while a set of multi-scale Gabor filter responses are generated on the stereo images

using a filter bank. A Cyclopean Image is then synthesized from the stereo image pair, the

estimated disparity map, and the Gabor filter responses. A cyclopean image is defined as

Figure 2.10: 3D NR quality model flowchart proposed in [48].

the average of the left image and the disparity-compensated right image [49]. Of course,

the Cyclopean image is not an average of the left and right views but instead, is a 3D per-

cept consisting of luminance and color patterns superimposed on a 3D images [50], [51].

Synthesized Cyclopean Image was used to extract 2D features, while 3D features are in-

dependently extracted from the estimated disparity map and an uncertainty map that is

also produced by the stereo matching algorithm. Finally, the perceived 3D quality of each

tested stereo imagepair is predicted once the quality estimation module is fed with the

2.3. Summary 21

2D and 3D features. This is a quality model for 2D and 3D images, however video quality

features can be derived from the same algorithm, since the 3D video has also 2D video

characteristics. This is an interesting model since it is a SSIM-based algorithm which is

an accurate metric to determine the objective quality.

2.3 Summary

This chapter presented a review of the different types of VQA models considering the

type of input information. Video quality models and how they are relevant for 3D video

monitoring were discussed in section 2.1. In section 2.2 several 3D VQA models presented

in the literature were reviewed. One can conclude that spatio-temporal complexity pre-

sented in 2D video coding algorithm also have significant impact on the case of 3D video.

Based on the models discussed in this chapter a 3D video quality model is proposed in

chapter 3 where an overview of the model is presented, followed by the implementation

and discussion of results.

Chapter 3

Proposed NR packet-layer model

This Chapter presents a 3D video quality model that quantifies the objective video quality

in the presence of frame losses without decoding the compressed stream. This video

quality monitor only requires information obtained from the transmission network such

as the packet losses and the raw packetised stream itself. Such system is able to operate at

any point of the communication path. In the next section a possible networking scenario

is described, followed by the details of the proposed model. Section 3.3 presents the model

implementation and the simulation results are presented and discussed in Section 3.4. A

summary of this Chapter is presented in Section 4.5.

3.1 Network scenario

Nowadays there are different options to deliver 3D video over networks. In regard to

this work, it is of particular interest to distinguish between broadcasting systems, which

always use MPEG-2 Transport Streams (TS), and transmission over the Internet and IP

based networks, which might not use TS [52].

This specification is constrained to the case of IP networks using cable/fiber which

do not necessarily need TS encapsulation. Therefore, since the use of TS over RTP

introduces overhead redundancy, the option considered was the broadcast systems. Taking

into account the video communication layered stack, the Video Coding Layer (VCL) is

followed by the Network Adaptation Layer (NAL) and then by the network layers using

the Packetised Elementary Stream (PES), MPEG2-Transport Stream (TS) and Internet

Protocol (IP). Thus, Figure 3.1 depicts the specification that conforms with the following

protocol stack: VCL/NAL/PES/TS/IP.

The network scenario is set, and thus the next step is to understand which network

parameters can help to determine the video quality based upon the information collected

24 Chapter 3. Proposed NR packet-layer model

...

...

Payload

PayloadP PayloadP

Payload Payload

PES Packet

TS Packet

NALU Packet

Figure 3.1: Network stack scenario.

from packet-loss events. A brief description of the protocol stack packet’s header infor-

mation is presented next.

PayloadHeader

Sync Byte
Payload unit

start indicator
PID

Adaptation

field control

Continuity

counter

TS Packet

Figure 3.2: MPEG2-Transport Stream packet header parameters.

• Synchronisation Byte: used to determine the begin of a TS packet;

• Payload Unit Start Indicator: indicates if the TS packet payload transports the

begin of PES data;

• PID: packet ID, identify the TS packet;

• Adaptation field control: indicates if the packet header contains the Adaptation

Field (AF) ;

• Continuity counter: TS packet number counter, incremented only when a payload

is present;

• Packet start code prefix: used to determine the begin of a PES packet;

• PES packet length: indicates the size of the data in PES packet payload;

3.2. Quality model overview 25

PayloadHeader

Packet start

code prefix

PES packet

length

PES Packet

Figure 3.3: Packetised Elementary Stream packet header parameters.

PayloadHeader

Sync Byte Nal_Ref_Idc Type Non_IDR_Flag View_ID

NALU Packet

Figure 3.4: Network Abstraction Layer packet header parameters.

• Synchronisation Byte: used to determine the begin of a NAL packet;

• NAL Ref Idc: indicates that the content of the NAL unit is used to reconstruct

reference pictures for inter picture prediction.;

• NAL Unit Type: this component specifies the NAL unit payload type;

• Non IDR Flag: indicates if the NAL data payload transports IDR-frame content;

• View ID: specifies which view does the NAL packet belong, only in a multi-view

scenario;

3.2 Quality model overview

As introduced in Section 3.1, a broadcast network is assumed, which corresponds to

a protocol stack with TS/PES/NAL. These are the packet layers used in the proposed

model as depicted in Figure 3.5, where the data units from the Video Coding Layer (VCL)

are wrapped into NAL packets which in turn make up the PES payload, and finally the

whole PES packet is split into TS packets.

The proposed model aims to estimate the quality degradation in isolated stereo frames

due to errors in TS packets leading to frame loss. The degradation is measured by the

difference between the SSIM of the error-free stereo frame (i.e., SSIM=1) and that of

the displayed frame, assuming that frame-copy is used as the concealment method. Note

that coding distortion is not included in this model, which means that SSIM=1 for any

26 Chapter 3. Proposed NR packet-layer model

Payload

TST1

P1

SSIM

estimate

PES

NALPayload

Payload PayloadPayload

NR 3D Video Quality Model

Pre-Processing

 (parameter extraction)

A1

U1 ,U2

Payload ...

... ...

 User

parameters

Figure 3.5: Packet layer model structure

frame correctly received, thus decoupling the errors due to packet losses from the loss

of fidelity due to lossy encoding. The proposed NR model uses an estimate of each

lost frame size and different parameters for different frame types. The lost frame size is

estimated from the average of the last frame sizes with the same type and view. The GOP

structure is provided as input parameter, since this type of information is in general static.

Nevertheless, estimation of different frame types can be done with reasonable accuracy

even without knowing the GOP structure. The detection of lost frames is based on the

following parameters extracted from the packet headers:

• T1: Continuity Counter (TS): enables detection of TS packet loss events.

• P1: PES packet length: provides the frame size.

• A1: NAL unit type: identifies the frame type.

• U1: GOP size: GOP size information.

• U2: GOP structure: GOP structure information.

3.3 Proposed NR model

Several experiments were performed to collect relevant statistical data on the impact of

frame loss in 3D video streams quality. The experimental procedure have five stages (e.g.,

1-H.264/AVC coding sequence, 2-MPEG2 – TS encapsulation, 3-Packet loss events, 4-

H.264/AVC decoding process and 5-SSIM computation.) as illustrated in Figure 3.6. To

3.3. Proposed NR model 27

conduct these experiments a 3D video sequence obtained by concatenating 5 individual

sequences (Ballons 3.7(a), Champagne Tower 3.7(b), Kendo 3.7(c), Pantonime 3.7(d)

and Dog 3.7(e)) was encoded with H.264/AVC Stereo High Profile using the reference

software JM 18.2 (Figure 3.6 stage 1). This sequence has spatial resolution of 1024x768

pixels, 30 fps frame rate, and was encoded using GOP size equal to 21 frames and IBPBP

GOP structure. Three different datasets were created by encoding this sequence with

QP ranging from 26 to 32, achieving different PSNR and bitrates. These datasets are

described in Table 3.1. The resulting video stream was encapsulated into a TS stream

using the reference software FFMPEG (Figure 3.6 stage 2).

HHH HHH

H.264/AVC coding sequence

MPEG2 – TS encapsulation Packet loss events

H.264/AVC decoding process

SSIM computation

1

2 3

4

5

Figure 3.6: Experimental procedure.

To simulate network loss conditions, packetized streams were then subject to packet

loss events (Figure 3.6 stage 3). These have to be created according to a error pattern,

produced in a controlled manner, to better modeling individual types of impairments.

Aiming this, at present a single frame is lost in each loss event, but other impairment

models can be used [53].

Table 3.1: QP’s, PSNR and bitrate.

I-QP P-QP B-QP PSNR (dB) Bitrate (Kb/s)

Dataset-1 26 28 28 42 2847
Dataset-2 28 30 30 41 2225
Dataset-3 30 32 32 40 1727

Then, the corrupted TS stream was decoded using frame-copy for concealment of

lost frames, as depicted in stage 4 of Figure 3.6. The decoded frames were used to

28 Chapter 3. Proposed NR packet-layer model

0

(a) Ballons. (b) Champanhe tower.

(c) Kendo. (d) Clown.

(e) Dog.

Figure 3.7: 3D video sequences used to estimate the proposed video quality model.

3.3. Proposed NR model 29

compute the SSIM with reference to the corresponding uncorrupted decoded frames and

the results stored (Figure 3.6 stage 5). The SSIM drop (Delta SSIM) is the difference

between the SSIM of the error-free stereo frame (i.e., SSIM=1) and that of the displayed

frame, assuming that frame-copy is used as the concealment method. Note that coding

distortion is not included in this model, which means that SSIM=1 for any frame correctly

received. The Delta SSIM computation for each frame x is presented below, where the

EF SSIMx is the error-free stereo frame SSIM and D SSIMx is the displayed frame

SSIM.

Delta SSIMx = EF SSIMx −D SSIMx (3.1)

The Delta SSIM is plotted in Figure 3.8 as a function of lost frame size for P and B slices

using Dataset-2, and in Figure 3.9 using Dataset-3. It can be seen that the point cloud

thickness is higher for B slices than P slices, this means that the error between the actual

Delta SSIM and the polinomial fitting is higher. A similar behavior was found from the

experiments carried out with Datasets-1 used in this study. Linear, quadratic and cubic

polynomials were then used as fitting models for the data obtained from the experiments

with the three Datasets. The generic equation that defines the proposed models is the

polynomial in Eq. 3.2 where dSSIMn is the Delta SSIM , n is the polynomial degree,

Lfs is the lost frame size in bytes and pn are the polynomial coefficients.

dSSIMn = pnL
n
fs + ...+ p2L

2
fs + p1Lfs + p0 (3.2)

The analysis of fitting models of different degrees concluded that third order models

are accurate enough to estimate the dependency between lost frame size and dSSIMn.

The polynomial coefficients pertaining to each fitted curve are shown in Table 3.2 for

P-frames and Table 3.3 for B-frames.

Linear fitting for P and B-frames is depicted in Figures 3.8(a) and 3.8(b), respectively.

It can be seen the red linear fitting line crosses the middle of the Delta SSIM points. As

theDelta SSIM get more dispersed, the fitting error increases. The actual Delta SSIM ,

thus a way to work around this is to use higher order fitting.

The second polinomial order fitting is illustrated in Figures 3.8(c) and 3.8(d), respec-

tively. This quadratic fitting decreases the fitting error, since it follows the Delta SSIM

values shape.

To improve the fitting error, cubic polinomial fitting was used. Figures 3.8(e) and

3.8(f) depicts the Dataset-2 cubic fitting for P and B-frames, respectively. Figure 3.9

illustrates the similar results for Dataset-3. As it can be seen, the cubic fitting better

represents the Delta SSIM values in function of the frame size.

30 Chapter 3. Proposed NR packet-layer model

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Linear Fitting

(a) Linear fitting for P slices.

1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Linear Fitting

(b) Linear fitting for B slices.

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Quadratic Fitting

(c) Quadratic fitting for P slices.

1000 2000 3000 4000 5000 6000

0

0.05

0.1

0.15

0.2

0.25

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Quadratic Fitting

(d) Quadratic fitting for B slices.

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Cubic Fitting

(e) Cubic fitting for P slices.

1000 2000 3000 4000 5000 6000

0

0.05

0.1

0.15

0.2

0.25

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Cubic Fitting

(f) Cubic fitting for B slices.

Figure 3.8: Delta SSIM vs frame size for Dataset-2.

3.3. Proposed NR model 31

2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Cubic Fitting

(a) Cubic fitting for P slices.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Lost Frame Size (Bytes)

D
e
lt
a
 S

S
IM

Delta SSIM

Cubic Fitting

(b) Cubic fitting for B slices.

Figure 3.9: Delta SSIM vs frame size for Dataset-3.

32 Chapter 3. Proposed NR packet-layer model

Table 3.2: Curve fitting coefficients for P-frames.

Linear Quadratic Cubic

Dataset-1
p0=0.03596 p0=0.175 p0=0.05365
p1=3.66E-06 p1=-2.11E-05 p1=9.29E-06
- p2=9.26E-10 p2=-1.19E-09
- - p3=4.22E-14

Dataset-2
p0=-0.04488 p0=3.89E-02 p0=4.74E-03
p1=2.61E-05 p1=6.11E-06 p1=1.78E-05
- p2=8.92E-10 p2=-1.87E-10
- - p3=2.72E-14

Dataset-3
p0=-0.1276 p0=-0.2097 p0=-0.03292
p1=9.01E-05 p1=1.43E-04 p1=-2.92e-05
- p2=-6.66E-09 p2=3.86E-08
- - p3-3.28E-12

Table 3.3: Curve fitting coefficients for B-frames.

Linear Quadratic Cubic

Dataset-1
p0=0.01636 p0=-1.83E-02 p0=-1.90E-02
p1=3.05E-05 p1=5.69E-05 p1=5.78E-05
- p2=-3.48E-09 p2=-3.77E-09
- - p3=2.57E-14

Dataset-2
p0=0.006689 p0=-2.04E-03 p0=1.30E-02
p1=4.38E-05 p1=5.34E-05 p1=2.57E-05
- p2=-1.80E-09 p2=1.07E-08
- - p3=-1.50E-12

Dataset-3
p0=-0.006671 p0=2.07E-03 p0=2.01E-02
p1=5.65E-05 p1=6.29E-05 p1=2.13E-05
- p2=-1.54E-09 p2=2.23E-08
- - p3=-3.69E-12

3.4. Simulation results 33

3.4 Simulation results

To validate the proposed models a 3D video sequence was captured to simulate a real-

time case analysis. Towards that end the stereo video sequence was captured using a 3D

Digital HD Video Camera Recorder (Sony HXR-NX3D1U NXCAM) with approximately

4000 stereoscopic frames. A busy hour in ESTG’s parking car was the scenario chosen for

the capturing, because it has several motion features (e.g., driving cars, walking people)

and also a complex background scenario with all the parked cars and trees. Figure 3.10

depicts a sample of the captured frames for different point of views.

(a) (b)

(c) (d)

Figure 3.10: Different views of captured 3D video sequence in Escola Superior de Tec-
nologia e Gestão de Leiria.

To evaluate single frame quality degradation one frame was lost in each GOP. The

following configurations were used for stereo video sequence encoding:

• Frame resolution: 1920x1080

• Frame-rate: 30Hz

• GOP size: 21 frames

• GOP structure: IBPBP

• I-frame QP: 38

34 Chapter 3. Proposed NR packet-layer model

• P-frame QP: 40

• B-frame QP: 40

In Figure 3.11 and 3.12 the SSIM for the lost frames was estimated using linear,

quadratic and cubic polynomial models and compared to the SSIM of the concealment

frame that stands in for lost B and P-frame, respectively. It was found that the SSIMs

estimated with the proposed models are quite similar to the real SSIM for P-frames,

however for B-frame this is not that linear. In Figure 3.11 it can be seen that the shape of

the real and estimated curve are quite similar, but with a scale coefficient that minimizes

the estimated SSIM from the real one. This phenomenon is justified with RMSE and

pearson correlation values presented in Table 3.4.

The model performance was then evaluated with two different performance indicators

of the SSIM estimators: Root Mean Square Error (RMSE) and the Pearson Correlation

values for both P and B frames and the three model orders. Their correlation measure-

ments are presented in Table 3.4 using Dataset-3 coefficients to estimate the video quality.

For P-frames, the RMSE decreases sightly with the increase of polynomial degree. As ex-

pected the Pearson Correlation increases with the polynomial degree. A similar behavior

is observed for B-frames, though the model does not evidence such a strong correlation

as that observed for the P-frames possibly due to the smaller size of B-frames and larger

dispersion of the lost frame size vs. dSSIMn data around the fitted models.

Table 3.4: Simulation results using Dataset-3 polinomial coefficients.

Polynomial P-frame B-frame

Linear
RMSE 0.1045 0.1556
Pearson Corr. 0.783 0.7099

Quadratic
RMSE 0.0965 0.1562
Pearson Corr. 0.8197 0.7106

Cubic
RMSE 0.0956 0.1655
Pearson Corr. 0.8224 0.7073

The simulation results show a strong correlation between the estimated and the actual

3D video quality. Both RMSE and Pearson Correlation measurements show very promis-

ing values if one considers that a quality measure in the visual domain is being estimated

using information obtained from the compressed packetized bitstream domain, without

accessing any reference information for comparison.

3.4. Simulation results 35

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(a) Linear polynomial fitting.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(b) Quadratic polynomial fitting.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(c) Cubic polynomial fitting.

Figure 3.11: Estimated SSIM vs. real SSIM of lost B-Frames.

36 Chapter 3. Proposed NR packet-layer model

0 20 40 60 80 100 120 140 160 180
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(a) Linear polynomial fitting.

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(b) Quadratic polynomial fitting.

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

0.9

1

Lost Frame Number

S
S

IM

Real SSIM

Estimated SSIM

(c) Cubic polynomial fitting.

Figure 3.12: Estimated SSIM vs. real SSIM of lost P-Frames.

3.5. Summary 37

3.5 Summary

In this Chapter a method that estimates the objective quality measured as the SSIM is

proposed, based on the size of the lost frames.

The results show that SSIM of missing stereoscopic frames in 3D coded video can

be predicted with Root Mean Square Error (RMSE) accuracy of about 0.1 and Pearson

correlation coefficient of 0.8, taking the SSIM of uncorrupted frames as reference. It is

concluded that the proposed model is capable of estimating the SSIM quite accurately

using only the estimated sizes of the lost frames.

Chapter 4

Software implementation

In this Chapter the application software is presented and its implementation is described.

The Chapter is organised as follows. In a first stage an overview of the software is pre-

sented where the information flow and high-level functional analysis is described, along

with the structure and implementation of the most important characteristics. The pro-

cessing software responsible for the extraction of packet headers parameters and proposed

mathematical model implementation is specified in Section 4.3. In Section 4.4 the Guide

User Interface (GUI) is described, with particular emphasis on the input parameters, out-

put display results and other features. Finally a summary of this Chapter is presented in

Section 4.5.

4.1 Software overview

Considering the objective of the work (monitoring 3D video quality), it was necessary not

only to devise a quality model, but also to develop an application software to implement

the proposed quality model, and then fulfill the monitor requirements (i.e., mathematical

model plus pratical implementation).

The monitor software implementation has two main processes, the video quality as-

sessment thread and the Guide User Interface (GUI) thread. In Figure 4.1 one can see

an overview of the interaction between the processes. The information flow from the GUI

to monitor software (i.e., input parameters) and return flow from GUI of output display

are represented, after the video quality assessment. This cycle will repeat itself until the

monitor receives a command to stop or the end of video stream is reached.

The software was implemented in C++ language in Qt Creator. This IDE was chosen

since the tools available to develop the user interface are considerably satisfatory. Re-

garding the menu bar and the real time graphics implementation, this IDE meets the

40 Chapter 4. Software implementation

Guide User

Interface
Monitor Software

User-defined parameters

Output display

H

P

H

P

H

P

3D video stream

Figure 4.1: Software overview diagram.

requirements of the monitor implemented. The Objective-Oriented Programming (OOP)

approach was used, due to the advantages of using objects and data fields (i.e., attributes

that describe the object) and their associated procedures known as methods. This objects

(i.e., instances of classes) are used to interact with design applications. These relations

are described in Figure 4.2 where a class have several features known as attributes that

describe the object and also have methods which define the behavior to be exhibited by

instances of the associated class. The monitor software requires a user interface to input

parameters and and output the results in graphical form. In the next section is explained

in an high-level manner which classes were used and how they interact with each other.

Class

AttributesMethods

Figure 4.2: OOP classes features.

4.2 High-level design

The software was designed in several modules, where the classes are independent from

each other. The classes that compose the monitor software are: monitor, access unit,

ts, pes, nal, and frame. These names have been chosen to suggest their functions and

features and they have been mentioned along this dissertation. As the name suggests

4.2. High-level design 41

the class monitor has the main function of the software, which is monitoring the video

quality. And thus, it is responsible to control the other classes functions and also the

flow information between the GUI and the processing software. A set of NAL units in a

specified form is referred to as an access unit. The decoding of each access unit results in

one decoded picture. In H.264/stereo profile one access unit has two frames, one for each

view. Thereafter, a class access unit was used to deal with the baseview and non-baseview

frames. For that, it is needed to first parse the packet layers that compose the stereo video

stream. For each packet layer a class was created (TS, PES, NAL), in each one is necessary

to synchronise with the packet header start code that indicates the packet begin. And

finally, extract the required parameters for the video quality evaluation. The class frame

uses that information to stereo video quality assessment for each stereo-pair. The frame

level information is also available in the class monitor, since it is the one responsible for

the output information management. These dependencies between classes are illustrated

in Figure 4.3, where one can see that an object of access unit or frame classes are instances

of a monitor object. In turn, the TS, PES, NAL, and FRAME objects are instances of a

access unit object.

Monitor

PESTS NAL

Access Unit

Frame

Figure 4.3: Classes dependencies diagram.

Each class has its procedures known as methods, and each method has its own actions

and purpose. They exchange information between them according to their functions.

Figure 4.4 illustrates the methods of each class and its interactions. It can be seen that

the class monitor has a method called process that runs all the monitoring process. This

process method controls another method (syncTS) of monitor class, the syncTS method

detects the start code that indicates the beginning of a TS packet, and makes sure that it

is actually the starting point of the video stream. The access unit class methods controlled

by the process method are described next:

• readAU : contains the procedures responsible for the stereo video stream parsing and

the packet header parameters needed for quality assessment;

42 Chapter 4. Software implementation

Figure 4.4: Classes methods diagram.

4.2. High-level design 43

• getCountAuxTS : auxiliar TS packet counter, required to control the packet loss

events;

• getFrame1 : returns an instance of the frame class with non-basebview frame pa-

rameters (e.g., size, type, number, etc);

• getFrame0 : returns an instance of the frame class with baseview frame parameters;

ReadAU method is the access unit main method, it controls the video stream pars-

ing (i.e., TS::readTS), the TS packet loss detection (i.e., TS::lossDetectionTS) and

all the ”get” methods responsible for returning the needed information in the higher

class levels (i.e., TS::getListPES, TS::getListNALU, TS::getPID, TS::getPayloadUnitInd,

TS::getFlagAF, NALU::getNRI and NALU::getView) described next:

• getListPES : returns a list of PES class;

• getListNALU : returns a list of NAL class ;

• getPID : returns the value of packet ID;

• getPayloadUnitInd : returns the value of the Payload Unit Start Indicator, which

indicates the start of the PES data is carried in the payload of the current TS

packet;

• getFlagAF : returns the value of the TS packet header adaptation field, required to

determine the size of the TS packet header and thus the paylod beginning;

• getNRI : returns the nal ref idc value, which indicates that the content of the NAL

unit is not used to reconstruct reference pictures for inter picture prediction;

• getView : returns the view of the NAL unit;

• getNALUType: returns the NAL unit type (e.g., I, P or B);

ReadTS method controls the subroutines responsible for PES and NAL classes syn-

chronization (i.e., syncPES and syncNALU) and packet header extraction (i.e., readPES

and readNALU). Monitor class needs to know the frame class attributes, but since the

frame class is an instance of access unit class which is an instance of monitor class, to

solve this circular dependency was used. Circular dependency is a relation between two

or more modules which either directly or indirectly depend on each other to function

properly. Such modules are also known as mutually recursive. Thereby, the monitor class

knows the frame class attributes, and thus is able to update the GUI with stereo video

quality estimated in one of the frame class methods (i.e., FRAME::calcAref).

44 Chapter 4. Software implementation

4.3 Processing software

The next step in the monitor’s implementation is how the input information (i.e., video

stream and users parameters) will be processed to compute the output display results

(i.e., 3D video quality). This Section presents the processing software implementation

and explain it step-by-step. The monitor’s flowchart is depicted in Figure 4.5 where

the software’s routines and processes are labeled as well as the information flow between

the GUI and processing software. The processing software’s documentation is presented

in Appendix B, where the classes, methods an attributes are detailed described. The

information flow and processes descriptions are step-by-step presented bellow.

View 0 View 1

GOP

View 0 View 1

View 0 View 1

...

AU1

AU2

AUn

TS

PES

NALPayload Payload

PayloadPayload

Payload Payload PayloadPayloadPayload

Read video

stream

packets

Frame complete?

Both views

video quality

assessment

Fill Access

Unit

Temporal window

complete?

View 0 View 1

Access Unit

Start monitoring

Video Stream

User Parameters

Load video stream file

GUI update

Guide User Interface

Monitor Software

Yes
No

Yes

No

1

2

3 4 5

6

PayloadPayloadPayload

Figure 4.5: Monitor’s flowchart.

• 1 - Load video stream file: the monitor’s first step is to load the 3D video

information encapsulated in MPEG-2 TS stream file. The file path is then displayed

in its text box;

• 2 - Start monitoring: after loading the file, the software is able to start monitor-

ing. The start button starts the software processing thread;

4.4. Guide user interface 45

• 3 - Read video stream packets: to access the video quality several parameters

need to be extracted from the stream (e.g., packet headers information). This

process has three sub-routines, one to read all the TS packet headers for each

frame, the other to read the frame’s PES packet header and another to read all

the NAL Unit headers for each frame;

• 4 - Both views quality assessment: this estimated process implements the

proposed quality model. Quality assessment is frame-by-frame for both base and

auxiliar-views;

• 5 - Fill Access Unit: when a complete video frame is read from the stream, the

respective quality is estimated. Then, to enhance the monitor performance, the

ouput information is divided by frame and Access Unit. Also, for each frame the

output parameters are classified into packet-loss information (e.g., number of errors

and lost TS packets), quality information and frame specific information (e.g. view,

type, size);

• 6 - GUI update: when the temporal window (in frames) is complete, the software

sends the output information to the display and updates the GUI. The GUI’s thread

will refresh the graphics and the text information. If the end of stream is not found

or no order to stop is received, the software monitor will continue this process by

repeating the previous steps;

The monitor implementation was specifically designed to keep both processing and

GUI’s software completely independent from each other. These processes change informa-

tion between them, but they operate independently. This customization feature increases

the range of potential application. Given a remote monitoring scenario where the user

wants to access the monitor at any place and at any time, one of the possibilities is to

incorporate the interface in an HTML page. This feature allows such a scenario because

the processing software as well as its inputs and outputs fulfills the necessary require-

ments, thereafter any GUI that fulfill similar conditions is able to interoperate with this

monitor software. In the next section, the GUI input and output parameters and other

functionalities are described.

4.4 Guide user interface

The theoretical model implementation in a pratical scenario brings some problems to

solve, where probably the most important one is how the user will interact with the

model, how the input and output transactions will be made? This Section provides the

answer to these questions.

46 Chapter 4. Software implementation

An important feature of this monitor software is the output display, where the users

can visually understand what happens in real-time in terms of the video stream quality.

Thereby, Figure 4.6 depicts the GUI and it’s input and output parameters as well as other

tools. These features are presented and explained bellow.

Input

Parameters

Instantaneous Video

Quality Status

TS

Layer

Specific

Output

Video Quality

History

Tools Bar

On/Off Real Time

Plots

TS File Path

Figure 4.6: Guide user interface.

4.4.1 Input parameters

Beyond the corrupted video stream data input in monitor software, there are other input

information that is needed for video stream parsing and quality assessment itself. In most

pratical applications the video coding parameters are constant for each service provider,

4.4. Guide user interface 47

and thus one can consider those parameters as fixed input parameters. In the monitor

software these are classified as user-defined parameters as depicted in Figure 4.7 and

described bellow.

1

2

3

4

5

Figure 4.7: Input parameters.

• 1 - Error concealment type: different techniques of error concealment are pos-

sible because they have different impact in video quality;

• 2 - GOP size: necessary to identify the I-frames, and then understand where the

propagation error ends;

• 3 - Reference frames: number of frames depending of the current frame;

• 4 - Temporal window: frequency of GUI refresh (i.e., how often the display results

are updated), by default this is the same size of GOP;

• 5 - Frame rate: frequency rate of displayed frames;

4.4.2 Output display

The quality assessment thread’s output is displayed in the GUI in several different ways,

such as text boxes, history graphics and instantaneous graphics. Figure 4.8 depicts de

GUI’s output display. It can be identified TS layer specific output, video quality history

and instantaneous video quality status as also identified in Figure 4.6. Each output is

labeled in 4.8 and described bellow.

48 Chapter 4. Software implementation

1

6

7

2

3

4 5
8

Figure 4.8: Output display results.

4.4. Guide user interface 49

• 1 - Lost TS packets: number of lost TS packets in the video stream;

• 2 - Errors: number of errors in the video stream;

• 3 - 3D video quality: graphical history of 3D video quality (SSIM);

• 4 - Error bursts: graphical history of errors bursts;

• 5 - Packet loss ratio:graphical history of packet loss ratio;

• 6 - 2D video quality: graphical history of 2D video quality (SSIM);

• 7 - Instantaneous video quality: 2D and 3D instantaneous video quality (SSIM);

• 8 - Check buttons: hide or show the corresponding graphics;

4.4.3 Other features

Another important GUI feature is the functionality and user friend characteristics enabled

by Qt Creator IDE which is an excellent tool for this purpose. As it can be seen in Figure

4.9 it allows the customisation of the menu and tools bars, adding the desired icons as

necessary. It also permits to add buttons and text boxes, as well as static images. All the

extra functionalities are labeled in Figure 4.9 and described bellow.

6

1

7

8

2 43 5

9

Figure 4.9: Other features.

• 1 - Menu bar: groups the functionalities by type;

• 2 - Open button: opens a dialog box to select the video stream file and add it to

the software;

• 3 - Start button: after loading the file this button allows to start the application;

50 Chapter 4. Software implementation

• 4 - Stop button: allows to stop the monitoring process at any time;

• 5 - Save button: after a monitoring period allows to save the quality information

into a report file;

• 6 - Monitor description: description of monitor type and video codec/profile

used;

• 7 - Video stream file path: path to load the video stream;

• 8 - Exit button: allows to close the monitor and its processes at any time;

• 8 - Logo: logo of the Telecommunications Institute;

At this stage is important to report not only the software’s range of applications and

functionalities, but also its limitations and weak points. During the implementation phase

many obstacles were found. An important one was the GUI’s freeze when the processing

software was running. To solve this problem both processes were placed in different

threads (i.e., on a multi-core system every processor or core executes a separate thread

simultaneously). Thus, when the start button is turned on, the processing software will

run it’s sub-routines and all the GUI’s functionalities are ready to use.

4.5 Summary

In this Chapter, the monitor software implementation was described, along with an

overview in Section 4.1 that shows the high level monitor’s implementation (e.g., how

the user interface and processing software interact with each other). The monitor’s and

GUI’s software deployment is described step-by-step in Sections 4.4 and 4.3, respectively.

This Chapter ends the description of the work done, after the literature review, the

proposed model description, and its pratical implementation. In this case the overall

result corresponds to the development of a monitor software that implements the proposed

mathematical quality model, and then exhibits the output results for users analysis.

Chapter 5

Conclusion and future work

This chapter concludes this dissertation, presenting some conclusions about this research

work and some future research perspectives in the field of 3D video quality monitoring.

5.1 Conclusions

This section discusses a summary of the chapters presented before and a review of the

contributions presented.

Chapter 2 presented a review of the main NR video quality assessment models in the

literature. Several Video Quality Assessment model types (e.g., packet-layer, bitstream

level, media-layer and hybrid models) were presented. A study for 2D and 3D scenarios

was described. Considering the lack of accurate models for 3D video and since 3D video

can be seen as an extension of 2D video, the existing video quality assessment models can

be expanded. The NR-VQA models under study were classified as packet-layer models,

since the decoded video signal is not necessary to determine the quality of video, i.e.,

it only uses packet headers information. This was important to understand how those

models work and which parameters/measurements they implement to the development of

the proposed NR-VQA model.

Chapter 3 presented the mathematical model, as well as it’s scenario and results. The

scenario under study is a broadcast network (i.e., TS/PES/NAL), the error concealment

method used was frame-copy. Coded distortion was not included in this model. A simu-

lation study was undertaken with different 3D video streams. Frame sizes of lost frames

were found to be correlated with the quality degradation incurred as a result of loss of

those frames. It was concluded that a polynomial fitting is able to model this dependency.

The model coefficients for different polynomial degrees were determined using three dif-

ferent datasets. The model was validated with a long real-life 3D video sequence. When

52 Chapter 5. Conclusion and future work

applied to this sequence (after introduction of artificial packet losses) the quality estima-

tor performed quite well with Pearson Correlation coefficients around 0.8 which indicate

a strong positive correlation, and RMSE values around 0.1 evidencing a small estimation

error. These results are quite remarkable as the proposed packet layer model is based

only on the estimated lost frame size, which contains very little information about the

characteristics and visual content of the lost frame.

After the 2D and 3D VQA models review and the proposed model explanation, Chap-

ter 4 presents the monitor’s software implementation. The NR-VQA model proposed in

3 is deployed in the monitor’s software. As inputs the software as several user-defined

parameters and the corrupted video stream file and the quality results are displayed in the

GUI for analysis in a user-friendly way. The results are presented in the form of temporal

and instantaneous graphics. This monitor software closes the development of this work

but several open issues for model and software improvements are identified in the next

Section.

One may conclude that this research work was a relevant contribution and one IEEE

international workshop publication (Appendix A). Nevertheless, the contribution of this

is beyond the publications, since the model was accomplished in a pratical environment

with the monitor’s software implementation.

5.2 Future work

In this research work, a 3D video quality model was proposed and it’s software imple-

mentation presented. Nevertheless, there are still a number of topics that require further

investigation, and may lead to a higher model’s accuracy and monitor’s performance.

• 3D video quality extension to error propagation level. The VQA model

proposed in Chapter 3 determines stereo-pair frame quality degradation in a single-

loss scenario. Since in a GOP, the stereo-pair frames depend from each other, the

effects of temporal error propagation and propagation between views could increase

the quality model’s accuracy.

• 3D video quality extension to burst-loss scenario. Another important up-

grade is to take into account not only the single-loss frames, but also the burst-loss

scenario where an adjacent set of information is lost, and thus has a different impact

in the perceived video quality when compared with the single-loss scenario.

• 3DVQM software network implementation. The software’s monitor input is

a TS video stream file. However in a real scenario the monitor should work at any

5.2. Future work 53

point of the packets network. This is a relevant add on to take into account, for an

automatic and independent monitoring process.

• Add monitor more network scenarios. The scenario under study is a broad-

cast network (i.e., TS/PES/NAL). However, there are other network scenarios that

transport video content, such as IPTV (e.g., UDP/RTP/NAL). It is important to

make this monitor as much universal as possible to accommodate different protocol

stacks.

As a summary, one may conclude that the 3D quality model presented brings new

insights in objective NR VQA field. The results are quite promissing as the proposed

packet layer model is based only on the estimated lost frame size, which contains very

little information about the characteristics and visual content of the lost frame. The VQA

model is implemented in a pratical scenario where a monitor application was developed

to fulfill technical user requirements.

Bibliography

[1] H. R. Wu, K. R. Rao, and A. A. Kassim, “Digital video image quality and

perceptual coding,” Journal of Electronic Imaging, vol. 16, no. 3, p. 039901, 2007.

[Online]. Available: http://link.aip.org/link/?JEI/16/039901/1

[2] G. Ghinea, P. Muntean, F. Etoh, F.and Speranza, and H. Wu, “Special issue on

quality issues on mobile multimedia broadcasting,” vol. 54, no. 3, 2008, pp. 424–727.

[3] A. S. Umar, R. M. Swash, and A. Sadka, “Subjective quality assessment of 3D

videos,” in AFRICON, 2011, 2011, pp. 1–6.

[4] V. Q. E. G. (VQEG), “Final report from the video quality expert group on the

validation of objective models of video quality assessment, phase ii,” in Available:

http://www.vqeg.org, 2003.

[5] I. R. J.144, Objective perceptual video quality measurement techniques for digital cable

television in the presence of a full reference, Mar. 2004.

[6] Z. Yu, H. R. Wu, S. Winkler, and T. Chen, “Vision-model-based impairment metric

to evaluate blocking artifacts in digital video,” Proceedings of the IEEE, vol. 90, no. 1,

pp. 154 –169, jan 2002.

[7] P. Hao, Q. Shi, and Y. Chen, “Co-histogram and its application in remote sensing

image compression evaluation,” in Image Processing, 2003. ICIP 2003. Proceedings.

2003 International Conference on, vol. 3, sept. 2003, pp. III – 177–80 vol.2.

[8] J. Baina, P. Bretillon, D. Masse, and A. Refik, “Quality of MPEG2 signal on a

simulated digital terrestrial television,” Broadcasting, IEEE Transactions on, vol. 44,

no. 4, pp. 381 –391, dec 1998.

[9] M. Carnec, P. Le Callet, and D. Barba, “An image quality assessment method based

on perception of structural information,” in Image Processing, 2003. ICIP 2003.

Proceedings. 2003 International Conference on, vol. 3, sept. 2003, pp. III – 185–8

vol.2.

56 Bibliography

[10] S. Olsson, M. Stroppiana, and J. Baina, “Objective methods for assessment of video

quality : state of the art,” Broadcasting, IEEE Transactions on, vol. 43, no. 4, pp.

487 –495, dec 1997.

[11] S. Argyropoulos, A. Raake, M.-N. Garcia, and P. List, “No-reference bit stream

model for video quality assessment of H.264/AVC video based on packet loss visibil-

ity,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, May 2011, pp. 1169–1172.

[12] T. Yamada, Y. Miyamoto, and M. Serizawa, “No-reference video quality estimation

based on error-concealment effectiveness,” in Packet Video 2007, Nov. 2007, pp. 288

–293.

[13] J. Han, Y. han Kim, J. Jeong, and J. Shin, “Video quality estimation for packet loss

based on no-reference method,” in Advanced Communication Technology (ICACT),

2010 The 12th International Conference on, vol. 1, Feb. 2010, pp. 418 –421.

[14] D. Sung, S. Hong, Y. Kim, Y. Kim, and T. P. J. Shin, “No reference quality assess-

ment over packet video network,” in IWAIT 2009, 2009.

[15] K.-H. Thung and P. Raveendran, “A survey of image quality measures,” in Technical

Postgraduates (TECHPOS), 2009 International Conference for, 2009, pp. 1–4.

[16] H. R. Wu, K. R. Rao, and A. A. Kassim, “Digital video image quality and

perceptual coding.” J. Electronic Imaging, vol. 16, no. 3, p. 039901, 2007. [Online].

Available: http://dblp.uni-trier.de/db/journals/jei/jei16.html#WuRK07

[17] I. T. U. I. R. C. Sector:, “Methodology for the subjective assessment of the quality

of television pictures,” in ITU-R BT. 500-11, 2002.

[18] C. Sun, X. Liu, X. Xu, and W. Yang, “An efficient quality assessment metric for 3D

video,” in Computer and Information Technology (CIT), 2012 IEEE 12th Interna-

tional Conference on, 2012, pp. 209–213.

[19] Z. W. Ligang, Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment using

structural distortion measurement,” in in Proc. IEEE Int. Conf. Image Proc, 2002,

pp. 65–68.

[20] A. Takahashi, D. Hands, and V. Barriac, “Standardization activities in the ITU for

a QoE assessment of IPTV,” Communications Magazine, IEEE, vol. 46, no. 2, pp.

78–84, 2008.

Bibliography 57

[21] N. Liao and Z. Chen, “A packet-layer video quality assessment model

with spatiotemporal complexity estimation,” EURASIP Journal on Image

and Video Processing, vol. 2011, no. 1, p. 5, 2011. [Online]. Available:

http://jivp.eurasipjournals.com/content/2011/1/5

[22] A. Reibman, V. Vaishampayan, and Y. Sermadevi, “Quality monitoring of video over

a packet network,” Multimedia, IEEE Transactions on, vol. 6, no. 2, pp. 327 – 334,

2004.

[23] P. Perez, J. Macias, J. J. Ruiz, and N. Garcia, “Effect of packet loss in video

quality of experience,” Bell Labs Technical Journal, vol. 16, no. 1, pp. 91–104, 2011.

[Online]. Available: http://dx.doi.org/10.1002/bltj.20488

[24] K. Yamagishi and T. Hayashi, “Parametric packet-layer model for monitoring video

quality of IPTV services,” in Communications, 2008. ICC ’08. IEEE International

Conference on, May 2008, pp. 110 –114.

[25] K. Yamagishi, K. Ushiki, T. Hayashi, and A. Takahashi, “Parametric packet-layer

model for monitoring video quality of IPTV services,” in NTT Technical Review,

Apr. 2009, pp. 110 –114.

[26] J. Greengrass, J. Evans, and A. Begen, “Not all packets are equal, part 2: The impact

of network packet loss on video quality,” Internet Computing, IEEE, vol. 13, no. 2,

pp. 74 –82, march-april 2009.

[27] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video transmission

over lossy channels,” Selected Areas in Communications, IEEE Journal on, vol. 18,

no. 6, pp. 1012 –1032, jun 2000.

[28] Y. Han, A. Men, K. Chang, and Z. Quan, “GOP-level transmission distortion mod-

eling for video streaming over mobile networks,” in Information Assurance and Se-

curity, 2009. IAS ’09. Fifth International Conference on, vol. 1, Aug. 2009, pp. 91

–95.

[29] Y. Wang, Z. Wu, and J. Boyce, “Modeling of transmission-loss-induced distortion in

decoded video,” Circuits and Systems for Video Technology, IEEE Transactions on,

vol. 16, no. 6, pp. 716 – 732, 2006.

[30] Q. Huynh-Thu, P. Le Callet, and M. Barkowsky, “Video quality assessment: From

2D to 3D - challenges and future trends,” in Image Processing (ICIP), 2010 17th

IEEE International Conference on, 2010, pp. 4025 –4028.

58 Bibliography

[31] X. Xiang, D. Zhao, Q. Wang, S. Ma, and W. Gao, “Rate-distortion optimization wi

th inter-view refreshment for stereoscopic video coding over error-prone networks,”

Proc. SPIE, vol. 7257, pp. 1 – 7, Jan. 2009.

[32] Y. Zhou, C. Hou, W. Xiang, and F. Wu, “Channel distortion modeling for multi-view

video transmission over packet-switched networks,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 21, no. 11, pp. 1679 –1692, Nov. 2011.

[33] S. Yasakethu, C. Hewage, W. Fernando, and A. Kondoz, “Quality analysis for 3D

video using 2D video quality models,” Consumer Electronics, IEEE Transactions on,

vol. 54, no. 4, pp. 1969 –1976, Nov. 2008.

[34] A. Mittal, A. Moorthy, J. Ghosh, and A. Bovik, “Algorithmic assessment of 3D qual-

ity of experience for images and videos,” in Digital Signal Processing Workshop and

IEEE Signal Processing Education Workshop (DSP/SPE), 2011 IEEE, Jan. 2011,

pp. 338 –343.

[35] L. Goldmann, F. De Simone, and T. Ebrahimi, “Impact of acquisition distortions on

the quality of stereoscopic images,” in 5th International Workshop on Video Process-

ing and Quality Metrics for Consumer Electronics (VPQM), 2010.

[36] L. Goldmann, F. D. Simone, and T. Ebrahimi, “A comprehensive database and

subjective evaluation methodology for quality of experience in stereoscopic video,”

A. M. Baskurt, Ed., vol. 7526, no. 1. SPIE, 2010, p. 75260S. [Online]. Available:

http://link.aip.org/link/?PSI/7526/75260S/1

[37] C. Hewage, S. Worrall, S. Dogan, and A. Kondoz, “Prediction of stereoscopic video

quality using objective quality models of 2-D video,” Electronics Letters, vol. 44,

no. 16, pp. 963 –965, 2008.

[38] K. Yamagishi, T. Kawano, and T. Hayashi, “Effect of difference in 2D video quality

for left and right views on overall 3D video quality,” in Image Processing (ICIP),

2012 19th IEEE International Conference on, 2012, pp. 605–608.

[39] C. Hewage and M. Martini, “Quality evaluation for real-time 3D video services,” in

Multimedia and Expo (ICME), 2011 IEEE International Conference on, 2011, pp.

1–5.

[40] G.-H. Chen, C.-L. Yang, L.-M. Po, and S.-L. Xie, “Edge-based structural similarity

for image quality assessment,” in Acoustics, Speech and Signal Processing, 2006.

ICASSP 2006 Proceedings. 2006 IEEE International Conference on, vol. 2, 2006, pp.

II–II.

Bibliography 59

[41] K. Ha and M. Kim, “A perceptual quality assessment metric using temporal com-

plexity and disparity information for stereoscopic video,” in Image Processing (ICIP),

2011 18th IEEE International Conference on, 2011, pp. 2525–2528.

[42] M. Solh and G. AlRegib, “A no-reference quality measure for DIBR-based 3D videos,”

in Multimedia and Expo (ICME), 2011 IEEE International Conference on, 2011, pp.

1–6.

[43] C. Fehn, “Depth-Image-Based Rendering (DIBR), Compression and Transmission

for a New Approach on 3D-TV,” in Proceedings of SPIE Stereoscopic Displays and

Virtual Reality Systems XI, 2004, pp. 93–104.

[44] A. Maalouf and M.-C. Larabi, “A no-reference color video quality metric based on a

3D multispectral wavelet transform,” in Quality of Multimedia Experience (QoMEX),

2010 Second International Workshop on, 2010, pp. 11–16.

[45] K. Sohn and S. Ryu, “No-reference quality assessment for stereoscopic images based

on binocular quality perception,” pp. 1–1, 2013.

[46] A. Voronov, D. Vatolin, D. Sumin, V. Napadovskiy, and A. Borisov, “Towards au-

tomatic stereo-video quality assessment and detection of color and sharpness mis-

match,” in 3D Imaging (IC3D), 2012 International Conference on, 2012, pp. 1–6.

[47] B. Lee and M. Kim, “No-reference PSNR estimation for HEVC encoded video,”

Broadcasting, IEEE Transactions on, vol. 59, no. 1, pp. 20–27, 2013.

[48] M.-J. Chen, L. Cormack, and A. Bovik, “No-reference quality assessment of natural

stereopairs,” Image Processing, IEEE Transactions on, vol. 22, no. 9, pp. 3379–3391,

2013.

[49] A. Maalouf and M.-C. Larabi, “Cyclop: A stereo color image quality assessment met-

ric,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, 2011, pp. 1161–1164.

[50] B. Julesz, Foundations of Cyclopean Perception. University of Chicago Press, 1971.

[51] On Binocular Rivalry. Institute for Perception RVO-TNO, National Defence

Research Organization TNO, 1965. [Online]. Available: http://books.google.pt/

books?id=FbiIHAAACAAJ

[52] T. Schierl and S. Narasimhan, “Transport and storage systems for 3-D video using

MPEG-2 systems, RTP, and ISO file format,” Proceedings of the IEEE, vol. 99, no. 4,

pp. 671–683, 2011.

60 Bibliography

[53] I. R. G.1050, Network model for evaluating multimedia transmission performance

over Internet Protocol, Mar. 2011.

Appendix A

Published papers

• B. Feitor, P. Assunção, J. Soares, L. Cruz, R. Marinheiro, ”Objective quality pre-

diction model for lost frames in 3D video over TS”, in Communications Workshops

(ICC), 2013 IEEE International Conference on, 2013, pp. 622–625.

• B. Feitor, P. Assunção, J. Soares, L. Cruz, R. Marinheiro, ”No-Reference Quality

Models for Single Frame Loss in 3D Video”, in ConfTele, 2013 Castelo Branco,

Portugal, may. 2013, pp. 1–4.

Appendix B

Software documentation

3D Video Quality Monitor

Software Documentation

Nov 2013

Contents

1 Class Index 1

1.1 Class Hierarchy . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Class Documentation 7

4.1 AA Class Reference . 7

4.1.1 Detailed Description . 7

4.1.2 Constructor & Destructor Documentation . 7

4.1.2.1 AA . 7

4.1.3 Member Function Documentation . 7

4.1.3.1 readAU . 7

4.1.4 Member Data Documentation . 8

4.1.4.1 buffTS . 8

4.1.4.2 listTS . 8

4.2 AcessUnit Class Reference . 8

4.2.1 Detailed Description . 9

4.2.2 Constructor & Destructor Documentation . 9

4.2.2.1 AcessUnit . 9

4.2.3 Member Function Documentation . 9

4.2.3.1 getCountAuxTS . 9

4.2.3.2 getFrame0 . 9

4.2.3.3 getFrame1 . 9

4.2.3.4 readAU . 10

4.2.4 Member Data Documentation . 11

4.2.4.1 buffTS . 11

4.2.4.2 listTS . 11

4.3 BFrame Class Reference . 11

ii CONTENTS

4.3.1 Detailed Description . 12

4.3.2 Member Function Documentation . 12

4.3.2.1 calcAref . 12

4.3.2.2 selfAddListMonitor . 12

4.4 FRAME Class Reference . 12

4.4.1 Detailed Description . 13

4.4.2 Constructor & Destructor Documentation . 14

4.4.2.1 FRAME . 14

4.4.2.2 FRAME . 14

4.4.3 Member Function Documentation . 14

4.4.3.1 calcAref . 14

4.4.3.2 calcD . 14

4.4.3.3 calcDi . 14

4.4.3.4 calcDpi . 14

4.4.3.5 getAref . 15

4.4.3.6 getD . 15

4.4.3.7 getDi . 15

4.4.3.8 getDpe . 15

4.4.3.9 getDpi . 15

4.4.3.10 getFlagPacketLoss . 15

4.4.3.11 getNPackLoss . 15

4.4.3.12 getPackLenAV . 15

4.4.3.13 getPackNum . 15

4.4.3.14 getSize . 15

4.4.3.15 getType . 15

4.4.3.16 getView . 15

4.4.3.17 getWEC . 16

4.4.3.18 getWEP . 16

4.4.3.19 getWLOC . 16

4.4.3.20 selfAddListMonitor . 16

4.4.3.21 setAref . 16

4.4.3.22 setD . 17

4.4.3.23 setDi . 17

4.4.3.24 setDpe . 17

4.4.3.25 setDpi . 17

4.5 IFrame Class Reference . 17

4.5.1 Detailed Description . 18

4.5.2 Member Function Documentation . 18

4.5.2.1 calcAref . 18

4.5.2.2 selfAddListMonitor . 18

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

CONTENTS iii

4.6 IPFrame Class Reference . 18

4.6.1 Detailed Description . 19

4.6.2 Member Function Documentation . 19

4.6.2.1 selfAddListMonitor . 19

4.7 MONITOR Class Reference . 20

4.7.1 Detailed Description . 20

4.7.2 Constructor & Destructor Documentation . 21

4.7.2.1 MONITOR . 21

4.7.2.2 MONITOR . 21

4.7.3 Member Function Documentation . 21

4.7.3.1 addListFrames . 21

4.7.3.2 addListFramesPI . 21

4.7.3.3 getB . 22

4.7.3.4 getGOPstructure . 22

4.7.3.5 getH . 22

4.7.3.6 getMFrames . 22

4.7.3.7 getNFrameRef . 22

4.7.3.8 getSigma0 . 22

4.7.3.9 getSigma1 . 22

4.7.3.10 getV . 22

4.7.3.11 getWEC . 22

4.7.3.12 openStream . 23

4.7.3.13 process . 23

4.7.3.14 syncTS . 24

4.7.4 Member Data Documentation . 25

4.7.4.1 f . 25

4.8 MonitorListener Class Reference . 25

4.8.1 Detailed Description . 25

4.8.2 Constructor & Destructor Documentation . 25

4.8.2.1 MonitorListener . 25

4.8.3 Member Function Documentation . 25

4.8.3.1 refreshGUI . 25

4.9 NALU Class Reference . 26

4.9.1 Detailed Description . 26

4.9.2 Constructor & Destructor Documentation . 26

4.9.2.1 NALU . 26

4.9.3 Member Function Documentation . 26

4.9.3.1 getFrametype . 26

4.9.3.2 getLength . 26

4.9.3.3 getNALUType . 26

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

iv CONTENTS

4.9.3.4 getNRI . 27

4.9.3.5 getView . 27

4.9.3.6 readNALU . 27

4.9.3.7 syncNALU . 28

4.10 PES Class Reference . 28

4.10.1 Detailed Description . 28

4.10.2 Constructor & Destructor Documentation . 28

4.10.2.1 PES . 28

4.10.3 Member Function Documentation . 28

4.10.3.1 getLength . 28

4.10.3.2 getSizeAUX . 28

4.10.3.3 getStreamID . 29

4.10.3.4 readPES . 29

4.10.3.5 syncPES . 29

4.11 PFrame Class Reference . 29

4.11.1 Detailed Description . 30

4.11.2 Member Function Documentation . 30

4.11.2.1 calcAref . 30

4.11.2.2 selfAddListMonitor . 30

4.12 REPORT Class Reference . 31

4.12.1 Detailed Description . 31

4.12.2 Constructor & Destructor Documentation . 31

4.12.2.1 REPORT . 31

4.12.3 Member Function Documentation . 31

4.12.3.1 closeReport . 31

4.12.3.2 openFrameReport . 31

4.12.3.3 writeFrameReport . 32

4.12.4 Member Data Documentation . 32

4.12.4.1 pReport . 32

4.13 TS Class Reference . 32

4.13.1 Detailed Description . 32

4.13.2 Constructor & Destructor Documentation . 32

4.13.2.1 TS . 32

4.13.3 Member Function Documentation . 32

4.13.3.1 getFlagAF . 32

4.13.3.2 getListNALU . 33

4.13.3.3 getListPES . 33

4.13.3.4 getPayloadUnitInd . 33

4.13.3.5 getPID . 34

4.13.3.6 lossDetectionTS . 34

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

CONTENTS v

4.13.3.7 readTS . 34

4.14 VQA Class Reference . 35

4.14.1 Detailed Description . 36

4.14.2 Constructor & Destructor Documentation . 36

4.14.2.1 VQA . 36

4.14.3 Member Function Documentation . 36

4.14.3.1 clacVQ2D . 36

4.14.3.2 clacVQ3D . 36

4.14.3.3 clacVQauxView . 36

4.14.3.4 getListFrame0 . 36

4.14.3.5 getListFrame1 . 36

4.15 yyvrfv Class Reference . 36

4.15.1 Detailed Description . 36

4.15.2 Constructor & Destructor Documentation . 37

4.15.2.1 yyvrfv . 37

4.15.2.2 ∼yyvrfv . 37

5 File Documentation 39

5.1 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.cpp File Reference 39

5.2 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.h File Reference 39

5.3 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.cpp File Reference 40

5.4 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.h File Reference 41

5.5 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.cpp File Reference 42

5.6 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.h File Reference 43

5.7 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.cpp File Reference 43

5.8 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.h File Reference 44

5.9 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.cpp File Reference 45

5.10 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.h File Reference 46

5.11 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.cpp File Reference 46

5.12 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.h File Reference 47

5.13 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/main.cpp File Reference 48

5.13.1 Function Documentation . 48

5.13.1.1 main . 49

5.14 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.cpp File Reference 49

5.15 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.h File Reference 50

5.16 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.cpp File Reference 50

5.17 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.h File Reference 51

5.18 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.cpp File Reference 52

5.19 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.h File Reference 52

5.20 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.cpp File Reference 53

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

vi CONTENTS

5.21 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.h File Reference 54

5.22 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.cpp File Reference 54

5.23 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.h File Reference 55

5.24 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.cpp File Reference 55

5.25 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.h File Reference 56

5.26 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.cpp File Reference 57

5.27 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.h File Reference 58

5.28 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.cpp File Reference 58

5.29 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.h File Reference 59

5.30 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.cpp File Reference 60

5.31 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.h File Reference 61

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

Chapter 1

Class Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AA . 7

AcessUnit . 8

FRAME . 12

BFrame . 11

IFrame . 17

IPFrame . 18

PFrame . 29

MONITOR . 20

MonitorListener . 25

NALU . 26

PES . 28

REPORT . 31

TS . 32

VQA . 35

yyvrfv . 36

2 Class Index

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AA . 7

AcessUnit . 8

BFrame . 11

FRAME . 12

IFrame . 17

IPFrame . 18

MONITOR . 20

MonitorListener . 25

NALU . 26

PES . 28

PFrame . 29

REPORT . 31

TS . 32

VQA . 35

yyvrfv . 36

4 Class Index

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.cpp . 39

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.h . 39

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.cpp . 40

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.h . 41

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.cpp 42

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.h . 43

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.cpp 43

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.h . 44

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.cpp 45

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.h . 46

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.cpp 46

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.h . 47

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/main.cpp . 48

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.cpp 49

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.h 50

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.cpp 50

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.h 51

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.cpp . 52

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.h . 52

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.cpp . 53

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.h . 54

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.cpp 54

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.h . 55

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.cpp 55

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.h 56

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.cpp . 57

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.h . 58

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.cpp . 58

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.h . 59

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.cpp . 60

C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.h . 61

6 File Index

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

Chapter 4

Class Documentation

4.1 AA Class Reference

#include <AA.h>

Public Member Functions

• AA (int icodingOrder, int iviewOrder, float iwEC, float isigma0, float isigma1, float ib, int inframesRef)

• void readAU (FILE ∗f, char ∗p1, char ∗p2, char ∗p3)

Public Attributes

• list< TS > listTS

• char buffTS [188]

4.1.1 Detailed Description

Definition at line 11 of file AA.h.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 AA::AA (int icodingOrder, int iviewOrder, float iwEC, float isigma0, float isigma1, float ib, int inframesRef)

[inline]

Definition at line 25 of file AA.h.

4.1.3 Member Function Documentation

4.1.3.1 void AA::readAU (FILE ∗ f, char ∗ p1, char ∗ p2, char ∗ p3)

Definition at line 21 of file AA.cpp.

8 Class Documentation

Here is the call graph for this function:

4.1.4 Member Data Documentation

4.1.4.1 char AA::buffTS[188]

Definition at line 28 of file AA.h.

4.1.4.2 list<TS> AA::listTS

Definition at line 27 of file AA.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AA.cpp

4.2 AcessUnit Class Reference

#include <AU.h>

Public Member Functions

• AcessUnit (int codingOrder, int viewOrder, float wEC, float sigma0, float sigma1, int nframesRef, int countAux)

• int getCountAuxTS ()

• FRAME getFrame0 ()

• FRAME getFrame1 ()

• int readAU (FILE ∗f, char ∗p1, char ∗p2, char ∗p3)

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.2 AcessUnit Class Reference 9

Public Attributes

• list< TS > listTS

• char buffTS [188]

4.2.1 Detailed Description

Definition at line 17 of file AU.h.

4.2.2 Constructor & Destructor Documentation

4.2.2.1 AcessUnit::AcessUnit (int codingOrder, int viewOrder, float wEC, float sigma0, float sigma1, int nframesRef, int

countAux) [inline]

Definition at line 38 of file AU.h.

4.2.3 Member Function Documentation

4.2.3.1 int AcessUnit::getCountAuxTS () [inline]

Definition at line 52 of file AU.h.

Here is the caller graph for this function:

4.2.3.2 FRAME AcessUnit::getFrame0 () [inline]

Definition at line 56 of file AU.h.

Here is the caller graph for this function:

4.2.3.3 FRAME AcessUnit::getFrame1 () [inline]

Definition at line 60 of file AU.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

10 Class Documentation

Here is the caller graph for this function:

4.2.3.4 int AcessUnit::readAU (FILE ∗ f, char ∗ p1, char ∗ p2, char ∗ p3)

Definition at line 21 of file AU.cpp.

Here is the call graph for this function:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.3 BFrame Class Reference 11

Here is the caller graph for this function:

4.2.4 Member Data Documentation

4.2.4.1 char AcessUnit::buffTS[188]

Definition at line 64 of file AU.h.

4.2.4.2 list<TS> AcessUnit::listTS

Definition at line 49 of file AU.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.cpp

4.3 BFrame Class Reference

#include <BFrame.h>

Inheritance diagram for BFrame:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

12 Class Documentation

Collaboration diagram for BFrame:

Public Member Functions

• void selfAddListMonitor (MONITOR ∗monitor)

• void calcAref (vector< FRAME > ∗listFrames, float b, int nFrameRef)

4.3.1 Detailed Description

Definition at line 9 of file BFrame.h.

4.3.2 Member Function Documentation

4.3.2.1 void BFrame::calcAref (vector< FRAME > ∗ listFrames, float b, int nFrameRef) [virtual]

Reimplemented from FRAME.

4.3.2.2 void BFrame::selfAddListMonitor (MONITOR ∗ monitor) [virtual]

Reimplemented from FRAME.

Definition at line 20 of file BFrame.cpp.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.cpp

4.4 FRAME Class Reference

#include <FRAME.h>

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.4 FRAME Class Reference 13

Inheritance diagram for FRAME:

Public Member Functions

• FRAME (char type, int size, int view, int packNum, int flagPacketLoss, int nPackLoss, int packlenAv, float

wLoc, float wEP, float wEC)

• FRAME ()

• char getType ()

• int getSize ()

• int getView ()

• int getPackNum ()

• int getNPackLoss ()

• int getPackLenAV ()

• float getWLOC ()

• float getAref ()

• float getWEP ()

• float getWEC ()

• int getFlagPacketLoss ()

• float getD ()

• float getDi ()

• float getDpi ()

• float getDpe ()

• void setD (float d)

• void setDpi (float dpi)

• void setDi (float di)

• void setAref (float aref)

• void setDpe (float dpe)

• virtual void selfAddListMonitor (MONITOR ∗monitor)

• virtual void calcD ()

• void calcDi (float sigma0, float sigma1)

• void calcDpi (float sigma0, float sigma1, int nFramesRef, float b)

• virtual void calcAref (vector< FRAME > ∗listFrames, float b, int nFrameRef)

4.4.1 Detailed Description

Definition at line 9 of file FRAME.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

14 Class Documentation

4.4.2 Constructor & Destructor Documentation

4.4.2.1 FRAME::FRAME (char type, int size, int view, int packNum, int flagPacketLoss, int nPackLoss, int packlenAv, float

wLoc, float wEP, float wEC) [inline]

Definition at line 30 of file FRAME.h.

4.4.2.2 FRAME::FRAME () [inline]

Definition at line 47 of file FRAME.h.

Here is the caller graph for this function:

4.4.3 Member Function Documentation

4.4.3.1 void FRAME::calcAref (vector< FRAME > ∗ listFrames, float b, int nFrameRef) [virtual]

Reimplemented in BFrame, IFrame, and PFrame.

Definition at line 4 of file BFrame.cpp.

Here is the caller graph for this function:

4.4.3.2 void FRAME::calcD () [virtual]

Definition at line 17 of file IFrame.cpp.

4.4.3.3 void FRAME::calcDi (float sigma0, float sigma1)

Definition at line 38 of file FRAME.cpp.

4.4.3.4 void FRAME::calcDpi (float sigma0, float sigma1, int nFramesRef, float b)

Definition at line 49 of file FRAME.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.4 FRAME Class Reference 15

4.4.3.5 float FRAME::getAref () [inline]

Definition at line 77 of file FRAME.h.

4.4.3.6 float FRAME::getD () [inline]

Definition at line 93 of file FRAME.h.

4.4.3.7 float FRAME::getDi () [inline]

Definition at line 97 of file FRAME.h.

4.4.3.8 float FRAME::getDpe () [inline]

Definition at line 105 of file FRAME.h.

4.4.3.9 float FRAME::getDpi () [inline]

Definition at line 101 of file FRAME.h.

4.4.3.10 int FRAME::getFlagPacketLoss () [inline]

Definition at line 89 of file FRAME.h.

4.4.3.11 int FRAME::getNPackLoss () [inline]

Definition at line 65 of file FRAME.h.

4.4.3.12 int FRAME::getPackLenAV () [inline]

Definition at line 69 of file FRAME.h.

4.4.3.13 int FRAME::getPackNum () [inline]

Definition at line 61 of file FRAME.h.

4.4.3.14 int FRAME::getSize () [inline]

Definition at line 53 of file FRAME.h.

4.4.3.15 char FRAME::getType () [inline]

Definition at line 50 of file FRAME.h.

4.4.3.16 int FRAME::getView () [inline]

Definition at line 57 of file FRAME.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

16 Class Documentation

Here is the caller graph for this function:

4.4.3.17 float FRAME::getWEC () [inline]

Definition at line 85 of file FRAME.h.

4.4.3.18 float FRAME::getWEP () [inline]

Definition at line 81 of file FRAME.h.

4.4.3.19 float FRAME::getWLOC () [inline]

Definition at line 73 of file FRAME.h.

4.4.3.20 void FRAME::selfAddListMonitor (MONITOR ∗ monitor) [virtual]

Reimplemented in BFrame, IFrame, PFrame, and IPFrame.

Definition at line 5 of file IFrame.cpp.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.3.21 void FRAME::setAref (float aref) [inline]

Definition at line 115 of file FRAME.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.5 IFrame Class Reference 17

4.4.3.22 void FRAME::setD (float d) [inline]

Definition at line 109 of file FRAME.h.

4.4.3.23 void FRAME::setDi (float di) [inline]

Definition at line 113 of file FRAME.h.

4.4.3.24 void FRAME::setDpe (float dpe) [inline]

Definition at line 117 of file FRAME.h.

4.4.3.25 void FRAME::setDpi (float dpi) [inline]

Definition at line 111 of file FRAME.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.cpp

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/FRAME.cpp

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.cpp

4.5 IFrame Class Reference

#include <IFrame.h>

Inheritance diagram for IFrame:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

18 Class Documentation

Collaboration diagram for IFrame:

Public Member Functions

• void selfAddListMonitor (MONITOR ∗monitor)

• void calcAref (vector< FRAME > ∗listFrames, float b, int nFrameRef)

4.5.1 Detailed Description

Definition at line 10 of file IFrame.h.

4.5.2 Member Function Documentation

4.5.2.1 void IFrame::calcAref (vector< FRAME > ∗ listFrames, float b, int nFrameRef) [virtual]

Reimplemented from FRAME.

4.5.2.2 void IFrame::selfAddListMonitor (MONITOR ∗ monitor) [virtual]

Reimplemented from FRAME.

The documentation for this class was generated from the following file:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.h

4.6 IPFrame Class Reference

#include <IPFrame.h>

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.6 IPFrame Class Reference 19

Inheritance diagram for IPFrame:

Collaboration diagram for IPFrame:

Public Member Functions

• void selfAddListMonitor (MONITOR ∗monitor)

4.6.1 Detailed Description

Definition at line 11 of file IPFrame.h.

4.6.2 Member Function Documentation

4.6.2.1 void IPFrame::selfAddListMonitor (MONITOR ∗ monitor) [virtual]

Reimplemented from FRAME.

Definition at line 5 of file IPFrame.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

20 Class Documentation

Here is the call graph for this function:

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.cpp

4.7 MONITOR Class Reference

#include <MONITOR.h>

Public Member Functions

• MONITOR ()

• MONITOR (float wEC, int GOPstructure, int nFrameRef, int Mframes)

• float getWEC ()

• int getMFrames ()

• int getGOPstructure ()

• int getNFrameRef ()

• float getB ()

• float getSigma0 ()

• float getSigma1 ()

• int getH ()

• int getV ()

• int openStream (int argc, char ∗∗argv)

• void process ()

• FILE ∗ syncTS (FILE ∗f)

• void addListFrames (FRAME ∗frame)

• void addListFramesPI (FRAME ∗frame)

Public Attributes

• FILE ∗ f

4.7.1 Detailed Description

Class that runs the processing routines for quality monitoring.

Version

1.0

Author

Bruno Feitor

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.7 MONITOR Class Reference 21

4.7.2 Constructor & Destructor Documentation

4.7.2.1 MONITOR::MONITOR () [inline]

Definition at line 49 of file MONITOR.h.

4.7.2.2 MONITOR::MONITOR (float wEC, int GOPstructure, int nFrameRef, int Mframes) [inline]

Definition at line 51 of file MONITOR.h.

4.7.3 Member Function Documentation

4.7.3.1 void MONITOR::addListFrames (FRAME ∗ frame)

Definition at line 80 of file MONITOR.cpp.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.3.2 void MONITOR::addListFramesPI (FRAME ∗ frame)

Definition at line 88 of file MONITOR.cpp.

Here is the call graph for this function:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

22 Class Documentation

Here is the caller graph for this function:

4.7.3.3 float MONITOR::getB () [inline]

Definition at line 78 of file MONITOR.h.

4.7.3.4 int MONITOR::getGOPstructure () [inline]

Definition at line 70 of file MONITOR.h.

4.7.3.5 int MONITOR::getH () [inline]

Definition at line 90 of file MONITOR.h.

4.7.3.6 int MONITOR::getMFrames () [inline]

Definition at line 66 of file MONITOR.h.

4.7.3.7 int MONITOR::getNFrameRef () [inline]

Definition at line 74 of file MONITOR.h.

4.7.3.8 float MONITOR::getSigma0 () [inline]

Definition at line 82 of file MONITOR.h.

4.7.3.9 float MONITOR::getSigma1 () [inline]

Definition at line 86 of file MONITOR.h.

4.7.3.10 int MONITOR::getV () [inline]

Definition at line 94 of file MONITOR.h.

4.7.3.11 float MONITOR::getWEC () [inline]

Definition at line 62 of file MONITOR.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.7 MONITOR Class Reference 23

4.7.3.12 int MONITOR::openStream (int argc, char ∗∗ argv)

Parameters

argc string vector that includes all the input parameters to send to aplication.

argv string vector that includes all the input parameters to send to aplication.

Returns

exception

Definition at line 10 of file MONITOR.cpp.

Here is the caller graph for this function:

4.7.3.13 void MONITOR::process ()

This is the processing software’s main routine.

Definition at line 27 of file MONITOR.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

24 Class Documentation

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.3.14 FILE ∗ MONITOR::syncTS (FILE ∗ f)

This method stands for the synchronization with the TS stream packets.

Definition at line 96 of file MONITOR.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.8 MonitorListener Class Reference 25

Here is the caller graph for this function:

4.7.4 Member Data Documentation

4.7.4.1 FILE∗ MONITOR::f

Definition at line 60 of file MONITOR.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.cpp

4.8 MonitorListener Class Reference

#include <MonitorListener.h>

Public Member Functions

• MonitorListener ()

• virtual void refreshGUI ()=0

4.8.1 Detailed Description

Definition at line 6 of file MonitorListener.h.

4.8.2 Constructor & Destructor Documentation

4.8.2.1 MonitorListener::MonitorListener () [inline]

Definition at line 13 of file MonitorListener.h.

4.8.3 Member Function Documentation

4.8.3.1 virtual void MonitorListener::refreshGUI () [pure virtual]

The documentation for this class was generated from the following file:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.h

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

26 Class Documentation

4.9 NALU Class Reference

#include <NALU.h>

Public Member Functions

• NALU ()

• int getNALUType ()

• int getView ()

• int getNRI ()

• int getLength ()

• char getFrametype ()

• int syncNALU (char ∗pbuff, int endPES)

• void readNALU (char ∗pbuff, int beginNALU)

4.9.1 Detailed Description

Definition at line 21 of file NALU.h.

4.9.2 Constructor & Destructor Documentation

4.9.2.1 NALU::NALU () [inline]

Definition at line 35 of file NALU.h.

4.9.3 Member Function Documentation

4.9.3.1 char NALU::getFrametype () [inline]

Definition at line 54 of file NALU.h.

Here is the caller graph for this function:

4.9.3.2 int NALU::getLength () [inline]

Definition at line 50 of file NALU.h.

4.9.3.3 int NALU::getNALUType () [inline]

Definition at line 38 of file NALU.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.9 NALU Class Reference 27

Here is the caller graph for this function:

4.9.3.4 int NALU::getNRI () [inline]

Definition at line 46 of file NALU.h.

Here is the caller graph for this function:

4.9.3.5 int NALU::getView () [inline]

Definition at line 42 of file NALU.h.

Here is the caller graph for this function:

4.9.3.6 void NALU::readNALU (char ∗ pbuff, int beginNALU)

Definition at line 25 of file NALU.cpp.

Here is the caller graph for this function:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

28 Class Documentation

4.9.3.7 int NALU::syncNALU (char ∗ pbuff, int endPES)

Definition at line 5 of file NALU.cpp.

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/NALU.cpp

4.10 PES Class Reference

#include <PES.h>

Public Member Functions

• PES ()

• int getLength ()

• int getStreamID ()

• int getSizeAUX ()

• int syncPES (char ∗pbuff, int sizeAF)

• int readPES (char ∗pbuff, int beginPES)

4.10.1 Detailed Description

Definition at line 6 of file PES.h.

4.10.2 Constructor & Destructor Documentation

4.10.2.1 PES::PES () [inline]

Definition at line 17 of file PES.h.

4.10.3 Member Function Documentation

4.10.3.1 int PES::getLength () [inline]

Definition at line 19 of file PES.h.

4.10.3.2 int PES::getSizeAUX () [inline]

Definition at line 27 of file PES.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.11 PFrame Class Reference 29

4.10.3.3 int PES::getStreamID () [inline]

Definition at line 23 of file PES.h.

4.10.3.4 int PES::readPES (char ∗ pbuff, int beginPES)

Definition at line 40 of file PES.cpp.

Here is the caller graph for this function:

4.10.3.5 int PES::syncPES (char ∗ pbuff, int sizeAF)

Definition at line 18 of file PES.cpp.

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.cpp

4.11 PFrame Class Reference

#include <PFrame.h>

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

30 Class Documentation

Inheritance diagram for PFrame:

Collaboration diagram for PFrame:

Public Member Functions

• void selfAddListMonitor (MONITOR ∗monitor)

• void calcAref (vector< FRAME > ∗listFrames, float b, int nFrameRef)

4.11.1 Detailed Description

Definition at line 8 of file PFrame.h.

4.11.2 Member Function Documentation

4.11.2.1 void PFrame::calcAref (vector< FRAME > ∗ listFrames, float b, int nFrameRef) [virtual]

Reimplemented from FRAME.

4.11.2.2 void PFrame::selfAddListMonitor (MONITOR ∗ monitor) [virtual]

Reimplemented from FRAME.

Definition at line 5 of file PFrame.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.12 REPORT Class Reference 31

Here is the call graph for this function:

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.cpp

4.12 REPORT Class Reference

#include <REPORT.h>

Public Member Functions

• REPORT ()

• void openFrameReport ()

• void writeFrameReport (vector< FRAME > ∗listFrame0, vector< FRAME > ∗listFrame1)

• void closeReport ()

Public Attributes

• FILE ∗ pReport

4.12.1 Detailed Description

Definition at line 9 of file REPORT.h.

4.12.2 Constructor & Destructor Documentation

4.12.2.1 REPORT::REPORT () [inline]

Definition at line 15 of file REPORT.h.

4.12.3 Member Function Documentation

4.12.3.1 void REPORT::closeReport ()

Definition at line 19 of file REPORT.cpp.

4.12.3.2 void REPORT::openFrameReport ()

Definition at line 4 of file REPORT.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

32 Class Documentation

4.12.3.3 void REPORT::writeFrameReport (vector< FRAME > ∗ listFrame0, vector< FRAME > ∗ listFrame1)

Definition at line 12 of file REPORT.cpp.

4.12.4 Member Data Documentation

4.12.4.1 FILE∗ REPORT::pReport

Definition at line 17 of file REPORT.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/REPORT.cpp

4.13 TS Class Reference

#include <TS.h>

Public Member Functions

• TS (int PID, int flagAF, int sizeAF, int transErrorInd, int payloadUnitInd, int transPrior, int tranSacramb, int

contCount, int flagNALU, list< PES > listPES, list< NALU > listNAL)

• int getPID ()

• int getPayloadUnitInd ()

• int getFlagAF ()

• list< PES > getListPES ()

• list< NALU > getListNALU ()

• int lossDetectionTS (int countAux)

Static Public Member Functions

• static TS readTS (char ∗pbuff)

4.13.1 Detailed Description

Definition at line 10 of file TS.h.

4.13.2 Constructor & Destructor Documentation

4.13.2.1 TS::TS (int PID, int flagAF, int sizeAF, int transErrorInd, int payloadUnitInd, int transPrior, int tranSacramb, int

contCount, int flagNALU, list< PES > listPES, list< NALU > listNAL) [inline]

Definition at line 28 of file TS.h.

4.13.3 Member Function Documentation

4.13.3.1 int TS::getFlagAF () [inline]

Definition at line 51 of file TS.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.13 TS Class Reference 33

Here is the caller graph for this function:

4.13.3.2 list<NALU> TS::getListNALU () [inline]

Definition at line 59 of file TS.h.

Here is the caller graph for this function:

4.13.3.3 list<PES> TS::getListPES () [inline]

Definition at line 55 of file TS.h.

Here is the caller graph for this function:

4.13.3.4 int TS::getPayloadUnitInd () [inline]

Definition at line 47 of file TS.h.

Here is the caller graph for this function:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

34 Class Documentation

4.13.3.5 int TS::getPID () [inline]

Definition at line 43 of file TS.h.

Here is the caller graph for this function:

4.13.3.6 int TS::lossDetectionTS (int countAux)

Definition at line 70 of file TS.cpp.

Here is the caller graph for this function:

4.13.3.7 TS TS::readTS (char ∗ pbuff) [static]

Definition at line 20 of file TS.cpp.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.14 VQA Class Reference 35

Here is the call graph for this function:

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.cpp

4.14 VQA Class Reference

#include <VQA.h>

Public Member Functions

• VQA ()

• vector< FRAME > getListFrame0 ()

• vector< FRAME > getListFrame1 ()

• float clacVQ2D ()

• float clacVQauxView ()

• float clacVQ3D ()

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

36 Class Documentation

4.14.1 Detailed Description

Definition at line 10 of file VQA.h.

4.14.2 Constructor & Destructor Documentation

4.14.2.1 VQA::VQA () [inline]

Definition at line 32 of file VQA.h.

4.14.3 Member Function Documentation

4.14.3.1 float VQA::clacVQ2D ()

Definition at line 20 of file VQA.cpp.

4.14.3.2 float VQA::clacVQ3D ()

Definition at line 36 of file VQA.cpp.

4.14.3.3 float VQA::clacVQauxView ()

Definition at line 28 of file VQA.cpp.

4.14.3.4 vector<FRAME> VQA::getListFrame0 () [inline]

Definition at line 34 of file VQA.h.

4.14.3.5 vector<FRAME> VQA::getListFrame1 () [inline]

Definition at line 37 of file VQA.h.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.cpp

4.15 yyvrfv Class Reference

#include <yyvrfv.h>

Public Member Functions

• yyvrfv (void)

• ∼yyvrfv (void)

4.15.1 Detailed Description

Definition at line 2 of file yyvrfv.h.

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

4.15 yyvrfv Class Reference 37

4.15.2 Constructor & Destructor Documentation

4.15.2.1 yyvrfv::yyvrfv (void)

Definition at line 4 of file yyvrfv.cpp.

4.15.2.2 yyvrfv::∼yyvrfv (void)

Definition at line 9 of file yyvrfv.cpp.

The documentation for this class was generated from the following files:

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.h

• C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.cpp

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

38 Class Documentation

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

Chapter 5

File Documentation

5.1 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/AA.cpp File Reference

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

#include "NALU.h"

#include "PES.h"

#include "TS.h"

#include "AA.h"

Include dependency graph for AA.cpp:

5.2 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/AA.h File Reference

#include <list>

#include "NALU.h"

#include "PES.h"

#include "TS.h"

40 File Documentation

Include dependency graph for AA.h:

This graph shows which files directly or indirectly include this file:

Classes

• class AA

5.3 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/AU.cpp File Reference

#include <cstdlib>

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.4 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/AU.h File Reference 41

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

#include "NALU.h"

#include "PES.h"

#include "TS.h"

#include "AU.h"

Include dependency graph for AU.cpp:

5.4 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/AU.h File Reference

#include "NALU.h"

#include "PES.h"

#include "TS.h"

#include "FRAME.h"

#include "IPFrame.h"

#include "IFrame.h"

#include "PFrame.h"

#include "BFrame.h"

Include dependency graph for AU.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

42 File Documentation

This graph shows which files directly or indirectly include this file:

Classes

• class AcessUnit

5.5 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/BFrame.cpp File Reference

#include "BFrame.h"

Include dependency graph for BFrame.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.6 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/BFrame.h File Reference 43

5.6 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/BFrame.h File Reference

#include "FRAME.h"

#include <vector>

Include dependency graph for BFrame.h:

This graph shows which files directly or indirectly include this file:

Classes

• class BFrame

5.7 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/FRAME.cpp File Reference

#include <cstdlib>

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

44 File Documentation

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

#include "PES.h"

#include "FRAME.h"

#include "MONITOR.h"

Include dependency graph for FRAME.cpp:

5.8 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/FRAME.h File Reference

#include <vector>

Include dependency graph for FRAME.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.9 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IFrame.cpp File Reference 45

This graph shows which files directly or indirectly include this file:

Classes

• class FRAME

5.9 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/IFrame.cpp File Reference

#include "IFrame.h"

Include dependency graph for IFrame.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

46 File Documentation

5.10 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/IFrame.h File Reference

#include "IPFrame.h"

#include "MONITOR.h"

Include dependency graph for IFrame.h:

This graph shows which files directly or indirectly include this file:

Classes

• class IFrame

5.11 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/IPFrame.cpp File Reference

#include "IPFrame.h"

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.12 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/IPFrame.h File Reference 47

#include "MONITOR.h"

Include dependency graph for IPFrame.cpp:

5.12 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/IPFrame.h File Reference

#include "FRAME.h"

Include dependency graph for IPFrame.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

48 File Documentation

This graph shows which files directly or indirectly include this file:

Classes

• class IPFrame

5.13 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/main.cpp File Reference

#include "MONITOR.h"

Include dependency graph for main.cpp:

Functions

• int main (int argc, char ∗∗argv)

5.13.1 Function Documentation

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.14 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MONITOR.cpp File Reference 49

5.13.1.1 int main (int argc, char ∗∗ argv)

Definition at line 6 of file main.cpp.

Here is the call graph for this function:

5.14 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/MONITOR.cpp File Refer-

ence

#include "MONITOR.h"

Include dependency graph for MONITOR.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

50 File Documentation

5.15 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/MONITOR.h File Reference

#include "AU.h"

#include "VQA.h"

#include <vector>

Include dependency graph for MONITOR.h:

This graph shows which files directly or indirectly include this file:

Classes

• class MONITOR

5.16 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/MonitorListener.cpp File Ref-

erence

#include "MonitorListener.h"

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.17 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/MonitorListener.h File Reference 51

Include dependency graph for MonitorListener.cpp:

5.17 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/MonitorListener.h File Refer-

ence

This graph shows which files directly or indirectly include this file:

Classes

• class MonitorListener

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

52 File Documentation

5.18 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/NALU.cpp File Reference

#include "NALU.h"

Include dependency graph for NALU.cpp:

5.19 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/NALU.h File Reference

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

Include dependency graph for NALU.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.20 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PES.cpp File Reference 53

This graph shows which files directly or indirectly include this file:

Classes

• class NALU

5.20 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/PES.cpp File Reference

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

#include "PES.h"

Include dependency graph for PES.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

54 File Documentation

5.21 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/PES.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class PES

5.22 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/PFrame.cpp File Reference

#include "PFrame.h"

Include dependency graph for PFrame.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.23 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/PFrame.h File Reference 55

5.23 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/PFrame.h File Reference

#include "IPFrame.h"

#include "MONITOR.h"

Include dependency graph for PFrame.h:

This graph shows which files directly or indirectly include this file:

Classes

• class PFrame

5.24 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/REPORT.cpp File Reference

#include "REPORT.h"

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

56 File Documentation

Include dependency graph for REPORT.cpp:

5.25 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/REPORT.h File Reference

#include "FRAME.h"

#include <vector>

Include dependency graph for REPORT.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.26 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/TS.cpp File Reference 57

This graph shows which files directly or indirectly include this file:

Classes

• class REPORT

5.26 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/TS.cpp File Reference

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <memory.h>

#include <netinet/in.h>

#include <windows.h>

#include <list>

#include "NALU.h"

#include "PES.h"

#include "TS.h"

Include dependency graph for TS.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

58 File Documentation

5.27 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/TS.h File Reference

#include <list>

#include "NALU.h"

#include "PES.h"

Include dependency graph for TS.h:

This graph shows which files directly or indirectly include this file:

Classes

• class TS

5.28 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/VQA.cpp File Reference

#include "VQA.h"

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.29 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/VQA.h File Reference 59

Include dependency graph for VQA.cpp:

5.29 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/VQA.h File Reference

#include "AU.h"

#include "FRAME.h"

#include <vector>

Include dependency graph for VQA.h:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

60 File Documentation

This graph shows which files directly or indirectly include this file:

Classes

• class VQA

5.30 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/yyvrfv.cpp File Reference

#include "yyvrfv.h"

Include dependency graph for yyvrfv.cpp:

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

5.31 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM_feitor_V6/yyvrfv.h File Reference 61

5.31 C:/Users/Feitor IT/Dropbox/PS/parser3DVQM feitor V6/yyvrfv.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class yyvrfv

Generated on Fri Jun 22 2012 17:08:08 for My Project by Doxygen

