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Abstract 

The aim of this paper is to investigate if the uncertainty associated with the classification of surface elements 
into the classification of landscape units increases the results accuracy. To this end, a hybrid classification 
method is developed, incorporating uncertainty information in the classification of very high spatial resolution 
multispectral satellite images, to obtain a map of landscape units. The developed classification methodology 
includes the following steps: 1) a pixel-based hard classification with a probabilistic Bayesian classifier; 2) 
computation of the posterior probabilities and quantification of the classification uncertainty using an 
uncertainty measure; 3) image segmentation; and 4) object classification based on decision rules. The 
classification of the resulting objects into landscape units is performed considering a set of decision rules that 
incorporate the pixel based classification uncertainty. The proposed methodology was tested on the 
classification of an IKONOS satellite image. The accuracy of the classification was computed using an error 
matrix. The comparison between the results obtained with the proposed approach and those obtained without 
considering the classification uncertainty revealed a 12% increase in the overall accuracy. This shows that the 
information about uncertainty can be valuable when making decisions and can actually increase the accuracy 
of the classification results. 
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AMS Subject Classification:   

1. Introduction 

Very High Spatial Resolution (VHSR) images opened some new challenges to the remote sensing community 
and led to the development of new studies to improve the identification of land cover features. These images 
allow the identification of smaller objects and landscape units, and therefore finer maps can be produced. 
Although, despite their great potential, they also present drawbacks and limitations, such as the increase of the 
spectral variability and the amount of shadows, as well as the enormous amount of data (Blaschke et al. 2004, 
Goetz et al. 2003). In addition, since these images have lower spectral resolution than the images obtained 
with sensors with smaller spatial resolution, such as the Landsat-TM, some limitations occur, for example, in 
the characterization of forest cover, increasing the difficulty in separating different forest species (Goetz et al. 
2003). 

Several studies show that traditional pixel-based classification methods are not suitable to identify many 
types of land cover classes in VHSR images (e.g., Scheiewe et al. 2001, Carleer and Wolff 2004). The 
complex relationships between pixels and objects, as well as the increased number of Landscape Units (LU) 
that are mosaics of single entities or spatial arrangements of land cover classes, like Agro-forest areas, impose 
new demands and the need to develop new methods that incorporate shape and context, which are some of the 
main clues used by a human interpreter (e.g., Wang et al. 2004, Plantier and Caetano 2007), as well as a 
closer integration of remote sensing and Geographic Information Systems (GIS) (Donay et al. 2001, Blaschke 
et al. 2004). Object-based classification methods and hybrid methods composed of pixel-based and object-
based classifications have been proposed to incorporate such spatial information into the classification 
procedure (e.g., Wang et al. 2004, Carleer and Wolff 2004, Gonçalves and Caetano 2004; Guerrero et al. 
2006; Plantier and Caetano 2007). However, as highlighted by Guerrero et al. (2006), the difficulty in 
discriminating forest species and Mediterranean landscapes with an object-based classification using only the 
multispectral bands of VHSR images still remains.  

During the last decade considerable research has also been done in the development of soft classifiers to 
extract information from remote sensing images (e.g., Maselli et al. 1995, Foody 2000, Brown et al. 2000, 
Zhang and Foody 2001, Ibrahim et al. 2005, Doan and Foody 2007). These methods assign, to each pixel or 
object, different degrees of probability, possibility or membership associated with the several classes. These 
extra data provide additional land cover information at the pixel or object level and allow the assessment of 
the classification uncertainty. Within the context of remote sensing, several semantics may be associated with 
the degrees of probability, possibility or membership obtained with these classifiers. These may represent 
partial membership of the classes to the spatial units, as in the case of mixed pixels or objects; a degree of 
similarity between what exists in the ground and the pure classes; or the uncertainty associated with the 
correct allocation of a class to a pixel. However, in practice, it is not generally possible to know which 
interpretation is the correct one, since the spectral responses are used to determine what exists in reality and 
therefore the real conditions are not known in advance. For this reason, in most cases, this additional 
information actually reveals the degree of uncertainty associated with the correct allocation of a class to a 
pixel, even though this information is frequently used to estimate the mixture between classes (e.g., Zhang 
and Foody 2001, Maselli et al. 1996, Bastin 1997).  

The classification of VHSR images with a hybrid classification approach that combines pixels and objects 
has shown to be suitable for the identification of LU classes that contain a variety of land cover objects (e.g., 
Wang et al. 2004, Plantier and Caetano 2007), but the integration of the classification uncertainty in this 
process has never been investigated. Since it is difficult to discriminate between different species of forest 
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with VHSR images (e.g., Goetz et al. 2003, Carleer and Wolff 2004), this paper analyses whether the 
introduction of uncertainty information in the hybrid classification process increases the accuracy of LU 
classification and enables the identification of the main forest species in Portugal.  

The new hybrid classification method presented in this study involves two steps: (1) a pixel based 
classification to obtain a Surface Elements Map (SEM), containing the elementary entities, like crown trees 
and parts of buildings, that are the basic units of landscape, called Surface Elements (SE); (2) an object-based 
classification to obtain a Landscape Units Map (LUM), on a 1:10 000 scale, presenting the spatial patterns of 
the LU classes. The pixel based classification was performed with a probabilistic Bayesian classifier similar to 
the maximum likelihood classifier. The posterior probabilities associated to the classes were then computed 
for all pixels, and were used to evaluate the classification uncertainty, for each pixel, with an uncertainty 
measure. This uncertainty information was used in the creation of a LUM from the SEM, considering a set of 
decision rules that incorporate the arrangement of the SE classification within each object and the degree of 
uncertainty given by the uncertainty measure. The main objective of integrating uncertainty in the 
classification process is to avoid the use of misclassified SE in the classification of the LU classes. The results 
are then compared with the ones obtained with a similar method where uncertainty is not considered. With 
this approach the final LUM is in the vector format, which is well suited to GIS users. 
 

2. Study area and data 

The study was conducted in a rural area with a smooth topographic relief, located in a transition zone between 
the centre and south of Portugal, which includes diverse landscapes representing Mediterranean environments. 
The area is mainly occupied by agriculture, pastures, forest and agro-forestry areas, where the dominant forest 
species are eucalyptus, coniferous and cork trees. An image obtained by the IKONOS sensor was used, with a 
spatial resolution of respectively 1 m in the panchromatic mode and 4 m in the multi-spectral mode (XS). The 
product acquired was the Geo Ortho Kit and the study was performed using the four multi-spectral bands. The 
image acquisition details are presented in table 1. The geometric correction of the multi-spectral image 
consisted of its orthorectification. The average quadratic error obtained for the geometric correction was 1.39 
m, inferior to half the pixel size, which guarantees an accurate geo-referencing. Pixels in the image are 
recorded in 16 bits to keep the 11 bits original image information. 

Since in unitemporal studies carried out in regions with no significant topographic relief, and presenting 
uniform atmospheric conditions in the image data, the radiometric corrections do not improve the results 
(Caetano 1995), no radiometric corrections were applied to the image. 

3. Methodology 

The main goal of the classification is to obtain a LUM on a 1:10 000 scale that includes the main forest 
species of the Portuguese mainland, using a new hybrid classification approach that integrates uncertainty 
information. To determine if the inclusion of information about the SE classification uncertainty increases the 
accuracy of the LU classification, a similar method, where the classification uncertainty is not considered, was 
performed. For this reason, two hybrid classification methods are presented in this study. The first method 
introduces the uncertainty in the classification process and includes the following steps: 1) pixel-based 
classification; 2) evaluation of the previous classification uncertainty; 3) image segmentation and 4) object 
classification based on decision rules. The second classification method does not take uncertainty into 
consideration and includes three steps: 1) pixel-based classification of the image; 2) image segmentation and 
3) object classification based on decision rules. This pixel/object combined approach was initially presented in 
Plantier and Caetano (2007). Since the goal is to evaluate if the introduction of the uncertainty information in 
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the classification of LU can increase the results accuracy, the paper focuses mainly on the first methodology 
(see figure 1).  

3.1 Classification with uncertainty 

3.1.1 Surface elements map 

To identify and map the SE a pixel-based classification of the image was performed using a Bayesian 
classifier similar to the maximum likelihood classifier. The traditional use of this classification method 
assigns each pixel to the class corresponding to the highest probability density function value. However, 
posterior probabilities can be computed with the probability density functions, which may be interpreted as 
representing the proportional cover of the classes in each pixel or indicators of the uncertainty associated with 
the pixel allocation to the classes (e.g., Ibrahim et al. 2005, Shi et al. 1999). The second interpretation is used 
in this paper, where the posterior probabilities are used to compute classification uncertainty measures. 

Before the classification itself, several preliminary processing steps were carried out. First, an analysis of 
the image by a human interpreter was made, to define the most representative classes and their SE. Since the 
main goal was to discriminate the dominant forest species of the region, the nomenclature used contains 
mainly classes corresponding to the dominant forest of the Portuguese mainland. The SE classes used in this 
study are: Eucalyptus Trees (ET); Cork Trees (CKT), Coniferous Trees (CFT); Shadows (S); Shallow Water 
(SW), Deep Water (DW), Herbaceous Vegetation (HV), Sparse Herbaceous Vegetation (SHV) and Non-
Vegetated Area (NVA).  

The second step was the establishment of the protocol to select the training and testing sample elements. 
The training and testing dataset consisted in a semi-random selection of sites. A human interpreter delimited 
twenty five polygons for each class and a stratified random selection of 300 samples per class was performed: 
one half was used to train the classifier and the other half to test it. The sample unit was the pixel. The total 
sample size included 2700 pixels, corresponding to 5% of the pixels inside the chosen polygons. Only pixels 
representative of pure SE were considered (Plantier and Caetano 2007). This testing set presented a spectral 
variability in class response very similar to the training set and was used to evaluate the classifier’s behaviour. 

To evaluate the classification accuracy a second testing set was used. A stratified random sampling of 100 
pixels per class was selected considering the entire image scene, which also included mixed pixels. The 
number of pixels was chosen to obtain a standard error of 0.05 for the estimation of the accuracy indexes of 
each class (Stehman 2001). Each land cover class was sampled independently. Hereafter, the first testing set, 
which was used to assess the classifier performance, is referred to as testing set 1, while the one used to 
evaluate the map accuracy is referred to as testing set 2.  

The accuracy assessment was made with an error matrix, where the ijp  entry in the matrix is the 

estimation, obtained from the sample data, of the proportion of pixels that are class i in the map and class j in 
the reference. For a stratified random sample considering the mapped land-cover classes as strata, 

( / )( / )ij ij i ip n n N N+ += , where ijn  is the number of sample pixels classified as map class i and reference class 

j, +in is the sample size in class i, +iN  is the population size in class i  and N is the total number of pixels in 

the map (Stehman and Czaplewski 1998). Accuracy parameters can be estimated using the ijp  entries in the 

error matrix. When considering proportions, the “user’s accuracy” corresponds to the conditional probability 
of correctly classifying a location given that it has been mapped as class i , referred here as the Conditional 
Probability of the Map (CPM) and the “producer’s accuracy “,which is the conditional probability of having 
correctly mapped a location given that it is truly class j , is the Conditional Probability of the Reference 
(CPR) (Stehman and Czaplewski 2003). 
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3.1.2 Uncertainty 

Even though the posterior probabilities already provide some information about the pixel-based classification 
uncertainty, another indicator of the uncertainty was used, which can be applied to possibility distributions or 
probabilities distributions. This uncertainty measure is available in the commercial software IDRISI and is 
given by 

                                        
( ) 1

1,...,
max

1
1

1

=

=
−

= −
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∑
n
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i
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i n
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where ip  (i=1,…,n) are the probabilities associated with the several classes and n is the number of classes 
under consideration. Since in this study a pixel-based classification with a probabilistic Bayesian classifier 

was used,∑
=

=
n

i

ip
1

1. This uncertainty measure assumes values in the interval [0,1] and only depends on the 

maximum probability and the total number of classes. The numerator of the second term expresses the 
difference between the maximum probability assigned to a class and the probability that would be associated 

with the classes if a total dispersion for all classes occurred, that is, a probability of 
1

n
 was assigned to all 

classes. The denominator expresses the extreme case of the numerator, where the maximum probability is one 
(and thus a total commitment to a single class occurs). The ratio of these two quantities expresses the degree 
of commitment to a specific class relative to the largest possible commitment (Eastman 2006). The 
classification uncertainty is thus the complement of this ratio and evaluates the degree of compatibility with 
the most probable class and until at which point the classification is dispersed over more than one class, 
providing information regarding the classifier’s difficulty in assigning only one class to each pixel. 

To illustrate the behaviour of this measure, some examples are shown in table 2. If, for one pixel, the 
maximum probability assigned to a particular class is one, the probabilities assigned to all other classes are 
zero, and a minimum value of zero is obtained for U (e.g., pixel p1 on table 2). On the other hand, if the 
maximum probability is relatively low (e.g., pixel p4 on table 2), since the probabilities have to add up to one, 
the probabilities associated to the other classes are still relatively high, and therefore the uncertainty increases. 
The maximum value of U is reached when equal probabilities are assigned to all classes (e.g., pixel p10 on 
table 2).  

Notice that higher uncertainty values are obtained when lower values for the maximum probability occur 
and when the probabilities are dispersed over almost all classes. For example, for pixel p3, with the probability 
distribution 0.8, 0.1, 0.1, the U measure gives an uncertainty value of 0.30 and for pixel p4, with the same 
number of classes and probability distribution 0.4, 0.4, 0.2, the U measure uncertainty value increases to 0.90. 
This means that this uncertainty measure is sensitive to the compatibility between the classes and the pixel 
characteristics, expressed by the maximum probability. However, if the number of classes increases, for 
example to eight, even though the non-zero values of the probabilities distribution are the same, as for pixel 
p7, the U measure decreases to 0.686. This means that this uncertainty measure is also sensitive to the 
dispersion of the classification over the total number of classes, expressed by the probabilities that are 
associated to the classes which do not correspond to the maximum probability. This is illustrated in table 2, 
for example by pixels p4, p6 and p7, which have considerable different U values. This characteristic is due to 

the term 
n

1
 that plays an important role in this measure, since it allows the analysis of the dispersion of the 

probability distribution. For example, pixels p4, p6, p7, p9 and p11 in table 2 have an equal maximum 
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probability and have different U values, because the term 
n

1
 is different for each one of them. This 

uncertainty measure provides important information since: (1) the importance of dispersion increases when 
the maximum probability decreases (e.g., p1, p2, p3, p4) and the number of classes decreases (e.g., p3, p5, p8, 
p12 and p13; or p4, p6, p7, p9 and p11); and (2) in the classification of remote sensing images the number of 
classes is, in general, not high and relatively low maximum probabilities may be obtained. 

 

3.1.3 Landscape units map 

The Landscape Units Map (LUM) was built combining the SEM, its uncertainty information and the objects 
obtained with the segmentation algorithm. In the segmentation stage the whole image was partitioned into a 
series of closed objects, corresponding to the spatial patterns. The objects extraction was driven using the 
“Fractal Net Evolution Approach” (FNEA) segmentation method, implemented in eCognition software, which 
can be described as a region merging technique (Baatz and Schape 2000).  

This method starts with the assumption that each pixel is an object, and proceeds with the aggregation of 
neighbouring objects. The decision to fuse adjoining objects depends on the criteria of local homogeneity. The 
adjoining objects are fused into one if the spectral heterogeneity of the object resulting from the fusion does 
not exceed a certain maximum value, which determines the maximum heterogeneity. As a consequence, the 
size of the objects resulting from the fusion depends upon the value given to that parameter, called, for this 
reason, scale parameter (Baatz and Schape 2000). The drawback of this approach is that the final decision 
about the scale parameter is made by visual inspection of the image rather than by quantitative criteria. In this 
study only one segmentation level was considered, chosen from a series of experiments done with different 
parameters, whose results were visually analyzed. The criteria that led to their choice was the identification of 
meaningful image-objects i.e., groups of pixels that represented the LU existing in the study area, with a mean 
area of 0.5 ha. The parameters used in the chosen segmentation are shown in table 3. 

The next step was the development of rules that incorporate the information provided by the previous 
pixel-based classification within each object and the results given by the uncertainty measure U. The rules 
construction requires a preliminary analysis of the uncertainty assigned to the SE classes in order to choose 
the appropriate thresholds.  

The transformation of a SEM into a LUM is similar to a decision tree which, for geographical objects, is a 
hierarchical structure consisting of several levels. At each level a test is applied to one or more attribute 
values. The application of a rule results either in a leaf, allocating an object to a class, or a new decision node, 
specifying a further decision rule. The eight LU classes used in this study are presented in table 4. 

Figure 2 shows the LU classes classification workflow and table 5 shows the classification rules. The aim 
of rule 1 is to make a distinction between ‘Forest Areas’ and ‘Non-Forest Areas’. Rule 2 assigns the objects 
considered ‘Non-Forest Areas”, to one of the three LU classes: Water Bodies, Agriculture, and Non-
Vegetated Areas. Rule 3 classifies the Forest regions into ‘Dense Forest’ and ‘Non-Dense Forest’. Rule 4 
assigns the objects classified as ‘Dense Forest’ to one of four possible LU classes, namely Broad-Leaved 
Forest, Coniferous Forest, Cork Forest and Mixed Forest. Finally, rule 5 assigns the objects considered ‘Non-
Dense Forest’ to one of two possible LU classes: Agro-Forestry Areas and Mixed Forest. 

For the accuracy assessment of remote sensing images classifications the three primary areal sampling 
units are pixels, polygons, and fixed-area plots and no consensus exists on which sampling unit is the best. 
According to Stehman and Czaplewski (1998), the choice of the sampling unit should be guided by the 
characteristics of the landscape, features of the mapping process, project objectives and practical constraints. 
Since in this case the objective of the mapping was to produce a polygon map where the LU had a mean area 
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of 0.5 ha, the choice of the sampling unit to assess the accuracy of the LUM was a fixed-area square plot 
sampling unit with an area of 0.5 ha.  

A stratified random sampling of 50 samples per class was chosen, which guarantees a standard error of 
0.07 for the CPM and CPR estimates for each class, assuming that the classification accuracy is superior to 
50% (Wickham et al. 2004), which is acceptable because the construction of the LUM already involved a 
prior pixel-based classification and an analysis of the terrain. The accuracy assessment was made with an 
error matrix, where the pij entry is the proportion of area that is class i in the map and class j in the reference 
within the square areas with 0.5 ha. The CPM and CPR accuracy parameters were then derived from the error 
matrix (Stehman and Czaplewski 1998, Stehman and Czaplewski 2003). 

 

3.2 Classification without uncertainty  

To evaluate if the use of uncertainty in the classification improves the results, a classification method very 
similar to the previously described, but where the uncertainty is not considered, was applied to the same 
image. The identification and mapping of the SE were made with the Bayesian classifier. The SE classes and 
the sampling design were the ones used for the previous method and described in section 3.1.1. The rules 
developed to transform the SEM into a LUM are similar to the ones explained in section 3.1.3. but without 
considering the pixel-based classification uncertainty. The accuracy assessment was made with the same 
protocol used in the classification method explained above. 

4. Results and discussion  

The procedure to evaluate the pixel-based classifier and the accuracy of the SEM classification was the same 
for both classification methodologies and was performed using respectively testing sets 1 and 2. A global 
accuracy of 95% was obtained with testing set 1, and of 66% with testing set 2. The CPR and the CPM 
obtained for all classes with both testing sets are presented in figure 3 and figure 4. 

The values obtained with testing set 1 indicate that the classifier was able to identify the pure classes 
correctly. However, the CPR and CPM obtained with testing set 2, where mixed pixels were considered, show 
worse results. The water classes (DW and SW) and Herbaceous Vegetation (HV) were well identified and the 
non forestry classes presented better results than forestry classes. Forestry species were often confused with 
several other SE, but mainly with Herbaceous Vegetation. Significant confusion was also observed between 
Cork Trees and Sparse Herbaceous and between Eucalyptus and Coniferous. This confusion was due to the 
proximity of their spectral signatures.  

Figure 5 shows the average of the uncertainty measure U per class. The comparison of these results with 
figure 4, shows that the results are consistent, since forestry species present higher values of uncertainty than 
non forest species and lower values of accuracy. The forest species that show higher values of U and lower 
accuracy is the Eucalyptus Trees. The correlation between U and the classification accuracy was also 
evaluated. The correlation coefficient between U and CPM was 0.71 and between U and CPR was 0.39. These 
results reveal that there is a good agreement between the U measure and CPM, and therefore uncertainty 
measure U may be used to estimate the CPM. 

The global classification accuracy of the LUM obtained with the classification method that includes 
uncertainty was 66%, and the one obtained with the classification method without uncertainty was 54%. Even 
though the accuracy is not high in both cases, due mainly to the difficulty in discriminating between the SE 
representing the forest species, a 12% increase was observed for the LUM obtained using the uncertainty 
information. Furthermore, the LUM obtained with this new approach also achieved better accuracy results 
than the SEM. This reveals that when SE with high values of U are excluded from the process of transforming 
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a SEM into a LUM, some of the LU classes were better identified, such as Broad-Leaved Forest (BF) and 
Coniferous Forest (CFF). 

Figure 6 and figure 7 allow the comparison between the results of the CPR and CPM for the LUM 
obtained with both classification methods. The classification results obtained with the new method using 
uncertainty are considerably better for almost all LU classes and this improvement is more evident in the 
forest classes.  

A comparison between figure 5, figure 6 and figure 7, shows that the LU classes showing better results 
when considering the uncertainty were the ones formed by the SE that presented higher values of uncertainty 
such as Broad-Leaved Forest (BF) and Coniferous Forest (CFF).  

This new classification method proved that the uncertainty information allowed the identification of the 
misclassified SE and avoided their use in the transformation from a SEM into a LUM. Figure 8 shows an 
example of a LU which was only correctly classified as agriculture when the uncertainty of the SE 
classification was considered. 

Figure 9 shows the final results of the classification with the proposed method. A relevant aspect of this 
hybrid classification methodology is that the final map is in the vector format, without the salt – and - pepper 
effect, which is caused mainly by a small percentage of isolated pixels in the results of the SEM often located 
at the limits between different SE. 

 

5. Conclusions 

The goal of this study was to highlight the influence and usefulness of the uncertainty information associated 
with the classification of Surface Elements into the classification of Landscape Units. The obtained results 
show that the hybrid pixel-object classification integrating the SE classification uncertainty increases by 12% 
the global accuracy of the classification of Landscape Unit classes in a Mediterranean environment, when 
compared to a similar classification method that does not take classification uncertainty into consideration. 
Therefore, the use of uncertainty proved to be valuable in the classification process. In fact, this strategy 
allowed the identification of the misclassified surface elements, avoiding their use in the construction of the 
Landscape Unit Map, and therefore this approach seems promising and worthy of further studies. From a 
methodological viewpoint, the hybrid approach also proved to be adequate for the transformation of a Surface 
Elements Map, with detailed land cover features, into a Landscape Unit Map with a vector format well suited 
for integration in a GIS.  
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Table 1.  Acquisition details of IKONOS image. 
Date 06/04/2004 

Sun elevation (deg) 74.8 
Sensor elevation (deg) 55.5 
Dimension (m x m) 11884 x 14432 

Bits/pixel 11 

 
 
 

Table 2. Classification uncertainty (CU) values obtained for some probability distributions 
i Ordered probability distributions for pixel pi 

n
ip

..11

)max(
=  

n U 

1 1;0;0 1 3 0 
2 0.9;0.1;0 0.9 3 0.150 
3 0.8;0.1;0.1 0.8 3 0.300 
4 0.4;0.4;0.2 0.4 3 0.900 
5 0.8;0.1;0.1;0;0 0.8 5 0.250 
6 0.4;0.4;0.2;0;0 0.4 5 0.750 
7 0.4;0.4;0.2;0;0;0;0;0 0.4 8 0.686 
8 0.8;0.1;0.1;0;0;0;0;0 0.8 8 0.229 
9 0.4;0.3;0.2;0.1;0;0;0;0;0;0 0.4 10 0.667 
10 0.1;0.1;0.1;0.1;0.1;0.1;0.1; 0.1; 0.1;0.1 0.1 10 1 
11 0.4;0.3;0.2;0.1;0;0;0;0;0;0;0;0;0;0;0 0.4 15 0.643 
12 0.8;0.1;0.1;0;0;0;0;0;0;0;0;0;0;0;0 0.8 15 0.214 
13 0.8;0.1;0.1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 0.8 30 0.206 

 

 

 

Table 3.  Segmentation parameters. 
 
 
 

 

 

 

 

 

 

 

Band Weights Scale Color Shape Smoothness Compactness 

Red Blue Green Nir      

1 0.5 1 1 250 0.9 0.1 0.9 0.1 
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Table 4.  Landscape Unit classes description and label used. 
Class Label Description 

Non-Vegetated Areas NVA Built –up areas, transport network and bare soil areas.  
Agriculture and pastures 

areas 
A Annual crops and grasslands  

Water Bodies WB Natural or artificial water bodies 
Broad-Leaved Forest BF Vegetation formation composed mainly of trees, and its 

understory, where broad-leaved species predominate. 
Coniferous Forest CFF Vegetation formation composed mainly of trees, and its 

understory, where coniferous species predominate. 
Cork Forest CKF Vegetation formation composed mainly of trees, and its 

understory, where cork species predominate.  
Agro-Forestry Areas AFA Annual crops or grazing land and fallow land covering less 

than 50 % of the surface. Agricultural land shaded by palm 
trees in Mediterranean context. 

Mixed Forest MF Vegetation formation composed mainly of trees, including 
shrub and bush understory, where neither broad-leaved nor 

coniferous species predominate. 

 

 
Table 5.  Classification Rules. 

Rules Test Class if true 

Objects have more than 10% of SE classified as tree crowns, regardless of 
species, with uncertainty less than 0.25 

Forest 
Rule 1 

Objects do not satisfy the previous test Non-Forest 
The mode of the SE, inside the object, with uncertainty less than 0.25 is Deep 

Water or Shallow Water 
Water Bodies 

The mode of the SE, inside the objects, with uncertainty less than 0.25 is 
Herbaceous Vegetation or Sparse Herbaceous Vegetation 

Agriculture Rule 2 

The mode of the SE, inside the objects, with uncertainty less than 0.25 is 
Non-Vegetated Area or Shadow  

Non-Vegetated  
Areas 

Objects have more than 75% of trees with uncertainty less than 0.25, 
regardless of the species 

Dense Forest Rule 3 
Objects do not satisfy the previous test Non-Dense Forest 

Eucalyptus Trees represent more than 75% of the  trees 
Broad-Leaved 

Forest 
Coniferous Trees represent more than 75% of the trees Coniferous Forest 
Cork Trees represent more than 75% of the trees Cork Tree Forest 

Rule 4 

Neither Eucalyptus nor Coniferous species predominates Mixed Forest 
The percentage of trees is less than 50%; the percentage of Herbaceous or 
Sparse Herbaceous is superior than Cork Trees and 80% of trees is Cork 

Trees with uncertainty less than 25% 

Agro-Forestry 
Areas Rule 5 

Objects do not satisfy the previous test Mixed Forest 
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Figure 1. Flowchart of the methodology to integrate uncertainty into the classification of an IKONOS 
image.  

21x22mm (600 x 600 DPI)  
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Figure 2. Landscape Unit Classes classification workflow.  
40x21mm (600 x 600 DPI)  
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Figure 3. Conditional Probability of the Reference (CPR) and Conditional Probability of the Map 
(CPM) of the Surface Elements Map (SEM) obtained with testing set 1 (used to evaluate the 

classifier accuracy).  
40x14mm (600 x 600 DPI)  
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Figure 4. Conditional Probability of the Reference (CPR) and Conditional Probability of the Map 
(CPM) of the Surface Elements Map (SEM) obtained with testing set 2 (used to evaluate the 

classification accuracy).  
44x16mm (600 x 600 DPI)  
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Figure 5. Average values of the uncertainty measure (U) per class of the Surface Elements Map 
(SEM).  
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Figure 6. Conditional Probability of Reference (CPR) obtained with the hybrid approach (LUM) with 
and without uncertainty.  
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Figure 7. Conditional Probability of Map (CPM) obtained with the hybrid approach (LUM) with and 
without uncertainty.  
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Figure 8. LUM obtained with both methodologies and an extract of the IKONOS image (RGB432). a) 
classification obtained without uncertainty; b) classification obtained with uncertainty; c) extract of 
the IKONOS image RGB432. The circles mark a land unit occupied by agriculture that was correctly 

classified when the uncertainty was considered in the classification rules.  
30x19mm (600 x 600 DPI)  
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Figure 9. Final Land Units Map  
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