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Abstract 

 

Controlled drug delivery systems (DDS) have gained a lot of attention recently due 

to their added advantages such as improving therapeutic efficacy in delivering the 

drug molecules at a predetermined rate to the targeted site for a prolonged period. 

Designing a polymer based DDS involves an in-depth understanding of drug-carrier 

interactions, and good control over the parameters that can modulate transportation of 

drug molecules according to the therapeutic requirement.  

Delivering less soluble drug molecules encapsulated in hydrophilic polymer matrix 

in zero-order manner is usually a challenge. To counter this challenge, we used 

Piperine, a model hydrophobic drug and Amphotericin B (Amp-B), a model 

amphiphilic drug in order to develop a polymer based DDS.  We also used FDA 

approved natural polymer gelatin (type A) as an excipient because of its 

biocompatibility, biodegradability, muco-adhesiveness and easy availability. Despite 

of all the advantages of gelatin, it is extremely hydrophilic and has poor mechanical 

stability in an aqueous solution that limits its application and long-term usage. To 

overcome this challenge, we used Glutaraldehyde (GTA) as a crosslinker to modify 

gelatin. Although GTA is widely used as a crosslinker because of its excellent 

efficiency in stabilizing collagenous material,  higher concentration of GTA solution 

(25 % v/v) and longer exposure in saturated vapor of GTA (more than 24 h as reported 

in literature) may have adverse cytotoxic effects. We successfully used a highly 

diluted concentration of GTA solution (0.01-0.25 % v/v) and reduced the exposure 

time to only 6 minute to saturated GTA vapor for crosslinking to achieve the desired 

stability of the fabric. In summary, this thesis investigates the full potential of natural 

polymer (gelatin, type A) based cast-film (GCF) and electrospun nanofiber film 

(GNF) as DDS, particularly for less soluble drug molecules.   

The thesis starts with the fabrication of GCF as a potential drug-carrier for 

hydrophobic molecule, piperine, by solvent evaporation method. Piperine was 

selected because of its viable features such as its bio-enhancer properties, and anti-

oxidant, anti-depressant, anti-inflammatory and anti-tumor activities. Thus, piperine 

was wrapped into GCF in order to protect the bioactive molecule from enzymatic 
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degradation in gastrointestinal (GI) tract. To increase the water repulsion capability 

of the vehicle, we used higher concentration of polymer during fabrication and GTA 

solution for crosslinking. Higher concentration of polymer led to longer diffusional 

path, which caused less swelling followed by less degradation. On the other hand, 

GTA increased the molecular entanglement that not only promoted better stability, 

but also controlled the initial fast release of drug molecules. The concentration of 

polymer and crosslinker used for the system were the main cause of drug release i.e. 

due to diffusion or degradation. The distribution of drug was found on the surface as 

well as in bulk of the GCF, which resulted in initial fast release followed by sustained 

release. We developed an overall understanding about the drug-polymer interactions, 

roles of crosslinker on swelling, as well as release study from the GCF vehicle. After 

exploring different aspects of drug loaded cross-linked GCF in terms of morphology, 

biodegradation, thermal stability of the drug loaded vehicle, the vehicle still needed 

further modifications such as, (a) creating porous structured vehicle, to reduce usage 

of GTA solution for crosslinking, (b) controlling the initial burst release of drug in 

lower pH and (c) achieving zero-order drug release for prolonged time.  

In the next step, with the previous understanding of drug-polymer interactions, 

we tried to develop a DDS based on GNF due to its unique structural features. 

Electrospinning has become the most common and cost-effective nanofiber 

production technique due to its capability of fabricating ultrafine continuous fibers 

with very high surface-to-volume ratio and with interconnected porosity as well as 

tunable pore dimensions. Nanofibrous structure, which is made of natural, 

biodegradable, biocompatible polymer, has tremendous applications in different 

biomedical fields.   

The purpose of the present study is to fabricate a large surface area-to-volume 

GNF device for drug delivery application. The work involves three main steps i.e., (a) 

fabricating less soluble drug encapsulated hydrophilic GNF, (b) modulating the 

stability by crosslinking and finally, (c) modifying the vehicles with different 

crosslinking strategies and multi-layered structure so as to achieve zero-order release 

of the hydrophobic drug, piperine. 

In keeping with the above-mentioned steps, firstly, continuous long nanofibers 

were fabricated and drug-polymer interactions were checked using Fourier transform 
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infrared spectroscopy (FTIR). Similar to GCF, we found that piperine was intact in 

the GNF with no reaction with the polymer matrix. The morphology of the fibers was 

also examined using Scanning Electron Microscopy (SEM) imaging instrument after 

gold coating the samples for 10 seconds. Long and continuous fibers with average 

diameter of 150 nm and characteristic peaks of piperine in GNF provided the evidence 

of the drug encapsulation in the polymer matrix. Due to the highly porous structure 

and hydrophilicity of the polymer, GNF were cross-linked with saturated vapor of 

GTA for only 6 minutes. This porous structure not only reduced the usage of GTA 

solution but also drastically reduced the duration of exposure in saturated vapor of 

GTA from a few hours to a few minutes. The fusion of nanofibers at the crossing 

points of fiber network was due to the water vapor in GTA solution, which was evident 

from the SEM images. Interestingly, we found that the presence of the hydrophobic 

molecules significantly reduces the fusion of GNF while crosslinking with GTA 

vapor. Thus, an exposure of only 6 minutes was not only adequate to control the early 

degradation with intact fiber morphology, but it also significantly marginalized any 

adverse effects associated with the use of GTA.  

After the fabrication of the device, In-vitro release study was done to analyze 

the effect of the release medium, and the duration of crosslinking on the drug release 

from GNF. While the amount of drug release decreased with increase in crosslinking 

time, the same increased with higher pHs. The release profile showed bi-staged curves 

i.e., sudden release of drug followed by sustained release, which was far from zero-

order kinetics. One very quick fix was to increase the crosslinking timing, which is 

not desirable because of the toxicity of GTA that would reduce the overall total 

release. Thus, we incorporated new strategies to control the rapid release of drug 

during the initial hours. Fabricating a multi-layered structured GNF with 6 and 8 

minutes crosslinking with GTA was our next attempt in order to increase the 

diffusional barrier between the drug molecules and release medium to tone down the 

initial rapid release. Piperine loaded GNF layer was kept as a core layer where two 

barrier layers were protecting from both sides. It was evident that, increase in barrier 

layer decreases the initial release and the drug loading. Consequently, different 

variations of barrier and core layer were tried, which greatly improved the release 

profile. Despite the improved release profile, achieving zero-order release was 
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challenging. Thus, the concept of sequential crosslinking was used to achieve a near 

zero-order release profile with higher drug loading.  Non-uniformity of crosslinking 

within the layers in the case of single time cross-linked sample (6 minutes) was the 

main hindrance in achieving zero-order release of drug. The top layers were exposed 

more to the GTA vapor, which led to more fused fibrous structure where in-between 

layers were not crosslinked well due to the low mobility of GTA molecules. Increased 

crosslinking time was one option that we ruled out due to the cytotoxicity effect of 

GTA. As an alternative, in-between layer of the mesh were crosslinked in a sequential 

manner keeping the total crosslinking time same. To increase the compactness of the 

fiber mesh uniformly within the layers, fiber mesh was crosslinked each time for 2 

minutes after depositing barrier layer, core layer and finally the barrier layer on the 

opposite side. This drastically improved the release kinetics by achieving  zero-order 

release for 48 hour in the case of the higher drug loaded DDS.  

This study has drawn  attention by (a) successfully fabricating drug 

encapsulated GNF based DDS, (b) crosslinking the vehicle with only 6 minutes of 

exposure to GTA vapor and (c) achieving zero-order release pattern using sequential 

crosslinking method. However, this newly developed vehicle was far from the realistic 

tablet with proper therapeutic dose. Therefore, after developing this understanding 

about controlling the release of a model hydrophobic drug molecule using nanofibers 

based DDS, our next objective was to use this knowledge in developing a real case 

scenario. To achieve this, we loaded a higher dose of Amphotericin B (Amp-B) in 

compressed nanofiber based oral tablet (CNOT) form for anti-fungal treatments. 

Amp-B is an anti-fungal drug, which is very difficult to deliver orally due to its low 

solubility in water. This is a polyene macrolide, which is almost 3 times bigger than 

piperine in terms of molecular weight. Due to high toxicities and poor prognosis of 

the drug, there is a great need for developing new DDS, which can encapsulate the 

drug molecules and can safely deliver correct dose preventing over-dosing. To the 

best of our knowledge, except for one recent report, Amp-B loaded GNF based DDS 

has not been explored in detail. After checking drug-polymer interactions and 

morphology, the drug-encapsulated fabric was crosslinked with GTA vapor for 6 

minutes and then manual hydraulic press helped to form a compressed oral tablet. This 
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newly engineered CNOT was monitored for in-vitro degradation and release study in 

different physiological pHs for more than 72 h.  

This study, therefore, establishes the potential viability of biodegradable, 

electrospun nanofibers as an oral DDS with promising controlled release features. 
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Chapter 1 

 

Overview of Controlled Drug Delivery 

Systems 

 

1.1 Introduction to controlled drug delivery system 

In the last few decades, researchers have witnessed a remarkable research growth aimed 

at developing new drug delivery systems (DDS). Developing controlled DDS has been the 

cutting edge research area of science where the knowledge streams from chemistry, material 

science and chemical engineering have merged for the benefit of human health care. 

Controlled release of drug is an efficient process of delivering pharmaceutical molecules from 

an engineered system under specific physiological conditions. Researchers have designed the 

DDS in order to enable the maintenance of the drug concentration in the body within its 

therapeutic range for a prolonged time period, which in turn aids in less amount of drug 

administrations. Thus, controlled DDS has become a subject of cutting-edge research in the 

field of biomedical sciences and pharmacy for several reasons [1, 2].  

       Controlled DDS provides the following advantages compared to conventional DDS, as 

discussed below:  

1. Controlled DDS can release drug molecules in a predetermined or constant rate, 

which helps in maintaining drug concentration within the therapeutic window.  

2. Single administration of drug can control the desired drug concentration for a 

prolonged time period, which increases patient’s compliance and comfort. 

3. Site-specific drug delivery can reduce systemic drug level and drug over-dosage as 

well. 
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4. Controlled DDS can also protect the drug molecules from enzymatic degradation and 

can be delivered at the absorption site, which facilitates drug efficacy.  

Briefly, the motivation for developing controlled DDS is to improve the drug efficacy, 

which not only reduces drug over-dosage but also improves patient’s compliance. To 

understand these benefits, a comparative study of different kinds of release profiles are 

presented in Figure 1.1. 

 

Figure 1.1: Different kind of drug release profiles: (a) Conventional release, (b) Sustained 

release, (c) Delayed release, (d) Controlled zero-order release 

 

Figure 1.1 highlights the benefits and side effects of different drug release profiles. As 

every drug has its own therapeutic range, above which it creates a toxic effect and below 

which it is inefficient, maintaining drug concentration within this range for a prolonged time-

period is naturally desirable. In the case of conventional method (curve a), after ingestion or 

injection of the drug, concentration in the blood level rises, and then it reaches a peak and 

starts decreasing. In this case, immediately after the drug administration, the drug shoots 
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beyond the upper limit of the therapeutic range and starts declining soon after. This shows 

unsteady drug concentration and maintenance of effective drug concentration for a lesser 

duration of time. This kind of system needs frequent administration of the drug, which causes 

an undesirable oscillation of the drug concentration between ineffectiveness and toxicity. 

However, sustained release certainly improves the efficacy of the drug when compared to 

conventional systems (curve b). In the case of site-specific drug release, delayed release 

profile is more accurate (curve c). To reduce immediate burst release, the drug molecule is 

wrapped in a well-designed system so that it can release at the active or the absorption site 

after a time gap. However, controlled release of drug molecules can sustain the drug 

concentration within the therapeutic range for a desired duration even with a single 

administration. In controlled DDS, the vehicle is fabricated in such a way that it releases the 

drug molecules in zero-order for a long period (curve d). In this case, the rate of drug release 

synchronizes with the rate of drug elimination from the body, which reaches a steady rate of 

drug concentration within the therapeutic window [3, 4]. 

Presently, the conventional system has been modified in order to achieve pulsatile release 

profiles, which can keep the drug concentration within the therapeutic range (not shown in 

Figure 1.1). For example, molecules like insulin need pulsatile release during the specific time 

when the blood glucose level increases [5]. As an example for controlled DDS, controlled 

release of non-steroid anti-inflammatory drug (NSAID), tramadol can significantly reduce 

pain due to osteoarthritis through a single administration of drug in a day [6]. However, 

delayed release profiles are appropriate in the case of colon specific DDS. In this case, the 

concentration of the drug reaches the desired range after a time gap and can release at the 

specific site [7]. In short, drug-releasing systems are designed in order to get specific release 

profiles without crossing the toxic concentration level.  

 

1.2 A Brief history of controlled drug delivery systems 

The need for developing an effective controlled drug release system has occupied 

researchers for the past six decades. Smith Kline & French company made the first successful 

attempt in this field in 1952 for a 12-hour delivery of dextroamphetamine sulfate (Dexedrine) 

using spansules [8, 9]. The word spansule is a combination of two words – span and capsule 

[9, 10]. Hence, this kind of formulation can release drug for different span of time [9, 11]. 

Therefore, spansules were considered as the first controlled-release formulation, which were 

later modified with stable and slowly dissolving synthetic polymers. Around the same time, 
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Folkman found the anesthetic gas could be diffused through the silicon tubes and would be 

absorbed by the rabbit’s blood [12]. Through this mechanism, Folkman and Long in 1964 

first proposed the concept of the sealed capsule, which can be implanted in order to give 

prolonged release. This was the very first time that the concept of a reservoir mechanism of 

DDS was reported [13]. This reservoir-based system showed excellent control of the release 

rate of the drug and achieved exceptional zero-order release profiles [14].  

Following this, in 1968 Alejandro Zaffaroni founded a company named ALZA 

(ALejandro ZAffaroni), the first of its kind which focused on developing controlled drug 

delivery devices [14]. The company fabricated many controlled drug-releasing devices, which 

enormously contributed to the field of controlled DDS research and application. The 

ophthalmic insert called Ocusert became the first commercial product of the ALZA 

corporation to gain approval by the FDA in 1974 [14-16]. Other examples of controlled DDS 

include, the poly(ethylene co vinyl acetate) based rate controlling membrane system which 

showed controlled release of the anti-glaucoma drug, pilocarpine, for a duration of 1 week 

[16]. Immediately after, in 1976, procedures using intrauterine device (IUD), Progestasert 

showed zero-order release of the contraceptive steroid progesterone for the duration of a 

month [14]. The population council laboratories in New York, developed another controlled 

DDS birth control device, Norplant showed 5 years of controlled release of progestin from 

silicon rubber made implanted tubes which was approved for clinical trial in U.S around 1980 

but eventually it was withdrawn from the global market in 2008 [14, 17]. Instances of these 

controlled DDS through the years, using non-degradable implants have become very 

successful commercially because of its zero-order controlled release of drug molecules for a 

prolonged duration.    

In 1971, ALZA first introduced controlled drug delivery through transdermal patches and 

patented the skin patch as the “bandage of administering drug”. This reservoir drug system 

showed initial burst release followed by zero-order release [18]. In 1990, FDA approved self-

administrated transdermal fentanyl patch (Duragesic) for chronic pain relief up to 72h[19-21]. 

With time, research in controlled DDS via the transdermal patch branched out to deliver 

through different media in order to increase the drug permeability in the body. As a result, of 

these recent developments, in 2008, biosensor patch (Symphony) and micro-needle based 

patches have gained a lot of success due to its continuous blood glucose monitoring ability 

and a painless process of blood collection [21, 22]. 
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The idea of osmotically driven oral DDS systems primarily came from Rose-Nelson[23, 

24], Higuchi-Leeper [23, 25] and Higuchi-Theeuwes pumps [26] in the early 1950s. Based on 

the principle of the osmotic pump, osmotic-controlled release oral delivery systems (OROS) 

were developed. Due to the osmotic pressure difference between the release medium (GI tract 

body fluid) and the inner constituents of the device, water molecules would penetrate through 

the semi-permeable membranes displacing the drug molecules from the device. In 1974, 

Theeuwes and other researchers from ALZA introduced a compressed tablet known as the 

elementary osmotic pump (EOP). Derived from this idea, the first two products indomethacin, 

Osmosin [27] and phenylpropanolamine, AcutrimTM [28], were launched in the 1980s. In the 

2000s, a new design with push-stick osmotic pumps (PSOP) based formulation (ConcertaTM) 

was launched in order to deliver methylphenidate to children with attention-deficit 

hyperactivity disorder (ADHD) [11, 29]. Furthermore, in 2013, an attempt to deliver insulin 

orally was reported by using the oramed insulin pill [30]. 

In the late 1970s, the concept of polymer-drug conjugates or nano-therapeutics for 

developing new controlled DDS rendered immense promise. Since the 1980s, three key 

technologies have greatly influenced the development and clinical success of nano-

therapeutics. These three key technologies are (a) PEGylation, (b) “active targeting” and (c) 

“enhanced permeation and retention effect” (EPR). PEGylation is the conjugation of the drug 

with poly(ethylene glycol) or PEG. Around the 1980s and 1990s, PEGylation company, 

Enzon and Shearwater Polymers were founded which introduced a number of PEGylated 

products for clinical practice. This invention was considered a great influence for nano-

therapeutics. Recently, antibody-drug conjugated formulation Kadcyla was approved by the 

FDA in 2013. Kadcyla was formulated by conjugating monoclonal antibody trastuzumab with 

the potent cytotoxic drug, mertansine (DM1) and its application proved to be a great success 

in treating certain kinds of breast cancers [21, 31].  

In conclusion, the journey of developing controlled drug delivery devices, which began 

in the early 1950s, has continued with the deployment of new technical methods, and has led 

to a better understanding of the myriad biological processes which could be utilized in the 

process [32]. Subsequent challenges in the future will further expand the field of controlled 

drug delivery and will result in better and enhanced systems. The evolution of drug-carriers 

starting from the scale of the macro, moving to micro and further to the nano level has 

contributed to targeting biological problems with increased accuracy [33]. With an enhanced 

comprehension of biology and pharmacology, the drug delivery scientist will be able to 

innovate new vehicles that can deliver the drug with greater precision and efficiency. Thus, 
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considering the history of the development of DDS through the years, the past innovations 

and concepts become stepping-stones towards the requirement for smarter formulations of 

controlled drug delivery vehicles in the present.  

1.3 Different routes of drug delivery 

Drug delivery scientist and engineers have attempted to deliver drug molecules through 

different routes to counterbalance the bioavailability and adverse effects of therapeutically 

active medicine. Although, oral consumption is the most common and convenient route of 

delivering drug molecules, researchers have designed different drug releasing vehicles in 

order to deliver drugs via the eyes, nose, lung, skin, vascular system, vagina, buccal 

membrane and brain.  

The oral route, used extensively for drug delivery, is the most common and well-

researched area for delivering drug molecules [34]. Despite abundant research regarding oral 

drug administration, developing an oral delivery system particularly for poor water-soluble 

drugs and macromolecules like protein and peptides has remained a challenging feat [35]. The 

possible approaches, which may improve the bioavailability of proteins like insulin, are: (1) 

modification of the physicochemical properties of macromolecules; (2) addition of novel 

function to macromolecules; and (3) use of improved delivery carriers. Clearly, it is essential 

that these approaches maintain the biological activity of the proteins [30, 35].  To carry 

proteins across the epithelium in the GI tract and to protect it from protease degradation, the 

use of microspheres, bio-adhesive patch has also been suggested [36-38]. 

Apart from oral routes, other drug delivery routes has also gained a lot of attention in 

order to deliver drug in targeted area by bypassing the first-pass metabolism. The controlled 

release of the anti-glaucoma drug through the eyes was the first attempted route, as has been 

previously mentioned in the section discussing the brief history of controlled DDS. 

Subsequent research and developments since then have contributed towards the treatment of 

glaucoma, age-related macular degeneration, diabetic macular edema and retinal vascular 

occlusions [39, 40]. Since last decade, many researches with bio-adhesive polymer, chitosan 

in the form of powder, micro-particle, nano-particle, micro-emulsion, nano-emulsion, and 

microsphere has been done to deliver the drug to the brain using the nasal route [41-44]. Apart 

from administration through the nasal route to deliver the drug to the brain, direct polymeric 

implantation during brain tumor neurosurgery has also been established [34, 45]. 

Furthermore, the lungs are also considered as an excellent route due to the possibility of a 

non-invasive administration of the drug via inhalation of aerosols, which bypasses the first-
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pass metabolism, facilitates local drug delivery and renders the availability of a huge surface 

area for drug absorption [34, 46]. Another pathway used is the transdermal DDS, which has 

been studied and clinically practiced due to numerous advantages. Transdermal patches have 

become commercially successful for the treatment of hypertension, birth control, analgesia, 

motion sickness, hormone replacement, and smoking cessation [21]. As another alternative 

drug delivery route, the vaginal route has also gained popularity by delivering drug through 

the virginal epithelial layers by using of adhesive polymer gel or creams [47]. Finally, 

vascular DDSs have also become an effective way to deliver the drug at the targeted site [48]. 

For carrying out drug delivery through the vascular route, liposome, dendrimer, polymeric 

micelles, polymersomes, polymer-drug conjugates, solid particle based nanofabrication are 

used in order to design endothelium-targeted DDSs [49]. The vascular DDS has been used 

extensively in both diagnosing and curing cardiovascular diseases, pulmonary, oncological 

diseases, and other disease conditions [50].  

 

1.4 Types of drug delivery systems 

Extensive research and the conscious effort of engineers, pharmacologists and chemists 

have led to state-of-the-art techniques in polymeric drug delivery vehicles. From the 

adaptation of a novel idea, which originates in a research lab, to formulating a commercially 

successful DDS is very long process including several intermediate clinical trials [21]. In the 

process of developing a new DDS, scientists have often addressed certain key aspects of 

controlled DDS such as, (a) constant drug concentration within therapeutic window over a 

long time, (b) biocompatibility and biodegradability of the system, (c) protection of drug 

molecules from early degradation and (d) releasing drug molecules at absorption site. From 

the perspective of a pharmacologist, delivering drug molecules with low solubility in a 

biological condition has always been a challenge. Added to these factors, to get commercial 

success, the new DDS must meet conditions such as, (a) reduced frequency of drug 

administration that will result higher patient compliance, (b) affordability and (c) easy or self-

administration of drug [51]. Despite a lot of new ideas and research that have emerged at the 

laboratory level, the affordability and effectivity of the controlled drug-releasing carriers are 

still to be considered. Among all different kinds of DDS, oral thin films, hydrogel, nano and 

macro particles, liposome and micelles, nanofibers are widely used in the field of drug 

delivery, tissue engineering and wound dressing. Few of such important vehicles have been 

discussed in the following section. 
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1.4.1 Polymeric thin film and hydrogel 

In the past few decades, polymeric thin films have been used extensively in the form of 

fast dissolving oral films [52], controlled release in absorption site [53], buccal film or patches 

[54] and transdermal patch [55]. Thermo-sensitive [56] ,pH- sensitive [53], biodegradable and 

muco-adhesive [54] polymers are used to fabricate these thin films. Various methods like 

solvent casting, semisolid casting, hot melt extrusion, solid dispersion extrusion, rolling, dip 

coating, Langmuir Blodgett are used to fabricate polymeric film with micro to nano thickness 

[52, 57]. The drug release from the oral film is directly influenced by various factors like (a) 

film composition, (b) film thickness, (c) drug loaded amount, (d) duration of crosslinking, (e) 

porosity of the film, (f) pH and ionic strength of the release medium [53]. Oral based films 

can be used as both local and site-specific DDS with flexible release profiles [53, 57].    

Hydrogels are a three-dimensional, soft, flexible, porous, hydrophilic, biocompatible and 

biodegradable polymeric network, which demonstrate excellent water absorption capability 

[58]. Hydrogels are fabricated with water-soluble, non-toxic, natural and synthetic polymers 

[4, 59]. Hydrogels are called “physical gel” when its molecular entanglements are largely 

based on hydrogen bonds (generally lower energy molecular interactions). In contrast to that, 

a “chemical gel” is formed when the hydrogel builds stronger covalent bonds between the 

macromolecules. Physical gels are mostly reversible in nature, whereas chemical gels show 

permanently cross-linked nature [58]. As hydrogels can absorb huge amounts of water and 

can hold it inside the polymeric matrix, crosslinking plays a very important role from 

preventing early dissolution of the polymer chain [59, 60]. Researchers have done extensive 

work in order to fabricate smart or stimuli-sensitive hydrogels, which have tremendous 

applications in the field of drug delivery, tissue engineering, and wound dressing [59-61]. 

Recently, hydrogel based soft contact lenses have shown promising results not only by 

correcting vision but also through controlling drug release for a prolonged time [59]. In 

addition to that, environment sensitive hydrogels have also shown enormous potential as site-

specific DDS, controlled DDS, biosensor, and bio separator [62]. In order to design stimuli-

sensitive smart hydrogel, materials like pH-sensitive, temperature-sensitive, glucose-

sensitive, electric signal-sensitive, light-sensitive, pressure-sensitive, specific ion-sensitive, 

specific antigen-responsive polymers are extensively used [4, 59, 61-63]. 

1.4.2 Liposome and micelle  

In 1960s, a famous biophysicist tried to disperse phospholipids in water, and it 

immediately resulted in a closed spherical structure with a hydrophilic core surrounded by a 

phospholipid bilayers shell and the structure that this experiment gave rise is known as a 
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liposome [64]. Liposomes can be synthesized from non-toxic surfactants, cholesterols, long 

chain fatty acids and proteins. Since this discovery, the colloidal vehicle has shown immense 

capability for carrying drug molecules with low-solubility, small molecules and bioactive 

lipids. Drugs with a wide variation of lipophilicities can be encapsulated either in the 

hydrophobic phospholipid bilayers shell side or in the hydrophilic core. Liposomes can be of 

two types based on the number of bilayers: (a) unilamellar vesicles and (2) multilamellar 

vesicles. Again based on side, unilamellar vesicles can be of two types: (a) small unilamellar 

vesicles and (b) large unilamellar vesicles. The size of the liposome can vary from very small 

(25nm) to large vesicle (2.5µm). Nano-liposomes have shown excellent control on 

pharmacokinetics and the co-delivery of two chemotherapeutic agents. It has also showed 

improved oral mucosal delivery of peptide molecules with prolonged retention in the GI tract 

and better penetration capability into the mucus layers [65] . Thus, liposome-based DDS has 

showed remarkable improvement in delivering hydrophobic drugs, intracellular drug 

delivery, sustained drug release, gene therapy, site-avoidance delivery, site-specific targeting, 

and intraperitoneal administration  [64-70].  

Recently with the advancement of novel DDS, micelle has also shown promising 

improvement in terms of delivering hydrophobic drugs [71]. Polymeric micelles are a 

combination of two segments: (a) an outer shell that controls in-vivo pharmacokinetics 

behavior of the system and an inner shell that protects the drug molecules and releases them 

at the targeted site [72]. In brief, amphiphilic polymer based multi-functional micelles with 

its unique hydrophobic core and its hydrophilic shell structure, have shown promising results 

by targeting the cancerous tumors with therapeutic agents. The usages of micelle in MRI to 

monitor targeting efficacy certainly improve the therapeutic outcome of drug delivery [73]. 

1.4.3 Nano-particles  

With the rising of nanoscale technologies in the 1970s, there has been the dawning of 

a new era of research in terms of disease diagnosis, treatments and preventions. Nanoscale 

devices are an outcome of the persistent efforts of engineers, biologists, chemists and 

physicists. Nanoparticles used as drug-carriers are generally submicron (<1 µm) colloidal 

particles. Nanoparticle-based DDS have already shown great success in the field of drug 

delivery and still have tremendous potential in the delivery of protein, peptide, vaccine, 

antibiotics, anti-tumor therapy and also in crossing blood-brain barrier as vehicles [74, 75]. 

Generally, nanoparticles are made from natural or synthetic polymers, which are 

biocompatible and biodegradable in nature. Drug release from the nanoparticles are caused 

by diffusion, swelling or degradation, particularly in the absorption site. In the case of oral 
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drug delivery, muco-adhesive polymer based nanoparticles increases the adhesion of drug-

loaded particles to the mucosa in the GT tract. This improves the bioavailability of the drug 

extensively [74]. In addition to that, for low-soluble drugs, nanoparticle based DDS can show 

targeted release in order to improve bioavailability and reduce side effects of the active 

molecules. Nano-suspension of drug-loaded nanoparticles has also shown remarkable 

improvement in bioavailability of low soluble drugs by oral, injectable, local or pulmonary 

administration [74-81].  

1.4.4 Nano-gel 

Nano-gels are submicron sized three-dimensionally crosslinked hydrophilic polymer 

network, which has both the features of hydrogels and nanoparticles [82]. Nano-gels are 

physically or chemically crosslinked nanoparticles which have tremendous ability to absorb 

water or biological fluid without deforming its original shape. The presence of hydrophilic 

groups such as –OH, –CONH–, –CONH2–, and –SO3H in the polymer matrix helps to absorb 

water inside the matrix resulting swelling like hydrogels. However, crosslinking helps to 

maintain the shape of the nano-gel matrix. The advantages of nano-gels are: (a) the non-toxic, 

biocompatible and biodegradable polymer formulation, (b) tunable release profiles, (c) ability 

to encapsulate both hydrophobic and hydrophilic kind of drug molecules, (d) ability to 

respond to different environmental stimuli (pH, ionic strength and temperature) (e) high drug 

loading capability and (f) high stability of the matrix [83, 84]. Despite several advantages, 

nano-gels interact between drug and polymer through electrostatic binding, hydrophobic 

interaction, and hydrogen bond, which decrease the solubility of the matrix limiting its 

application [84, 85]. Presently, well designed multi-responsive and self-crosslinked nano-gels 

are used widely as a targeted drug-carrier with wide range of pharmaceutical molecules [86, 

87]. 

1.4.5 Nanofiber 

Electrospinning is a cost effective and simple method for the production of nanofibers 

from an electrostatically driven jet of polymer solution. Fabrication of polymer fibers with a 

diameter of a few nanometers to several micrometers, by an electrostatic force was first 

reported in 1934 [88]. In the interim period of 70 years, a number of developments have led 

to the fabrication of continuous fibers through the use of different kinds of natural and 

synthetics polymers. Since the 1980s, electrospun polymeric fibers have regained the attention 

of the scientific community due to its exceptional properties such as its (a) large ratio to 

surface area-to-volume, (b) highly porous three-dimensional fibrous structure and (c) tunable 

inter-fibrous porosity [88]. The fiber properties are dependent on three main factors: (a) 
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polymer solution parameters (viscosity, surface tension, conductivity etc.), (b) process 

parameters (voltage, federate and tip-to-collector distance) and (c) ambient conditions 

(humidity and temperature) [89, 90]. The applications of electrospun nanofibers include 

wound dressing, drug delivery, nano-sensor, ophthalmology, development of artificial organs, 

tissue-engineering scaffolds [90]. Among all of these various applications, electrospun 

nanofibers as drug-carriers constitute its fastest growing and most promising use [90].  

To engineer electrospun nanofiber based DDS, natural, synthetic and hybrid polymer 

blends have been used [88]. Selection of polymer, solution parameters and process parameters 

play a great role in determining the fiber diameter size and morphology [89]. To understand 

the science behind the fiber formations, researchers have done extensive work with various 

kind of polymers, solvents and drugs. In addition to that, biodegradable natural polymers have 

also gained attention in the field of tissue engineering and regenerative medicine. Although 

natural polymers suffer from poor mechanical properties but the ability to recognize cell sites 

because of cell affinity gives it the upper hand [89, 90]. In case of tissue engineering or 

artificial organ, extra-cellular matrix (ECM) plays a very important role by giving the cells a 

physical structure and support. ECM helps in cell attachments, cell proliferation and 

differentiation [88]. Interestingly, the 3D structure of nanofiber scaffold can mimic the 

structure of ECM and the use of this kind of scaffold is extensive in damaged tissues for the 

healing process [88]. Thus, biomaterials, which show biocompatibility, biodegradability, non-

toxicity, hydrophilic with required mechanical strength, are widely used in drug delivery and 

tissue engineering.  

Since 2005, the application of electrospun nanofibers in drug delivery has attracted 

special attention (Figure 1.2) because of its unique properties such as (a) high ratio of surface 

area-to-volume, (b) high drug loading, (c) multi-drug delivery, (d) ease of operation, (e) and 

cost-effectiveness [88-90].  

Although, nanofiber based DDS is one of the most recent and potential drug-carriers, 

however, this system needs to go through many experiments under physiological or in-vivo 

conditions to make it marketable. Thus, a very close collaboration between drug delivery 

scientists and pharmaceutical companies is required to fully understand the budding potential 

of the vehicle and render this transition from lab to bed practicable. 
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Figure 1.2: Publications related to “nanofibers in drug delivery” since 2005 (Data extracted 

from Web of Science) 

 

1.5 Polymers used in controlled drug delivery systems 

The selection of the polymer plays a very important role in fabricating or designing 

controlled DDS. Polymers are classified according to their origin (i.e. natural or synthetic), 

backbone stability (biodegradable or non-biodegradable) and water solubility (hydrophobic 

and hydrophilic) [51, 88]. Biomaterial is the polymeric system that is used in the field of 

biomedical science. William defined biomaterial in his article [91] as:  

‘‘A biomaterial is a substance that has been engineered to take a form which, alone or as 

part of a complex system, is used to direct, by control of interactions with components of 

living systems, the course of any therapeutic or diagnostic procedure, in human or veterinary 

medicine.’’ 

Engineered polymeric biomaterials (tagged as ‘biomaterials’ in this thesis), which are 

used for biomedical applications, must be made of biocompatible polymers. William defined 

the term biocompatible in his article [92] as:  

“Biocompatibility refers to the ability of a biomaterial to perform its desired function 

with respect to a medical therapy, without eliciting any undesirable local or systemic effects 

in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial 

cellular or tissue response in that specific situation, and optimizing the clinically relevant 

performance of that therapy.” 
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In brief, the most common biocompatible, biomaterials which are widely used in the 

fabricating DDSs are classified in Table 1.1 [51, 89, 93].  

Table 1.1: Different kinds of biomaterials used in DDSs 

Natural polymer 

 Biodegradation Mechanical 

stability 

Water affinity References 

Gelatin Enzymatic Weak Hydrophilic [94] 

Chitosan Enzymatic Weak Hydrophilic [95] 

Alginate Enzymatic Weak Hydrophilic [96, 97] 

Hyaluronic acid Enzymatic Weak Hydrophilic [98] 

Collagen Enzymatic Weak Hydrophilic [99-102] 

Silk fibroin Enzymatic Strong  Hydrophilic [103] 

Dextran Enzymatic Weak Hydrophilic [104, 105] 

Cellulose acetate  Non-

degradable  

Weak Hydrophilic [106] 

Synthetic polymer 

 Biodegradation Mechanical 

stability 

Water affinity References 

Poly(glycolic acid) 

(PGA) 

Hydrolytic  Strong  Hydrophilic [107] 

Polycaprolactone 

(PCL) 

Hydrolytic Strong  Hydrophobic [108] 

Poly(lactic acid) 

(PLA) 

Hydrolytic Strong  Hydrophilic [107] 

Poly(lactic-co-

glycolic acid) 

(PLGA) 

Hydrolytic Strong  Less 

Hydrophilic 

[109-112] 

Poly(vinyl alcohol) 

(PVA) 

Enzymatic Strong  Hydrophilic [113] 

Poly(ethylene 

oxide) (PEO) 

Enzymatic Weak Hydrophilic [114] 

 

In summary, polymer blending of synthetic and natural kinds have been recently used 

in DDS to increase the mechanical stability of the vehicles. Alternatively, crosslinking of 

natural polymers to slow down the degradation speed of the vehicle is also another option. 
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However, using crosslinker may increase the risk of toxicity, which may lead to limiting of 

the usage of the drug vehicle. In an attempt to counter this, researchers have extensively 

studied the application of natural polymer as biomaterials in DDS with minimal usage of 

crosslinkers and synthetic polymers.  

Based on the perspective gain from this literature review, we have selected gelatin as 

an excipient because of biocompatibility, biodegradability and hydrophilic nature. Natural 

biomaterial gelatin based DDS has also been crosslinked to reduce the early degradation of 

the vehicle. The minimum usage of the crosslinker is one of the main aim of this study. Since, 

delivering a drug with low-solubility is a challenging feat, in this study, we have selected 

hydrophobic drug (Piperine) and amphiphilic drug (Amphotericin-B) as model drugs. 

Subsequently, we have attempted to deliver these drugs using a hydrophilic polymer gelatin 

based drug vehicle.  

 

1.6 Objectives 

The main objective of the thesis is to develop a low-cost, polymeric drug-carrier, which 

is fabricated with a biocompatible, biodegradable, natural polymer to achieve controlled and 

sustained release of low soluble drug molecules in a zero-order manner for a prolonged time.  

The primary objectives of the thesis include:  

 Fabrication of a natural polymer (gelatin) based, simple design, low-cost drug vehicle 

(cast-film and nanofibers are fabricated in this thesis)  

 Delivering less soluble drugs like Piperine (model hydrophobic drug) and 

Amphotericin-B (Amp-B: model amphiphilic drug) using gelatin based drug-carriers  

 Achieving zero-order drug release for at least 24-48 h in different physiological pHs 

similar to GI tract 

 Fabricating a less toxic polymeric vehicle by reducing the usage of toxic cross linkers  

 Understanding the science behind the successfully encapsulation of drug in different 

polymeric vehicles keeping all the properties of the drug intact, and to be able to 

control the parameters, which play key role in the release behavior of the drug 

molecules 
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 Fabricating a novel drug delivery vehicle that permits flexibility in drug release as 

per the requirements of varied therapies, particularly with respect to less water-

soluble drug molecule 

Delivering less soluble drugs is always a challenge and that is one of the main motivating 

factor for the work. Developing a genetic formulation of drug-polymer carrier, which can 

promote any kind of release profiles including zero-order release for different kind and size 

of drug molecules, is the objective of this thesis.  

 

1.7 Layout of thesis 

As the title of the thesis implies, the objective of this work is to provide a comprehensive 

idea of controlled drug delivery processes using polymeric drug delivery vehicles. This thesis 

includes different experimental techniques with an understanding of developing the process 

of polymeric drug delivery vehicles.  

The thesis starts with the introduction to controlled DDSs followed by a brief history of 

controlled DDS, various routes of drug administration, types of drug-carriers for controlled 

DDS, different kinds biomaterials used in drug delivery vehicles. Chapter 1 includes research 

objectives and the layout of the thesis. Chapter 1 serves as a starting point toward the overall 

understanding of the thesis in general.  

Chapter 2 discusses the fabrication and release study of the hydrophobic model drug 

piperine from the natural polymer, gelatin-based cast-film (GCF). The main objective of this 

chapter is to understand the drug-polymer interactions and the effect of cross linkers on drug 

release from the GCF. This chapter gives an overall understanding of the release kinetics of 

piperine, which is solely dependent on two factors viz. modification of the polymeric vehicle 

and the environment of the release medium.  

Based on our previous understanding of stability and release pattern of hydrophobic 

molecules from GCF, we tried to work on the deficiencies of the previous vehicles by 

introducing nanostructured DDS in Chapter 3. This chapter includes basic theories on the 

electrospinning process, and on fabricated, hydrophobic drug-loaded gelatin nanofiber (GNF) 

based DDS. The importance of the chapter lies in its examination of how we successfully 

improved the water repulsion capability of the vehicle by crosslinking it for a few minutes, 

which significantly marginalized any adverse effects, associated with the toxic cross linker. 
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All the aspects of the newly developed DDS in terms of thermal, structural and drug-polymer 

interactions are studied in this chapter.  

Chapter 4 begins with the possible solutions aimed at reducing the burst release of drug 

by introducing a multi-layered structured GNF based DDS. This chapter describes the 

different formulations of drug-loaded core and barrier layers in order to get zero-order release 

of the drug. This chapter not only focuses on the detailed design of fabricating a core-barrier 

for the system but also documents the improvements in release profiles. At last, the role of 

different strategies of crosslinking to achieve zero-order release of hydrophobic drug is 

examined in this chapter.  

Chapter 5 discusses the effect of different crosslinking strategies i.e. one-time and 

sequential crosslinking of different GNF based systems based on drug release profiles. The 

chapter also presents a comprehensive study of different kinds of drug-polymer formulations 

to identify the key parameters of modifying the drug release profile. This chapter includes in-

depth understanding of the role of different crosslinking strategies for single and multi-layered 

GNF based DDS. The aim of this chapter is to fabricate a general GNF based DDS, which 

can be tuned according to the desired release profiles particularly for hydrophobic drug 

molecules.  

With the previous experience with GNF based DDS using hydrophobic drug, chapter 6 

attempts to present a realistic approach to fabricating compressed nanofiber based oral tablets 

(CNOT) using a model amphiphilic drug, Amphotericin B (Amp-B). This chapter describes 

the fabrication, characterization and release performance of anti-fungal drug Amp-B loaded 

GNF and CNOT. Here the aim is to show the potential application of the nanofiber based 

DDS for molecules with larger size and with different nature (amphiphilic kind of drug). To 

meet the realistic scenario, Amp-B based CNOT is fabricated matching the therapeutic dose 

of the drug. The significance of taking a generic approach of fabricating CNOT, which can 

be applicable for different kinds of low soluble drugs, is discussed in chapter 6.  

Finally, chapter 7 reviews the newly engineered polymeric drug delivery vehicles with 

concluding remarks of the thesis. This chapter also includes the possibility of future works in 

the field of polymeric drug delivery vehicles particularly for low soluble drug molecules.  
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Chapter 2 

 

Fabrication of Gelatin Cast-Film based 

DDS 

 

2.1 Literature review 

While chapter 1 provides a historical overview of controlled DDS, different polymeric 

vehicles, different biomaterials used for DDS and different drug administration routes, chapter 

2 narrows down the focus to developing gelatin based cast-film as a potential drug delivery 

vehicle particularly for low soluble orally administrable drug piperine.   

As introduced in chapter 1, controlled delivery of drug occurs when bioactive molecules 

are encapsulated in a well-engineered system so that the drug can be released in a 

predetermined manner under specific physiological conditions [1, 2]. Consequently, the 

development of new biopolymers has become a rapidly emerging area of research which has 

in turn proved to be a driving force for revolutionizing polymer based DDS [3, 115, 116]. 

Compared to other drug delivery routes, the oral administration process is preferred because 

it is painless, patient-friendly and easy for self-medication [56, 117, 118]. In spite of this, oral 

administration of the drug is considered challenging because GI fluids cause hydrolysis and 

enzymatic degradation of the active molecules [35]. Thus, in order to protect  the drugs from 

the harsh conditions of the GI tract, they are usually wrapped with biocompatible polymers 

known as excipients [51, 116]. To overcome early degradation of drug molecules and to 

deliver the drug at the absorption site with better bioavailability, researchers have developed 
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various kinds of biodegradable and biocompatible polymeric vehicles as a suitable means for 

controlled DDS.  

Over the years, drug delivery scientists have designed a wide array of drug-carriers to 

overcome these issues concerning conventional drug delivery methods. These have been 

discussed in chapter 1. Among various drug delivery vehicles, polymeric cast-films are 

gaining considerable attention as alternatives to tablets [119]. Oral cast-films are simple in 

design and are easy to administer particularly to very young and elderly patients. For creating 

effective polymeric cast-films, researchers have engineered different kinds of drug loaded 

oral films with various types of biomaterials [120-122]. Likewise, chemists have synthesized 

multiple varieties of biomaterials, which can control the interaction between the polymer 

chain and the biological components. With these newly developed biocompatible 

biomaterials, chemical engineers presently design the drug-carrier or vehicle in such a way so 

that it is able to maintain the drug concentration within the therapeutic level. Both engineers 

and pharmaceutical scientists pay very close attention to the designing of the drug-carrier in 

order to meet the desired release profiles. It is therefore evident that the selection of an 

appropriate biomaterial and a drug delivery vehicle is very important to make the vehicle 

therapeutically effective and commercially successful.   

From the two kinds of available biomaterials, namely, synthetic and natural polymers as 

discussed previously, we have chosen natural polymer gelatin as an excipient of the drug-

carrier [102, 123, 124]. The properties of gelatin may differ depending upon several factors 

(such as collagen source, the type of hydrolytic treatment and the method of extraction) during 

its synthesis [102]. Gelatin is a hydrophilic polypeptide, which can be extracted either from 

acid or alkali or even from the hydrolysis of collagen. This collagen is usually sourced from 

the skin, bone, cartilage, and connecting tissue of different animals. The synthesizing process 

and concentration of crosslinker hugely influences the mechanical properties, swelling 

degrees, physio-chemical properties and thermal stability of gelatin. The versatility of gelatin, 

therefore, makes it the most viable option for designing the drug-carrier. In this proposed 

work, we have selected gelatin cased-film (GCF) as the drug delivery vehicle, which can be 

administrated orally.  

There have been myriad reports on different kinds of oral films, with many classes of 

encapsulated drug molecules that target a broad spectrum of release profiles. For instance, 

there are reports regarding fast dissolving and muco-adhesive oral films for buccal 

administration, and targeted oral films, which are used for a prolonged duration [54, 76, 119, 
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125, 126]. In the case of muco-adhesive or fast dissolving oral films, the administrative route 

is mostly through the buccal cavity which bypasses the first pass-metabolism and avoids the 

adverse conditions of the GI tract [52, 118]. In the case of oral films with prolonged release 

however, the design is critically important, particularly for targeted drug release [125, 126]. 

Here, as discussed in chapter 1, the challenge is to maintain the drug concentration within the 

therapeutic level for a prolonged duration. In order to accomplish this task, there are three 

options available. The first is to; increase the drug load, which may however cross the upper 

limit or the toxic level of the drug. The second option is frequent administration of drug, which 

could prove to be inconvenient to the patients.  Finally, the third option is to encapsulate the 

drug in a polymer matrix so that it can easily survive though the harsh condition of the GI 

tract and can be released at the absorption site. Taking up the aforementioned challenge, we 

have aimed to fabricate a polymer carrier, encapsulated with molecules of interest, which can 

provide a wide range of drug release profiles. Our next challenge is to deliver molecules with 

low-solubility using hydrophilic polymer based GCF. Gelatin has been extensively studied as 

an oral drug-carrier and the efficacy of the vehicle with many different drugs has been 

reported in literature [116, 122]. Despite extensive research on gelatin based DDS, delivering 

a low-soluble drug remains a challenge in the field of drug delivery.  

In this study, we have selected piperine as a low-soluble model drug. Piperine has been 

used in alternative and complementary therapies because of its bio-enhancer properties, and 

its anti-oxidant, anti-depressant, anti-inflammatory, anti-thyroid, and anti-tumor activities 

[127]. It has been reported that piperine increases the bio-availability of curcumin, an anti-

cancerous drug, by 2000% in humans [128]. The gelatin-based hydrophilic matrix increases 

the solubility of the vehicle, which in turn releases the drug. However, gelatin’s poor structural 

consistency in an aqueous medium is a considerable drawback. To improve its stability in wet 

conditions, polymer blending and crosslinking are two reported methods [129, 130] but, due 

to the low biocompatibility and cell affinity of synthetic polymers, polymer blending as a 

probable solution was eliminated at this stage for this study. Alternatively, drug impregnated 

GCF was cross-linked at various degrees of concentrations to improve the structural property 

of the vehicle. Among different crosslinking agents reported in the literature to improve water 

resistivity of gelatin [94, 131-133], glutaraldehyde (GTA) has been used in this study owing 

to its easy availability, low cost, and excellent crosslinking capacity within a short time period. 

However, GTA is used at a very low concentration to minimize its cytotoxic effects  [133]. 

In this chapter, we have anticipated that hydrophobic drug encapsulation will prevent the 

biopolymer matrix from early degradation and enhance the release possibility at the 
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absorption site. Thus, on the one hand, the designed hydrophilic matrix protects the active 

molecules from gastric fluids, and on the other hand, it releases the drug due to enzymatic 

degradation in the lower intestine. However, the challenge is to crosslink the vehicle to the 

correct degree so that it can provide the desired mechanical strength and can release the drug 

in a controlled manner. The advantage of using GTA crosslinked gelatin matrix is primarily 

because of its swelling properties and its capacity for time-programmed degradation. 

Naturally, crosslinking plays a very important role in the swelling rate and the desired 

sustainability of the vehicle. The covalent bonding, hydrogen bonding, and the physical 

interaction facilitate the longevity of the vehicle. Eventually, due to the external stimuli (like: 

pH and ionic strength of the dissolution medium), the polymer relaxation leads to swelling, 

which results in the diffusion of the drug molecules from the vehicle to the release medium 

[122, 131-133]  

This study aimed to examine all aspects of the drug loaded cross-linked GCF in terms of 

morphology, biodegradation, thermal stability of the drug loaded vehicle and achieve control 

over the drug release profiles using this vehicle. In order to check the overall morphology, 

and to find the presence of drug in the polymer film, Optical Microscope was used. Fourier 

Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC) 

investigated the presence of drug and thermal stability respectively. Finally, In-vitro release 

study was undertaken (for several cases with varying concentrations of polymer and 

crosslinker) in different physiological conditions that mimicked the stomach and intestinal 

pHs. In summary, the effort was to demonstrate the mechanism for preparing GCF of different 

dissolution rates (fast and slow). This was carried out through changing the concentrations of 

gelatin and GTA and facilitate the release of hydrophobic drug (Piperine) for a variety of 

release requirements i.e. from fast to slow release of drug molecules.  

 

2.2 Materials and Methods 

 

2.2.1 Materials 

Gelatin (Type A, 175 bloom), Piperine (98%), Hydrochloric acid (ACS, 36.5-38.0%), 

Glutaraldehyde (25% v/v aqueous solution), Phosphate buffer saline (PBS: pH 7.4), Sodium 

hydroxide pallets (98%) were purchased from Alfa Aesar. Deionized water (DI) (Milli Q 

water 18.1Ω) was used throughout the experiments.  
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2.2.2 Fabrication of cast-film  

 GCF were fabricated by solvent casting method. First, different concentration (A: 

2.5% w/v, B: 5% w/v, C: 10% w/v and D: 15 % w/v (gm/ml)) of 5 ml aqueous gelatin 

solution were made in magnetic hot plate maintaining the temperature at 50oC and the 

rotation speed at 600 RPM. After 2 h, piperine (2mg/ml) as a model drug was loaded 

in the homogenous gelatin solution and was kept for stirring for another hour. In the 

next step, the solutions were poured in (60×15 mm) petri dishes and kept in dry air 

oven for 24 h, maintaining the temperature at 30ᴼC. After 24 h, the completely dried, 

drug-loaded, gelatin cast-films (GCF-P X where, X=A/B/C/D) were removed from the 

petri dish.  

 

2.2.3 Crosslinking  

 After fabricating GNF-P X, the films were cross-linked with different 

concentrations of GTA (1: 0.01% v/v, 2: 0.02% v/v, 3: 0.05% v/v, 4: 0.1 % v/v, and 5: 

0.25 % v/v) for 10 min. The different concentration of crosslinking led to various 

degrees of cross-linked samples (GCF-P XY where, X=A/B/C/D and Y=1/2/3/4/5). 

Following this, these crosslinked samples were kept in a hot air oven for another 24 h 

with the temperature being maintained at 30ᴼC. Gelatin has polyampholyte nature 

because of the presence of positively and negatively charged amino acids [122]. 

Further on, GCF-P X were cross-linked using different concentrations of GTA solution 

in order to improve the water sensitivity and thermal stability. The carbonyl groups 

(C=O) of aldehyde group (-CHO) present in GTA react with amine groups (-NH2) of 

lysine, one of the amino acid present in gelatin [133]. These cross-linked gelatin 

molecules have covalent bonds between molecules which cause remarkable water 

resistivity for the system. Figure 2.1 shows digital images of GCF-P D0 and GCF-P 

D4. Although, the crosslinked sample GCF-P D4 was dipped for only 10 min in 0.1% 

v/v of GTA, it showed good water resistivity and thus was sufficient to protect the film 

from degradation. The nomenclature of samples with different polymer concentration 

and various GTA concentration is displayed in Table 2.1.  
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Figure 2.1: Digital images of (a) non-crosslinked sample (GCF-P D0) and crosslinked sample 

(GCF-P D4) immersed in PBS (pH 7.4) 

 

Table 2.1: Nomenclature of samples used in this chapter 

Polymer 

Concentration 

(gm/ml) 

Non-

crosslinked 

 

Crosslinker GTA solution concentration 

Y= 1/2/3/4/5 

 

X=A/B/C/D 

Y=0 

(0% v/v) 

 

Y=1  

(0.01% 

v/v) 

Y=2  

(0.02% 

v/v) 

Y=3  

(0.05% 

v/v) 

Y=4 

(0.1% 

v/v) 

Y=5 

(0.25% 

v/v) 

A=2.5% w/v GCF-P A0 GCF-P 

A1 

GCF-P 

A2 

GCF-P 

A3 

GCF-P 

A4 

GCF-P 

A5 

B=5.0% w/v GCF-P B0 GCF-P 

B1 

GCF-P 

B2 

GCF-P 

B3 

GCF-P 

B4 

GCF-P 

B5 

C=10% w/v GCF-P C0 GCF-P 

C1 

GCF-P 

C2 

GCF-P 

C3 

GCF-P 

C4 

GCF-P 

C5 

D=15% w/v GCF-P D0 GCF-P 

D1 

GCF-P 

D2 

GCF-P 

D3 

GCF-P 

D4 

GCF-P 

D5 

 

2.3 In-vitro biodegradation study 

 The motivation behind the In-vitro biodegradation was to check the water resistant 

properties of the system in different pH solutions while maintaining physiological 

conditions. Thus, GCF-P X were cross-linked using different concentration of GTA 

solution for better stability in aqueous conditions. All the dried cross-linked films 

(GCF-P XY where, X=A/B/C/D and Y=1/2/3/4/5) were kept in 50 ml solutions of pH 

1.2, 6, 7.4 and 8 in a mechanical shaker (Remi RIS-24 plus) for 24 h, at 37 ᴼC and 100 

RPM. In-vitro biodegradation results for GCF-P XY (where, X=A/B/C/D and 
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Y=1/2/3/4/5) are summarized in Table 2.2. The non-cross-linked (NC) drug loaded 

gelatin films (GCF-P X0 where 0= NC) dissolved within few minutes for all the 

concentration of gelatin (GCF-P X0 where X=A/B/C/D and 0=NC) because of the 

hydrophilic nature of the polymer.  

 All the different concentration of gelatin samples (A: 2.5% w/v, B: 5% w/v, C: 10% 

w/v and D: 15 % w/v) cross-linked with 0.05% v/v of GTA solution (that is sample 

GNF-P X 3) and above were intact even after 24 h in all pH conditions. Cross-linked 

samples below 0.05% w/w (GCF-P X3 where, X=A/B/C/D and 3=0.05% v/v) were 

partially degraded within 24 h. In case of sustained release for more than 24 h, these 

samples were not recommended as a vehicle. Thus we have taken GCF-P X3 where, 

X=A/B/C/D and 3=0.05% v/v as the baseline.  

 Table 2.2 shows that with the same amount of crosslinking (0.02% v/v of GTA that 

is sample GCF-P X2 where, X=A/B/C/D and 2=0.02% v/v) even the stability of the 

vehicle can be improved by increasing the concentration of gelatin. This is because of 

the increase in the thickness of the film. The thickness of different samples (GCF-P X 

where X=A/B/C/D) were measured by Digimatic micrometer, Mitutoyo, and are 

presented in Table 2.2. Thus, it can be understood that longer diffusion path for water 

ingression leads to difficulty in swelling followed by less degradation, which confirms 

better stability of the vehicle. Another possible explanation can be that with a higher 

concentration of gelatin the crosslinking is better with GTA due to the presence of 

more lysine protein in the matrix, which can react with GTA and thus increase the 

molecular entanglement, leading to better stability. The gelatin cast-films of 10% w/v 

and above (that is sample GCF-P C2 and CGF-P D2 where, 2= 0.02% v/v) are quite 

stable with even minimal crosslinking (0.02% v/v of GTA) for all the physiological pH 

for a period of 24 h. However, the sample GCF-P A2 and GCF-P B2 showed partial 

degradation in lower pHs.  

Finally, we conclude that, samples GCF-P XY where X=A/B/C/D and Y=2/3/4 showed 

good stability in different pH solutions. These selected samples were used for further 

experiments. The selected samples are highlighted in the Table 2.2.  
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Table 2.2: Summary of In-vitro biodegradation study for sample GCF-P XY where, X= A/B/C/D and 

Y=0/1/2/3/4/5 

 

pH of  

solution 

A=2.5% w/v GCF-P and crosslinking time= 10min (Thickness: 0.0518 ± 0.0 mm) Main cause 

of drug 

release 

A0 

(0%v/v) 

A1 

(0.01 %v/v) 

A2 

(0.02 %v/v) 

A3 

(0.05 %v/v) 

A4 

(0.10 %v/v) 

A5 

(0.25 

%v/v) 

1.2 - + + * * * Degradation 

6 - + + * * * Degradation 

7.4 - + + * * * Degradation 

8 - + + * * * Degradation 

 

pH of  

solution 

B=5% w/v GCF-P and crosslinking time= 10min (Thickness: 0.103 ± 0.01 mm)  

B0 

(0%v/v) 

B1 

(0.01 %v/v) 

B2 

(0.02 %v/v) 

B3 

(0.05 %v/v) 

B4 

(0.10 %v/v) 

B5 

(0.25 

%v/v) 

 

1.2 - + + * * * Diffusion 

6 - + + * * * Diffusion 

7.4 - + + * * * Diffusion 

8 - + * * * * Diffusion 

 

pH of  

solution 

C=10% w/v GCF-P and crosslinking time= 10min (Thickness: 0.181 ± 0.01 mm)  

C0 

(0%v/v) 

C1 

(0.01 %v/v) 

C2 

(0.02 %v/v) 

C3 

(0.05 %v/v) 

C4 

(0.10 %v/v) 

C5 

(0.25 

%v/v) 

 

1.2 - + * * * * Diffusion 

6 - + * * * * Diffusion 

7.4 - + * * * * Diffusion 

8 - + * * * * Diffusion 

 

pH of  

solution 

D=15% w/v GCF-P and crosslinking time= 10min (Thickness: 0.305 ± 0.01 mm)  

D0 

(0%v/v) 

D1 

(0.01 %v/v) 

D2 

(0.02 %v/v) 

D3 

(0.05 %v/v) 

D4 

(0.10 %v/v) 

D5 

(0.25 

%v/v) 

 

1.2 - + * * * * Diffusion 

6 - + * * * * Diffusion 

7.4 - + * * * * Diffusion 

8 - + * * * * Diffusion 

 

Where, ‘-’ means dissolved completely in the solution. ‘*’ means not dissolved and ‘+’ 

means slightly dissolved in the dissolution medium after soaking for 24 h. 
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2.4 Characterization 

After checking the stability of the cross-linked samples in biological conditions, we have 

investigated the effect of crosslinking on thermal stability using Differential Scanning 

Calorimetry (DSC 1 Stare system, Mettler Toledo: Switzerland, model no: B25063033) in 

nitrogen atmosphere. The experiment was performed in the range to 35 to 300 ᴼC at a heating 

rate of 10 ᴼC /min. Surface morphology of the drug loaded film was confirmed using Optical 

microscope (Carl Zeiss Axio Imager M2m) under 5X optical lens in bright field mode. In 

order to examine the presence of drug and the effect of crosslinking on the film, samples were 

characterized using Attenuated Total Reflectance (ATR)-Fourier transform infrared (FTIR) 

spectrometer (Bruker Alpha-P) in the 4000-500 cm-1 range.  

 

2.4.1 Thermal characterization 

 DSC was performed for the maximum concentration of gelatin and maximum 

concentration of GTA i.e. 15% w/v of GCF-P cross-linked with 0.10% v/v of GTA 

(sample: GCF-P D4), which was the most stable sample in all the pH conditions. Figure 

2.2 shows very distinct two stage endothermic peaks within the range of 35 to 250 ᴼC. 

The first peak between 85 to 110 ᴼC refers to the helix to coil transition and the second 

peak indicates the degradation and decomposition of gelatin in the range of 200  to 250 

ᴼC [129]. The denaturation temperature of NC film (GCF-P D0) is 89.5 ᴼC  (approx.), 

whereas the same for the cross-linked one is 96 ᴼC. Finally, we can conclude that 

crosslinking helps in entanglement of the polymer molecules and leads to better 

thermal stability of the polymeric vehicle.  
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Figure 2.2: DSC thermogram of GCF-P D0 and GCF-P D4  

 

2.4.2 Structural characterization  

 Figure 2.3 shows the optical microscopic images of NC gelatin sample without drug 

molecules (GCF D0) and with drug molecules (GCF-P D0). In the case of GCF D0, 

the sample showed a smooth morphology (Figure 2.3 a). However, for sample GCF-P 

D0, the presence of drug molecules were clearly visible in Figure 2.3 b. As drugs were 

loaded during the formation of the film, they were distributed both in core and surface 

of the film. Figure 2.4 showed the morphology of swelled sample GCF-P D4 in 

different time intervals of immersion in PBS solution. The presence of the drug in the 

matrix as well as on the surface is very clear. When the sample starts swelling due to 

diffusion, the drug molecules start moving towards the release medium. We have 

assumed that the drugs molecules, which are attached to the uppermost surface of the 

film, will show an initial fast release profile due to partial degradation of the film. Drug 

molecules within the layers of the film will lead towards sustained release profile. In 

this case, the diffusional force remains the main factor in releasing molecules from 

core of the cross-linked film. These drug molecules from the core will be responsible 

for the delayed or sustained release of drug molecules. Optical microscopic images not 

only gave an overall idea of the topography of the samples but also gave an image of 

drug distribution and drug transportation for swelled samples.  
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Figure 2.3: Optical microscopic image of (a) GCF D0, (b) GCF-P D0 

 

 

Figure 2.4: Optical Microscopy images of GCF-P D4 at various time intervals i.e. (a) 1 h, 

(b) 8 h, (c) 12 h and (d) 24 h of immersion in PBS solution (pH 7.4) maintaining 37 ᴼC  

 

2.4.3 Drug-polymer compatibility 

 To understand the effect of crosslinker on the polymer and the interaction between 

the drug and polymer matrix, ATR/ FTIR were done. Figure 2.5 shows the results of 

ATR/FTIR for the non-crosslinked and crosslinked films with and without drug (a. 

GCF D0, b. GCF D4, c. GCF-P D0, d. GCF-P D4). The absorption bands at 3271 cm-

1 (N-H stretching), 1626 cm-1 (amide I, C=O and C-N stretching), 1535 cm-1 (amide II, 
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N-H bend and C-H stretch) and 1236 cm-1 (amide III) are the characteristic bands of 

non-crosslinked GCF which are shown in Figure 2.5 (a) [126]. The aldehyde group (-

CHO) of GTA reacts with the lysine’s amino group present in gelatin. New covalent 

(C-N) bonds form due to the reaction of amino group of gelatin with carbonyl group 

of GTA [133].  

 Figure 2.5 (a) and 2.5 (b) shows the minor peak shifting for non-crosslinked (GCF 

D0) and crosslinked (GCF D4) gelatin film from 3271 cm-1 (N-H stretching) to 3273 

cm-1 due to hydrogen bonding between amino group of gelatin and carbonyl group of 

GTA. Similar peak shifting was observed at amide I (C=O and C-N stretching) from 

1626 cm-1 to 1630 cm-1 as well as in amide II and III peaks of gelatin, which confirm 

the crosslinking of gelatin with GTA. 

Figure 2.5 (a) and 2.5 (c) shows the presence of piperine in non-crosslinked gelatin 

film. The peaks due to N-H stretching have shifted from 3271 cm-1 to 3274 cm-1 that is 

an indication of very weak interaction between piperine and gelatin. There is no major 

peak shifting that occurs due to the presence of piperine which is an indication of the 

successful encapsulation of drug without reacting with the polymer matrix. Next, we 

compared non cross-linked (GCF-P D0) and cross-linked (GCF-P D4) GCF with 

piperine in Figure 2.5 (c) and 2.5 (d). Similarly, minor change in peaks can be observed 

in N-H, amide I, II, III peaks that indicates less crosslinking of gelatin. This 

crosslinking was good enough for the stability of polymer film in biological conditions, 

which has been discussed in section 2.3. Therefore, it is clear from the FTIR studies 

that drug molecules are neither strongly attaching with the polymer nor forming new 

molecules, i.e. drug is encapsulated in polymer matrix without reacting with the matrix. 

 

Figure 2.5: ATR/FTIR spectra for (a) GCF D0, (b) GCF D4, (c) GCF-P D0, (d) GCF-P D4 
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2.5 Drug release performance  

 In this section, we tried to bind all the previous observations from the morphology 

study, In-vitro biodegradation, thermal stability and drug-polymer interaction studies 

to predict the desired release profiles. To study the In-vitro release of piperine from 

GCF, films were kept in 50ml of PBS and 0.1N HCl solution at different physiological 

pH levels (pH 1.2: similar to stomach; pH 7.4: similar to intestine). The temperature 

and stirring of the system were maintained at 37 ᴼC and at 50 RPM respectively. 3ml 

samples were taken at certain time gaps and analysed using an UV spectrophotometer 

(Perkin Elmer Lambda 35) at 342nm as λmax for Piperine. Fresh 3ml release solution 

was replaced in the release medium to maintain the total volume as constant. Standard 

curve for piperine in PBS is shown in Appendix C. 

 Release profile of piperine from different cross-linked film (GCF-P XY where X= 

A/B/C/D and Y= 2/3/4) are shown in Figures 2.6 and 2.7. Concentration of polymer 

and crosslinker and pH of the release medium plays an important role in these release 

profiles [122]. Release of drugs can be influenced by the diffusion of drug molecules 

from the matrix as well as the partial degradation of polymer matrix. Swelling of the 

matrix is also a very important factor for the drug release study [129]. From the In-

vitro biodegradation study, we got an idea of the stability for crosslinked sample. Based 

on degradation study, we selected few samples (highlighted in Table 2.2 and the 

samples were GCF-P XY where X= A/B/C/D and Y= 2/3/4) which were suitable for 

the drug release study. The swelling and degradation of the matrix can be toned-down 

by changing the concentration of gelatin and GTA. The water molecules from the 

release medium diffuses inside the film and starts swelling. For lower concentration of 

gelatin and GTA, the binding forces in the crosslinked gelatin matrix were less which 

led to faster degradation followed by fast release of drug. To take control over the 

degradation due to hydrolysis, films were cross-linked with higher concentration of 

GTA and higher concentration of gelatin. Similar to In-vitro biodegradation of film, 

thickness of the film played an important role in the drug release phenomena as well. 

Firstly, with same drug loading for different films, lower concentration polymer 

showed faster release due to the lesser diffusional path. The lesser diffusion path led to 

higher mobility of water molecule and thus the faster degradation of the film. Secondly, 

with lower concentration of polymer, the presence of amine group, which can react 

with GTA, is also less. Less entanglement between the polymer chain and crosslinker 

may cause faster degradation of film, which results swelling of the matrix. Due to less 



30 
 

crosslinking of the matrix, the hydrophilic chains attracts water molecules, which 

easily invites water molecules inside the matrix causing swelling of the film. The 

swelled film causes partial degradation as well as diffusion of drug molecules from the 

matrix. Naturally, the penetration of water molecules through the matrix is very much 

dependent on the entanglement between the polymer chain and crosslinking. In case 

the crosslinking is not strong enough, the water molecules starts entering from the 

release medium to the matrix causing swelling. Due to the high osmotic pressure, the 

matrix experiences early degradation, which leads to sudden release of drugs.  On the 

other hand, the release pattern can be controlled by increasing the concentration of 

gelatin and GTA both. Therefore, the perfect amount of crosslinker and polymer 

concentration is required to fabricate a GCF based vehicle, which can sustain for a 

longer period and can release drug without initial sudden release.  

 From In-vitro biodegradation of cased-film, we concluded that, crosslinking more 

than 0.01% v/v of GTA to less than 0.25% v/v of GTA (GCF-P XY where X= A/B/C/D 

and Y= 2/3/4) was sufficient for it to remain stable under all the pH conditions for 24 

h. DSC thermogram had already confirmed the thermal stability due to the crosslinking 

effect. The ATR/FTIR had also clearly represented the presence of drug in gelatin 

matrix without reacting with the vehicle. These analyses get further support In-vitro 

drug release study.  

 The In-vitro drug release patterns for the samples GCF-P XY where X=A/B/C/D 

and Y=2/3/4 in different physiological pH conditions (pH 7.4, pH 1.2) are shown in 

Figures 2.6 and 2.7. The drug concentration (µg/ml) Vs time (min) data is presented in 

Appendix B (Table B1 and B2). The drug release pattern for GCF-P AY (where, 

Y=2/3/4) showed initial sudden release in the first 3-4 h compared to GCF-P DY 

(where, Y=2/3/4) samples (Figure 2.6 a). The inter- and intra- molecular bonds 

between gelatin molecules in higher concentration of gelatin film show less swelling 

followed by less amount of drug release compared to the case of lower concentration 

of gelatin film. 

 With the increase in the polymer concentration, the cumulative drug release was 

decreased and the initial release was controlled. Polymer concentration influences the 

film thickness, which resulted in longer diffusional path for the drug molecules to 

release. Therefore, the presence of drug molecules in the core of the film causes slow 

release. The reason is, due to the higher concentration of polymer and crosslinker, the 

drug molecules experience constraints and slow down the mobility or transportation of 

the drug molecules. The drugs present in the core of the mesh, come out to the release 
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medium due to diffusional force. For example, the sample GCF-P D4 shows sustained 

release compared to GCF-P D1. Less crosslinking causes partial degradation which 

leads to faster release for GCF-P D1 compared to GCF-P D4.Whereas the reason of 

sustained drug release from the sample GCF-P D4 is diffusional force. However, 

sample GCF-P AY (where, Y=2/3/4) exhibits similar release pattern for all the different 

concentration of GTA solution. This might be because of the less molecular 

entanglement in the polymer matrix in general, which easily causes partial degradation 

(Table 2.2) [122, 131-133].  

 Figure 2.7 represents similar case studies in pH 1.2. It is observed that the drug 

release amount is less in all the cases in pH 1.2 solutions compared to pH 7.4. The 

explanation of the phenomenon is due to the presence of H+ ions, the polymer matrix 

gets protonated and this leads to less swelling of the film [122, 129]. Lesser drug 

release in pH 1.2 is desirable, as main absorption of drug will take place in intestine 

(pH 7.4). If the release is less in stomach (pH 1.2) and the vehicle is stable in that 

condition, the drug loss will be less. Typically, in the stomach, the retention time is 

generally 3-4 h. Nevertheless, we have studied it for 8 h to check the drug release 

pattern. The maximum drug released in pH 1.2 for the sample GCF-P A1 (i.e. 0.02% 

v/v of GTA and 2.5%w/w of gelatin) is approx. 24% over 8 h. Further, the drug release 

in lower pH is taken care of by increasing the concentration of GTA and polymer. As 

a result, the total drug release gets reduced (only approx. 14% of total drug) by almost 

10% for the sample GCF-P D4 (i.e. 0.1% v/v of GTA and 20%w/w of gelatin) over 8 

h.  

 Finally, by controlling the crosslinker and gelatin concentration, we can engineer 

the vehicle in such a way that we get desired drug release profiles.  From the In-vitro 

drug release study, we can conclude that the GCF-P XY (where, X= A/B/C/D and Y= 

2/3/4) is stable in the harsh conditions (pH 1.2) of the GI tract and is able to release the 

drug in a controlled manner in absorption site (pH 7.4). Thus, GCF-P XY (where, X= 

A/B/C/D and Y= 2/3/4) can be a potential oral drug delivery vehicle to get—fast and 

slow—both kinds of drug release patterns for specific use.  
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Figure 2.6 (a): Cumulative release of piperine for GCF-P XY (X=A/B/C/D and Y=2/3/4) 

in pH 7.4 for 24 h and (b): for 8 h, (where, A= 2.5%w/v of gelatin, B= 5% w/v of gelatin, 

C= 10%w/v of gelatin, D= 15%w/v of gelatin film; 2= 0.02%v/v of GTA, 3=0.05%v/v of 

GTA and 4= 0.1% v/v of GTA) 

 

 

Figure 2.7: Cumulative release of piperine for (a) GCF-P XY (X=A/B/C/D and Y=2/3/4) 

in pH 1.2 for 8 h, (where, A= 2.5%w/v of gelatin, B= 5% w/v of gelatin, C= 10%w/v of 

gelatin, D= 15%w/v of gelatin film; 2= 0.02%v/v of GTA, 3=0.05%v/v of GTA and 4= 

0.1% v/v of GTA) 
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2.5.1 Drug release mechanism 

 To understand the drug release kinetics and the mechanism, data were analysed with 

various mathematical models such as zero-order, first order, Higuchi and respective 

co-efficient as presented in Table 2.3 and 2.4. It can been clearly observed from Table 

2.2, the samples fitted  best in the Higuchi model, among all others, based on the higher 

R2 values.  

The equation of Higuchi model is: 

 

F = KH t1/2 

 

Where, F = amount of drug release at time t, KH = Higuchi dissolution constant.  

 

 The decreases in KH values were found for all the samples in both the release 

medium (pH 7.4 and pH 1.2), which indicates the increase in diffusional barrier. With 

the increase of polymer and crosslinker concentration, the diffusion process has slowed 

down drastically, which finally toned down the drug release (Figures 2.6 and 2.7). 

From Tables 2.3 and 2.4, it can be noted that with the same polymer concentration, the 

KH value has decreased with increase in crosslinking concentration. On the one hand, 

polymer concentration helped increase the diffusion path of the film; while on the other 

hand, crosslinking prevented the polymer matrix from swelling. As a result, we gained 

control over the swelling as well as over the partial degradation due to diffusion, which 

finally helped us achieve sustained release [134, 135].  
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Table 2.3: List of drug release co-efficient fitted in different kinetic models (For pH 7.4) 

 

Samples (pH 7.4) 

 

Release Models Zero-order First Order Higuchi model 

Sample names k R2 K R2 KH R2 

A2 0.0393 0.8831 0.0066 0.9833 5.3554 0.9959 

A3 0.0376 0.9139 0.0065 0.9701 5.0402 0.9901 

A4 0.0321 0.9092 0.0046 0.9577 4.3078 0.9862 

B2 0.0275 0.9061 0.0034 0.9698 3.7062 0.9981 

B3 0.0275 0.9061 0.0034 0.9698 3.7062 0.9981 

B4 0.0249 0.8786 0.0028 0.9312 3.4068 0.9966 

C2 0.0249 0.9008 0.0029 0.9615 3.371 0.9949 

C3 0.022 0.9075 0.0025 0.9472 2.9544 0.9841 

C4 0.0208 0.8926 0.00223 0.9479 2.8263 0.9958 

D2 0.0213 0.9503 0.0025 0.9828 2.7962 0.983 

D3 0.0151 0.9463 0.0016 0.9768 1.9987 0.9895 

D4 0.0134 0.9669 0.00144 0.9826 1.7443 0.9704 
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Table 2.4: List of drug release co-efficient fitted in different kinetic models (For pH 1.2) 

 

Samples (pH 1.2) 

 

Release Models Zero-order First Order Higuchi model 

Sample names  k R2 K R2 KH R2 

A2 0.0112 0.7672 0.000898 0.7088 1.5921 0.9623 

A3 0.0108 0.8291 0.000934 0.8037 1.5097 0.9824 

A4 0.0096 0.9117 0.000898 0.9203 1.2897 0.9937 

B2 0.0079 0.8839 0.000693 0.8972 1.082 0.9977 

B3 0.0063 0.9033 0.000547 0.9286 0.8512 0.9997 

B4 0.007 0.9033 0.000642 0.951 0.9323 0.9905 

C2 0.0085 0.9492 0.000841 0.9492 1.1052 0.954 

C3 0.0071 0.9201 0.000644 0.9498 0.9547 0.9848 

C4 0.0067 0.8547 0.000556 0.8675 0.9239 0.9802 

D2 0.0067 0.8336 0.000553 0.8182 0.9406 0.9809 

D3 0.006 0.8238 -0.00021 0.7998 0.8367 0.9687 

D4 0.0057 0.8075 0.000446 0.7727 0.7972 0.9678 

 

2.6 Summary 

In order to investigate the importance of crosslinker and polymer concentration on the 

release profile of piperine at different pH, we studied the surface morphology, In-vitro 

biodegradable study, thermal stability and chemical interactions of the drug and the polymer. 

Optical microscopic images gave us an idea about the polymer morphology and confirmed 

the presence of drugs in the samples. In-vitro Biodegradation and DSC showed the water 

resistibility and thermal stability of the system. The ATR/FTIR study showed no presence of 

strong drug-polymer interaction. The In-vitro release study showed that drug release can be 

controlled by changing the concentration of crosslinkers and gelatin. At lower pH, slower 

release of drug was observed. Finally, drug release from GCF-P XY (where, X= A/B/C/D and 

Y= 2/3/4) can have both fast and slow release profiles based on the concentrations of 

crosslinker, the polymer, and the pH conditions of the release medium. Thus, from the In-

vitro release data, we can draw an inference that the piperine loaded gelatin cast-film (GCF-
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P XY, where, X= A/B/C/D and Y= 2/3/4) is able to deliver the hydrophobic drug in a desired 

release pattern i.e. from fast release to a release for prolonged duration.  

 

2.7 Highlights of this work and motivation for the next chapter 

1. Gelatin based cast-film (GCF) is low-cost and simple to fabricate.  

2. GCF can successfully encapsulate the low-soluble drug piperine and can deliver the 

drug at the absorption site (intestine) by protecting it from early release in stomach.  

3. Piperine is stable in the polymer matrix.  

4. Crosslinking provides the thermal and mechanical stability to the system. 

5. Crosslinking and polymer concentration results in flexible drug release profiles for 

24 h.  

6. GCF exhibits pH sensitive features, which is desirable. 

 

These results certainly validate the use of biopolymer gelatin as an excipient for oral 

DDS and confirms the stability of the drug in the matrix. This study also gives a clear 

understanding of the role of crosslinker for the release study. These preliminary results 

provide us a platform, which motivates us to meet the other objectives mentioned in chapter 

1 section 1.6.  

The primary impulse behind   the improvement of these existing vehicles is to reduce the 

usage of toxic GTA and to achieve sustained or a zero-order release of piperine for a 

prolonged duration (24-48 h).  
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Chapter 3 

 

Fabrication of Gelatin Nanofibers based 

DDS 

 

3.1 Introduction 

The key results from chapter 2 regarding the applicability of piperine-loaded gelatin based 

drug-carrier motivates us to carry forward the work using the same excipient and drug in an 

attempt to improve the drug vehicle. The sole focus of this chapter then, is to discuss the 

fabrication of a drug-carrier, which can reduce the usage of the toxic crosslinker and to discuss 

how the sustained drug release of low-soluble drug piperine for a period of 24-48 h can be 

achieved. To meet the aforementioned aim, firstly, we introduced a nanofiber based DDS, 

which was crosslinked with GTA vapor for only 6 min, and secondly, we fabricated a pH 

sensitive drug-carrier that could release piperine for 24 h. This section, therefore, discusses 

the background of the electrospun nanofiber DDS experiment in detail to explicate and 

highlight the novelty of this work. 

 

3.2 Literature review 

As mentioned in chapter 1, oral film and hydrogel is a widely acceptable drug-carrier. 

Moreover, nanofiber based DDS has also gained considerable attention in the last few 

decades. Several applications of nanofiber based DDS in the field of drug delivery and tissue 

engineering have  reported that  their large surface area-to-volume ratio and controllable 
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porosity results in high drug loading capacity [88, 136-155]. In 2002, for the first time, 

Kenawy et al. reported the sustained release of the model drug tetracycline hydrochloride 

using poly(lactic acid) and poly(ethylene-co-vinyl acetate) blend nanofiber mesh [143]. Since 

then, electrospun nanofibers have been successfully used as drug-carriers, and have shown 

fast release, bi-phasic, controlled release, delayed release, zero-order release of various kinds 

of drugs. Active pharmaceutical molecules like antibiotic, antiseptics, NSAID, anti-cancer 

and biomolecules like protein and nucleic acid have also been successfully encapsulated in 

nanofibers and the efficiency as drug-carrier has been investigated [88, 89]. Nanofiber based 

DDSs have also shown remarkable sustained and prolonged release of anti-cancer drug 

paclitaxel over a period of more than 60 days [88, 90, 136]. Besides that, the capability to 

encapsulate both hydrophilic anti-cancer drug doxorubicin and lipophilic anti-cancer drug 

paclitaxel in the matrix and enabling different drug release kinetics justifies the effectiveness 

of multi-drug delivery and combination therapy [139-144, 147, 148]. In addition to that, the 

application of nanofiber based DDS as transdermal and oral drug-carrier, with different kinds 

of phytochemical or natural/ayurvedic medicines have also been studied [137, 145, 148-150].  

. For example the herbal compound, shikonin loaded biodegradable synthetic polymer poly-

caprolactone (PCL) nanofiber mesh has showed excellent control release for 24 h. Shikonin 

is found in the roots of Lithospermum erythrorhizon plant and it is widely known for its wound 

healing, anti-tumor, antioxidant, and anti-inflammatory properties [137]. In another study 

PCL nanofibers with herbal drugs have shown excellent anti-bacterial properties and wound 

healing capability. PCL nanofibers have been fabricated with herbal extracts from Tecomella 

undulata, Glycyrrhiza glabra, Asparagus racemosus and Linum usitatissimum and anti-

bacterial studies have been performed against common pathogenic bacteria namely, 

Staphylococcus aureus and Klebsiella pneumonia. Researchers have claimed this wound 

dressing product to be 50% more effective in controlling dermal bacterial infection than the 

commercial dressing products available [149]. In additional natural polymer based nanofiber 

wound dressing has also been reported [145, 150]. For example, wound healing compound, 

asiaticoside (extract of centella asiatica herb) loaded natural polymer gelatin nanofiber has 

showed an excellent release for 7 days [145].  

The FDA-approved, biopolymer gelatin has been largely accepted in different forms as a 

drug-carrier for therapeutic applications. The entire focus of this thesis is exclusively on 

fabricating a vehicle that can increase the dissolution rate of low-soluble drugs. As majority 

of the drugs are highly hydrophobic with low solubility and low permeability, delivering these 

drugs orally is still a challenge [142]. Polymer based solid dispersion (SD), is one of the 
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methods to improve oral absorption of the low-soluble drug, which has been extensively 

studied in pharmaceutical industries [139, 140, 142]. Electrospinning is also one of the 

methods to prepare drug-polymer solid dispersions [140, 156]. Under high electric field, drug 

loaded polymer solution can be transformed into nano-micron sized fibers through the 

electrospinning method [157]. This method can produce extraordinarily porous nano-fibrous 

structure with high surface area, which directly influences the bioavailability of the poorly 

soluble drug through increase in the dissolution rate of the drug [140]. Various FDA approved 

synthetic and natural polymers have been used by many researchers for the preparation of 

solid dispersions [142]. In addition, nano-fibrous structured device can provide rapid, 

immediate, delayed, or modified dissolution, with sustained and /or pulsatile release 

characteristics [140, 158, 159]. Following this path, in this chapter, we have fabricated gelatin 

based electrospun nanofiber DDS in order to release the low-soluble drug piperine in a 

sustained way for a prolonged time.  

Although electrospun gelatin nanofiber with different synthetic polymer blends has been 

used extensively in the field of tissue engineering and drug delivery, there are very few studies 

available solely on the use of  gelatin nanofibers as a drug-carrier [160-163]. Moreover, to the 

best of our knowledge, there is no report on the controlled release of hydrophobic drug using 

electrospun gelatin nanofiber except for a recent demonstration of slow release of nystatin, an 

anti-fungal reagent [160]. More importantly, there is a need for a systematic effort in literature 

to study the release of hydrophobic drug and correlate it with physiochemical conditions as 

well as structural properties of pure gelatin based electrospun fiber mat.  

Electrospun gelatin nanofibers are water soluble which limits their applications and long 

term use [164]. Crosslinking agent like formaldehyde [132], genipin [131, 138, 154], 

glutaraldehyde (GTA) [129, 133, 164] etc. have been reported in the literature, to modify 

gelatin via its amino, carboxyl, or hydroxyl group respectively. GTA is most widely used 

because of its efficiency in stabilizing collagenous materials [164] and reducing the 

biodegradation of such materials.  

In this study, gelatin nanofibers were prepared using electrospinning (with as well as 

without piperine) and were cross-linked using saturated GTA vapor. Further, In-vitro release 

studies were performed at varying pH conditions that matched the human GI tract 

environment.  Thus, we have tried to corelate the morphology, In-vitro biodegradation study, 

stability of hydrophobic drug, and the effect of crosslinking with the In-vitro release study of 

the hydrophobic drug through hydrophilic gelatin nanofiber. This study attempts to draw 
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much needed attention towards exploring the full potential of electrospun nanofibers as a 

DDS, particularly for hydrophobic drugs. 

 

3.3 Introduction to electrospinning  

Electrospinning is a simple, straightforward and cost-effective method to prepare 

electrospun fibers ranging from diameters of nano- to micrometers. An electrospinning setup 

consists of three main parts: a high voltage supplier, a syringe pump and a collector as shown 

in Figure 3.1. The polymer solution loaded capillary tube with a blunt needle is placed with 

the syringe pump facing the collector. In this process, high voltage is applied to the polymer 

solution so that this can induce the charge in the solution. The electrified polymer solution 

drop distributes charges over the surface. The mutual charge repulsion on the surface directly 

opposes the surface tension of the fluid. When the intensity of the electric field increases, due 

to the stronger repulsion force of similar charges, the polymer drop at the tip of the needle 

elongates to form a conical shape known as Taylor cone. Further, with increase in the voltage 

difference between the needle and collector, which crosses the threshold value, the drop 

experiences a highly repulsive electrostatic force. At the point when the electric force 

overcomes the surface tension of the polymer solution, a multiple charged jet of fluid is 

ejected from the elongated Taylor cone. This jet then travels toward the region lower with 

potential, which is collector in most cases. Before reaching the collector, the jet is 

continuously stretched and whipped and this produces very long, continuous, micro- to 

nanometer thin fibers. During this process, due to excessive stretching, the surface area 

increases drastically.  Through the elongation process, the solvent evaporates quickly and  dry 

solid fibers are deposited on the collector [157, 159].  

The morphology and diameter of the fiber depends on several parameters. Generally, 

these parameters are divided into three categories i.e. polymer solution parameter, process 

parameter and ambient condition. In the case of polymer solution parameters, polymer 

viscosity, surface tension, conductivity and solvent volatility are the main features. For 

process parameters, applied voltage, tip-collector distance and flow rate are the most decisive 

aspects. The effects of ambient conditions such as temperature and humidity are also 

significant [89, 90, 147, 159].  

The polymer concentration is responsible for the solution viscosity, which determines the 

spinnability of the solution. Polymer concentration also refers to the entanglement of the 

polymer chains which directly influences the polymer fiber morphology. The surface tension 
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of the polymer solution is also dependent on polymer concentration. The concentration of 

polymer should be high enough so that it can form uniform continuous fibers. In the case of 

low viscosity, and high surface tension, the fiber will not form and it will break up into 

droplets. In the case of highly conductive solution, the fiber diameter tends to decrease.  

The process parameters are also extremely important as they determine the diameter and 

morphology of the fibers. With higher applied voltage, the jet starts and it tends to form 

thinner fibers with optimized flow rate. However, if the flow rate is not optimized, higher 

voltage will lead to thick diameters for the fibers. The flow rate should be perfect enough so 

that it can ensure the continuous formation of the Taylor cone. The distance between tip and 

the collector should be modulated so that the solvent can be evaporated and the dry solid fibers 

deposited on the collector. The influences of polymer solution parameters, process parameters 

and ambient conditions on the diameter of the fiber are presented in Table 3.1 [89, 147, 159].  

 

 

Figure 3.1: Digital image of electrospinning setup  
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Table 3.1 Effect of electrospinning parameters on fiber morphology 

Parameters Fiber morphology 

Polymer solution parameter 

Polymer concentration 

or viscosity 

Fiber diameter increases with increased 

viscosity 

conductivity Fiber diameter decreases with increased 

conductivity 

Surface tension Initials the jet but no conclusive correlation with 

diameter 

Solvent volatility Porous fibers with increased volatility (higher 

surface area) 

Process parameter 

Applied voltage Fiber diameter decreases with higher voltage  

Distance between tip 

and collector 

Fiber diameter decreases with longer distance 

Flow rate Fiber diameter increases with higher flow rate  

 Ambient condition  

Temperature Fiber diameter decreases with higher 

temperature  

Humidity Fiber diameter increases with more humidity  

 

3.4 Materials and Methods 

3.4.1  Materials 

Gelatin (Type A, 175 bloom), Piperine (98%), Hydrochloric acid (ACS, 36.5-38.0%), 

Glutaraldehyde (25% v/v aqueous solution), Acetic acid (glacial, ACS, 99.7 +%), Sodium 

hydroxide pallets (98%), phosphate buffer saline (pH 7.4) were purchased  from Alfa  Aesar 

(A Johnson Matthey Company, India). Deionized water (DI) (Milli Q water 18.1 Ω) was used 

throughout the experiments. 

 

3.4.2 Fabrication of nanofibrous mesh 

Preparation of electrospinning solution 

Gelatin (Type A) was dissolved in acetic acid solution (20%, v/v in distilled water) 

at 20% (w/v). The solution was stirred on a magnetic stirrer for 3 h at room temperature to 
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get a clear and homogenous solution, which was used to prepare gelatin nanofibers (GNF). In 

the prepared gelatin solution, piperine (2 mg/ml) was added and stirred for 2 h, to prepare 

piperine loaded gelatin nanofibers (G-P NF). 

Electrospinning process 

Electrospun nanofibers were prepared using electrospinning apparatus (E Spin 

Nanotech Pvt. Ltd, India). The spinning solution was transferred to 3 ml of plastic syringe 

with needle diameter of 21 gauge, by carefully avoiding air bubbles. The syringe was placed 

horizontally on the syringe pump. The flow rate of the feed solutions were controlled by the 

syringe pump  to ensure homogeneous flow (5 µl/min) throughout the deposition.  The electric 

potential of 12 kV was applied between the tip and the collector from the high voltage power 

supply, which was kept at a distance of 10 cm. The metal collector was covered with 

aluminium foil, which was used as a substrate for deposition. The electrospinning process was 

carried out in the enclosed electrospinning apparatus at 25 ᴼC and 30% relative humidity 

which was monitored by the digital thermometer and relative humidity sensor 

(hygrometer) respectively. 

 

3.4.3 Crosslinking of nanofibrous mesh 

Electrospun GNF and G-P NF membranes dissolve within few seconds in water, 

therefore, crosslinking was done by exposing it to saturated vapor of GTA (25% v/v aqueous 

solution). Both GNF and G-P NF, with and without substrate (i.e., aluminium foil), were cut 

into 2 × 2 cm2 sample sizes. These samples were placed inside the closed glass desiccator 

having 20 ml of GTA solution. Exposure to GTA vapor was performed at room temperature 

for different time intervals i.e., 2, 4, 6, 8 and 10 min respectively. These crosslinked samples 

were referred to as GNF CX and G-P NF CX where C referred to crosslinking and X 

represented the time of crosslinking in minutes. 

 

3.5 In-vitro biodegradation study 

In accordance with oral delivery systems, pH of release medium was varied as per the 

gastrointestinal tract (GI) in the human body. The pH of the stomach is pH 1.5-4 due to gastric 

acids. The pH of the small intestine (duodenum) varies from pH 6-8, where maximum 

absorption of nutrients takes place. Therefore, pH 1.2, pH 6, pH 7.4 and pH 8 were selected 

for further In-vitro biodegradation as well as release study. In-vitro biodegradation study 
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helped in determining the stability of the cross-linked electrospun mat in different 

physiological pH solutions. For this study, 5 × 5 cm2 of electrospun GNF and G-P NF samples, 

cross-linked over different time intervals, were kept in 25 ml solutions of pH 1.2, pH 6, and 

pH 7.4, and pH 8 respectively, in a mechanical shaker (Remi RIS-24 plus) for 24 h, at 37 ᴼC  

and 150 RPM.  

Figure 3.2 shows the effect of crosslinking on GNF. Lysine is one of the amino acids 

present in gelatin, which is responsible for crosslinking with aldehyde group of GTA [133]. 

After crosslinking, the sample shrinked (Figure 3.2 (b)). Therefore, the membrane was not 

peeled from the aluminum foil in order to avoid the excessive shrinkage of membrane on 

crosslinking. Figure 3.2 (a) represents the non-crosslinked GNF membrane with Al foil. The 

effect of crosslinking and stability of the membrane in aqueous medium is presented in Figure 

3.2 (b) and (c) respectively. In-vitro biodegradation study was done with the aim to examine 

the stability of samples up to a period of 24 h. The details of the GNF and G-P NF membranes 

with different crosslinking time are summarized in Table 3.2. Samples with different 

crosslinking time (non-cross-linked i.e., 0 min and cross-linked for 2, 4, 6, 8 and 10 min) 

underwent degradation in different pH (1.2, 6, 7.4 and 8) solutions. Results of the In-vitro 

biodegradation study for electrospun samples cross-linked for 6 min or above were found to 

be stable even after 24 h in all pH conditions. So, 6 min crosslinking time was selected for 

further analysis as they were better in comparison to 4 and 8 min crosslinked samples. 

Although GTA is very effective in crosslinking gelatin and therefore widely used, however, 

prolonged exposure  for up to 24 h as reported in literature [164] may have adverse cytotoxic 

effects. Here in this work, we exposed gelatin to saturated GTA vapor for crosslinking for 

only 6 min to achieve the desired stability of the fabric.  

 

  

Figure 3.2: Digital images representing, (a) non-crosslinked GNF (b) shrinked GNF C6 and (c) 

GNF C6 in DI water 

 



45 
 

Table 3.2: Summary of In-vitro biodegradation study for GNF and G-P NF crosslinked over different 

time interval, in dissolution medium of different pH 

pH of 

dissolution  

medium 

Time of crosslinking with GTA (25% v/v) vapour 

GNF G-P NF 

0 2 4 6 8 10 0 2 4 6 8 10 

1.2 - + + + * * - + + * * * 

6 - + * * * * - + * * * * 

7.4 - * * * * * - + * * * * 

8 - * * * * * - * * * * * 

Where, ‘-’ means completely degraded, ‘*’ means not degraded and ‘+’ refers to partial 

degradation in the dissolution medium after soaking for 24 h. 

 

3.6 Characterization 

3.6.1 Thermal Characterization 

Thermogravimetric analysis (TGA) of GNF, GNF C6, G-P NF and G-P NF C6 was 

carried out using platinum pan in helium atmosphere (pyris 1, Thermogravimetric analyser, 

Perkin Elmer). The sample weight varied from 5 to 10 mg. Samples were heated from room 

temperature to 600 ᴼC  at a heating rate of 10 ᴼC /min. TGA analysis of electrospun GNF, 

GNF C6, G-P NF and G-P NF C6 membranes is shown in Figure 3.3. The initial weight loss 

of 6.6, 7.5, 7.46 and 7.7% for GNF, GNF C6, G-P NF and G-P NF C6 respectively between 

35 to 100 ᴼC was due to the elimination of absorbed and bounded water molecules in the 

membrane. It was very clear that the weight loss is larger in this stage for crosslinked samples 

(both GNF C6 and G-P NF C6) because of the absorption of water during crosslinking with 

GTA vapor. However, very interestingly, the difference between weight loss of G-P NF and 

G-P NF C6 was less because of the presence of hydrophobic drug. The second stage of weight 

loss, from 250 to 450 ᴼC, corresponded to the thermal degradation of gelatin due to the 

breakage of the protein chain. For GNF and G-P NF, this was found to be 56.3% and 55.45% 

respectively, which was later reduced to 43.9% and 46.3% for GNF C6 and G-P NF C6 

samples respectively. Thus, crosslinking GNF and G-P NF C6 with GTA vapor, for 6 min, 

increased the thermal stability and residue percentage as well. Therefore, by improving the 

water resistive property of GNF and G-P NF mat, GTA increases the thermal stability of GNF 

and G-P NF membrane. 
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Figure 3.3: Thermogram of GNF, GNF C6, G-P NF, G-P NF C6 membrane 

 

3.6.2 Structural Characterization 

The morphology of the GNF and G-P NF, with and without crosslinking samples, 

were examined using Field Emission Scanning Electron Microscopy (FESEM) (Carl Zeiss, 

SUPRA 40, Germany) in 10KV. The samples were sputter-coated with gold to reduce the 

charging effect. The surface morphology of electrospun GNF and G-P NF membrane, with 

and without crosslinking, is represented in Figure 3.4.  SEM micrographs showed continuous, 

long nanofibers with fiber diameters in the range of 50-200 nm for both GNF and G-P NF as 

presented in Figure 3.4 (a) and 3.4 (c) respectively.  

On crosslinking even for only 6 min, due to its  hydrophilic nature, gelatin  allows the 

entry of  water molecules along with GTA molecules from the saturated vapor, leading to 

changes in its morphology. It can be observed that the fibers fuse with one another at contact 

points (Figure 3.4 (b)), as a result of the partial dissolution of the fiber segments when they 

come in contact with the moisture-rich GTA vapor [151, 164, 165]. However, in the case of 

G-P NF, the presence of hydrophobic piperine discourages the interaction between the water 

molecules of the GTA vapor and the fibers. It leads to relatively less fusing as well as  minimal 

effect on fiber morphology at the point of contact of fibers (Figure 3.4 (d)). Even, from the 

TGA thermogram results in the range of 35 to 100 ᴼC, it can be observed that the difference 

between weight loss of G-P NF and G-P NF C6 was less because of the presence of 

hydrophobic drug. The presence of hydrophobic drug molecules in the matrix repels the water 

molecules in GTA saturated vapor, and helps to maintain the fibrous structure. Indeed, the 
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presence of hydrophobic molecules in the polymer matrix protects the nanofiber mesh from 

unnecessary degradation during its crosslinking with GTA vapor.  

 

 

Figure 3.4: FESEM images of electrospun (a) GNF, (b) GNF C6 (c) G-P NF, and (d) G-P NF C6 

 

3.6.3 Specific Surface Area (SSA) measurement and porosity measurements 

The Brunauer−Emmett−Teller (BET) surface area of GNF and GNF C6 was 

determined by N2 physisorption using Micromeritics ASAP 2020 physisorption analyzer 

(USA). The sample mass was about 100 mg. All samples were degassed at room temperature 

for 6 h in nitrogen. The SSAs were determined by a multi-point BET measurement with 

nitrogen as the adsorbate. 

To measure the porosity of nanofiber mat, samples were cut in equal pieces (1 × 1 

cm2) and weighed. The thickness of the electrospun mat at a minimum of three different places 

was measured using digital micrometer (Mitutoyo, Japan). The apparent volume (Va) was 

determined using the average thickness of the mat. The volume of the mat (Vg) was 

determined on the basis of gelatin density (1.41 g cm-3), and piperine (1.193 g cm-3) density 

and their mass percentage compositions were adapted from [160].  
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The porosity of the sample was determined using the following equation [160]: 

Porosity =[1 − (
Vg

Va
)] ×100  

BET surface area of electrospun GNF was found to be 23.4 ± 1.188 m2/g. On exposing 

for 6 min to saturated GTA vapor, the BET surface area decreased to 18.2 ± 1.758 m2/g. A 

similar change in the total pore volume was also observed (0.063 ± 0.001 and 0.05 ± 0.001 

cm3/g for electrospun GNF and GNF C6). However, the average pore diameter, as measured 

by Barrett-Joyner-Halenda (BJH) method, remained almost unchanged to 10.8 ± 0.908 and 

10.9 ± 0.551 nm for electrospun GNF and GNF C6 fiber samples respectively. These results 

reflected in the porosity measurements. For GNF, the porosity was measured to be 89.9 ± 

0.336%, which reduced to 83.3 ± 0.984% (with level-p 0.0008) after 6 min of crosslinking. 

This decrease in surface area, porosity and total pore volume can be explained due to the 

fusion of fibers in contact with water molecules present along with GTA vapor, as illustrated 

in Figure 3.4. Similarly as expected for G-P NF, reduction in porosity after crosslinking (6 

min) was significantly less (90.2 ± 0.822% to 87.9 ± 0.8% with level-p 0.048) which was also 

evident from FESEM images in which fiber morphology remained almost intact even after 

crosslinking. Therefore, the electrospun G-P NF membrane fabricated and used as carrier has 

a sufficiently large surface area, even after crosslinking with GTA vapor.   

 

3.6.4 Drug-polymer compatibility  

Electrospun non-crosslinked and crosslinked GNF and G-P NF were characterized 

using Fourier Transform Infrared (FTIR) spectrometer (Bruker, Alpha-P, USA). IR 

spectroscopy was mainly performed using the Attenuated total reflection (ATR) method. 

Spectra were obtained with 256 scans per sample at a resolution of 4 cm−1 between 4000 and 

500 cm−1. All the spectra were further processed using OPUS software, which was installed 

in the instrument system and plotted using Origin Pro 8. 

To know the chemical composition, effects of crosslinking, and the interactions 

between the drug and polymer matrix, FTIR analysis was attempted and represented in Figure 

3.5. The absorption bands at 3273 cm-1 (N-H stretch), 1631 cm-1 (amide I, C=O and C-N 

stretch), 1536 cm-1 (amide II, N-H bend and C-H stretch) and 1237 cm-1 (amide III) are the 

characteristic bands of GNF (Figure 3.5 (a)) [133, 165]. On crosslinking, aldehyde group (-

CHO) of GTA reacts with the amino group of lysine, which is present in gelatin, and amino 

(-NH2) groups interact with the carbonyl groups of GTA to form new covalent (-C=N-) bonds 

[133]. During the crosslinking, first amide I (C=O and C-N stretching) peak shifts from 1605 
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cm-1 to 1631 cm -1 indicating its interaction during crosslinking. Similar trends are also 

observed in amide II and III peaks of gelatin, which confirm the hydrogen bonding with 

aldehyde groups of GTA. 

 

 

Figure 3.5: FTIR spectra of (a) GNF and GNF C6 (effect of crosslinking).  (b) Presence of 

piperine in polymer matrix and crosslinking effect 

 
Figure 3.5 (b) represents the effect of crosslinking in the presence of piperine. The 

absorption bands at 2920 cm-1 (aliphatic C-H stretching), 1567 cm-1 (aromatic stretching of 

C=C, benzene ring) and 1231 cm-1 (asymmetrical stretching of =C-O-C) are the characteristic 

bands of piperine. The presence of absorption peak due to C-H stretching around 2909 cm-1 

(G-P NF) and 2919 cm-1 (G-P NF C6) are attributed to the presence of piperine in the matrix. 

Similar peaks are observed due to asymmetric stretching of =C-O- in G-P NF and G-P NF C6 

samples. Therefore, one can conclude that piperine was successfully loaded and was found to 

be stable in both GNF and crosslinked G-P NF samples. 

 

3.7 Drug delivery performance 

The release of drug i.e., piperine from electrospun nanofiber mats was measured by 

placing 5 × 5 cm2 of drug loaded fiber mat in 10 ml of release medium at different 

physiological pH levels (1.2, 6, 7.4 and 8). The temperature and the stirring of the system 

were maintained at 37 ᴼC  and at 50 RPM, respectively. An aliquot sample was withdrawn at 

fixed time intervals, and the same amount of fresh solution was added back to the release 

medium to maintain the sink condition. The samples were centrifuged (Wise Spin, CF-10) for 
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2 min at 1300 RPM and analyzed using a UV spectrophotometer (Perkin Elmer Lambda 35, 

USA) at 342 nm as λmax for piperine. The results were presented in terms of cumulative release 

as a function of time: 

Cumulative amount of release (%) = (
Ct

C∞
) × 100 

Where, Ct is the amount of piperine released at time t and C∞ refers to total amount of 

drug loaded in 5 × 5 cm2 sample. Standard curve for piperine in PBS is shown in 

Appendix C. 

The release of the drug from a polymer matrix is modulated by the diffusion of the 

drug and / or degradation of the polymer matrix. Insufficient physical and chemical 

interactions (as evident in the FTIR study) between the hydrophobic drug molecules and the 

hydrophilic polymer matrix lead to the sudden release of drug molecules from the surface 

within few hours. As the crosslinked G-P NF membrane swells, due to presence of water 

molecules, the osmotic pressure provides the driving force for release of the drug in the release 

medium. Therefore, after 2 h, there is sustained release of the drug as it  diffuses to the release 

medium through the carrier gradually.  

 

3.7.1 Effect of pH value of release medium   

Studying and controlling the drug release at different pH is an important consideration 

for designing a vehicle for the oral route. As drug molecules need to follow the GI tract and 

should be absorbed in the small intestine, we need to examine release profiles from harsh 

acidic conditions to basic environments. In this work, In-vitro drug release studies were 

performed in different pH conditions as per the human GI tract environment i.e., pH 1.2 

(stomach), pH 6 (duodenum), pH 7.4 (small intestine) and pH 8 (large intestine) as shown in 

Figure 3.6. The drug concentration (µg/ml) Vs time (min) data is presented in Appendix B 

(Table B3). 

The various cross-linked G-P NF membranes i.e., 4 min, 6 min and 8 min, were 

referred to as G-P NF C4, G-P NF C6 and G-P NF C8 respectively. For G-P NF C4, piperine 

release percentage was 95.7 ± 3.58%, 90.52 ± 3.136%, 82.76 ± 5.96%, 77.76 ± 2.98% (Figure 

3.6 (a)) while for (G-P NF C6), drug release percentage was significantly decreased to 87.70 

± 2.08% (with level-p 0.0005) , 85.57 ± 2.94% (with level-p 0.002), 77.56 ± 5.83% (with 

level-p 0.002) and 72.56 ± 3.439% (with level-p 0.013) for pH 8, pH 7.4, pH 6 and pH 1.2 

respectively (Figure 3.6 (b)). We observed that the total amount of drug release was less in 
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the solution with pH 1.2, compared to higher pH, irrespective of crosslinking time. This may 

be due to the protonation of hydrophilic groups of the polymer matrix in acidic pH, which 

discourages formation of H-bonds with water molecules resulting in less swelling of the 

membrane [166]. If the matrix does not swell much, drug molecules will not get enough 

osmotic pressure, which help in reducing the drug release amount. However, in alkaline pH, 

hydrophilic groups form more H-bonds with the release medium, which invites more water 

molecules inside the carrier, leading to better swelling and more drug release in the dissolution 

medium. Similarly, when compared to G-P NF C6 and  G-P NF C8, after 24 h, the piperine 

release  decreased significantly 72.70 ± 8.15% (with level-p 0.012), 65.51 ± 4.59% (with 

level-p 0.024), 62.56 ± 0.41% (with level-p 0.008) and 58.56 ± 3.57% (with level-p 0.007), 

for pH 8, pH 7.4, pH 6 and pH 1.2 respectively, demonstrating the above explanation. 

 

 

Figure 3.6: Cumulative In-vitro release profiles of piperine for (a) G-P NF C4, b) G-P NF C6 

and (c) G-P NF C8 in different pH (1.2, 6, 7.4 and 8) 
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3.7.2 Effect of crosslinking time 

With the increase in the crosslinking time from 6 to 8 min, the large amount of drug 

release in pH 1.2 was controlled. Our main objective was to release the maximum amount of 

drug in higher pH (7.4, 8) i.e. pH of small intestine, where drug would be absorbed. In the 

release medium of pH 1.2, the figures for  drug release, within 2 h, for G-P NF C4, G-P NF 

C6 and G-P NF C8 are approximately 48.5 ± 2.92%, 45.5 ± 2.65% and 30.5 ± 2.63% of the 

total drug respectively (Figure 3.7 (a)). Further, the drug release amount decreases 

significantly from 72.6 ± 3.43% in G-P NF C6 to 58.5 ± 3.57% (with level-p 0.007) in G-P 

NF C8, after 24 h release in pH 1.2. Therefore, increasing crosslinking time significantly 

decreases the release percentage of the drug.  

 

 

Figure 3.7: Cumulative In-vitro release patterns of piperine for different crosslinking time (G-P 

NF C4, G-P NF C6, and G-P NF C8) in (a) pH 1.2. (b) pH 6 (c) pH 7.4, and (d) pH 8 release 

medium 
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Similar control over the release percentage was obtained for pH 6, pH 7.4 and pH 8 

for both initial fast release and prolonged sustained release as shown in Figure 3.7 (b)-(d). 

Therefore, by manipulating the crosslinking exposure time from 4 to 8 min, we can engineer 

the inter-fibrous porosity, which may result in sustained release of the drug molecules. In 

addition, from the release study we can conclude that the vehicle is capable of protecting the 

drug from the harsh conditions (pH 1.2) of the GI tract, and is able to release at the absorption 

site, i.e., small intestine, in a sustained manner. 

 

3.7.3 Drug release mechanism  

To understand the drug release kinetics and the mechanisms, the obtained data from In-

vitro study was analyzed using mathematical models. The most common equation to describe 

polymeric DDS is known as Higuchi equation:    

Mt

M∞
=  kH√t  

Where, Mt and M∞ = absolute cumulative amount of drug released in time t, and final 

respectively, and kH is a dissolution constant [134, 135]. The classical Higuchi model and 

respective Higuchi dissolution constants are presented in Table 3.3. It is a very clear indication 

that diffusional force plays the major role in drug delivery. KH is a constant, which indicates 

the characteristics of polymer matrix network. In addition to that, with the decrease in KH 

value the cumulative release of drug deceases. Naturally, when the decrease in KH values were 

found for all the cases, this indicates increase in the diffusional barrier means decrease in drug 

release. The probable reason behind the increased diffusional barrier is the diffused and 

packed fiber structure, which also reduces the drug molecule penetrability through the matrix. 

With increase of crosslinking time, KH value has decreased. Porosity, morphological images, 

and the release-study data supports these observations. The KH value can be a good indicator 

for required drug release profile. The crosslinking can be modified according to required 

treatment.  

 
Table 3.3: List of drug release co-efficient fitted in Higuchi Model. 

 

Release 

Model 

 

Samples (6 min) 

 pH 1.2 pH 6 pH 7.4 pH 8 

Higuchi 

Model 

KH 0.036 0.037 0.045 0.0588 

R2 0.9776 0.9846 0.9949 0.9892 
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3.8 Statistical analysis 

 Data was analyzed with t-test to compare the difference between two treatment means. 

The null hypothesis says that the means of the different measurement variables (or 

populations) are equal (no differences/no effects) for the two treatments. Results were 

recognized as statistically significant at the level of p<0.05. The observations are presented 

as mean ± standard deviation (SD) of three independent experiments to confirm 

reproducibility of the findings. All the plots were analyzed using Origin Pro 8 software.  

 

3.9 Discussion  

These newly developed electrospun gelatin nanofibers based DDS showed better control 

on release in different physiological pHs compared to other reports [164-166]. This is 

summarized in Table 3.4 

As mentioned earlier, there is only one report on the release of hydrophobic drug from 

electrospun gelatin nanofibers. Even in that report [160], the release study was done only at a 

given pH of 7.4. Additionally, there was either an initial burst release (75% release in first 24 

h) or very slow release (35% release in five days with 22% release in first 24 h). Further, as 

the Table 3.4 shows, all previous reports, based only on electrospun gelatin nanofibers, focus 

either on the  delivery of  the hydrophilic drug [161-163], or cross linking is done for 

prolonged time (up to 24 h) [160-163], or there is a unwanted signature of initial burst release 

[160-162]. Clearly, the present work addresses most of these challenges as confirmed by In-

vitro drug release studies discussed above and suggests that controlled crosslinking plays a 

very important role in the porosity of the matrix with minimal effect on fiber morphology. 

This in turn essentially helps us to get stable, sustained, and controlled release of the 

hydrophobic drug, with highly porous electrospun gelatin nanofiber matrix as a delivery 

vehicle.  
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Table 3.4: A comparison of the present work with drug release profile from electrospun gelatin 

nanofibers reported in literature 

Crosslinker/time 

of cross linking 

Drug/Nature Solvent Remarks Ref 

Polyethylene 

glycol-diacrylate/ 

30 min 

Nystatin/ 

Hydrophobic 

HFP (i) Drug release study only 

at pH 7.4 

(ii) Fiber diameter: Few 

microns 

(iii) Initial burst release 

(75% in 24 h) 

[160] 

Proanthocyanidin

, GTA/45 min 

MAP/ 

Hydrophilic 

Formic 

acid 

(i) PVA is added in gelatin 

for producing nanofibers 

(ii) Prolonged exposure to 

GTA 

(iii) Initial burst release 

(65% in 1 h) 

[161] 

NHS, EDC/24 h Cefradine/ 

Hydrophilic 

Water 

and 

ethanol 

(i) Use of ethanol as 

solvent 

(ii) Prolonged crosslinking 

(iii) Initial burst release 

(50% in 4 h) 

[162] 

GTA/24 h Heparin/ 

Hydrophilic 

Aqueous 

acetic 

acid 

(i) Prolonged exposure to 

GTA 

(ii) Drug release only at 

pH 7.0 

(iii) Slow release 

[163] 

 

3.10 Summary 

Electrospun gelatin nanofibers were fabricated and exposed to saturated GTA (25% v/v) 

vapor for crosslinking. Interestingly, only 6 min of exposure was sufficient to control the 

degradation. Besides increasing water resistivity, crosslinking also improved the thermal 

stability of the membrane. The presence of hydrophobic drug molecules in the matrix, 

significantly reduced fiber fusion while crosslinking with saturated vapor of GTA. The 

electrospun gelatin nanofiber based system showed bi-phasic release profiles such as  initial 

fast release of drug followed by sustained release. This system also showed pH sensitivity, 

which is favorable in case of orally administration of drug. The drug release was slowed down 
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in lower pHs which reduced drug loss extensively and the release of maximum drug in 

intestine (in high pH) was desirable. The pictorial representation of this work is shown in 

Figure 3.8.  In brief, these electrospun gelatin fibers can be considered to be viable drug-

carriers for the model hydrophobic drug i.e., piperine.   

 

 

Future 3.8: A pictorial representation of fabrication, crosslinking and In-vitro drug release 

study of gelatin nanofiber based DDS  

 

3.11 Highlights of this work and motivation for the next chapter   

Gelatin nanofiber based DDS have the potential to act as an effective DDS due to the 

following reasons.  

1. Piperine is stable in a hydrophilic electrospun GNF carrier, which is similar to 

GCF.  

2. This GNF drug-carrier is crosslinked with saturated vapor of GTA only for 6 min. 

This certainly reduces the amount of GTA in the vehicle and perhaps reduces the 

toxic effect associated with it as well. The drug release can be modulated through 

the duration of crosslinking of the carrier. 

3. The In-vitro release study shows sustained release of piperine in different 

physiological pHs over a duration of 24 h. The system exhibits better control over 

initial fast release control compared to GCF. 

4. Electrospun gelatin fiber based DDS is a pH sensitive drug-carrier. Thus, drug 

release in lower pH is lesser compared to higher pHs, which signifies its potential 

as a targeted or site-specific drug-carrier.   
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Despite meeting several points from the main objectives of the thesis mentioned in 

chapter 1 and section 1.6, this nanofiber based DDS does not show zero-order release of 

drug. Zero-order drug release, which can maintain the drug concentration within 

therapeutic window, is highly desirable. Thus, to improve or to reduce the initial fast 

release of these kinds of biphasic profiles, we have employed different strategies, which 

have been discussed in the next chapter.  
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Chapter 4 

 

Fabrication of Multi-layered Gelatin 

Nanofibers based DDS  

 

4.1 Introduction 

 
Chapter 3 demonstrated the fabrication of the single-layered. piperine loaded, electrospun 

gelatin nanofibers (GNF) based carrier, and the achievement of sustained release to some 

extent, as per the gastrointestinal (GI) tract conditions, by controlling the swelling and 

crosslinking. The high porous structure of nanofibers facilitated in crosslinking the fiber based 

DDS using saturated vapor of GTA [133]. The GNF based carrier was crosslinked through 

merely a few minutes of GTA exposure (6 min) instead of a few hours or even days as reported 

in literature [161-164]. Naturally, this promises a tremendous possibility of reducing the risk 

of toxicity caused by GTA. In addition, the In-vitro drug release study showed a typical 

biphasic curved profile for all the cases i.e. a sudden release of drugs during initial hours 

followed by a much slower release during the rest of the observed time scale. The probable 

reason for this kind of common release pattern could be the penetration of water molecules in 

the vehicle, which caused swelling of the matrix. This kind of profile can be used for specific 

treatment purposes where only initial release of the drug is required [90, 140, 167, 168]. 

However, in general, this type of release profile can potentially cross the toxic drug-
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concentration level within the initial hours and sub-therapeutic drug concentration in later part 

[1, 2, 169]. As a known bio-enhancer, piperine helps in enhancing the bio-availability of other 

drugs by boosting the absorption from the intestine [128]. Therefore, releasing piperine in the 

intestine is beneficial. This awareness motivated us to further modify the existing electrospun 

GNF vehicle by introducing multi-layered sandwiched mesh structure, in order to achieve 

close to zero-order/controlled release in the intestine. The fabrication and sequence of 

deposition layers play important roles in the overall mesh thickness and porosity, which may 

affect the sustained and controlled release profiles [170, 171]. In order to achieve zero-order 

release profiles, eventually, the concept of multi-layered electrospun fibers was developed. 

We assumed that, by increasing the diffusional path between the drug and dissolution 

medium, the system might show better control in release [172, 173]. 

The idea behind preparing multi-layered electrospun mesh is to get sustained molecular 

release for a prolonged time by controlling the drug mobility. By sandwiching the drug-loaded 

layer between two adjacent electrospun layers, the kinetics of water uptake can be controlled, 

which in turn promotes the sustained release of drug molecules through precise control in 

both degradation as well as osmotic pressure [172, 173]. However, to the best of our 

knowledge, there is no such study being performed for hydrophobic drugs, the delivery of 

which is a challenge for any biodegradable polymer. In this study, piperine was incorporated 

into a sandwiched GNF mesh with variations in barrier and core layer thicknesses. The effect 

of drug concentration and sequential crosslinking on the release profile was also investigated. 

Therefore, the objective of this work is to regulate the release profiles in such way so that we 

can achieve almost zero-order release (without initial burst release) of piperine for nearly 48 

h from this newly developed vehicle. 

 

4.2 Materials and Methods 

4.2.1 Materials 

Gelatin (Type A, 175 bloom), piperine (98%), hydrochloric acid (ACS, 36.5-38.0%), 

glutaraldehyde  (25% v/v aqueous solution), acetic acid (glacial, ACS, ~99.7%), sodium 

hydroxide pallets (98%) and phosphate buffer saline (pH 7.4) were purchased from Alfa 

Aesar. Deionized water (DI) (Milli Q, resistivity 18.1 MΩ.cm) was used throughout the 

experiments. 
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4.2.2 Fabrication of nanofiber membrane and crosslinking 

Multi-layered meshes were prepared by electrospinning 20% (w/v) of Gelatin (Type A) 

solution in acetic acid (20% v/v in distilled water) solvent using electrospinning apparatus 

(Make: E Spin Nanotech Pvt. Ltd, India). Then, a known amount of piperine was added to 

spinning solution for drug loaded samples (G-P NF). Multi-layered GNF was prepared by 

sequential electrospinning, with and without the use of drug loaded solutions, on the substrate 

(aluminium foil). The samples were then crosslinked using saturated vapor of GTA (25% v/v 

aqueous solution) for a few minutes (6 and 8 min; i.e. G-P NF C6 and G-P NF C8 respectively) 

following a similar method discussed in chapter 3 section  3.3.3. 

 

4.3 In-vitro biodegradation study 

In-vitro biodegradation studies were carried out to check the stability of the crosslinked 

membranes (G-P NF C6 and G-P NF C8) in pH 7.4. Samples were cut (5 × 5 cm2) and then 

weighed (Mi). Dried samples were placed in 50 ml of PBS solution (pH 7.4) at 37 ᴼC  for 48 

h. The samples were taken out at a predetermined time interval and dried in a vacuum oven 

at room temperature and weighed again (Mf). The weight loss (WL %) due to hydrolytic 

degradation was calculated by using the following equation [160]: 

 

Weight loss (WL %) = (𝟏 −
𝐌𝐟

𝐌𝐢
) × 𝟏𝟎𝟎 

 

Where, Mf = Sample mass after an incubation period. Mi = Initial sample mass. 

Similarly, swelling study was done in 50 ml of PBS solution (pH 7.4) at 37 ᴼC  for 48 

h.  Swelled samples (Ws) were weighed and placed back in the solution. Each time, the 

samples were dried using tissue paper to remove excessive surface water. Swelling degrees 

(SD) were calculated using the following equation [160]:  

 

Swelling degree (SD %) = (
𝐖𝐬−𝐖𝐝

𝐖𝐝
) × 𝟏𝟎𝟎 

 

Where, Ws = Weight of swelled sample and Wd = Initial weight of dried sample.  

To understand the effect of crosslinking on G-P NF samples; In-vitro degradation 

study and swelling study were performed.  Figure 4.1 shows, G-P NF C6 and G-P NF C8 both 

were quite stable with a time scale of 48 h in pH 7.4. The weight losses (%) of G-P NF C6 

and G-P NF C8 in PBS (pH 7.4) solution were 13 ± 2.5% and 10 ± 0.6% respectively, after 
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24 h. Figure 4.1 shows, the swelling degree for G-P NF C6 and G-P NF C8 were 831.1 ± 23.4 

% and 716.2 ± 11.1 % respectively after 24 h. So, with the increase in crosslinking time, 

naturally the swelling degree decreases [160]. The lower swelling degree and lesser 

degradation in PBS medium for G-P NF C6 and G-P NF C8 was due to lower porosity because 

of denser crosslinked matrix [160]. Similarly, stability of 6 min and 8 min crosslinked samples 

in pH 1.2 for 24 h has  already been reported in  chapter 3, section 3.4. Results confirmed that 

as the swelling was less,  the degradation was also negligible in pH 1.2. Thus, it can be 

concluded that 6 min of crosslinking is good enough in terms of stability in aqueous medium 

which is  similar to the case of  single-layered nanofiber DDS. So, we finally selected 6 min 

of crosslinking time for further studies. In addition, this confirmed lower GTA exposure and  

minimization of potential toxicity.   

 

 

Figure 4.1. Weight loss (%) and swelling degree (%) of G-P NF C6 and G-P NF C8 

 

4.4 Characterization 

4.4.1 Thermal characterization 

Thermal stability of the vehicle was investigated by thermogravimetric analysis 

(TGA) (Model: Pyris 1, PerkinElmer Inc., USA) in helium atmosphere in the range from  35 

to 600 ᴼC at a heating rate of 10 ᴼC /min. The inert gas (helium) in purer form with minimal 

moisture helped to get perfect thermograms for gelatin. TGA thermograms and its first order 

derivative curves (DTG) of G-P NF C6 and G-P NF (from 35 to 700 ᴼC) are presented in 

Figure 4.2.  
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Figure 4.2. TGA and DTG thermogram of G-P NF and G-P NF C6 

 
TGA thermograms of gelatin film showed two stage weight loss in this range which 

also reflects  results similar to the  single-layered sample discussed in chapter 3, section 3.5.1. 

Initial weight loss percent (between 35 to 100 ᴼC) was less which usually accounted for the 

presence of moisture in the fiber. A sharp fall of the curve was clearly visible in the range of 

250 to 450 ᴼC which was associated to the decomposition of gelatin due to the breakage of 

protein chain. While comparing the thermal behavior of G-P NF C6 and G-P NF, weight loss 

for G-P NF was observed to be higher than the G-P NF C6. This confirmed the thermal 

stability of the G-P NF C6 sample. DTG thermogram also showed a shift of maximum 

decomposition in the regions towards higher temperature (290 to 297 ᴼC) which was a good 

indication of improved thermal stability upon crosslinking. Weight loss for G-P NF C6 was 

found to be less in comparison to G-P NF, which was a reflection of improved thermal 

stability upon crosslinking. 

  

4.4.2 Structural characterization 

The morphology of the fibers were examined by table top Scanning Electron 

Microscopy (SEM) (Make: Phenom world ProX, Netherlands). To reduce the charging effect, 

samples were coated with thin gold layer using sputter coater (DC Sputtering system, Make: 

Excel Instruments, India). 

The surface morphology of electrospun G-P NF, G-P NF C6, G-P NF C8 samples are 

represented in Figure 4.3. Randomly oriented continuous piperine loaded GNF are presented 

in Figure 4.3 (a). Due to the large surface area-to-volume ratio of the GNF mesh, the 
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hydrophilic matrix were crosslinked with saturated vapor of the GTA solution. Due to the 

highly porous nanostructured hydrophilic polymer mesh, the mesh tended to immediately 

dissolve in contact with  water molecules. Therefore, the membranes were crosslinked with 

saturated vapor of GTA for 6 and 8 min, presented in Figure 4.3 (b) and 4.3 (c). Water 

molecules present in saturated vapor had partially degraded the fibers and fused them together 

as shown in Figure 4.3 (b) and 4.3 (c) (more compact morphology).  

The partial degradation due to swelling of fibers was commonly visible in the case of 

gelatin nanofibers which has been presented in chapter 3, section 3.5.2. Due to the presence 

of hydrophobic molecules (piperine in this case) in the gelatin mesh, the fusions of fibres were 

substantially less. This fused structure of  the nanofiber membrane can tailor the release of 

drug molecules according to the release medium.  

From the histogram Figure 4.4, it was evident that with crosslinking, GNF fuse with 

each other and therefore there was a slight shift towards increased average fiber diameter from 

non-crosslinked to crosslinked (6 and 8 min) samples respectively. 

 

 

Figure 4.3. Morphology of the electrospun fiber membrane of a) G-P NF, b) G-P NF C6 and c) 

G-P NF C8 

 

 

Figure. 4.4. Histograms showing the fiber size distribution of electrospun membrane of a) G-P 

NF, b) G-P NF C6 and c) G-P NF C8 
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4.4.3  Drug-polymer compatibility 

To investigate the presence of the drug, drug-polymer compatibility and the effect of 

crosslinking on the mesh, samples were characterized by Fourier transform infra-red 

spectroscopy (FTIR, Bruker Tensor 37, USA) in the 4000-400 cm-1 range with a resolution of 

4 cm−1 and 256 scans per sample. The crosslinking effects on nanofibers and the co-existence 

of both drug and polymer with their own characteristic identity were confirmed from  Figure 

4.5. 

The FTIR spectra showed the characteristic absorption bands of gelatin at 3270 cm-1 

(N-H stretching), 1628 cm-1 (amide I, C=O and C-N stretching), 1548 cm-1 (amide II, N-H 

bend and N=C stretch) and 1234 cm-1 (amide III, weak N=C stretch, N-H bend) [164]. 

Absorbance peaks for piperine were at 2920 cm-1 (aliphatic C-H stretching), 1567 cm-1 

(aromatic stretching of C=C, benzene ring) and 1231 cm-1 (asymmetrical stretching of =C-O-

C). During the crosslinking of fibers using GTA vapor, the first amide (due to C=O and C-N 

stretching) peak shifted, which was an indication of  new covalent bonding. Similar shifting 

of amide II and III peaks indicated the interaction between the amino group of gelatin and the 

aldehyde groups of GTA. The presence of piperine peaks in comparison to pure gelatin 

nanofibers and the preservation of all other characteristic peaks of gelatin have shown the 

presence of piperine in G-P NF C6 membrane. In a nutshell, the presence of amide peaks of 

gelatin around 1628 cm-1 and aliphatic C-H stretching of piperine around 2920 cm-1 proves 

the presence of piperine in gelatin nanofiber mesh. The results showed that modifying the 

drug-carrier from single-layered to multi-layered, the properties of drug in the matrix 

remained intact. 

 

Figure 4.5.  FTIR spectra of G-P NF C6, G-P NF and piperine 
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4.5 Drug release performance 

After investigating the different aspects of the vehicles such as the drug-polymer 

interactions, thermal stability, swelling and degradation study in aqueous medium, In-vitro 

drug release was done in order to design a nanofiber based vehicle which can provide  constant 

drug release for a prolonged period of time. The intention of this study was to develop a drug 

delivery vehicle, which can provide a near to zero-order release profile in different 

physiological pH. Thus, we started modifying our existing single-layered vehicle which could 

successfully circumvent the two stage release profile.  

 

4.5.1 Effect of multi-layer on release profile  

First, we attempted to design a vehicle with sufficient diffusional barrier which can 

exhibit a close to zero-order release without initial fast release of drug molecules. To meet the 

aforementioned release profile for cases with appreciable drug loading, we fabricated 

different types of sandwiched structured multi-layered mesh by coating drug loaded layers 

with  two sequential layers of gelatin as shown in Figure. 4.6 and Table 4.1. The drug 

concentration (µg/ml) Vs time (min) data is presented in Appendix B (Table B4). 

 
Table 4.1: Summary of the configuration of sandwiched electrospun nanofiber membrane 

Cases Composition 

G-(G+P)-G 

(layers) (ml) 

Remarks based on the drug release 

profiles (Figure 4.7) 

 

A: G-P NF C6/4/0.5 

 

(0.5+4+0.5)=5ml 

1. G Barrier is very less (0.5 ml). 

2. G+P is sufficient (4 ml) 

B: G-P NF C6/3/1 (1+3+1)=5ml 1. G Barrier better than A. 

C: G-P NF C6/2/1.5 (1.5+2+1.5)=5ml 1. G Barrier is improved (1.5 ml) 

2. G+P is less (2 ml) 

D: G-P NF C6/1/2 (2+1+2)=5ml 1. Good diffusional barrier (2 ml) 

2. Very less drug loading (1 ml) 

E: G-P NF C6/4/2 (2+4+2)=8ml 1. Combining A and D 

2. Good amount of drug loading (4ml) 

3.Sufficient diffusional barrier (2ml) 

F: G-P NF C6/4/3 

 

(3+4+3)=10ml 1. Further improved sample E by 

adding extra diffusional barrier (3ml) 

2. Drug loading is same (4ml) 
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Figure 4.6. Schematic presentation different composition of sandwiched nanofiber mesh 

 
As a starting point, 5 ml of polymer solution was deposited to fabricate four different 

sandwiched structure i.e. A to D (Table 4.1 and Figure 4.6). Figure 4.7 (a) shows tht the initial 

fast release of drug (within 4 h) for the first four cases (A to D) decreased (A: 52.0 ± 5.5% to 

D: 15.6 ± 3.7% within 4 h) drastically with an increase of diffusional barrier from 0.5 ml to 2 

ml in both sides of the core layer. On the other hand, the core layer had gradually decreased 

(4 ml to 1 ml) affecting overall the release profile particularly for case D. Therefore, we 

combined both A and D formulations to design a new formulation E (total solution 8 ml) 

shown in Table 4.1 and Fig. 4.6. Thus, the new formation E consist of 4 ml core layer similar 

to sample A, and 2 ml barrier layers from both sides similar to sample D.  More control on 

the mobility of drug molecules was noticed with this newly fabricated sample E. From Figure 

4.7 (a), it was observed that case E had sufficient control over initial release during the first 
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4h with an appreciable overall release in 24 h. Further, to fine-tune the initial fast release of 

the drug molecules, additional barrier layers were added to sample E, which resulted  in the 

fabrication of sample F shown in Table 4.1 and Figure 4.6. In that case, a total of 10 ml  

polymer solution was deposited to fabricate the membrane with enough drug loaded core (4 

ml) and good diffusional barrier (3+3 ml) to control the release profile (Sample formulation: 

F). The sample formulation F is highlighted in the Table 4.1. Figure 4.7 (a) shows that  the 

release profile for sample F exhibited a good control over the mobility of drug molecules and 

also exhibited  sustained drug release (22.5 ± 6.5% in the initial 4 h; total 55.9 ± 2.9 % in 24 

h). Thus, further investigation was done with sample F to check the effect of pH (pH 1.2, 6.8 

and 7.4; similar pH profile of human GI tract) and the effect of drug concentration (1.5, 2, 

2.5, and 3.5 mg/ml) on release profiles.   

 

 

Figure 4.7. a) In-vitro cumulative release of piperine from different composition of sandwiched 

membranes, b) Cumulative release of piperine from F sample with different drug concentration 

(1.5, 2, 2.5, 3.5 mg/ml) at pH 1.2 for 4 h, then pH 6.8 for 4 h and finally pH 7.4 for 16 h. (results 

represented are mean ± SD , n=3) 

 

4.5.2  Effect of pH and drug concentration on release profile 

To modify the selected vehicle F based on the results discussed above, the In-vitro 

drug release system was designed in such a way so that the vehicle could be exposed to 

different pH with different retention time,  similar to the GI tract [169]. The motivation behind 

designing such In-vitro systems which reflected  similar conditions of the GI tract, was to 

understand the effect of swelling and degradation of the vehicle during drug release. The 

effect of pH on the release of piperine from sample F with different drug concentration (1.5, 
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2.0, 2.5 and 3.5 mg/ml) is shown in Figure 4.7 (b). The release of drug molecules accelerated 

with increase in pH for all the cases which reflects very promising results. This accelerated 

release can be explained by the increase in swelling degree in higher pH. In higher pH, all the 

–COOH groups present in gelatin convert into –COO- which results in high anion-anion 

repulsion and thus high swelling of the polymer matrix. But in acidic pH (<5), due to the high 

ionic strength of the medium, most of the carboxylate groups are protonated and the anion-

anion repulsion forces are minimized [174].  Additionally, the hydrogen bonding between 

carboxylate and hydroxyl group is also strengthened, which causes overall shrinkage and 

lesser swelling in acidic pH. Thus, swelling capability increases gradually with increase in pH 

which promotes better drug release in higher pH conditions [169]. This phenomena can help 

to minimize the drug loss in the lower pH of the GI tract (pH of stomach is 1.2 and retention 

time is approx. 4 h), and can effectively swell as well as deliver maximum drug in higher pH 

region (pH of different parts of intestine are 6.8 and 7.4 respectively). Figure 4.7 (b) reveals 

that the drug loading in core layers is proportional with drug release. Thus, increase in initial 

drug release within 4 h was observed with higher drug concentration in core layers: 6.0 ± 

1.2%, 8.4 ± 1.1%, 10.3 ± 0.5%, and 24.5 ± 2.3% of cumulative release for 1.5,  2.0,  2.5 and 

3.5 mg/ml respectively. The F sample with 3.5 mg/ml drug concentration didn’t seem to hold  

promise in reaching zero-order drug release due to its initial fast release compared to other 

samples. Although the highest loaded sample showed initial rapid release of drug within 4 h, 

we had selected the vehicle for further modification  to overcome the drawbacks associated 

with burst release, while still maintaining the higher drug concentration. Our objective is to 

simultaneously reduce drug loss in the stomach (pH 1.2) within initial hours (approx. 4 h) and 

to release drug molecules in the intestine (absorption site) in a zero-order manner, with F 

sample, with the highest possible drug loading, i.e. 3.5 mg/ml. In order to achieve this, we 

then worked on another strategy, sequential crosslinking, as is discussed further.   

  

4.5.3  Effect of sequential crosslinking on release profile  

The next objective was to investigate the effect of different crosslinking methods for 

the chosen vehicle (3.5 mg/ml drug and sample formulation: F type) in order to overcome the 

limitations of F sample (sudden release in initial hours with higher drug loading). Thus, 

sequential crosslinking of the vehicle was attempted as an additional step. To understand this 

further, we first deposited the barrier layer of gelatin (3.0 ml) nanofibers and then crosslinked 

it for 2 min with GTA vapor. This was followed by  the deposition of a drug loaded core layer 

(4.0 ml) and crosslinking for 2 min, which was again followed by a deposition of only GNF 

(3.0 ml) and then again crosslinking for 2 min. The crosslinking was done sequentially 
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keeping the total crosslinking time the same i.e. 6 min. A comparative study of the release 

profiles between sequential crosslinked and one time crosslinked sample, both with 3.5 mg/ml 

F sample, is made in Figure 4.7 (b). The release of the drug from sequential crosslinked 

sample with 3.5 mg/ml of drug after 4 h was less than 10% (7.6 ± 1.8%), whereas one time 

crosslinking with same drug concentration, the initial release within 4 h was almost 25% (24.5 

± 2.3%). Results showed that sequentially crosslinked sample F with 3.5 mg/ml of drug 

successfully toned down the drug loss during initial hours in lower pH conditions. At the same 

time, it showed controlled and sustained release of piperine (83.0 ± 4.8% of release after 48 

h) for rest of the observed time scale.    

The probable reason of these observations can be traced to the uniformity of the 

crosslinking of fibers in the in-between layers of the mesh when done  in a sequential manner. 

The compactness of the vehicle increased due to the layer-by-layer crosslinking strategy 

which also elevated the water resistivity degree and restricted the drug molecule mobility 

[172, 173, 175]. Further, to understand the mechanism of drug release, In-vitro drug release 

data for sample F with different drug loading and different crosslinking strategies were fitted 

with zero-order release, and R2 values were also listed. The final design gave R2 as 0.99 for 

24 h and 0.97 for 48 h release, which is a signature of a zero-order case for prolonged time. 

This has been presented in Table 4.2.  

Thus, it is worthwhile  mentioning that by doing a systematic analysis, the final vehicle 

design has achieved optimal performance i.e. considerable control over the initial release 

profile without compromising on the overall drug release along with important advantages 

like stability and less release in lower pH.  Moreover, we also achieved the  desired zero-order 

release profile in higher pH condition for 48 hours, using  very cheap biopolymer gelatin 

based nanofibers. 

 

4.5.4  Drug release mechanism 

To investigate the drug release kinetics and drug release mechanisms from multi-layered 

drug loaded GNF vehicle, the In-vitro release data were analysed using mathematical model 

ie.  

Zero-order kinetics: Qt = Q0 + K×t 

 

Where, Qt = Cumulative amount of drug at time t, Q0= initial amount of drug [169]. 

Generally, drug release is a process in which drug molecules travel from the core of 

the polymer matrix to the polymer’s outer surface and then finally to the release medium. The 

release of the drug from a polymer matrix is modulated by diffusion of the drug and/or 
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degradation of the polymer matrix. To understand the mechanism of drug release, In-vitro 

drug release data for sample F with different drug loading and sequentially crosslinked 

samples were analyzed with Zero-order kinetics (Table 4.2). 

 The mechanism of drug release usually consists of three steps [169, 176]. Firstly, 

water molecules from the release medium diffuse in the polymer matrix through the internal 

pores and the matrix starts swelling. Swelling starts the degradation of the fiber mesh followed 

by the enhanced mobility of the drug molecules in the core. Due to the presence of water 

molecules, the osmotic pressure provides the driving force for the release of drug molecules 

from the core layer to the release medium. At the same time, the presence of the water 

molecules in the matrix leads to  polymer relaxation and degradation of polymer matrix, which 

also help in drug release. The drug concentration gradient between the matrix and release 

medium also plays an important role during the initial hours of the study. In the Table 4.2, 

sequentially crosslinked F sample with 3.5 mg/ml drug concentration showed good fittings 

with 0.97 R2, which depicts zero-order release systems for 48 h. The plot fitting is better till 

24 h (0.99 R2) for the same sample as shown in Table 4.2. Thus, the nanofiber based matrix 

shows the rate of release closer to zero-order release. The compactness of the nanofiber matrix 

in case of sequentially crosslinked sample can be a possible reason for the increase of 

diffusional resistance. On the contrary, the increase in drug loading causes higher drug 

concentration gradient between the matrix and release medium, which enhances the release. 

As a result, though the mechanism of release is diffusion, close to zero-order release pattern 

was achieved through the experimental tuning of  factors  mentioned above. Zero-order 

release profile is very desirable because of the  controllability of drug concentration within 

the effective safe therapeutic window for a prolonged time [2, 175, 176]. The control on the 

drug release profile as per the requirement is made  possible by varying the thickness of the 

barrier as well as the core layers and the drug loading of sandwiched membranes [172, 173, 

175]. This study concludes that the multi-layered drug loaded gelatin membrane can be a 

potential drug delivery vehicle with  tunable desired drug release profiles. 

In a nutshell, in the case of F sample with one time crosslinking, with higher drug 

concentration (3.5 mg/ml) the release profile was tending towards bi-stage release curve: 

initial burst release followed by sustained release shown in Figure  4.7 (b). This kind of curve 

doesn’t exhibit close to zero-order release. Thus, decrease in R2 value is quite evident as 

shown in Table 4.2. On the other hand, sequential crosslinked F sample with 3.5 mg/ml drug 

concentration showed close to zero-order release profile. It is evident that initial drug release 

can be toned down by crosslinking the polymer matrix layer-by-layer. This finally gives a 

better fitting with the zero-order curves. Although the release profiles are subjected to change 
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according to the therapeutic requirement, the flexibility of  loading more drugs in the vehicle 

with  zero-order signature has been achieved in this work. 

 
Table 4.2: List of drug release co-efficient as fitted in Zero-order kinetic model 

 

Release  

Model 

Sample F with different drug concentration and sequentially crosslinked 

sample 

 1.5 

mg/ml 

2 mg/ml 2.5 

mg/ml 

3.5 

mg/ml 

3.5 mg/ml 

sequential 

3.5 mg/ml 

sequential 

(till 24 h) 

Zero-

order  

K 0.0071 0.0092 0.00106 0.00157 0.0131 0.0158 

 R2 0.93 0.87 0.83 0.74 0.97 0.99 

 

4.6 Summary 

A biodegradable polymer mesh was fabricated by the electrospinning of the natural 

polymer gelatin solution with different concentrations of drugs for the assessment of a 

polymeric DDS containing hydrophobic drug molecules.  In order to get close to zero-order 

drug release, multi-layered membranes with different drug concentrations were used, and 

different crosslinking strategies were applied. The effect of the crosslinker was investigated 

in terms of degradation, swelling, chemical stability, and thermal stability. Finally, In-vitro 

release study of the vehicle was done in different physiological pH which mimicked the pH 

profile of the GI tract. In order to control the initial fast release, different combinations of 

multi-layered membranes were fabricated and studied extensively. In the next step, by 

modifying the core as well as the barrier layer and the crosslinking strategies, we have 

demonstrated the following points: 

 (a) This fabricated electrospun nanofiber mesh can exhibit better control over the initial 

fast release of a hydrophobic drug at a substantial level. 

(b) It can also achieve close to zero-order release profile for 48 h with flexibility for 

varying drug-loading capacities as per the therapeutic requirements.  

This work lays out the possibility of the systematic designing of multi-layered nanofiber 

meshes comprised of a cheap biopolymer (gelatin) which can be used as a drug delivery 

vehicle for hydrophobic drugs, with the desired signature of zero-order release for long hours. 
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4.7 Highlights of this work and motivation for the next chapter 

This newly developed electrospun gelatin nanofiber based DDS shows the potential for a 

novel DDS for the following reasons: 

1. Hydrophobic drug piperine is stable in the hydrophilic matrix. 

2. Multi-layers can substantially reduce the initial fast release, which can drastically 

lessen the drug loss in lower pHs.  

3. This device proved itself to be a pH sensitive vehicle as the swelling of the vehicle 

decreased in lower pHs and increased in higher pHs. This vehicle can successfully 

release drug molecules at the site of absorption i.e. the intestine.  

4. Sequential crosslinking also helped in tuning the burst release in the case of higher 

drug loaded samples.  

Finally, we can conclude that the multi-layered nanofiber based DDS have met all the 

desirable aspects of a novel drug-carrier and have achieved zero-order drug release for upto 

48 h for the hydrophobic drug molecule piperine. A schematic representation of this work is 

shown in Figure 4.9.    

 

 

Figure 4.8. A schematic representation of fiber fabrication, swelling behavior and In-vitro 

release profile of multi-layered electrospun gelatin nanofiber based DDS 
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The results derived from this work indicated the need for further investigation into 

the role of sequential crosslinking and the requirement for tuning the design of multi-layered 

mesh to achieve zero-order drug release profiles. Thus, in-depth investigations have been 

conducted in this direction in the next chapter.   
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Chapter 5 

 

Fabrication of Sequentially Crosslinked 

Multi-layered Gelatin Nanofiber based 

DDS 

 

5.1 Introduction 

The focus of this chapter is to investigate the role of crosslinking and developing a multi-

layered structure for encapsulation in an attempt to tone down the initial burst release of the 

drug from the nanofiber based drug-carrier. In chapter 3, single-layered nanofiber based DDS 

showed a bi-phasic release profile, which helped us in understanding the need for making 

further modifications to the vehicle in terms of reducing the burst release of drugs. Thus, the 

concept of multi-layering and sequentially crosslinking of the drug carrier was adopted. This 

combination contributed to a zero-order drug release with various drug loaded samples for a 

duration of 48 h. These results from chapter 4 certainly demonstrate the need for a better 

understanding of the role of crosslinking strategies in multiple layers so that we can fabricate 

a DDS, which can release drugs according to the required treatment. To design such a carrier, 

the roles of these two factors need to be investigated thoroughly. 

The intention of the present work is to perform a systematic analysis of the vehicle in 

order to achieve a wide range of release profiles from this nanofiber based DDS. Since we 

have retained the excipient gelatin, and the drug piperine, as well as the fabrication methods 
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used previously to design the vehicle, therefore, in this chapter we have mainly focused on 

the effect of the crosslinking strategies and multi-layered structure on the release profile of 

the drug. Thus, we have presented a comparative study of three different strategies used for 

fabricating the drug-carriers based on their drug release profiles. We anticipated that this study 

might aid in understanding the mechanism better, and this specific knowledge can help us 

engineer the most viable vehicle for a flexible release profile.   

 

5.2 Materials and Methods 

5.2.1 Materials 

Gelatin (Type A, 175 bloom), piperine (98%), hydrochloric acid (ACS, 36.5-38.0%), 

glutaraldehyde  (25% v/v aqueous solution), acetic acid (glacial, ACS, ~99.7%), sodium 

hydroxide pallets (98%), phosphate buffer saline (pH 7.4) were purchased from Alfa Aesar. 

In addition, deionized water (DI) (Milli Q, resistivity 18.1 MΩ.cm) was used throughout the 

experiments.  

 

5.2.2 Fabrication of nanofiber membrane and crosslinking  

Gelatin nanofiber mesh was prepared by electrospinning 20% (w/v) Gelatin (Type A) 

solution in acetic acid (20% v/v in distilled water) solvent using an electrospinning apparatus 

(Make: E Spin Nanotech Pvt. Ltd, India). Piperine was added to the spinning solution for drug 

loaded samples (G-P NF).  

The samples were made using three different strategies:  

(a) Single-layered GNF was prepared by electrospinning the drug loaded 5 ml solutions 

on the substrate (aluminium foil). For crosslinking, the samples (deposited on aluminum foil) 

were cut into 2 × 2 cm2 and placed inside the closed glass desiccator with 20 ml of GTA 

solution (25% v/v aqueous solution) for 6 min. (G-P NF C6).  

(b) Single-layered GNF was prepared and was crosslinked in a sequential manner (G-P 

NF SC6). The drug loaded solution was deposited (1 ml) and further crosslinked for 2 min 

followed by deposition of fibers from a 3 ml solution with subsequent crosslinking and so on. 

The total crosslinking time was 6 min.  

(c ) Multi-layered GNF was prepared by sequential electrospinning of solutions (with and 

without drug loading) on the substrate (aluminium foil). After that, the sample was crosslinked 

in the same sequence (2+2+2) min maintaining the total crosslinking time same as before (6 

min). In addition to that, 3 ml solution of piperine loaded gelatin fiber layer was sandwiched 

by only 1 ml solution of gelatin nanofiber layers on both the sides (SG-P NF SC6). 
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For fabricating these different formulations, the total deposited solution was 5 ml and the total 

crosslinking time was 6 min. Figure 5.1 shows the deposition and crosslinking strategies 

through a schematic diagram.  

 

 

Figure 5.1: A schematic representation of different formulations of fiber based DDS 

 

5.3 In-vitro biodegradation study 

To understand the effect of different crosslinking mechanisms on the stability of the mesh, 

In-vitro biodegradation was carried out for G-P NF C6, G-P NF SC6 and SG-P NF SC6 in pH 

7.4. All the case samples were cut into equal size, weighed (Wi) and placed in 25 ml solution 

of pH 1.2 for 4 h and in pH 7.4 for another 46 h. As the retention time in the stomach (pH 1.2) 

is generally 2-4 h, we checked the stability of the vehicle in lower pH for 4 h and then in 

higher pH (mimicking the pH profile of the human GI tract). At the mentioned fixed time 

intervals, swelled samples were taken out and dried in a vacuum oven at room temperature 

and weighed (Wf).  

The weight loss (WL) (%) was calculated by using the following equations [160]: 

Weight loss (%) = (𝟏 −
𝐖𝐟

𝐖𝐢
) 

Where, Wi = Initial sample weight, Wf = Weight after an incubation period. 

Figure 5.2 shows that the WL (%) due to hydrolytic degradation in the case of G-P NF 

C6, G-P NF SC6 and SG-P NF SC6  were 15.2 ± 1.5%, 12.4 ± 1.2% and 12.1 ± 1.6% 

respectively after 50 h in the solution of pH 1.2 and pH 7.4. The WL (%) was less for the 
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sample G-P NF SC6 and SG-P NF SC6 as compared to the sample GNF-P C6, which clearly 

indicates the stability of the nanofiber mesh in an aqueous medium. 

 

 

Figure 5.2: Weight Loss (%) for sample G-P NF C6, G-P NF SC6 and SG-P NFSC6 in pH 1.2 

for 4 h and in pH 7.4 for 46 h (results represented are mean ± SD , n=3) 

 

5.4 Characterization 

Since we have already established the following facts in the previous chapters, we have not 

repeated them  in the discussion in this chapter.  

1. The drug-polymer compatibility was studied using FTIR in both chapters 3 and 4. It 

was found that hydrophobic drug piperine is stable in a gelatin matrix, given that there is no 

interaction between the drug and the polymer. The effect of crosslinking was also extensively 

studied in chapters 3 and 4. Naturally, as the polymer system, the drug and the crosslinker are 

the same as those in previous chapters, we have assumed that the drug is stable in the system.  

2. Crosslinking has a major role to play in the thermal stability of the vehicle. As 

discussed in chapters 3 and 4, we already checked the effect of the crosslinker on the thermal 

stability of the vehicle, and have therefore  not repeated the same experiment in this chapter.  

3. Here we have focused on the possible effect of crosslinking as well as different layer 

formulations on the morphology and biodegradation of the drug-vehicle combination and the 

consequent release study of the drug. 
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5.4.1 Structural characterization 

The morphology of the nanofiber meshes were captured by a table top scanning 

electron microscope (SEM) (Phenom world, Model: Pro X). Prior to imaging, the samples 

were placed on a stub and were also coated with a thin gold layer using a sputter coater (Excel 

Instruments, India). 

The morphology of G-P NF C6, G-P NF SC6 and SG-P NF SC6 are presented in Figure 5.3. 

As gelatin nanofiber is very sensitive to moisture, and the water molecules present in 25% v/v 

of GTA saturated vapor damages the outer layer of the mesh by fusing fibers together. The 

more the exposure time, the more are the instances of fused fiber. Thus the sample G-P NF 

C6 (Figure 5.3 (a)) showed much more damaged structure in comparison to the samples G-P 

NF SC6 and SG-P NF SC6. In both G-P NF SC6 and SG-P NF SC6 samples, the exposure 

time for the top layer is limited to only 2 min and this results in an intact fiber structure (Figure 

5.3 (b) and 5.3 (c) respectively). 

 

 

Figure 5.3: SEM images of G-P NF C6, G-P NF SC6 and SG-P NF SC6 

 

5.5 Drug release performance 

To study the effect of different crosslinking strategies on controlling the release rate of 

piperine from a gelatin nanofiber matrix, In-vitro release study was performed maintaining 

the physiological conditions. G-P NF C6, G-P NF SC6 and SG-P NF SC6 were cut into pieces 

of equal size and placed in a 30 ml release medium with different pH levels (pH 1.2, similar 

to the pH of stomach and pH 7.4, similar to pH of the intestine) maintaining the temperature 

and oscillating speed of the mechanical shaker (Remi RIS-24 plus) at 37 ᴼC and 150 RPM 

respectively. Adequate amount of samples were taken from the release medium at fixed time 

intervals and fresh solution was added to maintain the sink condition. The presence of piperine 

in release medium was detected using a UV spectrophotometer (Perkin Elmer, Lambda 35) at 
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342 nm as λmax for piperine. The experiment was performed thrice to confirm the accuracy of 

the results. 

Next, In-vitro drug release study was performed to investigate the role of different 

crosslinking strategies on the release study of piperine. Figure 5.4 illustrates the cumulative 

release (%) of piperine as a function of time (h) for 24 h in different pH. The drug 

concentration (µg/ml) Vs time (min) data is presented in Appendix B (Table B5). The release 

(%) of piperine from G-P NF C6, G-P NF SC6 and SG-P NF SC6 meshes in pH 7.4 for 24 h 

are 67.4 ± 4.5%, 55.2 ± 3.7% and 51.8 ± 4.6% respectively. G-P NF C6 showed initial fast 

release when compared to the G-P NF SC6 mesh. The initial fast release of piperine within 8 

h was successfully tailored by 20% in the case of GNF-P SC6 (40.1 ± 1.2%) as compared to 

GNF-P C6 (57.7 ± 2.5%) by designing the vehicle through the sequential crosslinking method. 

Further, we had fabricated a sandwiched mesh consisting of a core layer (with piperine loaded 

GNF mesh) and two barrier layers (GNF mesh without any drug) on both sides of the core 

layer. We had also investigated the effect of the barrier layers on the release profiles of 

piperine. Similarly, sequential crosslinking was performed for sandwiched GNF mesh. The 

idea was to increase the diffusional barrier between the drug molecules and release medium 

and also to check the effect of sequential crosslinking (which is discussed in chapter 4 as well 

to reach a zero-order release profile). Similarly, after 8 h of study, almost 20% of drug release 

was tailored for SGNF-P SC6 (38.1 ± 2.1% after 8 h) compared to GNF-P C6. Interestingly, 

sandwiched structure did not show significant control over release than what sequential 

crosslinking did. The main drawback of direct crosslinking for 6 min (G-P NF C6) is excessive 

shrinkage of the nanofiber mesh. To overcome this problem associated with non-uniformity 

of crosslinking in different layers, we tried sequential crosslinking (G-P NF SC6). To increase 

the diffusional barrier and to overcome the initial fast release of drug, we further fabricated a 

sandwiched GNF mesh with a similar method of sequential crosslinking with GTA vapor 

(SGNF-P S-C6). In pH 1.2, after 4 h of release study, the sample formulations G-P NF C6, 

G-P NF SC6 and SG-P NF SC6 exhibited release of 48.4 ± 2.2 % , 30.2 ± 1.2 % and 25.5 ± 

2.2 % respectively. The cumulative release of piperine was less in lower pH for all these 

samples [169, 174]. The probable reason behind the increased swelling rate in pH 7.4 is the 

deprotonation of carboxylic group (-COOH) of gelatin chain to carboxylate ion (-COO-), 

which creates a repulsive force within the polymer chain. This kind of electrostatic repulsion 

between carboxylate ions would result in polymer relaxation which in turn leads to hydration 

of the matrix. In addition to that, the hydrophilic nature of the carboxylate ion also leads to 

remarkable swelling of the matrix at higher pH (pH 7.4). The decrease in swelling degree at 

lower pH (pH 1.2), can be attributed to the increased number of low-ionized carboxylic group 
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(-COOH) which form an inter-molecular hydrogen bond. These carboxylic groups can be 

associated with the intra and/or inter-molecular hydrgen bonds which causes the matrix to 

collapse. Consequently, a reduction of swelling degree in pH 1.2 takes place [177].  Due to 

comparatively lower swelling of the mesh, drug molecules do not gather sufficient osmotic 

pressure to be able to travel from the mesh to release medium. Releasing less drug in lower 

pH (pH 1.2: similar to stomach) is good as the absorbance site of the drug is usually the 

intestine [178].  

The idea behind performing a comparative analysis of three different kinds of sample 

formulations was to render a standard platform for comprehending various factors that affect 

the release profiles of the drug. The aim here was not to achieve zero-order release. The sole 

reason, then, was to understand which factor played the most important role in controlling 

drug release. To achieve zero-order release profile, naturally, we had to adopt the final 

formulation which we had achieved in the previous chapter 4. However, that formulation was 

made with 10 ml of solution (4 ml solution used for depositing fiber in the core and 3 ml of 

solution for the fiber on both the sides). Also, the formulation was made for 3.5 mg/ml 

concentration of drug (formulation F from chapter 4). It is clear from this study that, to achieve 

zero-order release, it is mandatory to maintain sufficient barrier layers as well as carry out 

crosslinking in order to achieve zero-order release. The results of this study highlight the 

importance of sequential crosslinking in controlling the release of molecules. Actually, both 

the factors play major roles by complementing each other: first, through controlling the 

swelling and polymer relaxation using an accurate amount of crosslinker, and second, through 

slow molecular transportation using multi-layer structured mesh. This, consequently, results 

in a controlled drug release profile. In conclusion, therefore, a sequentially crosslinked multi-

layered formulation can achieve zero-order release profiles.  

We can conclude that for nanofiber based drug-carrier, choosing the correct crosslinking 

method is a very important factor. In chapter 3, we had successfully reduced the crosslinking 

duration from few hours to few mins [163, 164]. Additionally, the reduction of crosslinking 

time had benefited the system in reducing toxic effects of the GTA crosslinker to a great extent 

[164]. The extraordinary porous structure of the nanofiber mesh was successfully crosslinked 

with GTA vapor with a good stability for 24-48 h. In addition to that, while fabricating the 

system we had selected GTA as crosslinker because of the crosslinking capability for a short 

span of time and also for its cheap and easily availability [129, 133, 167]. Despite its toxicity, 

it is still widely used in the pharmaceutical industry. Thus, reduction of crosslinking time can 

be considered to be an important contribution to this field which can aid the continued use of 

this toxic crosslinker through minimising its toxicity.  
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Carrying forward this observation to the next step in order to reduce the immediate release 

of drug in the initial hours, we found different strategies for crosslinking. The main drawback 

of using GTA vapor for crosslinking it with a hydrophilic vehicle was the morphological 

degradation of the exposed layer of the mesh. The water molecules in GTA vapor attaches 

itself with the gelatin fibers and it starts fusing and swelling. Thus, the topology of the vehicle 

which is exposed to the GTA vapor starts fusing [164]. In addition, this short span exposure 

of the fiber to the GTA vapor does not particularly benefit the vehicle in terms of reducing 

the initial release. The reason for that is that the non-uniformity of the GTA molecules 

throughout the different layers causes bulk degradation of the system and can cause the fast 

release of drug molecules [178]. The water molecules attack the less crosslinked hydrophilic 

fibers (mostly the side of mesh which is attached to the foil) of the mesh which result in early 

degradation of the polymer matrix. In addition to that, the crosslinking is not uniform in every 

layer of the fabric and excessive shrinkage of the mesh is also visible. This non-uniformity of 

the crosslinking leads to reduced water resistivity as compared to sequential crosslinking. In 

case of sequential crosslinking, the carbonyl group (C=O) of aldehyde can react with amino 

acid of gelatin in a uniform manner and the compactness of the fabric is better as compared 

to the one time final crosslinking [133, 164, 178]. It forms strong inter-fibrous bonding, which 

creates an extra barrier and prevents the diffusion of drug molecules to the release medium. 

The probable reason behind this observation is the uniformity of crosslinking and the tightly 

packed structure of intermediate layers of the mesh [178]. This study shows that the 

compactness of the intermediate layers plays a very important role in terms of water resistivity 

and the mobility of drug molecules. 

Besides the crosslinking strategies, the multi-layer formulation also helps to control the 

initial drug release. The aim is to increase the diffusional barrier between the drug molecules 

in the matrix to the release medium. The drug release is heavily dependent on the swelling 

where crosslinking plays a major role and also, the diffusion of the drug and dissolution 

medium where multi-layer formulation plays a major role. The drug release process consists 

of three major steps. First, the dissolution medium penetrates the fibrous structure. The water 

intake capability is dependent on the nature of the system. In the following steps, polymer 

relaxation, swelling and degradation start happening due to the retention of water molecules. 

At this point, crosslinking can confirm the longevity of the system and control the polymer 

chain relaxation and swelling to a great extent. Finally, the transportation of the drug 

molecules from the matrix happens due to osmotic pressure. At this stage, the diffusion path 

between the core layer and the dissolution medium plays an important role. The longer the 

diffusional barrier the delayed will be the release of drug. The drug molecules start moving 
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from the core layer and it goes through the barrier layers and finally releases in the dissolution 

medium [169]. This certainly helps to control the initial fast release of drug. In case of single 

layered formulation, the drug on the surface starts releasing from the initial moment itself, 

which causes immediate and fast release. This problem is certainly improved upon a lot by 

introducing the multi-layered formulation. However, in the comparison between the multi-

layered sequential crosslinked sample (SG-P NF SC6) and single layered sequential 

crosslinked sample (G-P NF SC6), not much difference was noticed. The reason behind this 

is that the barrier in this multi-layered formulation is not enough to give excellent support or 

control over the mobility of the drug. However, the uniformity of crosslinking in the 

intermediate layers can successfully affect  control on the transportation of the drug molecules 

from the vehicle to the release medium. These observations are certainly helpful to us in order 

to direct our focus to fabricate drug specific or treatment specific release profile.  

 

 

Figure 5.4: The In-vitro cumulative release (%) profiles of the sample formulation G-P NF C6, 

G-P NF SC6 and SG-P NF SC6 (results represented are mean ± SD , n=3) 

 

5.6 Summary 

As demonstrated in results, the different strategies of crosslinking certainly play important 

roles in controlling drug release from GNF based system. Results from the previous chapters 

demonstrated excellent stability of the mesh in aqueous medium for more than 48 h with only 

6 min of crosslinking. In this study, we had focused on further development of the system by 

addressing the problem of non-uniform crosslinking in between layers in case of one time 

crosslinking. Thus, sequential layer by layer crosslinking (2+2+2 min) of GNF mesh was done 
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by keeping the total crosslinking time constant (6 min). As expected, uniformity of 

crosslinking in different layers was achieved. As a result, strong inter-fibrous bonding was 

formed because of crosslinking evenly, which in turn controlled the mobility of the drug 

molecules. Further, sandwiched GNF mesh was fabricated to increase the diffusional barrier 

between drug molecules and the release medium. Finally, to understand the key factor 

effecting sequential crosslinking and multi-layer formulation on release study, a comparison 

among these three fabricated samples was drawn. The results from this study suggested that, 

in order to achieve zero-order release profiles, the formulation should consist of the perfect 

barrier support and also uniformly crosslinked layers. In addition, different combinations of 

these two factors can effectively release the drug molecules in a variable range, which can 

address different treatment specific requirements.  

 

5.7 Highlights of this work and motivation for the next chapter 

This chapter demonstrates the importance of crosslinking methods and barrier layers in 

the direction of controlling molecular transportation of the drug from the vehicle to the release 

medium. The main observations of this chapter are as follows:  

1. Single-layered one time crosslinking (G-P NF C6) shows fast release of drug in initial 

hours because of the non-uniformity of the crosslinking throughout the layers. Alternatively 

single-layered sequentially crosslinked sample (G-P NF SC6) shows better control over the 

molecular transport than one time crosslinking.  

2. Sequential crosslinking not only controls the compactness and uniform distribution 

of GTA molecules in-between layers of the mesh, but also protects the fiber morphology from 

fusion by excessive exposure of the mesh to GTA vapor.  

3. Multi-layer sequential crosslinking formulation (SG-P NF SC6) has not drastically 

improved the release profile. However, sequential crosslinking plays a major role during the 

penetration process of the water molecules in the matrix. Afterwards, the polymer relaxation 

and the swelling also depend on the uniform crosslinking in the intermediate layers. This 

influences the drug release process to a large extent. 

4. A Multi-layer formulation helps the most in the final stage of the release. The 

enhanced diffusional barrier can delay the initial release. However, the correct extent of 

barrier or support needs to be provided to counter the early release of the drug. In brief, the 

correct combination of multi-layer formulation with sequential crosslinking can achieve a 

zero-order release profile using nanofiber based DDS.  
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5. As an endnote of this study, this work can provide the knowledge to help in 

fabricating a drug-carrier, which can release the drug according to the treatment requirement. 

For personalized drug treatments, this vehicle can be very useful. With a thorough 

understanding of its parameters, it is possible to fabricate a drug vehicle with required 

modifications in order to meet any customization in drug release profiles. This study, 

therefore, certainly demonstrates huge potential for a novel drug-carrier, which can serve 

different kinds of treatment specific requirements.   

Despite this well-engineered formulation, we aim to achieve even better in order to 

provide a realistic applicability to this fiber based vehicle. Therefore, our next aim is to 

fabricate a drug vehicle with higher loading, which can also exhibit a zero-order drug release 

profile. In addition to that, our final objective of this thesis is to fabricated a novel drug 

releasing vehicle particularly for low-soluble drugs. In order to achieve that, we have 

fabricated a drug-carrier which has higher loading capability in addition to being able to 

deliver different nature of molecules. Thus, in our final step, we fabricated a nanofiber based 

DDS with amphiphilic molecules (Amphotericin-B: anti-fungal drug) which is discussed in 

the next chapter.  
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Chapter 6 

 

Fabrication of a Compressed Nanofiber 

Oral Tablet  

 

6.1 Introduction 

In the previous chapters, we examined the potential of a nanofiber based DDS, 

particularly for hydrophobic molecules, piperine. Interestingly, different design strategies 

resulted in different kinds of release profiles i.e. bi-phasic, (when the vehicle was fabricated 

with single-layered crosslinked mesh), and zero-order release for 48 h (with multi-layered, 

sequentially crosslinked vehicles). An in-depth examination was performed in order to meet 

the desired release profiles. The gelatin nanofiber based DDS formulated for the release of 

piperine showed numerous promising results. Among these were, the reduction of 

crosslinking time (6 min) and further with the same crosslinking time but through sequential 

crosslinking, the sample improved release characteristics to a great extent. In addition to that, 

multi-layers also protected the drug molecules at the core of the matrix providing a longer 

diffusional path which toned down the initial fast release. In brief, this newly developed GTA 

crosslinked GNF based DDS showed promising possibilities which led us to perform further 

investigation in order to engineer a novel DDS, particularly for low-soluble drugs. Despite its 

positive parameters, this system suffers from the problems of low-drug loading and not so 

prolonged release of drug.  
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In this chapter, we took a GNF based drug-carrier and tried to encapsulate another kind 

of low-soluble drug in order to make it a general drug-carrier for various low-soluble drugs. 

We have taken anti-fungal drug Amp-B as a model amphiphilic kind of drug. This drug is 

almost three times bigger than piperine according to the molecular weight and is amphiphilic 

in nature. In this chapter, we also tried to fabricate (CNOT) with Amp-B and accordingly, 

different aspects of the tablet have been extensively studied. We attempted to fabricate CNOT 

in order to load Amp-B with a realistic drug dosage.  

The objectives of this chapter are as follows: 

1. Fabrication of nanofiber based DDS which can deliver different kinds of drug with 

different molecular size. To meet this objective, low-soluble anti-fungal drug Amp-B 

(amphiphilic in nature) was selected for this work.  

2. CNOT are fabricated in an attempt to achieve a realistic application with therapeutic 

dose of Amp-B.  

3. To achieve zero-order release for a prolonged period. 

 

6.2 Literature survey of Amp-B drug-carrier 

Amp-B is a macrolide polyene antibiotic, which was first derived from Streptomyces 

Nodosus collected from Venezuela in 1955 [179, 180]. This is known as “gold standard” for 

anti-fungal treatment since 1950s [179]. In additional to that, it is still considered to be a 

broad-spectrum anti-fungal drug which can fight against a wide spectrum of systemic fungal 

diseases  [179-181]. Amp-B is amphiphilic in nature because of its hydrophobic (the polyene 

hydrocarbon chain) and a hydrophilic (the polyhydroxyl chain) domain [179]. Due to this kind 

of chemical structure, Amp-B shows unfavorable pharmaceutical properties, which includes 

low solubility and poor bioavailability in case of oral administration [180, 181]. Thus, this 

drug is administrated parenterally to control severe systemic fungal diseases [180]. Although 

the drug is very old, recently the use of this drug has increased because of the sudden increase 

in fungal diseases. Amp-B is widely used for treating patients suffering from invasive fungal 

infections because of the increased number of cases of AIDS and other immunological 

diseases, aggressive chemotherapy for cancer patients, organ transplant, implant or prosthetic 

devices and frequent international travel. Amp-B is also used as an ophthalmic antifungal 

agent [179, 182]. Amp-B is also used as therapeutics against visceral leishmaniasis (known 

as Kala-azar) [183-186]. The conventional dose of Amp-B was using colloidal dispersion with 

sodium deoxycholate, which required daily intravenous administration for a period of 30-40 

days. This causes a lot of inconvenience and severe nephrotoxicity as a side effect [179, 181]. 
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Later, lipid-based formulation of Amp-B using liposome, micelle, emulsion was widely used 

and was available in the market which drastically reduced the treatment duration in 3-5 days 

[179-181]. However, due to high cost and failure of the drug vehicle, the need for developing 

a suitable drug-carrier for effective release is still a challenge.  

To fight against the deadly systemic fungal diseases, researchers have attempted to 

develop a suitable drug-carrier for Amp-B, which can improve the delivery process and 

reduce the side effects associated with this drug.  Many investigations on fabricating 

polymeric micelles, dendrimer-micelles, and liposome with different biocompatible polymers 

have been reported and are commercially available in order to improve Amp-B release [181, 

187-193]. Recently few reports on nanoparticle and nano-suspension based Amp-B DDS have 

also been reported [182, 193, 194]. 

Oral administration of Amp-B can reduce the cost associated with hospitalization during 

administration and this can increase the patient’s compliance. An orally administered Amp-B 

formulation needs to cross the epithelium layer of GI tract. Recently few formulations based 

on nanoparticle, nano-suspension, micelles, nanofiber and lipid-based oral formulations has 

been reported [193, 195-199]. Biodegradable and biocompatible polymer based carrier has 

also been used in different forms like nanoparticles, nanofiber [198, 200-203].  Although few 

reports on gelatin based nanoparticle for oral administration have been reported but to the best 

of our knowledge gelatin nanofiber based oral formulation for Amp-B have not explored 

much except one recent report by Nanda. et. al [200]. Needless to mention, research efforts in 

the direction of oral administration are still minimal and remain challenging in the field of 

DDS.  

In this chapter, we have selected Amp-B as an amphiphilic model drug in order to deliver 

it orally using nanofiber based DDS. We have encapsulated Amp-B in the existing GNF based 

DDS and the release profiles have been studied. Thus, the main objective of this study is to 

fabricate a nanofiber based drug-carrier encapsulating Amp-B. In furtherance of that, we have 

also introduced CNOT with the therapeutic dose of AmP-B. Gelatin nanofiber was used as a 

drug carrier and attempts were made to get prolonged release of Amp-B, which will be 

extremely beneficial to this field. Based on the previous experience discussed in the prior 

chapters, we have designed this vehicle aiming to meet the aforementioned objectives of this 

chapter. 
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6.3 Materials and Methods 

6.3.1 Materials 

Gelatin (Type A, 175 bloom), amphotericin-B, hydrochloric acid (ACS, 36.5-38.0%), 

glutaraldehyde  (25% v/v aqueous solution), acetic acid (glacial, ACS, ~99.7%), sodium 

hydroxide pallets (98%), phosphate buffer saline (pH 7.4), DMSO were purchased from Alfa 

Aesar. In addition, deionized water (DI) (Milli Q, resistivity 18.1 MΩ.cm) was used 

throughout the experiments. 

 

6.3.2 Fabrication of the nanofiber membrane  

GNF were prepared by electrospinning 20% (w/v) of Gelatin (Type A) solution in 

acetic acid (10% v/v in distilled water) and DMSO (10% v/v in distilled water) solvent using 

electrospinning apparatus (Make: E Spin Nanotech Pvt. Ltd, India). 2 mg/ml of amphotericin-

b (Amp-B) was added to spinning solution for drug loaded samples (Amp-GNF). Amp-GNF 

samples were then crosslinked using saturated vapor of GTA (25% v/v aqueous solution) for 

few minutes in both single and sequentially crosslinking manner (Single 6 min: Amp-GNF 

C6 and sequentially 6 min: Amp-GNF SC6).  

 

6.3.3 Fabrication of a CNOT 

The drug loaded crosslinked GNF mesh was compressed using manual hydraulic 

press to form a CNOT. The formulation of compressed tablets was done in two different ways: 

First, Amp-GNF was crosslinked using GTA vapor for 6 min (Amp-GNF C6) and then it was 

compressed to fabricate CNOT C6 tablets. The other way was to compress sequentially 

crosslinked sample Amp-GNF SC6 and after compression it formed CNOT SC6 tablet. Later 

on, we further modified CNOT SC6 by crosslinking the tablet for 2 min which gave the new 

formulation CNOT SC8. Basically Amp-GNF SC6 mesh was compressed and the tablet 

(CNOT SC6) was crosslinked for another 2 min which finally gave the fabrication of CNOT 

SC8. 

 

6.4 In-vitro biodegradation study 

In-vitro biodegradation studies were carried out to check the stability of the drug loaded 

crosslinked vehicles (Amp-GNF C6 and Amp-GNF SC6) in pH 7.4. Samples were cut (5 × 5 

cm2) and then weighed (Wd). Dried samples were placed in 50 ml of PBS solution (pH 7.4) at 

37 O C  for 72 h. Swelled samples (Ws) were weighed and placed back in the solution. Similarly 

50 mg of tablet samples of CNOT C6, CNOT SC6 and CNOT SC8 were taken in order to 
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check the swelling degree. Each time the samples were dried using tissue paper to remove 

excess surface water. Swelling degrees (SD) were calculated using the following equation 

[160]:  

Swelling degree (SD %) = 
(𝐖𝐬− 𝐖𝐝)

𝐖𝐝
× 𝟏𝟎𝟎 

 

Where, Ws = Weight of swelled sample and Wd = Initial weight of dried sample.  

 

Based on our previous experiences, we crosslinked the Amp-B loaded sample (Amp-

GNF) in two different strategies as discussed in chapters 4 and 5. The samples were 

crosslinked with GTA vapor for once for a duration of 6 min for the case of Amp-GNF C6 

sample and sequential crosslinking was done for the sample Amp-GNF SC6. We have 

predicted better control in swelling in the case of Amp-GNF SC6 because of the compactness 

of the fiber mesh. The uniformity of the concentration of crosslinker within the layers helped 

to reduce early degradation. Figure 6.1(a) represents the swelling degree of Amp-GNF C6 

and Amp-GNF SC6. As the Amp-B molecules consist of hydrophobic and hydrophilic domain 

in the polymer chain, the hydrophobic chain repels water to keep the fiber matrix safe from 

hydraulic degradation. The results showed partial degradation of the matrix after 72 h for both 

the cases. It is interesting to note that again sequential crosslinking reduced the swelling of 

the matrix in the initial hours drastically for the case with Amp-GNF SC6. 

 Gathering this knowledge we checked the swelling degree for compressed tablets 

also. Figure 6.1 (b) shows the swelling degree of CNOT C6 and CNOT SC6. Interestingly, 

the compressed samples showed excellent stability in PBS and no sign of degradation was 

noticed even after 72 h. These results explained that the compressed matrix structure creates 

a diffusional barrier, which leads to less swelling and more stability of the matrix. Further 

sequential crosslinking of the compressed tablets added even more advantages which led to 

excellent stability of compressed tablets in PBS for 72 h. These observations led us to check 

the swelling of CNOT SC8. The modification of CNOT SC6 was done based on the swelling 

study observation. To reduce the initial swelling degree even further, we crosslinked the 

CNOT SC6 tablet sample for another 2 more min with GTA vapor (CNOT SC8). This was 

done to protect the top most layer of the tablet, which resulted in excellent control over 

swelling in the initial hours. We carried forward the experiment for some more time with the 

CNOT SC8 sample. We kept the samples for a few more days, maintaining the solution level, 

temperature and RMP, and took readings in-between. As a result, CNOT SC8 showed 

surprisingly good stability for a period of almost 10 days. CNOT SC8 was kept for 8 h in pH 
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1.2 solution and then in PBS (pH 7.4) for 10 days. Figure 6.1 (c ) shows that some degradation 

happened after 6 days, however the overall the matrix was stable for almost 10 days.  

 

 

Figure 6.1: Swelling Degree (SD %) of (a) Amp-GNF C6 and Amp-GNF SC6 for 73 h; (b) 

CNOT C6, CNOT SC6 and CNOT SC8 for 72 h; and (c) CNOT SC8 for 240 h (10days) (results 

represented are mean ± SD , n=3) 

 

6.5 Characterization 

6.5.1 Structural characterization 

As mentioned before, Amp-B consists of hydrophobic (the polyene hydrocarbon 

chain) and a hydrophilic (the polyhydroxyl chain) domain which is shown in Figure 6.2.  
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Figure 6.2: Chemical structure of Amphotericin-B [179] 

 

The morphology of the fibers were examined by table top Scanning Electron 

Microscope (SEM) (Make: Phenom World ProX, Netherlands). To reduce the charging effect, 

samples were coated with a thin gold layer using a sputter coater (DC Sputtering system, 

Make: Excel Instruments, India). The optical microscopic image was taken in bright mode 

with a magnification of 50X.  

 

 

Figure 6.3: (a) Optical microscopic (50X magnification) of Amp-GNF , SEM images of (b) 

Amp-GNF and (c) Amp-GNF SC6 

 
The optical microscopic and SEM images of Amp-GNF and Amp-GNF SC6 are 

shown in Figure 6.3. The surface morphology and long continuous fibers are visible in both 

the optical and SEM images Figure 6.3 (a) and (b). It is anticipated that, the stretched structure 

of the Amp-B molecules are attached to the surface as well as to the core of the fibers. We 

have predicted that the hydrophilic stretch of the polymer chain is closely attaching the surface 

of hydrophilic gelatin nanofibers and the hydrophobic stretch is shielding the fibers. The 
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alignment of amphiphilic molecules on the surface of the fiber repel the water molecules 

present in GTA saturated vapor which is presented in Figure 6.3 (c).  The top-layer of Amp-

GNF SC6 was crosslinked for 2 min with saturated vapor of GTA. It is very evident from 

Figure 6.3 (c) that Amp-B protected the fiber morphology from unnecessary partial 

degradation during the crosslinking process. These results can support the observation of 

degradation study as well. The molecules on the surface take up the role of protecting the fiber 

morphology from degradation. In addition to that, these long molecules, which are aligned 

with the fibers, also help in achieving a long and continuous fiber morphology. 

 

6.5.2 Drug-polymer compatibility 

To investigate the presence of the drug and the effect of crosslinking on the mesh, 

samples were characterized by Fourier transform infra-red spectroscopy (FTIR, Bruker 

Tensor 37, USA) in 4000-400 cm-1 range with a resolution of 4 cm−1 and 256 scans per 

samples. Figure 6.4 shows the FTIR peaks of pure drug Amphotericin-B (Amp-B),  gelatin 

nanofibers (GNF) and Amp-B loaded gelatin nanofibers (Amp-GNF).  

 

 

Figure 6.4. FTIR spectra of Amp-B drug, gelatin nanofiber (GNF) and Amp-B loaded gelatin 

nanofiber (Amp-GNF) 

 
The characteristic peaks of Amp-B are evident from the FTIR plot. The FTIR spectra 

showed the characteristic absorption bands of gelatin at 3270 cm-1 (N-H stretching), 1628 cm-

1 (amide I, C=O and C-N stretching), 1548 cm-1 (amide II, N-H bend and N=C stretch) and 

1234 cm-1 (amide III, weak N=C stretch, N-H bend) [164]. The major peaks due to the 

functional groups of Amp-B are clearly visible. The characteristic absorption bands of Amp-
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B are secondary amines for N-H stretch (3391 cm-1), alkyl ethers for C-O stretch (1069 cm-1), 

and C-H bend (trans polyene) in region of 1009 cm-1, are present in the FTIR spectra of 

Amphotericin B loaded gelatin nanofibers. These results showed that due to electrospinning 

the drug did not change its characteristic peaks. Thus, it can ben concluded that the chemical 

integrity of the drug is intact in the gelatin based matrix [200].  

 

6.6 Drug release performance 

 Based on the swelling study, we had further selected CNOT SC8 sample for the In-

vitro release study, which was represented in Figure 6.5. The drug concentration 

(µg/ml) Vs time (min) data and standard curve of Amp-B is presented in Appendix B 

(Table B6) and Appendix C respectively. The in-vitro cumulative study showed 

controlled release of Amp-B from the well-engineered compressed tablet. From the 

swelling study, we also derived  the idea of the sustainability of the vehicle in PBS (pH 

7.4). The swelling rate was very slow which led to less water retention in the system 

and that in turn helped to keep the compressed tablet intact. As the swelling degree was 

low for the sample, the mobility of water molecules was very slow. The tablet was also 

coated with 2 min of crosslinking with GTA vapor, which acted as an added barrier 

against the entering water molecules in the matrix. The compressed matrix was also 

sequentially crosslinked, which gave another layer of barricade to the water molecules. 

Additionally, the drug molecules, which consists of both hydrophobic and hydrophilic 

stretch, helped the fibers from early degradation. Thus, the water molecules needed to 

cross three different layers of barriers to enter into the matrix. It took a long time for 

the water molecules to penetrate the GTA crosslinked extreme outer layer of the tablet, 

and then they crossed the compressed fiber matrix, which was again sequentially 

crosslinked and then finally the molecules attacked the fiber where hydrophobic stretch 

of the Amp-B was shielded the drug.  Following this, when enough water had entered 

into the matrix, due to polymer relaxation and swelling, the drug started to come out 

from the matrix very slowly. These three layers of protection gave an extraordinarily 

prolonged release, which almost follows the zero-order release profile.  

It is justifiable to mention that, this vehicle is not only capable of higher drug loading 

but can also release the drug in a very controlled way for almost 10 days. As discussed earlier, 

fabricating a cheap vehicle which is made of a natural polymer and a simple and scalable 

fabrication method can make the drug vehicle affordable which is a critical concern till date. 
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Apart from that, this oral administrative vehicle can release the drug for a longer period, which 

will again be convenient to patients.   

 

Figure 6.5: In-vitro cumulative release of Amp-B from CNOT SC8 tablet for 10 days in PBS 

(pH 7.4) (results represented are mean ± SD , n=3)  

6.7 Summary 

The observation from this study reveals interesting features of this newly developed 

vehicle in order to deliver Amp-B in a zero-order release. The outcome of this research is 

quite promising in various aspects.  

1. First, oral administration of Amp-B is a challenge and scanty research with gelatin 

nanofibers based drug-carrier for Amp-B exists. An attempt at delivering Amp-B using gelatin 

nanofibers was reported [200]. However, in the article authors focused on the fabrication of 

fibers and the release of Amp-B was only for 14 h.  

2. To improve the bioavailability and reduce the cytotoxicity of the drug, several 

research attempts on nano-formulation of new vehicle have been taken up. However, this 

resulted in increased expenses in most of the cases.  In addition, several synthetic polymers 

and co-polymer were used and the complexity of the vehicle made it more expensive. Thus, 

in this study we have used gelatin as an excipient, which is natural, cheap and widely 

acceptable by the pharmaceutical industries. Again, electrospinning is also a very simple and 

scalable process. These might reduce the overall cost of the formulation.  

3. Excellent fiber morphology with Amp-B was seen. We assumed that the hydrophobic 

and hydrophilic part of the Amp-B molecule helped to form continuous straight fibers while 
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electrospinning the drug loaded polymer solution. The molecules might have arranged in such 

way so that it helped the fibers to stretch and get such fine and continuous fibers.  

4. In addition to that, compressed nanofiber oral tablet (CNOT) has been formed with 

20 mg of Amp-B which gives us a glimpse of a realistic tablet with proper therapeutic doses.  

5. Adding to that, the newly fabricated CNOT exhibited excellent stability in PBS for 

almost 10 days. Although degradation took place after 6 days, it nevertheless showed 

promising results and great control over the swelling for almost 10 days. 

6. The most important outcome of this research was to achieve zero-order release of 

drug for a prolonged period with an appreciable loading capacity (rare in the most of the DDS 

research studies). Due to excellent controlled swelling of the vehicle, this new formulation 

certainly showed fantastic stability as well as zero-ordered release for crosslinked CNOT 

sample.  

These results provide an excellent platform to carry forward the work and to examine the 

vehicle in all other aspects, so that it be employed for the release of different low-soluble drug 

molecules in the desired release profile. 

 

6.8 Highlights of this work and future directions 

The aim of this work was to fabricate a nanofiber based DDS which can be suitable for 

Amp-B. We also addressed the fact that, Amp-B is very challenging to deliver orally. Despite 

different nanoformulations that have existed for the last few decades, oral based DDS is 

extremely limited. In addition to that, the complex nanoformulation of Amp-B based DDS 

makes it unaffordable. Given these limitations, gelatin based nanofiber formulation is scalable 

and affordable.  

This CNOT formulation was fabricated with 20 mg of Amp-B, which met the therapeutic 

dose of the drug. It also showed excellent stability in PBS for almost 10 days and achieved a 

zero-order release for that duration of time. These results certainly directs us towards the oral 

formulation of low-soluble drug molecules. Although, this newly developed CNOT 

formulation showed promising results, extensive research and understanding is required to 

fabricate oral formulation for Amp-B. 

In the end note of this work, the CNOT formulations need to be studied in further detail 

by performing different microbial assays to check the effectivity of the vehicle along with the 

cell line studies to check its effect on healthy cells. Natural, cheap polymer gelatin based 

CNOT certainly showed excellent stability and controlled release for almost 10 days. This 

feature of the vehicle certainly adds another feather in its cap.  
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Chapter 7 

 

Summary and Future Directions  

 

7.1 Summary 

This thesis details the process of  fabricating various polymer based DDSs aimed at  

delivering drug molecules with low solubility though the oral route. In conclusion, this section 

revisits the objectives set out in chapter 1 and discusses the respective results achieved in 

meeting these challenges, chapter-wise. Chapter 1 descibes the historical progression of 

controlled drug delivery technology, the kinds of DDSs developed over a period in last six 

decades, the selection of the polymer and drug for our research work followed by the 

objectives and a layout of the thesis. The literature review discussing the evolution of  

controlled DDSs from macroscopic to microscopic to the nanoscopic scale across different 

era provides the justification for the choice of polymer and the nature of drug molecules which 

bring to the fore the novelty of our present definition. 

 

7.1.1 Revisiting the objectives 

 Taking into account our primary objectives of the study mentioned in chapter 1, first, 

we selected gelatin as an excipient for all different DDS for its biodegradable and bioadhesive 

nature. Gelatin is a well accepted natural polymer which is FDA approved, cost effective and 

also widely used in biomedical industries.   

 The next objective was to develop a DDS designed to achieve drug molecules with 

low solubility. The delivery of low-soluble drug molecules is a challenge and we met this 
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objective by fabricating a polymeric DDS for hydrophobic molecule piperine and amphiphilic 

molecule Amphotericin-B.  

 Next, the fabrication of  DDS with zero-order release profiles has also been discussed 

in the following chapters..  

 The subsequent objective was to fabricate polymeric vehicles with zero-order release 

profile with minimal use of toxic crosslinkers. Formulating nanostructured vehicle reduced 

the exposure time of crosslinker, thus, reducing the scope of its adverse toxic effect. 

 To achieve the next objective, we studied the drug-polymer interactions and checked 

the chemical, thermal and degradation studies for the vehicle. We took into account the drug-

polymer conjugate as a whole system and the performance of this system has been discussed 

in the chapters.  

 Moving to the last point of the objectives, we successfully fabricated a DDS which 

showed  flexible release profiles according to the required treatment. This method takes a 

general approach to designing such vehicles which in turn can address the need for delivering 

low-soluble drugs with realistic drug loading. 

 Finally, a practical drug with realistic dosage in a compressed tablet form was tested. 

Results show 10 days long near zero-order release. This humble effort has been emerged from 

our experimental journey in this area (depicted in the chapters of this thesis). Present research 

paves the way to take this formulation to the next level of testing with microbial assay and 

cell line studies before getting elevated for full animal studies.  

In this thesis, we have met all of the stated objectives in chapter 1, discussed in detail 

from chapter 2 onwards till chapter 6. We have presented the development of the different 

DDS, starting from cast-film to nanofiber based film to compressed tablets through the 

chapters. Additionally, these chapters also  cover the reasons for the modification of the 

vehicle depending on the release profiles and drug loading mechanism. 

 

7.1.2 Discussion of key results from each chapter 

 Chapter 2 discusses the fabrication of cast-film using gelatin as an excipient for the 

hydrophobic molecule, piperine. We checked its structural characterization, drug-polymer 

compatibility and drug release performances. We used GTA solution as a crosslinker for 10 

mins which yielded good stability in different physiological pHs. The variation of GTA 

concentration and polymer concentration played a very important role in achieving different 

release profiles. The variation of the diffusion path according to different concentrations of 



98 
 

polymers and also the entanglement of drug-polymer molecules along with the presence of 

crosslinker showed a drastic change in the release profiles.  

The main outcome of this chapter is the establishment of drug-polymer compatibility and the 

stability of the vehicle using different concentrations of the polymer and crosslinker. 

However, the drawback of the present vehicle is the use of GTA solution which is toxic in 

nature and does not yield a zero-order release profile. In an attempt to reduce the crosslinking 

time, we decided to fabricate a nanostructured porous vehicle.  

 In chapter 3, we continued with the same excipient and drug, and fabricated a 

nanofiber based mesh in order to deliver piperine in different physiological pHs. We 

crosslinked the mesh using GTA saturated vapor for 6 to 8 min (instead of exposing it for a 

few hours or a few days) to achieve increased stability in PBS solution that would last for 

atleast 24 h. The use of GTA vapor in place of GTA solution not only reduced the unnecessary 

toxicity but also resulted in better stability in PBS because of the penetration power of GTA 

in its vapor form through the porous nanofibers.  It is worth highlighting that the reduction of 

exposure time to GTA vapor certainly adds another dimension to the fabrication of this DDS. 

In this chapter we investigated the effects of different crosslinking time (4 min, 6 min and 8 

min) and different pHs (pH 1.2, 6, 7.4 and 8) on release profile to find the controlling key 

factors in order to achieve the desired release profile. Despite the fact that plenty of research 

with respect to the use of gelatin nanofiber in drug delivery exist, to the best of our knowledge 

and with the exception of a recent demonstration of the slow release of nystatin, an anti-fungal 

reagent, no study of the controlled release of a hydrophobic drug using electrospun gelatin 

nanofiber has been performed. Mostly, recent reports have either focused on the release of 

hydrophilic drugs or have used prolonged periods of crosslinking (almost 24 h) or have 

reported burst-release profiles. Thus, this work, addresses all these challenges and establishes 

a gelatin nanofiber based system as a potential drug carrier with low soluble drugs.  

 Carrying forward the newly developed vehicle to achieve zero-order release profiles, 

we proposed to increase the diffusional barrier between the drug molecules in the vehicle to 

the release medium. To accomplish that, a sandwiched-structured fiber mesh was introduced; 

the process of creating the same as well as the requirement for it was discussed in Chapter 4. 

The drug loaded core layer was protected by two barrier layers of gelatin nanofiber mesh from 

both sides. This controls the movement of drug molecules to a great extent. A variety of 

combinations of barrier and core layers is studied extensively in this chapter to achieve zero-

order release profile.  

This chapter mainly focuses on the modification of the existing vehicle by adding barrier 

layers and also through crosslinking strategies. In this chapter, results showed a zero-order 
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release profile in different pH solutions almost for 48 h. Therefore, the main outcome of this 

chapter is the modification of the existing gelatin nanofiber based vehicle through the 

introduction of a multi-layer structure and through sequential crosslinking methods so as to 

deliver a highly loaded piperine drug in a zero-order manner.  

 In chapter 5, we mainly focused on the comparative studies of single crosslinking 

over sequential crosslinking of single-layered and multi-layered nanofiber mesh. We tried to 

bring together the idea of a multi-layered fiber mesh and a sequentially crosslinked mesh in 

this chapter. Moreover, structural characterization, drug-polymer compatibility, and drug 

release performance were also studied. This section contributes to a better understanding of 

the crosslinking mechanism employed in enhancing the porous structure of the nanofiber 

based mesh to reduce diffusion and also tries to identify the key parameters which can control 

the diffusion of drug molecules from the vehicle to the release medium. This sensitivity study 

certainly helps in understanding the drug-polymer system as a whole which in turn helps us 

to apply  the system to different kinds of drug molecules possessing different molecular sizes.  

 Gathering all this knowledge about the piperine (hydrophobic drug) and gelatin based 

drug delivery vehicle, we have now moved on to an amphiphilic molecule, Amphotericin B 

(Amp-B) loaded  gelatin based vehicle in chapter 6. Amp-B is almost a three times bigger 

molecule and is also amphiphilic in nature. The main aim of this chapter is to establish a novel 

drug delivery vehicle which can be used for different kinds of drug molecules. Thus, we 

fabricated Amp-B loaded gelatin nanofiber mesh and characterized the vehicle in terms of 

morphology, drug-polymer compatibility and release performance. We tried to meet the 

realistic drug dosage of Amp-B and fabricated a compressed nanofiber tablets for the same. 

Amp-B loaded nanofiber mat was sequentially crosslinked for 6 min and after making the 

tablet it was again crosslinked for another 2 min. This kind of formulation has shown excellent 

stability in PBS and almost zero-order release profile for almost 10 days. Therefore, the 500 

mg gelatin nanofiber compressed tablet with 20 mg of Amp-B certainly shows promising 

results and also  draws attention toward the need for further research into this newly fabricated 

polymeric vehicle.   

In nut-shell, in this thesis the humble attempt was made to fabricate a general drug carrier 

which can deliver poor soluble drug molecules. In order to achieve that, we had encapsulated 

Piperine and Amp-b in the vehicle and delivered in zero order manner. Piperine is poor water 

soluble drug and Amp-B is amphiphilic in nature. Amphotericin B is three times bigger 

molecule than piperine. The focus of the study was to design a vehicle by fabricating single 

or different layered structure mesh or crosslinking the vehicle with different strategies. The 

modification was done purely based on release study results. The FTIR and release study 
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depicted the presence of drug molecules in the matrix without reacting with the excipient. In 

addition to that, the modification or designing of the vehicle did not interfere the molecule or 

its therapeutic values. Based on the limited data with two drugs as examined in this presented 

work, it won’t be fair to claim that, this drug carrier can be a novel drug delivery vehicle, 

which can deliver any kinds of drug.  However, the aim was on fabrication of the mesh and 

different crosslinking strategies in order to develop a general drug carrier for particularly low 

soluble drug molecules. Considering that aim, in this thesis different range of drugs with a 

wide difference in molecular weights and hydrophobicity were used as model drug to get a 

glimpse of potential of nanofiber-based carrier as a novel drug carrier.  

 

7.2 Future directions 

Based on the key results of this thesis, a number of future possibilities for working with this 

newly formulated drug delivery vehicle exist. The following are some of them.  

 

1. Multi-layered GNF can be used as dual/multi-drug carrier. Encapsulating different 

drugs in different layers of the mesh can yield a range of desired release profiles, 

which can certainly be an interesting study to perform. 

2. Although we have drastically reduced the GTA vapor exposure time to 6 min, 

introducing porous nanofibers could probably increase the penetration capability of 

the GTA molecules further, which can lead to a considerable reduction of exposure 

time to GTA vapor. This could play an important role in the diffusion of drug 

molecules from the matrix to release medium. 

3. Core-shell nanofiber based DDS could also form a very interesting study. The core-

shell nanofiber based tablet can drastically reduce burst release followed by a 

prolonged release of drug.  

4. Release study of compressed nanofiber based tablets with a range of different 

molecular size and type of drugs could form a sophisticated area of study. This will 

help in fabricating a novel drug carrier, which could be modified according to the 

type of drugs and kind of release profiles.  
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Appendix A 

Table A1: Piperine loaded different drug delivery vehicles with various kinds of excipients 

 DSSs Excipients  References 

1 Nanoparticle Poly (ethylene glycol)-poly (lactic-co-

glycolic acid) 

[204] 

2 Nanoparticle Chitosan [205] 

3 Solid-lipid 

Nanoparticles 

Polysorbate-80 coated piperine solid-

lipid nanoparticles (PS-80-PIP-SLN) 

[206] 

4 Lipid 

Nanospheres 

Positively charged stearylamine (LN-P-

SA) and pegylated lipid nanospheres 

(LN-P-PEG) 

[207] 

5 Nanosize 

Liposomes 

L-α-phosphatidylcholine dipalmitoyl 

(DPPC) 

[208] 

6 Nanofiber patch poly(ε-caprolactone) (PCL) and gelatin 

(GEL) blends 

[209] 

7 Self-emulsifying 

drug delivery 

systems 

(SEDDS) 

Ethyl oleate, Transcutol P, and Tween 

80 were used as the oil phase, co-

surfactant, and surfactant, respectively 

[210] 

8 Floating 

microspheres, 

Mucoadhessive 

microspheres 

In floating microspheres, ethyl cellulose, 

hydroxy propyl methyl cellulose and 

calcium carbonate were used as 

polymers. In mucoadhessive 

microspheres ethyl cellulose, hydroxy 

propyl methyl cellulose and carbopal 

were used. 

[211] 

9 Hot melt 

extrusion 

(HME) 

Soluplus®, polyvinylpyrrolidone-co-

vinylacetate 64 (Kollidon® VA 64), and 

Eudragit® EPO 

[212] 

10 Hydrogel Sodium alginate/gelatin [63] 
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Appendix B 

Chapter 2 

Table B1: Drug concentration Vs Time for release profile of piperine (pH 7.4) from gelatin cast-film 

(Section 2.5, Figure: 2.6 (a), Page number: 32) 

 

Concentration vs time for release profile of piperine (pH 7.4) 

Time  

(min) 

A2 

(µg/ml) 

A3 

(µg/ml) 

A4 

(µg/ml) 

B2 

(µg/ml) 

B3 

(µg/ml) 

B4 

(µg/ml) 

0 0 0 0 0 0 0 

5 16.9 11.4 8.8 12.9 12.9 10.6 

10 32.9 28.5 25.1 22.7 22.7 23.7 

20 58.6 43.4 34.4 34.7 34.7 31.3 

60 85.5 86.9 77.7 59.3 59.3 57.2 

120 116.4 98.8 83.3 77.3 77.3 76.4 

240 163.3 162.7 138.8 116.8 116.8 102.1 

480 184.4 177.6 168.9 159.9 159.9 140.5 

1440 190.5 188.1 179.7 176.8 174.4 159.9 

 

Concentration vs time for release profile of piperine (pH 7.4) 

Time  

(min) 

C2 

(µg/ml) 

C3 

(µg/ml) 

C4 

(µg/ml) 

D2 

(µg/ml) 

D3 

(µg/ml) 

D4 

(µg/ml) 

0 0 0 0 0 0 0 

5 11.9 10.7 11.6 8.1 6.2 4.1 

10 22.1 16.3 17.9 15.7 10.8 7.7 

20 37.1 35.2 31.7 25.6 16.9 15.1 

60 46.9 43.5 41.7 33.1 25.0 19.1 

120 72.9 55.3 59.8 57.7 43.1 35.7 

240 106.0 97.6 88.3 95.0 66.3 61.1 

480 131.2 128.6 124.1 116.8 97.3 86.7 

1440 149.6 147.7 136.4 127.6 115.3 109.3 
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Table B2: Drug concentration Vs Time for release profile of piperine (pH 1.2) from gelatin cast-film 

(Section 2.5, Figure: 2.7 (a), Page number: 32) 

Concentration vs time for release profile of piperine (pH 1.2) 

Time  

(min) 

A2 

(µg/ml) 

A3 

(µg/ml) 

A4 

(µg/ml) 

B2 

(µg/ml) 

B3 

(µg/ml) 

B4 

(µg/ml) 

0 

0 0 0 0 0 0 

5 

5.1 6.2 3.9 3.8 3.8 3.1 

10 

13.4 10.3 6.5 7.6 5.7 5.0 

20 

20.1 16.2 11.9 9.7 7.5 9.5 

60 

31.8 23.9 17.7 18.1 12.9 12.9 

120 

36.6 38.5 30.5 23.5 18.4 18.5 

240 

42.3 41.7 39.9 32.8 26.5 30.9 

480 

49.5 44.8 40.6 36.9 35.5 42.1 

Concentration vs time for release profile of piperine (pH 1.2) 

Time  

(min) 

C2 

(µg/ml) 

C3 

(µg/ml) 

C4 

(µg/ml) 

D2 

(µg/ml) 

D3 

(µg/ml) 

D4 

(µg/ml) 

0 

0 0 0 0 0 0 

5 

3.3 4.0 4.0 2.4 2.4 2.4 

10 

5.0 7.3 7.0 7.6 7.1 7.1 

20 

11.8 9.8 12.9 12.5 12.5 11.5 

60 

13.1 12.1 13.3 14.5 11.3 11.3 

120 

18.7 18.4 18.7 21.3 18.9 18.9 

240 

40.1 31.9 28.6 27.3 24.5 22.6 

480 

44.0 43.5 42.1 33.7 33.0 28.8 
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Chapter 3: 

Table B3: Drug concentration Vs Time for release profile of piperine from G-P NFCX based DDS 

(Section: 3.7.1, Figure 3.6, Page number: 51) 

Concentration vs time for release profile of piperine (sample: G-PNFC4) 

Time (min) pH 8 (µg/ml) pH 7.4 (µg/ml) pH 6.8 (µg/ml) pH 1.2 (µg/ml) 

0 0 0 0 0 

5 9.4 8.2 6.5 5.2 

10 16.6 15.3 11.0 7.3 

20 26.9 22.8 17.3 14.4 

60 39.4 33.3 25.4 23.2 

120 43.6 39.5 34.4 29.1 

240 47.7 44.4 41.0 35.3 

480 52.3 49.1 46.8 39.1 

1440 57.4 54.3 49.6 46.6 

Concentration vs time for release profile of piperine (sample: G-PNFC6) 

Time (min) pH 8 (µg/ml) pH 7.4 (µg/ml) pH 6.8 (µg/ml) pH 1.2 (µg/ml) 

0 0 0 0 0 

5 6.4 5.2 3.5 2.2 

10 9.3 8.6 7.4 6.2 

20 16.7 11.4 10.5 9.9 

60 29.3 21.4 17.1 14.7 

120 37.6 35.2 33.2 27.3 

240 41.6 39.0 37.3 35.0 

480 43.2 40.6 39.0 37.1 

1440 52.6 51.3 46.5 43.5 

Concentration vs time for release profile of piperine (sample: G-PNFC8) 

Time (min) pH 8 (µg/ml) pH 7.4 (µg/ml) pH 6.8 (µg/ml) pH 1.2 (µg/ml) 

0 0 0 0 0 

5 5.8 3.3 2.8 2.2 

10 7.5 7.4 5.0 3.2 

20 15.4 11.5 9.4 7.6 

60 17.9 20.1 13.5 12.8 

120 30.3 29.3 23.1 18.3 

240 35.6 33.2 27.1 25.9 

480 40.8 35.8 33.1 30.7 

1440 43.6 39.2 37.5 35.6 

 



121 
 

Chapter 4: 

Table B4: Drug concentration Vs Time for release profile of piperine from sample F with different 

piperine concentrations (Section: 4.5.1, Figure 4.7, Page number: 67) 

Concentration vs time for release profile of piperine (sample: F) 

Time (h) 

(1.5mg/ml 

drug) 

(µg/ml) 

(2 mg/ml 

drug) 

(µg/ml) 

(2.5mg/ml 

drug) 

(µg/ml) 

(3.5mg/ml 

drug) 

(µg/ml) 

(3.5mg/ml 

drug) with 

sequential 

crosslinking 

(µg/ml) 

0 0 0 0 0 0 

0.5 1.1 1.1 1.8 4.2 2.3 

1 2.0 1.9 2.6 6.9 2.9 

2 2.1 2.8 4.3 11.6 4.3 

4 3.0 4.8 6.6 17.1 5.3 

6 5.2 10.0 13.1 22.2 8.9 

8 9.3 13.8 17.4 26.7 11.2 

12 13.3 17.9 22.1 31.4 18.4 

24 20.2 27.6 31.1 43.4 38.8 

48 30.2 37.6 43.4 63.8 58.1 
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Chapter 5: 

Table B5: Drug concentration Vs Time for release profile of piperine (Section: 5.5, Figure 5.4, Page 

number: 82) 

Concentration vs time for release profile of piperine  

Time (h) 

  

(G-P NF C6) 

(µg/ml) 

(G-P NF SC6) 

(µg/ml) 

(SG-P NF SC6) 

(µg/ml) 

0 0 0 0 

0.0833 3.3 2.1 1.9 

0.1667 7.4 4.1 3.4 

0.3333 11.5 8.1 6.9 

1 20.1 10.5 9.1 

2 23.3 13.6 11.3 

4 29.0 18.1 15.3 

8 34.6 24.4 22.9 

12 37.3 27.1 25.6 

24 40.4 33.1 31.1 
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Chapter 6: 

Table B6: Drug concentration Vs Time for release profile of Amphotericin B from CNOT SC8 

(Section: 6.6, Figure 6.5, Page number: 94) 

Concentration vs time for release profile of Amphotericin B  

Time (h) Sample: CNOT SC8 (µg/ml) 

0 0 

1 22.6 

2 32.4 

4 44.0 

8 50.4 

12 75.2 

24 114.4 

36 135.3 

48 161.7 

72 213.3 

96 257.7 

120 333.7 

144 377.6 

168 420.5 

192 452.9 

216 485.2 

240 496.4 
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Appendix C 

Table C1: Standard curve for piperine in PBS (pH 7.4) 

 

 

Table C2: Standard curve for Amphotericin-B in PBS (pH 7.4) 
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