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Abstract

The major focus of software transaction memory systems (STMs) has been to facilitate the multiprocessor
programming and provide parallel programmers with an abstraction for fast development of the concurrent
and parallel applications. Thus, STMs allow the parallel programmers to focus on the logic of parallel
programs rather than worrying about synchronization.

Heart of such applications is the underlying concurrent data-structure. The design of the underlying
concurrent data-structure is the deciding factor whether the software application would be efficient, scalable
and composable. However, achieving composition in concurrent data structures such that they are efficient as
well as easy to program poses many consistency and design challenges.

We say a concurrent data structure compose when multiple operations from same or different object
instances of the concurrent data structure can be glued together such that the new operation also behaves
atomically. For example, assume we have a linked-list as the concurrent data structure with lookup, insert
and delete as the atomic operations. Now, we want to implement the new move operation, which would delete
a node from one position of the list and would insert into the another or same list. Such a move operation
may not be atomic(transactional) as it may result in an execution where another process may access the
inconsistent state of the linked-list where the node is deleted but not yet inserted into the list. Thus, this
inability of composition in the concurrent data structures may hinder their practical use.

In this context, the property of compositionality provided by the transactions in STMs can be handy.
STMs provide easy to program and compose transactional interface which can be used to develop concurrent
data structures thus the parallel software applications. However, whether this can be achieved efficiently is a
question we would try to answer in this thesis.

Most of the STMs proposed in the literature are based on read/write primitive operations(or methods)
on memory buffers and hence denoted RWSTMs. These lower level read/write primitive operations do not
provide any other useful information except that a write operation always needs to be ordered with any
other read or write. Thus limiting the number of possible concurrent executions. In this thesis, we consider
Object-based STMs or OSTMs which operate on higher level objects rather than read/write operations on
memory locations. The main advantage of considering OSTMs is that with the greater semantic information
provided by the methods of the object, the conflicts among the transactions can be reduced and as a result,
the number of aborts will also be less. This allows for larger number of permissive concurrent executions
leading to more concurrency. Hence, OSTMs could be an efficient means of achieving composability of
higher-level operations in the software applications using the concurrent data structures. This would allow
parallel programmers to leverage underlying multi-core architecture.

To design the OSTM, we have adopted the transactional tree model developed for databases. We extend
the traditional notion of conflicts and legality to higher level operations in STMs which allows efficient
composability. Using these notions we define the standard STM correctness notion of Conflict-Opacity. The
OSTM model can be easily extended to implement concurrent lists, sets, queues or other concurrent data
structures.

We use the proposed theoretical OSTM model to design HT-OSTM - an OSTM with underlying hash table

object. We noticed that major concurrency hot-spot is the chaining data structure within the hash table. So,
we have used Lazyskip-list approach which is time efficient compared to normal lists in terms of traversal
overhead. At the transactional level, we use timestamp ordering protocol to ensure that the executions are
conflict-opaque. We provide a detailed handcrafted proof of correctness starting from operational level to the
transactional level. At the operational level we show that HT-OSTM generates legal sequential history. At
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transactional level we show that every such sequential history would be opaque thus co-opaque.
The HT-OSTM exports STM insert, STM lookup and STM delete methods to the programmer

along-with STM begin and STM trycommit. Using these higher level operations user may easily and
efficiently program any parallel software application involving concurrent hash table. To demonstrate the
efficiency of composition we build a test application which executes the number of hash-tab methods (gen-
erated with a given probability) atomically in a transaction. Finally, we evaluate HT-OSTM against ESTM
based hash table of synchrobench and the hash-table designed for RWSTM based on basic time stamp order-
ing protocol. We observe that HT-OSTM outperforms ESTM by the average magnitude of 106 transactions
per second(throughput) for both lookup intensive and update intensive work load. HT-OSTM outperforms
RWSTM by 3% & 3.4% update intensive and lookup intensive workload respectively.
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Chapter 1

Introduction

1.1 Introduction to STM

Growing ubiquity of multicore processors and onset of Moore’s law saturation and powerwall era has made
parallel and concurrent programming inevitable and programmer must write parallel and concurrent programs
to leverage underlying multi/many core architecture. Thus, focus on programming for multicore programing is
need of the hour.

In words of Seymon Peyton Jones[1], ”The free lunch is over. We have grown used to the idea that our
programs will go faster when we buy a next-generation processor, but that time has passed. While the next
generation chip will have more CPUs, each individual CPU will be no faster than the previous years model. If
we want our programs to run faster, we must learn to write parallel programs.”

So, to exploit the parallel architecture, applications need to be parallelly programmed. Unfortunately,
parallel programming is far more difficult to design, maintain and debug than sequential programming.
Formulating algorithms and proving their correctness is even more difficult. The bugs are non-deterministic
and parallel programs often give poor performance. Adding to the woes, reasoning about parallel programs
does not come naturally to human mind. For instance, implementing a sequential queue data structure is
very easy but implementing a queue that allows concurrent operation on both its ends is still an active area
in research. Therefore, parallel programming, which untill now is the domain of a few high-performance
computing experts, will now have to be mastered by common programmers. Multithreading is essential for
full exploitation of the multi-core hardware and effective use of multiple processor systems. However, they do
pose synchronization challenges, some of them being:

• Collaboration between threads which involves sharing of data in memory or on secondary storage.

• Uncontrolled writes can lead to inconsistent data values or race condition.

• Synchronized memory access is required since processors cannot modify shared memory locations
atomically.

• Granularity of access to shared memory, which is a deciding factor for efficiency of the concurrent
systems.
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For instance, consider the classic banking examplea where two threads (transactions), T1 and T2 are trying
to withdraw an amount from the account ’from’ where ’balance’ is shared objects. Now, if T1 and T2 are not
synchronized, then balance T1 may overwrite the withdraw by T2. Thus, even though withdraw was done
twice from the acount ’from’ but it might appear that withdraw was done only once. Lets take initial value of

’balance’ = 100 and amount = 20. T1 reads the balance into bal and later T2 also reads the balance into bal.
Now, assume T2 is context switched. T1 goes ahead and updates the balance to 80. Now, T2 wakes up and
since its local value bal is 100, it also updates the balance to 80. Please note that the final value of balance

should have been 60 but it is 80. Hence, the system is inconsist.

T1

void withdraw ( i n t amount )
{

b a l = r e a d ( b a l a n c e )
b a l a n c e = w r i t e ( b a l − amount ) ;
}

T2

void withdraw ( i n t amount )
{

b a l = r e a d ( b a l a n c e )
b a l a n c e = w r i t e ( b a l − amount ) ;
}

In response to these synchronization issues most popular technology used by the industry is to use locks
for every read and write access, or to use semaphores or monitors to update the shared code sections or shared
resources within a program. This ensures atomic update of different variables (shared resources) and avoids
inconsistency. For example, the below code snippet represents a solution to the above race condition.

T1

void withdraw ( i n t amount )
{
l o c k ( b a l a n c e )
b a l = r e a d ( b a l a n c e )
b a l a n c e = w r i t e ( b a l − amount ) ;
un lo ck ( b a l a n c e ) ;
}

T2

void withdraw ( i n t amount )
{
l o c k ( b a l a n c e ) ;
b a l = r e a d ( b a l a n c e ) ;
b a l a n c e = w r i t e ( b a l − amount ) ;
un lo ck ( b a l a n c e ) ;
}

However, using a single program wide lock (coarse grained locks) decreases system performance and have
scalability issues. Hence, fine grained locking is required, but this too turns out to have engineering challenges,
as locks have to be used in proper ordering for whole application. One missing lock acquisition may lead to
race conditions which may cause program crashes and memory corruption. Besides this other synchronization
issues like priority inversions, livelocks, convoying, starvation and deadlocks add to programmers nightmare
of writing concurent programs.

Moreover, lock based programs are not modular[1, 2], scalable and they are difficult to debug and maintain.
Hence, all these issues amount to parallel programming being difficult and less popular amongst programmers.
The following bank transaction example demonstrates incorrect locking scenario: here T1 may see the incorrect
state of the from and to accounts because T2 has debited money equivalent to amount but has not credited to
account to. Thus, money equal to amount may appear missing to T1.

aPlease note that the code snippets are by no means the complete or correct programs. They are used here to show the problems with
locking and motivate the advantage of the STM.
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T1

void modify ( from , t o )
{

l o c k ( from ) ; l o c k ( t o ) ;
l o c k ( b a l a n c e ) ;

b a l 1 = from . r e a d ( b a l a n c e ) ;
b a l 2 = t o . r e a d ( b a l a n c e )
b a l a n c e = t o . w r i t e ( b a l 1 + b a l 2 ) ;

un lo ck ( from ) ; u n lo ck ( t o ) ;
un lo ck ( b a l a n c e ) ;

}

T2

void t r a n s f e r ( from , to , amount )
{

l o c k ( from ) ; l o c k ( b a l a n c e ) ;
b a l = r e a d ( b a l a n c e ) ;
b a l a n c e = w r i t e ( b a l − amount ) ;

un lo ck ( from ) ; u n lo ck ( b a l a n c e ) ;

l o c k ( t o ) ; l o c k ( b a l a n c e ) ;
b a l = r e a d ( b a l a n c e ) ;
b a l a n c e = w r i t e ( b a l + amount ) ;

un lo ck ( t o ) ; u n lo ck ( b a l a n c e ) ;

}

Thus, we see that with lock based solution programmers would mostly be focusing on synchronisation
issues rather than designing the logic for their applications. Software Transactional Memory[3] is one
promising abstraction programming paradigm to efficiently and easily write the parallel programs such that
programmers do not need to explicitly worry about the synchronization. STM exports its transactional interface
i.e. methods like tx begin, tx read, tx write and tx commit. A programmer has to write its section of code that
needs synchronisation using these constructs. And, STM takes over all the task of correctly and efficiently
synchronising the application. Thus, making writing parallel programs easier. Lets, try writing the previous
withdraw function of our banking example using STM.

T1

void withdraw ( i n t amount )
{

t x b e g i n ;
b a l = t x r e a d ( b a l a n c e )
t x w r i t e ( b a l a n c e , b a l − amount ) ;

t x commi t ;
}

T2

void withdraw ( i n t amount )
{

t x b e g i n ;
b a l = t x r e a d ( b a l a n c e )
t x w r i t e ( b a l a n c e , b a l − amount ) ;

t x commi t ;
}

Thus, we see that STM makes writing parallel programs easier by shifting synchronisation to itself, either
in form of a library or compiler constructs, depending upon the way STM is implemented. TL2[4], SwissTM
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[5] and TinySTM[6] are some of the popular STMs in the literature.

1.2 Introduction to Concurrent Data Structure

Concurrent data structures are heart of the multithreaded software applications which enable extraction of
maximum parallelism from the underlying multi core architecture. But, designing and and proving correctness
of such concurrent data structures or applications based on them is non-trivial and it poses many design and
consistency challenges.

One of them being composibility of operation of concurrent data structures. Often, individual operations of
the concurrent data structures execute atomically. But practical use of such data structure very often requires
these individually correct operation to glue together and appear to be happening atomically.
For instance, consider a concurrent hash-table object which exports insert, delete & lookup methods,
these operation work correctly in multithreaded environment and appear to behave transactionally individually.
But, real world application needs these operations to compose together for example move, which requires
delete & insert to occur together in transactional manner. Please note that implementation of move requires
that a delete and then insert from same or different hash-table object appear to happen together.

This inability of composition of operation in concurrent data structures hinders software reusability and as
it can be used only in limited number of ways, thus raising question on their practical use[7].

Lock based solutions are very popular in industry, but they have their own problems as discussed in Sec-
tion 1.1. STM again here proves to be a promising alternative to design composable and easily programmable
concurrent data structures hence concurrent software applications[1].

1.3 Motivation

Software Transaction Memory Systems (STMs) are a convenient programming interface for a programmer to
access shared memory without worrying about concurrency issues [3, 8]. Concurrently executing transactions
access shared memory through the interface provided by the STMs. Thus, the programmer can now focus
on harnessing optimum parallelism from the application instead of worrying about the locking, races and
deadlocks. Moreover, the transactions provide atomicity implying operations executed within the transactions
either take effect together or do not take effect at all. This prevents other transactions from observing the
intermediate effects of other transactions. Thus, STMs are natural choice for achieving composability[9].

Most of the STMs [4, 5, 6] proposed in the literature are specifically based on read/write primitive operations
(or methods) on memory buffers (or memory registers). These STMs typically export the following methods:
t begin which begins a transaction, t read which reads from a buffer, t write which writes onto a buffer, tryC

which validates the operations of the transaction and tries to commit. If validation is successful then it returns
commit otherwise STMs returns abort. We refer to these as Read-Write STMs or RWSTMs. As a part of
the validation, the STMs typically check for conflicts among the operations. Two operations are said to be
conflicting if at least one of them is a write (or update) operation. Normally, the order of two conflicting
operations can not be commutated. On the other hand, Object based STM or OSTM operate on higher level
objects rather than read & write operations on memory locations. They include more complicated operations
such as enq/deq on queue objects, push/pop on stack objects etc rather than mere read/writes.

It was shown in databases that object-level systems provide greater concurrency than read/write systems
[10, Chap 6]. Harris et al.[11] and Herlihy et al.[12, 13] worked on the concept of Object-based STM. We
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would like to propose an alternative model to achieve composability with greater concurrency for STMs by
considering higher-level objects which leverage the richer semantics of object level operations. We motivate
this with an interesting example.

Consider an OSTM operating on the hash-table object. Thus, we can call it HT-OSTM. Such an HT-

OSTM exports the following methods: t begin which begins a transaction (same as in RWSTMs), t insert which
inserts a value for a given key, t delete which deletes the value associated with the given key, t lookup which
looks up the value associated with the given key and tryC which validates the operations of the transaction.

A simple way to implement the hash-table object is using a list where each element of the list stores
the 〈key, value〉 pair. The elements of the list are sorted by their keys similar to the set implementations
discussed in [14, Chap 9]. It can be seen that the underlying list is a concurrent data-structure manipulated by
multiple transactions (and hence threads). So we have used the lazy-list based concurrent set [15] to implement
the operations of the list denoted as: list insert, list del and list lookup (referred as contains in [15]). Thus,
when a transaction invokes t insert, t delete and t lookup methods, the STM internally invokes the list insert,
list del and list lookup methods respectively.

Consider an instance of list in which the nodes with keys 〈k2 k5 k7 k8〉 are present in the hash-table
as shown in Figure 1.1(i) and transactions T1 and T2 are concurrently executing t lookup1(k5), t delete2(k7)

and t lookup1(k8) as shown in Figure 1.1(ii). In our representation, we abbreviate t delete as d and t lookup

as l. For simplicity, we refer to nodes of the list by their keys. In this setting, suppose a transaction T1 of
HT-OSTM invokes methods t lookup on the keys k5, k8. This would internally cause the HT-OSTM to invoke
list lookup method on keys 〈k2, k5〉 and 〈k2, k5, k7, k8〉 respectively.

(i) Underlying list (ii) H1: Transactional tree history

T1 T2

r2(k2) r2(k5) r2(k7) w2(k5) w2(k7)

d2(k7)

c2

l1(k8)

r1(k5) r1(k8)r1(k2)
r1(k2) r1(k5)

l1(k5)

−∞ k2 k5 k7 k8 +∞

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

Figure 1.1: Motivational example for OSTMs

Concurrently, suppose transaction T2 invokes the method t delete on key k7 between the two t lookups
of T1. This would cause, HT-OSTM to invoke list del method of list on k7. Since, we are using lazy-list
approach on the underlying list, list del involves pointing the next field of element k5 to k8 and marking
element k7 as deleted. Thus list del of k7 would execute the following sequence of read/write level operations-
r(k2)r(k5)r(k7)w(k5)w(k7) where r(k5), w(k5) denote read & write on the element k5 with some value
respectively. The execution of HT-OSTM denoted as a history can be represented as a transactional forest as
shown in Figure 1.1(ii). Here the execution of each transaction is a tree.

In this execution, we denote the read/write operations (leaves) as layer-0 and t lookup, t delete methods as
layer-1. Consider the history (execution) at layer-0 (while ignoring higher-level operations), denoted as H0. It
can be verified this history is not opaque[16]. This is because between the two reads of k5 by T1, T2 writes to
k5. It can be seen that if history H0 is input to a RWSTMs one of the transactions among T1 or T2 would be
aborted to ensure correctness (in this case opacity[16]). On the other hand consider the history H1 at layer-1
consisting of t lookup, t delete methods while ignoring the underlying read/write operations. We ignore the
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underlying read & write operations since they do not overlap (referred to as pruning in [10, Chap 6]). Since
these methods operate on different keys, they are not conflicting and can be re-ordered either way. Thus, we
get that H1 is opaque[16] with T1T2 (or T2T1) being an equivalent serial history.

The important idea in the above argument is ignoring lower-level operations since they do not overlap.
Harris et al. referred to it as benign-conflicts[11]. This history clearly shows the advantage of considering
STMs with higher level operations in this case they are t insert, t delete and t lookup. With object level
modeling of histories, we get a higher number of acceptable schedules than read/write model. This is because
of not all conflicts at the lower level matter at the higher level.

The atomic property of transactions helps to correctly glue together the individual operations and the
concurrency in such STMs can be enhanced by considering the object level semantics of the underlying data
structure. Thus, considering higher level semantics provides efficient means of achieving composability of
operations of a concurrent data structure. Our OSTM model to design concurrent data structures ensures that the
sequence of operations compose efficiently. The OSTM can be moulded to any specific data structure (in this
work we show it for concurrent hash-table and we name it HT-OSTM). OSTM models includes detailed
discussion of legality of transactions executing over single or multiple shared objects (or data structures) We
also discuss conflict notion for the operations involved by characterizing them into rv method and upd method
followed by the correctness proofs of the histories generated by OSTM. Following is the summary of our
contribution:
• We build OSTM: an alternative theoretical model for efficiently transactifying the concurrent data

structures using their semantic information such that they are composable [9] too. We implement OSTM
with a concurrent hash table object named as HT-OSTM. The OSTM can also be implemented with
other data structures like list, stack, queue or tree. It would be very natural to see that HT-OSTM can
easily be adapted to implement a list-OSTM with list as an underlying data structure.

• We propose legality definitions and the notion of conflicts for object histories generated by HT-OSTM.
This we achieve by formally categorizing HT-OSTM methods as rv method and upd method.

• HT-OSTM is designed with hash-table where chaining is implemented via lazyskip-list. We provide
full implementation of the methods exported by the HT-OSTM such that every method composes
correctly within HT-OSTM transactions.

• We provide in-depth proof of correctness starting from layer-0 (operational level) to the layer-1 (transac-
tional level) executions generated by the proposed HT-OSTM. And first time we show that HT-OSTM is
guaranteed to be co-opaque[17].

• We evaluate HT-OSTM against the concurrent hash-table of Synchrobench with ESTM as synchro-
nization mechanism. We also evaluate HT-OSTM against hash-table developed using read/write
STM with BTO as synchronization mechanism[18].
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Chapter 2

Literature

Earliest work of using the semantics of concurrent data structures or using STMs for object level granularity
include that of open nested transactions [12] and transaction boosting of Herlihy et al.[13]. Abstract nested
transactions[11] is another STM that is motivated by the need to avoid aborts of transactions due to conflicts at
a lower level (Harris refers to them as benign conflicts). Harris et al.[11] identify the transactions which are
victims of benign conflicts and prevent such unnecessary aborts by re-executing the transaction. Spiegelman
et al.[19] try to build a transactional data structure library from existing concurrent data structure library.
Their work is much of a mechanism than a methodology. Hassan et al.[20] have recently proposed Optimistic
Transactional Boosting (OTB) that extends original transactional boosting methodology by optimizing and
making it more adaptable to STMs. They further have implemented OTB on set data structure using lazylinked
list[21].

Transactional boosting idea of Herlihy et. al[13] tries to utilize the object level semantics of linearizable
datastructures. They assume datastructure to be blackbox and try to transactify the base object(underlying
datastructure); We inturn, treat the physical layer(in terminology of open nested transactions) or layer-0 as
well; This provides us the oppurtunity to customize the optimization of an underlying datastructure. Herlihy
claims to differ from open nested transactions by providing a precise methodology and characterization of
the mechanism. However, they maintain a log of each operation’s inverse, which needs to execute once a
transaction aborts; this incurrs additional computational and memory cost. Moreover, many datastructures
donot provide reverse operations (for example, priority queue). The proposed OSTM do not need reverse
operation as we follow deffered update augmented with optimism of time-order based validation.

Moreover, transactional boosting use abstract locks at semantic layer (abstract-layer) which is a pessimistic
approach and distracts from the more general correctness criteria for TMs i.e opacity. Herlihy et. al. give
a model to support the mechanism of transactional boosting based on serlizabilty(strict or commit order
serializabilty) of generated schedules as correctness critera. They briefly cover the sequential specification of
underlying objects, while we give a more detailed sequential specification that can be adapted to most of the
data structure having generic update and lookup operations(eg list has insert and delete as update operations;
and lookup ). Herlihy’s model also has rollbacks which is obvious, given their pessimistic strategy. Our
model is more optimistic in that sense and underlying data structure is updated only after there is a guarantee
that there is no inconsistency due to concurrency. Thus, we donot need to do rollbacks. This also solves the
problem of irrevocable operations being executed during a transaction which might abort later otherwise.

Our work is adaptation of Weikum and Vossens transactional tree model in databases. Herlihy’s Boosting
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strategy or Hasan’s optimistic boosting sticks to 2-flat object histories, while our model is open to higher levels
of abstractions as we directly adapt the transactional tree model with co-opacity [17] as correctness criterion
a subclass of Opacity. Their main focus as underlying datastructure is a linked list. We use a hash table as
underlying object which utilizes a lazyskip-list, which turns out to be more efficient in terms of space and time.

Hassan[22] uses C-SWC model to prove that OTB transactions compose. We on other hand propose
alternate object model STMs where we lay down a detailed legality definition for the underlying data structures
to be transanctified and build a bottom up correctness proof starting from operational level to the transactional
level showing that HT-OSTM ensures co-opacity[17] thus compose. OTB uses the notion of semantic read

set and write set to log the methods locally and their conflicts are based on classic read-write conflict notion.
Given the complexity at object level we believe that the classic conflict notion alone is not enough to capture
the correctness of such STMs. We propose conflicts notion that helps to prove that HT-OSTM is co-opaque.
We also assume that there can be multiple operations on the same shared object and during the execution
of a transaction only the last update method which executed on a shared object needs to be validated. This
avoids unnecessary validation time spent in upd method execution phase, we achieve this by notion of conflict

inheritance as discussed in Section 3.3. Moreover, unlike OTB, STM lookup() is validated only once at
the instant of their execution and unlike original boosting HT-OSTM do not need to rollback thus saving
considerable logging overhead.

Spiegelman et al[19] believe Boosting is based on a semantic variant of two phase locking, in which the
data structure operations are protected by a set of abstract locks. They transactify the CDSL and aim to build a
TDSL. However, their major focus is mainly on transactifying concurrent datastructures we differ in focussing
more on utilising the datastructure semantics by differentiating between abstract level and physical level
access; Providing a methodolgy of transactional trees in context of STM with generic semantic specification of
underlying objects and co-opacity as correctness criterion. TSDL work again is much of a mechanism rather
than a methodology.

Open nested transactions[12] tries to exploit concurrency by differentiating between memory level conflicts
as physical layer and logical conflicts as abstract layer. They achieve so by using abstract locking at abstract-
layer and claims the genrated histories to be serializable. They too in their approach are pessimistic and rely
on fallback mechanism i.e. once a transactions aborts they execute compensating operations that incurrs
significant memory and computational cost. We use time ordered optimistic mechanism to address synchrony
at abstract level. Open nesting seems to be more of a mechanism while we give a detailed methodology and
our model is well supported by hand crafted correctness proofs and generic specifications of the underlying
objects. Our work is in C++.

Several researchers have established that STM makes the development of concurrent composable applica-
tions easier than its lock based counterparts[8, 9], not to be forgotten scalability issues in lock based solutions.
Tim Harris et. al.[9] proposed an STM based solution to achieve composability and at the same time maintain
the abstraction, such that internal details of the atomic methods are not required for the programmer to glue
multiple operations together in concurrent Haskell. Zhang et al [23] identify composability loop holes in
implementing optimized transactions which allow direct access to the shared memory to gain performance. To
this end, they propose replacing direct read calls to the shared memory by the encapsulated TxFastRead &
TxF lush method which allows efficient composability. Thus, they achieve optimized transaction such that
ensuring composability is easier. They however, leave ensuring correctness to the programmer. We have laid
down full theoretical correctness model for HT-OSTM. Cederman & Tsigas[24] propose a methodology to
implement the composable operation in lock free concurrent object. Their approach is restricted in application
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to the objects which meet the criterion, named as move candidates and requires mechanical changes in the
candidate data structure by the programmer to implement the composable operations.

Fraser et. al.[2] proposed OSTM which is based on shadow copy mechanism, which involves a level of
indirection to access the shared objects through OSTMOpenForReading and OSTMOpenForWriting. These
read/write methods are exported to the programmer. On the other the OSTM model proposed by us exports
the higher object level methods like STM lookup(), STM insert() and STM delete() while hiding the internal
read and write lower level primitives. So, it seems that using the Fraser OSTM one can write the higher
level methods transactionally. For example one may implement a lookup on the underlying list object using
transactions. We differ here because we allow such multiple higher level operations to be grouped together
atomically without requiring user to implement them. The exported methods in Fraser et.al’s OSTM may allow
OSTMOpenForReading to see the inconsistent state of the shared objects but our OSTM model precludes this
possibility by validating the access during execution of rv method(i.e. the methods which donot modify the
underlying objects and only return some value by performing a search on them.)

Fraser’s OSTM uses the transaction descriptors which stores the previous and new copies of the shared
objects increasing the memory requirement to maintain the meta data. We on the other hand, maintain single
copy of the underlying shared object and the meta information is augmented within each shared object. For
example in case of a list each node is a shared object. Here we augment each shared node with the meta data
(in our case the time-stamp of access by the other transactions) along with an unique key and the value pair
(value may store any complex data type of any type). Thus, we can say our motivation and implementation is
different from Fraser OSTM[2] only the name happens to coincide.
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Chapter 3

Methodology

3.1 Building System Model for OSTM

We assume that our system consists of finite set of P processors, accessed by a finite number of n threads that
run in a completely asynchronous manner and communicate using shared objects. The threads communicate
with each other by invoking higher-level methods on the shared objects and getting corresponding responses.
Consequently, we make no assumption about the relative speeds of the threads. We also assume that none
of these processors and threads fail or crash abruptly. Please note that we have designed the model taking
hash-table as underlying object and implemented the proposed techniques for efficiently composing the
hash-table object, thus we call it HT-OSTM henceforth. The HT-OSTM model can easily be extended to
any general underlying object, say linked-list, lazylist, queue etc and thus we may refer to the proposed model
as OSTM while refering to general underlying objects.

3.1.1 Preliminary definitions & notations

Methods: The n processes access a collection of transaction objects via atomic transactions supported by the
HT-OSTM. Each transaction has a unique identifier typically denoted as Ti. Within a transaction, a process
can invoke transactional methods on a hash-table transaction object. A hash-table(ht) consists of
multiple key-value pairs of the form 〈k, v〉. The keys and values are respectively from set of integers and any
data type respectively. The methods that a transaction Ti can invoke are: (1) t inserti(ht, k, v): this method
inserts the pair 〈k, v〉 into object ht and return ok. If ht already has a pair 〈k, v′〉 then v′ gets replaced with
v. (2) t deletei(ht, k, v): if ht has a 〈k, v〉 pair then this operation deletes the pair and returns v. If no such
〈k, v〉 pair is present in ht, then the operation returns nil. (3) t lookupi(ht, k, v): if ht has a 〈k, v〉 pair then
this operation returns v. If no such 〈k, v〉 pair is present in ht, then the method returns nil. It can be seen that
t lookup is similar to t delete.

For simplicity, we assume that all the values inserted by transactions through t insert method are unique.
We denote t insert and t delete as upd methods since both these change the underlying data-structure.We
denote t delete and t lookup as return-value methods or rv methods as these return values which are different
from ok.

In addition to these return values, each of these methods can always return an abort value A which implies
that the transaction Ti is aborted. A method mi returns A if mi along with all the methods of Ti executed so
far are not consistent (w.r.t opacity, the correctness-criterion which is formally defined later in this section).
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The HT-OSTM supports two other methods: (4) tryCi: this method tries to validate all the operations of
the Ti. HT-OSTM returns ok if Ti is successfully committed. Otherwise, HT-OSTM returns A implying abort.
This method is invoked by a process after completing all its transactional operations. (5) tryAi: this method
returns A and HT-OSTM aborts Ti.

When any method of Ti returns A, we denote that method as well as Ti as aborted. We assume that a
process does not invoke any other operations of a transaction Ti, once it has been aborted. We denote a method
which does not return A as unaborted.

Events: Having described about methods of a transaction, we describe about the events invoked by
these methods. We assume that each method consists of a inv and rsp event. Specifically, the inv

& rsp events of the methods of a transaction Ti are: (1) t inserti(ht, k, v): inv(t inserti(ht, k, v)) and
rsp(t inserti(ht, k, v, ok/A)). (2) t deletei(ht, k, v): inv(t deletei(ht, k)) and rsp(t deletei(h, k, v/nil/A)).
(3) t lookupi(h, k, v): inv(t lookupi(h, k)) and rsp(t lookupi(h, k, v/nil/A)). (4) tryCi: inv(tryCi()) and
rsp(tryCi(ok/A)). (5) tryAi: inv(tryAi()) and rsp(tryAi(A)). We assume that the threads execute atomic
events. Similar to Lev-Ari et. al.[25, 26], we assume that these events by different threads are (1) read/write
on shared/local memory objects, (2) method invocations (or inv) event & responses (or rsp) event on higher
level shared-memory objects, (3) lock/unlock events on the shared-memory objects.

For clarity, we have included all the parameters of inv event in rsp event as well. In addition to these,
each method invokes read/write primitives (operations) of Ti, represented as: ri(x, v) implying that Ti reads
value v for shared object x; wi(x, v) implying that Ti writes value v onto the shared object x. Depending on
the context, we ignore some of the parameters of the transactional methods and read/write primitives. We
assume that the first event of a method is inv and the last event is rsp.

Formally, we denote a method m by the tuple 〈evts(m), <m〉. Here, evts(m) are all the events invoked by
m and the <m a total order among these events. For instance, the method l11(k5) of Figure 3.1 is represented
as: inv(l11(h, k5)) r111(k2, o2) r112(k5, o5) rsp(l11(h, k5, o5)) and the the method d12(k2) is represented as:
inv(d12(h, k2)) r121(k2, o2) w122(k2, o2) rsp(d12(h, k2, o2)).

Please note that wlog, for convenience we shorten t deletei(ht, k, v) to dij(k), t inserti(ht, k, v) to iij(k)

and t lookupi(ht, k, v) to lij(k) respectively. Here, subscript i, j implies that it is the jth method of the ith

transaction. Also, depending on the context we may omit the parameters. From our assumption, we get that
for any read/write primitive rw of m, inv(m) <m rw <mrsp(m).
Global States: We define the global state or state of the system as the collection of local and shared variables
across all the threads in the system. The system starts with an initial global state. We assume that all the events
executed by different threads are totally ordered. Each update event transitions the global state of the system
leading to a new global state. The events read/write on shared/local memory objects change the global state.
The inv & rsp events on higher level shared-memory objects do not change the contents of the global state.
Although we would denote the resulting state with a new label while establishing the correctness of HT-OSTM.
Transactions: Following the notations used in database multi-level transactions [10], we model a transaction
as a two-level tree. Figure 3.1 shows a tree execution of a transaction T1. The leaves of the tree denoted
as layer-0 consist of read, write primitives on atomic objects. Hence, they are atomic. For simplicity, we
have ignored the inv & rsp events in level-0 of the tree. Level-1 of the tree consists of methods invoked by
transaction. In the transaction shown in Figure 3.1, level-1 consists of t lookup and t delete methods operating
on the lazyskip-list as also shown in Figure 1.1(i). Thus a transaction is a tree whose nodes are methods and
leaves are events.
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T1

Layer-1: t lookup & t delete

r111(k2)

d12(k2)

r121(k2) w122(k2) Layer-0: Reads & Writes

l11(k5)

r112(k5)

Figure 3.1: T1 : A sample transaction on lazyskip-list (of Figure 1.1(i)) representing a hash-table object.

Having informally explained a transaction, we formally define a transaction T as the tuple 〈evts(T ), <T 〉.
Here evts(T ) are all the read/write events (primitives) at level-0 of the transaction. <T is a total order
among all the events of the transaction. For instance, the transaction T1 of Figure 3.1 is: inv(l11(ht, k5))

r111(k2, o2) r112(k5, o5) rsp(l11(ht, k5, o5)) inv(d12(ht, k2)) r121(k2, o2) w122(k2, o2) rsp(d12(ht, k2, o2)).
Given all level-0 events, it can be seen that the level-1 methods and the transaction tree can be constructed.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt. Given any other
read/write event rw in Ti, we assume that Ti.firstEvt <Ti

rw <Ti
Ti.lastEvt.

All the methods of Ti are denoted as methods(Ti). We assume that for any method m in methods(Ti),
evts(m) is a subset of evts(Ti) and <m is a subset of <Ti

. Formally, 〈∀m ∈ methods(Ti) : evts(m) ⊆
evts(Ti) ∧ <m⊆<Ti

〉.
We assume that if a transaction has invoked a method, then it does not invoke a new method until it gets

the response of the previous one. Thus all the methods of a transaction can be ordered by <Ti
. Formally,

(∀mp,mq ∈ methods(Ti) : (mp <Ti
mq) ∨ (mq <Ti

mp))〉.

b) H1: Transactional tree historya) Underlying list

T1 T2

r2(k2) r1(k8)r1(k2)
w1(k2) r2(k8) w2(k2) w2(k6)

−∞ k2 k8 k9

Layer-0: Reads & Writes

i2(k6)i1(k4)

w1(k4)

Layer-1: Insert

+∞

Figure 3.2: Not linearizable at lower level as well as higher level

Histories: A history is a sequence of events belonging to different transactions. The collection of events
is denoted as evts(H). Similar to a transaction, we denote a history H as tuple 〈evts(H), <H〉 where all the
events are totally ordered by <H . The set of methods that are in H is denoted by methods(H). A method m

is incomplete if inv(m) is in evts(H) but not its corresponding response event. Otherwise m is complete in H .
Coming to transactions in H , the set of transactions in H are denoted as txns(H). The set of committed

(resp., aborted) transactions in H is denoted by committed(H) (resp., aborted(H)). The set of incomplete or
live transactions in H is denoted by incomp(H) = live(H) = txns(H)− committed(H)− aborted(H).
On the other hand, the set of terminated transactions are those which have either committed or aborted and is
denoted by term(H) = committed(H) ∪ aborted(H).

12



The relation between the events of transactions & histories is analogous to the relation between methods &
transactions. We assume that for any transaction T in txns(H), evts(T ) is a subset of evts(H) and <T is a
subset of <H . Formally, 〈∀T ∈ txns(H) : (evts(T ) ⊆ evts(H)) ∧ (<T⊆<H)〉. We denote two histories
H1, H2 as equivalent if their events are the same, i.e., evts(H1) = evts(H2). A history H is qualified to be
well-formed if: (1) all the methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes a
method only after it receives a response of the previous method invoked by it (2) Ti does not invoke any other
method after it received an A response or after tryC(ok) method. We only consider well-formed histories for
HT-OSTM.
Sequential Histories: A method mij of a transaction Ti in a history H is said to be isolated if for any other
event epqr belonging to some other method mpq (of transaction Tp) either epqr occurs before inv(mij) or
after rsp(mij). Formally, 〈mij ∈ methods(H) : mij is isolated ≡ (∀mpq ∈ methods(H),∀epqr ∈ mpq :

epqr <H inv(mij)∨rsp(mij) <H epqr)〉. For instance in H1 shown in Figure 1.1(ii), d2(k2) is isolated. In
fact all the methods of H1 are isolated. Consider history H2 shown in Figure 3.3a. It can be seen that the all
the three methods in H2, (l11, d21, l12) are not isolated.

A history H is said to be sequential (term used in [17, 27]) or linearized [28] if all the methods in it are
complete and isolated. Thus, it can be seen that H1 is sequential whereas H2 is not. From now onwards, most
of our discussion would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method as whole without referring
to its inv and rsp events. For a sequential history H , we construct the completion of H , denoted H , by inserting
tryAk(A) immediately after the last method of every transaction Tk ∈ incomp(H). Since all the methods in a
sequential history are complete, this definition only has to take care of completing transactions.

Consider a sequential history H . Let mij(ht, k, v/nil) be the first method of Ti in H operating on the
key k. Since all the methods of a transaction are sequential and ordered, we can clearly identify the first
method of Ti on key k. Then, we denote mij(ht, k, v) as H.firstKeyMth(〈ht, k〉, Ti). For a method
mix(ht, k, v) which is not the first method on 〈ht, k〉 of Ti in H , we denote its previous method on k of Ti as
mij(ht, k, v) = H.prevKeyMth(mix, Ti).
Real-time Order & Serial Histories: Given a history H , <H orders all the events in H . For two complete
methods mij ,mpq in methods(H), we denote mij ≺MR

H mpq if rsp(mij) <H inv(mpq). Here MR stands for
method real-time order. It must be noted that all the methods of the same transaction are ordered. Similarly,
for two transactions Ti, Tp in term(H), we denote (Ti ≺TR

H Tp) if (Ti.lastEvt <H Tp.firstEvt). Here TR
stands for transactional real-time order.

Thus, ≺ partially orders all the methods and transactions in H . It can be seen that if H is sequential, then
≺MR

H totally orders all the methods in H . Formally, 〈(H is seqential) =⇒ (∀mij ,mpq ∈ methods(H) :

(mij ≺MR
H mpq) ∨ (mpq ≺MR

H mij))〉.
We define a history H as serial [29] or t-sequential [27] if all the transactions in H have terminated and

can be totally ordered w.r.t ≺TR, i.e. all the transactions execute one after the other without any interleaving.
Intuitively, a history H is serial if all its transactions can be isolated. Formally, 〈(H is serial) =⇒ (∀Ti ∈
txns(H) : (Ti ∈ term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺TR

H Tp) ∨ (Tp ≺TR
H Ti))〉. Since all the methods

within a transaction are ordered, a serial history is also sequential. Figure 3.3b shows a serial history.

3.1.2 Legal Histories

We define legality of rv methods (t delete & t lookup) on sequential histories. Consider a sequential history H

having a rv method rvmij(ht, k, v) (with v 6= nil) belonging to transaction Ti. We define this rvm method to
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T1 T2

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

l11(k5)
d21(k7) l12(k8)

c22

r111(k2) r211(k2) r112(k5) r212(k5) r213(k7) w214(k5) r121(k2) w215(k7) r122(k5) r123(k8)

(a) H2 : A non-sequential History.

T1
T2

r111(k2) r112(k5)

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

l11(k5) l12(k8)

r122(k5) r123(k8)r121(k2)

c22

w215(k7)r211(k2) r212(k5) r213(k7) w214(k5)

c13

d21(k7)

(b) A serial History.

Figure 3.3: serial and non sequential History.

be legal if:

1. If the rvmij is not first method of Ti to operate on 〈ht, k〉 and mix is the previous method of
Ti to operate on 〈ht, k〉. Formally, rvmij 6= H.firstKeyMth(〈ht, k〉, Ti) ∧ (mix(ht, k, v′) =

H.prevKeyMth(〈ht, k〉, Ti)) (where v′ could be nil). Then,

(a) if mix(ht, k, v′) is a t insert method i.e. t insertix(ht, k, v′) then v = v′.

(b) if mix(ht, k, v′) is a t lookup method i.e. t lookupix(ht, k, v′) then v = v′.

(c) if mix(ht, k, v′) is a t delete method i.e. t deleteix(ht, k, v′/nil) then v = nil.

In this case, we denote mix as the last update method of rvmij , i.e., mix(ht, k, v′) =

H.lastUpdt(rvmij(ht, k, v)).

2. If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not nil. Formally, rvmij(ht, k, v) =

H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 6= nil). Then,

(a) There is a t insert method t insertpq(ht, k, v) in methods(H) such that Tp committed before
rvmij . Formally, 〈∃t insertpq(ht, k, v) ∈ methods(H) : tryCp ≺MR

H rvmij〉.
(b) There is no other update method upxy of a transaction Tx operating on 〈ht, k〉 in methods(H)

such that Tx committed after Tp but before rvmij . Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) :

tryCp ≺MR
H tryCx ≺MR

H rvmij〉.

In this case, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v) =

H.lastUpdt(rvmij(ht, k, v)).

3. If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is nil. Formally, rvmij(ht, k, v) =

H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = nil). Then,
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(a) There is t delete method t deletepq(ht, k, v′) in methods(H) such that Tp (which could be T0

as well) committed before rvmij . Formally, 〈∃t deletepq(ht, k, v′) ∈ methods(H) : tryCp ≺MR
H

rvmij〉. Here v′ could be nil.

(b) There is no other update method upxy of a transaction Tx operating on 〈ht, k〉 in methods(H)

such that Tx committed after Tp but before rvmij . Formally, 〈@upxy(ht, k, v′′) ∈ methods(H) :

tryCp ≺MR
H tryCx ≺MR

H rvmij〉.

In this case similar to step 2, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v)

= H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash-table ht, the result of this method
is stored in local logs of Ti for later methods to reuse. Thus, only the first rv method operating on 〈ht, k〉 of Ti

accesses the shared-memory. The other rv methods of Ti operating on 〈ht, k〉 do not access the shared-memory
and they see the effect of the previous method from the local logs. This we also call conflict inheritance as the
conflict of the later method of Ti operating on 〈ht, k〉 can be found using the conflicts of the first method of Ti.
This idea is utilized in step 1 of legality. With reference to step 2 and step 3, it is possible that Tx could have
aborted before rvmij . For step 3, since we are assuming that transaction T0 has invoked a t delete method on
all the keys used of all hash-table objects, there exists at least one t delete method for every rv method
on k of ht. We formally prove legality in Lemma 28 in Section 4.1 and then we finally show that HT-OSTM

histories are co-opaque[17] as defined in Definition 2.
Coming to t insert methods, since a t insert method always returns ok as they overwrite the node if already

present therefore they always take effect on the ht. Thus, we denote all t insert methods as legal. We denote a
sequential history H as legal if all its rvm methods are legal. While defining legality of a history, we are only
concerned about rvm (t lookup and t delete) methods since all t insert methods are by default legal.

Intuitive examples for Legality If rv method is not the first method of a transaction on any key then it
will return the same value as the previous method of the same transaction on the same key. In Figure 3.4(i),
previous method for luij(ht, k5, v5) of transaction Ti on same key k5 is insix(ht, k5, v5). So, luij(ht, k5, v5)

will return the same value which will be inserted by previous method insix(ht, k5, v5). Same mechanism will
follow in Figure 3.4(ii) and Figure 3.4(iii).

(ii)

(iii)

(i)

Ci

Ci

Ci

Ti

Ti

Ti

Insix(ht, k5, v5) Luij(ht, k5, v5)

Luix(ht, k5, v5) Luij(ht, k5, v5)

Delix(ht, k5, v5) Luij(ht, k5, Nil)

Figure 3.4: STM lookup() is not the first method of its transaction

If rv method is the first method of a transaction on any key and value is not null then the previous closest
method of committed transaction should be insert on the same key. In Figure 3.5, previous closest method for
luij(ht, k, vp) of transaction Ti on same key k is inspq(ht, k, vp) of transaction Tp. So, luij(ht, k, vp) will
return the same value which has been inserted by inspq(ht, k, vp) and there can’t be any other transaction
upd method working on the same key between Tp and Ti. Figure 3.6 represents, previous closest method of
committed transaction Tp is delpq(ht, k, vp) on key k so luij(ht, k,Nil) of transaction Ti returns nil for same
key k.
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Tp

Cp

Ti

Ci

{

tryC

tryC

{

Tx

Delxy(ht, k, v) Cx

Inspq(ht, k, vp)

Luij(ht, k, vp)

Figure 3.5: STM lookup() is first method of its transaction

Tp

Cp

Ti

Ci

tryC

tryC

{

Tx

Insxy(ht, k, v) Cx

{

Delpq(ht, k, vp)

Luij(ht, k,Nil)

Figure 3.6: STM lookup() is first method and returns Nil

T1

Ins1(ht, k, v1) Del1(ht, k1, v0)

T2

C1

Lu2(ht, k2, v0)
C2

Lu2(ht, k1, Nil)

Figure 3.7: Legal History H2

History H2 in Figure 3.7 is an example of legal history, because both the lookup of transaction T2 are
reading from a previously closest committed transaction.
Correctness-Criteria & Opacity: A correctness-criterion is a set of histories. A history H satisfying a
correctness-criterion has some desirable properties. A popular correctness-criterion is opacity [16].

Definition 1. A sequential history H is opaque if there exists a serial history S such that: (1) S is equivalent

to H , i.e. , evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time order of H , i.e.,

≺TR
H ⊆≺TR

S .

In this definition, we are restricting only to sequential histories. It can be seen that this definition of opacity
is very similar to the definition given in [17] with methods on read-write objects. But the definition of legality
is very different which takes care of the object model case.

3.1.3 Conflict Notion

In order to show that any concurrent history of HT-OSTM is linearizable we need to know which methods
can be ordered and in what order. Thus, establishing the conflict relation between all the methods of an
concurrent object (in this case hash-table) is important. As we discussed in Figure 1.1(ii), some lower
level conflicts can be ignored at the higher level. So, we defined following conflict notion for proving the
correctness (opacity, to be precise co-opacity[17]) of higher level history. We use this conflict notion to show
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that HT-OSTM histories are co-opaque. We say two transactions Ti, Tj of a sequential history H are in conflict

if atleast one of the following conflicts holds:

• u-u conflict:(1) Ti & Tj are committed and (2) Ti & Tj update the same key k of the hash-table,
ht, i.e., (〈ht, k〉 ∈ updtSet(Ti)) ∧ (〈ht, k〉 ∈ updtSet(Tj)), where updtSet(Ti) is update set of Ti.
(3) Ti’s tryC completed before Tj’s tryC, i.e., tryCi ≺MR

H tryCj .

• u-rv conflict:(1) Ti is committed (2) Ti updates the key k of hash-table, ht. Tj invokes a rv method
rvmjy on the key same k of hash-table ht which is the first method on 〈ht, k〉. Thus, (〈ht, k〉 ∈
updtSet(Ti)) ∧ (rvmjy(ht, k, v) ∈ rvSet(Tj)) ∧ (rvmjy(ht, k, v) = H.firstKeyMth(〈ht, k〉, Tj)),
where rvSet(Tj) is return value set of Tj . (3) Ti’s tryC completed before Tj’s rvm, i.e., tryCi ≺MR

H

rvmjy .

• rv-u conflict:(1) Tj is committed (2) Ti invokes a rv method on the key same k of hash-table
ht which is the first method on 〈ht, k〉. Tj updates the key k of the hash-table, ht. Thus,
(rvmix(ht, k, v) ∈ rvSet(Ti)) ∧ (rvmix(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti)) ∧ (〈ht, k〉 ∈
updtSet(Tj)) (3) Ti’s rvm completed before Tj’s tryC, i.e., rvmix ≺MR

H tryCj .

Definition 2. Co-opacity : A sequential history H is conflict-opaque (or co-opaque) if there exists a

serial history S such that: (1) S is equivalent to H , i.e. , evts(H) = evts(S) (2) S is legal and (3) S respects

the transactional real-time order of H , i.e., ≺TR
H ⊆≺TR

S and (4) S preserves conflicts (i.e. ≺CO
H ⊆ ≺CO

S ) [17].

A rv method rvmij conflicts with a tryC method only if rvmij is the first method of Ti that operates on
hash-table with a given key. Thus the conflict notion is defined only by the methods that access the shared
memory. (tryCi, tryCj), (tryCi, t lookupj), (t lookupi, tryCj), (tryCi, t deletej) and (t deletei, tryCj) can be
the conflicting methods. Based on these conflicts we build a conflict graph as follows:
Graph Characterization: Let conflict graph (CG) be set of (V, E) pair where V ∈ txns(H) and E can be of
following types:

• conflict edges: {(Ti, Tj) : (Ti, Tj) ∈ conflict(H)}. Where, conflict(H) is an ordered pair of transactions
such that the transactions have one of the above pair of conflicts.

• real-time edge(or rt edge): {(Ti, Tj) : Ti ≺TR
H Tj}

Consider the history H5 : l1(ht, k1, NULL)l2(ht, k2, NULL)i2(ht, k1, v1)i1(ht, k4, v1)c1i3(ht,

k3, v3)c3d2(ht, k4, v1)c2l4(ht, k4, NULL)i4(ht, k2, v4)c4 shown in Figure 3.8.

(u−rv)

(rv−u)

rt edge

(u−rv), rt edge

rt edge

(rv−u),

l1(ht, k1, NULL)

l2(ht, k2, NULL)

i1(ht, k4, v1)

i3(ht, k3, v3)i3(ht, k1, v1)

C1

d2(ht, k4, v1) C2

C3

T1

T2

T3

T4

l4(ht, k4, NULL) i4(ht, k2, v4)

T1

T2

T3

b) CGa) History in time line view

T4 C4

Figure 3.8: Graph Characterization of history H5

The legality and conflict notion established here are used to prove that histories generated by the HT-OSTM

are correct or co-opaque[17] in Section 4.
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3.2 HT-OSTM Design

We design the OSTM using hash-table where chaining is done using lazyskip-list, therefore we name
it HT-OSTM. Here, major concurrency hot-spot is the chaining data-structure. Lazyskip-list based chain
implementation assumes that there are head and tail nodes which are immutable. The value of key in head

is −∞ and the value of key in tail is +∞. Lazyskip-list have two types of nodes 1) live node: represents
the nodes which are not marked (not deleted) and 2) dead node: represent the nodes which are marked (i.e.
logically deleted). Also, each node in lazyskip-list has two links namely, bl (blue links) and rl (red links)
which can be thought of as it’s two levels. All live nodes are accessed via bl and all the nodes including dead

nodes are accessed via rl from the head. Every node of lazyskip-list is in increasing order of its key.
We now explain the search mechanism over such a lazyskip-list. A node is always first probed in bl. If the

node is present in bl then it will store location (found over the bl) of the node corresponding to the key in local

log otherwise it will search through rl within the same location identified by traversing the bl. For example,
let say we search k5 in Figure 3.9. We observe that k5 is not present in bl and we stop at location (−∞ and
k7 the predecessor and successor respectively for k5). Now we try to search the k5 over the rl between −∞
and k7 (because all nodes are in increasing order of their keys). This chaining data structure is our design
choice because it has an inherent advantage of being search efficient. To illustrate this, consider the example
in Figure 3.9 for searching key k8 in lazyskip-list. Key k8 is present in bl so we do not need to traverse keys
k1, k3 and k6 which saves significant search time. Had it been a simple lazy list (Figure 3.10) searching k8

would have involved unnecessarily traversal over dead nodes represented by k1, k3 and k6.

k1 k3 k6

+∞−∞ k8k7

Figure 3.9: Searching k8 over lazyskip-list

k3 k6 k7 k8−∞ +∞k1

Figure 3.10: Searching k8 over lazylist

k1 k3 k6

+∞

k10

−∞ k8k7

Figure 3.11: Execution under lazyskip-list

In case search is invoked from rv method, and node corresponding to the key is not present in bl and rl

then the rv method will create a node and insert it into underlying data structure as dead node. For example
lookup wants to search key k10 in Figure 3.9, as key k10 is not present in the bl as well as rl then, lookup
method will create a new node corresponding to the key k10 and insert it into rl (refer the Figure 3.11).
Why we need to maintain dead nodes? Dead nodes are either the deleted nodes or the nodes inserted by
the rv method over the course of their execution. We need the dead nodes to store the meta information
which is used to satisfy opacity[16] of the HT-OSTM execution( note storing the dead nodes is not specific to
HT-OSTM, such a mechanism can always be used by RWSTMs). We further explain this using example in
Figure 3.12 and Figure 3.13.
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Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2

C2Del2(ht, k1, v0)

Lu1(ht, k1, Nil) A1

Figure 3.12: History H is not opaque

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2

C2

Lu1(ht, k1, Abort)

Del2(ht, k1, v0)

A1

Figure 3.13: Opaque History H1

History H shown in Figure 3.12 is not opaque because we can’t come up with any serial order between T1

and T2. In order to make it opaque lu1(ht, k1, Nil) needs to be aborted. And lu1(ht, k1, Nil) can only be
aborted if HT-OSTM scheduler knows that a conflicting operation del2(ht, k1, v0) has already been scheduled
violating the time-order[10]. One way to have this information is that if the node represented by k1 records the
time-stamp of the delete operation so that the scheduler realizes the violation and aborts lu1(ht, k1, Nil) to
ensure opacity. Thus with help of information provided by the dead nodes we can ensure H1: T1 followed by
T2 is the opaque history as depicted in the Figure 3.13. These dead nodes can always be reused if any insert
arrives later in the transaction. Next, we discuss the data structure and algorithm which powers the HT-OSTM.

3.2.1 HT-OSTM data-structure design

In proposed HT-OSTM, we use thread local DS which is private to each thread for logging the local execution
and shared memory DS which is concurrently accessed by multiple transactions to communicate the meta
information logged for validation of the methods.

Thread local DS

Each transaction Ti maintains local log of type txlog, which consists of t id and tx status of the transaction.
Transactions can have live, commit or abort as their status signifying that transaction is executing, has
successfully committed or has aborted due to some method failing the validation respectively.

c l a s s t x l o g {
p r i v a t e :

i n t t i d ; STATUS t x s t a t u s ;
/∗ a l o g e n t r y i s u n i q u e l y i d e n t i f i e d u s i n g key and o b j i d

i n l e ( l o g e n t r y ) ∗ /

v e c t o r <key , l e> l l l i s t ;
p u b l i c :

t x l o g ( ) ; ˜ t x l o g ( ) ; c r e a t e L L e n t r y ( ) ;
s e t P r e d s n C u r r s ( ) ; setOpnName ( ) ; s e t O p S t a t u s ( ) ; s e t V a l u e ( ) ;
se tKey ( ) ; s e t b u c k e t I d ( ) ; getOpn ( ) ; g e t O p S t a t u s ( ) ;
g e t V a l u e ( ) ; getKey ( ) ; g e t b u c k e t I d ( ) ;
} ;

The local log also maintains a list (ll list) of meta information of each method a transaction executes in its
life time. Each entry of the ll list is of type ll entry which logs 1) key and value a method operates on, 2)
opn: name of the method, 3) op status: method’s status (OK, FAIL) and 4) preds, currs: its location over
the lazyskip-list.

c l a s s l e {
p u b l i c :
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i n t o b j i d , key , v a l u e ; node∗ preds , c u r r s , node ;
STATUS o p s t a t u s ; o p e r a t i o n n a m e opn ;

} ;
/∗ t y p e s o f method e x p o r t e d by t h e OSTM∗ /

enum OPERATION NAME = {INSERT , DELETE , LOOKUP}

/∗ a t r a n s a c t i o n can ABORT /COMMIT and a method can ABORT , OK, FAIL ∗ /

enum STATUS = {ABORT = 0 , OK, FAIL , COMMIT}

/∗ t o know whe ther v a l i d a t i o n i s r e q u e s t e d from TRYC or rv−method ∗ /

enum VALIDATION TYPE = {RV, TRYC}

/∗ To r e c o g n i z e on which l i s t method has t o be per fo rmed ∗ /

enum LIST TYPE = {RL , BL , RL BL}

We say a method identifies its location over the lazyskip-list when it finds the predecessor and successor nodes
over the bl and rl respectively. We represent predecessor as preds〈km, kn〉 (km is blue node reachable by bl

and kn is red node reachable by rl) and successor as currs〈kp, kq〉 (kp is red node reachable by rl and kq is
blue node reachable by bl) respectively. Here, 〈km, kq〉 are predecessor (preds[0]) and current (currs[1]) node
for bl and 〈kn, kp〉 are predecessor (preds[1]) and current (currs[0]) node for rl. We use word location with
preds and currs interchangeably in rest of the paper. Class ll entry also shows the getter and setter methods
for each of the member variables which are self explanatory. Table 3.1 describes the utility methods.

Functions Description

setOpn() store method name into ll list of the txlog

setValue() store value of the key into ll list of the txlog

setOpStatus() store status of method into ll list of the txlog

setPreds&Currs()
store location of preds and currs according to the node corresponding
to the key into ll list of the txlog

getOpn() give operation name from ll list of the txlog

getValue() give value of the key from ll list of the txlog

getOpStatus() give status of the method from ll list of the txlog

getKey&Objid() give key and obj id corresponding to the method from ll list of the txlog

getAptCurr()
give the red or blue curr node from the log corresponding to the key of
the txlog

getPreds&Currs()
give location of preds and currs according to the node corresponding
to the key from ll list of the txlog

Table 3.1: Utility methods for each transaction to manipulate its log.

Shared memory DS:

HT-OSTM shared memory is the chained hash-table where each node (referred as LinkedHashNode in
code) of the chain (lazyskip-list) is a key-value pairs of the form 〈k, v〉. Most of the notations used here are
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derived from [30]. A node n when created is initialized as follows: (1) key and val is the key and value of the
method that creates the node (2) rednext and bluenext are set to nil (3) marked is set to false (4) lock is
null (5) max ts is initialized to 0.

c l a s s LinkedHashNode
{

p u b l i c :
i n t key , v a l u e ;
bool marked ;

/∗ s t o r e s t h e t i m e stamp o f l a s t t r a n s a c t i o n t h a t per fo rmed

lookup , i n s e r t or d e l e t e r e s p e c t i v e l y ∗ /

s t r u c t max t s { l ookup ; i n s e r t ; d e l e t e ; } ;

p t h r e a d m u t e x t mtx = PTHREAD MUTEX INITIALIZER ; /∗ l o c k ∗ /

s t d : : r e c u r s i v e m u t e x l o c k ;

LinkedHashNode ∗ r e d n e x t ; /∗ n e x t red node ∗ /

LinkedHashNode ∗ b l u e n e x t ; /∗ n e x t b l u e node ∗ /

/∗ i n i t t h e node w i t h key , v a l u e ∗ /

LinkedHashNode ( i n t key , i n t v a l u e ) ;
} ;

We adapt timestamp validation[10] to ensure schedules generated by proposed HT-OSTM are serial. Therefore
we maintain max ts lookup(ht, k), max ts insert(ht, k) and max ts delete(ht, k) that represents timestamp
of last committed transaction which executed t lookup(ht, k), t insert(ht, k) and t delete(ht, k) respectively.
max ts, node and ll entry form the part of the meta information for the HT-OSTM.

c l a s s HashMap
{

p r i v a t e :
/∗ hash t a b l e where each b u c k e t i s a l a z y s k i p− l i s t c h a i n ∗ /

LinkedHashNode ∗∗ h t a b l e ;
p u b l i c :
HashMap ( ) ;
˜ HashMap ( ) ;
/∗Hash F u n c t i o n ∗ /

i n t HashFunc ( i n t key ) ;

/∗ I n s e r t E lement a t a key ∗ /

void l s l I n s ( i n t key , i n t va lue , LinkedHashNode ∗∗ preds ,
LinkedHashNode ∗∗ c u r r s , LIST TYPE l s t t y p e ) ;
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/∗ Search Element a t a key ∗ /

STATUS l s l S e a r c h ( i n t o b j i d , i n t key , i n t ∗ va lue ,
LinkedHashNode ∗∗ preds , LinkedHashNode ∗∗ c u r r s ,
VALIDATION TYPE v a l t y p e , i n t t i d ) ;

/∗ D e l e t e Element a t a key ∗ /

void l s l D e l ( LinkedHashNode ∗∗ preds , LinkedHashNode ∗∗ c u r r s ) ;
} ;

The hash-table object is of type HashMap which has buckets implemented as a lazyskip-list. Each bucket
of the hash-table can be operated by lsl ins, lsl del and lsl Search internal utility methods.

3.2.2 HT-OSTM execution cycle

Validate at instant.
STM lookup() :

STM begin() :
Prepare a transaction

STM insert() :
Execute w/o touching
shared memory.

STM Delete() :

Modify at commit.
Update txlog.

* Init txlog.

Validate at instant.
Update txlog.

Update txlog.
* Unique id.

STM tryC() :
Validation

* Time order validation

Commit into underlying data-structure.

* Intra transaction validation

* Method validation

Ti

Ci

Return value method execution phase Update method execution phase

Figure 3.14: Transaction lifecycle of HT-OSTM

Through out its life an HT-OSTM transaction may execute STM begin(), STM insert(), STM lookup(),
STM delete() and STM tryC() methods which are also exported to the user. A user can implement his/her
applications using HT-OSTM which would provide efficient composability. Each transaction has a 1) rv method

execution phase: where upd method & rv method locally identify and logs the location to be worked upon and
other meta information which would be needed for successful validation. Within rv method execution phase
rv methods do lock free traversal and then validate. And, STM insert() merely log its execution to be validated
and updated during transaction commit. 2) upd method execution phase: where it validates the upd method
executed during its lifetime and validates whether the transaction will commit and finally make changes in
hash-table atomically or it will abort and flush its log. This phase is executed by STM tryC() method.
Figure 3.14 depicts the transaction life cycle.

Pseudocode convention: In each algorithm ↓ represents the input parameter and ↑ shows the output
parameter (or return value) of the corresponding methods (such in and out variables are italicized). Instructions
in read() and write() with in each method denote that they touch the shared memory. The variable prefixed
with sh are shared memory variables and can be accessed by multiple transactions concurrently, for instance
sh preds[]. sh preds[0] & sh currs[1] depict the blue nodes accessible by blue links and sh preds[1] &
sh currs[0] depict the red nodes accessed by red links respectively. Also in pseudocode we call methods
of Table 3.1 with le, this is simple to aid readers to understand that the method is called to manipulate the
corresponding log entry in local log.

rv method execution phase: Initially, in rv method execution phase each transaction invokes STM begin()

of Algo 1 for getting unique transaction id and local log. Then transaction may encounter the upd method or
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rv method. STM insert() of Algo 5, first looks for the node corresponding to the key into the ll list (Line 107).
If key is not found then it will create the ll entry and store the value, operation name and status (Line 109 to
Line 114) into it which would be validated and realized in shared memory in STM tryC().

STM tryC() and rv method of HT-OSTM uses lslSearch() to find the location at the lazyskip-list (thus the
name) in lock free manner. Line 189 to Line 197 and Line 200 to Line 206 of Algo 7 find the location at
lazyskip-list for bl and rl respectively. This is motivated by the search in lazylist [14, section 9.7]. The preds

and currs thus identified are subjected to methodValidation() of Algo 11 and transValidation() of Algo 12 after
acquiring locks on the preds and currs (Line 209 of Algo 7). If the validation succeeds lslSearch() returns
the correct location to the operation which invoked it, otherwise lslSearch() retries (if concurrent interference
detected) or aborts (if time order violated) post releasing locks (Line 213).

Interference validation helps detecting the execution where underlying data structure has been changed
by second concurrent transaction while first was under execution without it realizing. This can be illustrated
with Figure 3.15. Consider the history in Figure 3.15(iii) where two conflicting transactions T1 and T2 are
trying to access key k5, here s1, s2 and s3 represent the state of the lazyskip-list at that instant. Let at s1 both
the methods record the same preds〈k1, k3〉 and currs〈k5, k5〉 with the help of lslSearch() for key k5 (refer
Figure 3.15(i)). Now, let Del1(k5) acquire the lock on the preds and currs before the Lu2(k5) and delete the
node corresponding to the key k5 from bl leading to state s2 (in Figure 3.15(iii)) and commit. Figure 3.15(ii)
shows the state s2 where key k5 is the part of rl. Now, methodValidation() (in Algo 11) will identify that
location of Lu2(k5) is no more valid due to (sh preds[0].bl 6= sh currs[1]) at Line 261 of Algo 11. Thus,
lslSearch() will retry to find the updated location for Lu2(k5) at state s3 (in Figure 3.15(iii)) and eventually
T2 will commit.

(i)

(ii)

(iii)

−∞

−∞

k3

k1 +∞

+∞

k5

k5

k1

k3

s1

C2

T1

C1

T2

Lu2(k5)

Del1(k5)

s2

{

tryC

s3

Figure 3.15: Interference Validation for conflicting concurrent methods on key k5

STM lookup() & STM delete() behaves similarly during rv method execution phase execept that STM delete()

is validated twice. First, in rv method execution similar to STM lookup() and secondly in upd method execution

(of STM tryC()) to ensure opacity[16]. We adopt lazy delete approach for STM delete() method. Thus, nodes
are marked for deletion and not physically deleted for STM delete() method. In the current work we assume
that a garbage collection mechanism is present and we donot worry about it.

upd method execution phase: Finally a transaction after executing the designated operations reaches
the upd method execution phase executed by the STM tryC() method. It starts with modifying the log to
ordered ll list which contains the log entries in sorted order of the keys (so that locks can be acquired in an
order, refer Line 122 of Algo 6) and contains only the upd method (because we do not validate the lookup
again for the reasons explained above for Figure 3.19). From Line 124 to Line 135 (in Algo 6) we re-validate
the modified log operation to ensure that the location for the operations has not changed since the point they
were logged during rv method execution phase. If the location for an operation has changed this block ensures
that they are updated.
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Now, STM tryC() enters the phase where it updates the shared memory using local data stored from
Line 138 to Line 173 in Algo 6. Figure 3.16 & Figure 3.17 explain the execution of insert and delete in update
phase of STM tryC() using lslIns() and lslDel() respectively. Figure 3.16(i) represents the case when k5 is
neither present in bl and nor in rl (Line 158 to Line 162 in Algo 6). It adds k5 to lazyskip-list at location
preds〈k3, k4〉 and currs〈k8, k8〉. Figure 3.16(i)(a) is lazyskip-list before addition of k5 and Figure 3.16(i)(b)
is lazyskip-list state post addition. Similarly, Figure 3.16(ii) represents the case when k5 is present in rl

(Line 153 to Line 157 in Algo 6). It adds k5 to lazyskip-list at location pred〈k3, k4〉 and curr〈k5, k8〉.
Figure 3.16(i)(c) is lazyskip-list before addition of k5 into bl and Figure 3.16(i)(d) is lazyskip-list state post
addition. In case of del(k5) from lazyskip-list when k5 is present in bl (Line 167 to Line 173 in Algo 6)
Figure 3.17(i) represent the lazyskip-list state before k5 is deleted at location preds〈k1, k3〉 and currs〈k5, k5〉
and Figure 3.17(ii) represents the lazyskip-list state after deletion.

(a)

(b)

(c)

(d)

−∞ k3 k8 +∞
−∞ k8 +∞

−∞
−∞

k4

k3

k4

k3

k4 k5

k5 k8 +∞
k5 k8 +∞

k3

k4

(i) When k5 is not present in BL and RL (ii) When k5 is present in RL

Figure 3.16: Ins(k5) using lslIns() in STM tryC()

(i) (ii)−∞ −∞

k3

k1 +∞k5 +∞

k5

k1

k3

Figure 3.17: Del(k5) using lslDel() in STM tryC()

(iii)(i)

(ii) (iv)

−∞ k3 k8 +∞

−∞

−∞ k3

k4

k5 k7 k8 +∞

k4

k3

k4

k5 k8 +∞
T1

C1
Ins1(k5) Ins1(k7)

tryC

{

s2s1s

Figure 3.18: Problem in execution without lostUpdateValidation() (ins1(k5) and ins1(k7)). (i) lazyskip-list at
state s. (ii) lazyskip-list at state s1. (iii) lazyskip-list at state s2 (lost update problem).

In upd method execution phase two consecutive updates within same transaction having overlapping preds

and currs may overwrite the previous method such that only effect of the later method is visible (lost update).
This happens because the previous method while updating, changes the lazyskip-list causing the preds &
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currs of the next method working on the consecutive key to become obsolete. Figure 3.18 explains this
lucidly. Suppose, T1 is in update phase of STM tryC() at state s where ins1(k5) and ins1(k7) are waiting
to take effect over the lazyskip-list. The lazyskip-list at s is as in Figure 3.18(i) also ins1(k5) and ins1(k7)

have preds〈k3, k4〉 and currs〈k8, k8〉 as their location. Now, Lets say ins1(k5) adds k5 between k3 and k8

and changes lazyskip-list (as in Figure 3.18(ii)) at state s1 in Figure 3.18(iv). But, at s1 bl preds and currs

of ins1(k7) are still k3 and k8 thus it wrongly adds k7 between k3 and k8 overwriting ins1(k5) as shown
in Figure 3.18(iii) with dotted links. We correct this through intraTransValidation() which updates current
upd method’s preds and currs with the help of its ll entry. We discuss lost update validation in detail at
Algo 13. Next we elaborate the method of HT-OSTM.

3.3 HT-OSTM Pseudocode

We now describe the implementation internals of the HT-OSTM. As discussed in life cycle of each transaction
that every HT-OSTM transcation executes in two phases rv method & upd method. methods executed in theses
phases are STM begin, STM lookup(), STM insert(), STM delete(), STM tryC(). We one by one explain each
of the method in the ensuing text.
STM begin is the first function a transaction executes in its life cycle. It initiates the txlog (local log) for the
transaction (Line 3) and provides an unique id to the transaction (Line 5).

Algorithm 1 STM begin(t id ↑) : initiates local transaction log and return the transaction id.

1: function STM BEGIN

2: /* init the local log */
3: txlog← new txlog();
4: /* atomic variable to assign transaction id i.e. TS initilized by

OSTM as 0 */
5: t id← get&inc(sh cntr) ↑);//Φlp

6: return 〈t id〉;
7: end function

STM lookup() in Algo 2. If this is the subsequent operation by a transaction Ti for a particular key k on
hash-table ht i.e. an operation on k has already been scheduled with in the same transaction Ti, then this
STM lookup() return the value from the ll list and does not access shared memory (Line 14 to Line 23 in
Algo 2). If the last operation was an STM insert() (or STM lookup()) on same key then the subsequent
STM lookup() of the same transaction returns the previous value (Line 18 in Algo 2) inserted (or observed)
without accessing shared memory, and if the last operation was an STM delete() then STM lookup() returns
the value NULL (Line 22 in Algo 2). Thus in this process subsequent methods also have same conflicts as the
first method on same key within the same transaction (conflict inheritance).

If STM lookup() is the first operation on a particular key then it has to do a wait free traversal (Line 70 in
Algo 4) with the help of lslSearch() (Algo 7) to identify the target node (preds and currs) to be logged in
ll list for subsequent methods in rv method execution phase (discussed above for the case where STM lookup()

is the subsequent method). The commonLu&Del() algorithm is invoked at Line 27 of Algo 2. If the node
is present as blue (or red) node then it updates the operation status as OK (or FAIL) and returns the value
respectively (Line 77 to Line 86 in Algo 4). If node corresponding to the key is not found then it inserts that
node (Line 87 to Line 92 in Algo 4) corresponding to the key into rl of lazyskip-list. The inserted node can be
accessed only via red links. Hence, it will not visible to any subsequent STM lookup(). The node is inserted to
take care of situations as illustrated in Figure 3.12 & Figure 3.13 . Finally, it updates the meta information in
ll list and releases the locks acquired inside lslSearch() (Line 95 to Line 99).

We prefer STM lookup() to be validated instantly and is never validated again in STM tryC() as the design
choice to aid performance. Let’s consider HT-OSTM history in Figure 3.19(i), if we would have validated
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Lu(ht, k1, v0) again during tryC, T1 would abort due to time order violation[10], but we can see that this
history is acceptable where T1 can be serialized before T2 (Figure 3.19(ii)). Thus, HT-OSTM prevents such
unnecessary aborts. Another advantage for this design choice is that T1 doesn’t have to wait for tryC to know
that the transaction is bound to abort as can be seen in Figure 3.19(iii). Here Lu(ht, k1, Abort) instantly aborts
as soon as it realizes that time order is violated and schedule can no more be ensured to be correct saving
significant computations of T1. This gain becomes significant if the application is lookup intensive where it
would be inefficient to wait till STM tryC() to validate the STM lookup() only to know that transaction has to
abort.

(i) Invalid schedule of two time validation (iii) Early detection of invalid schedule(ii) Valid schedule of one time validation

tryC{
Lu1(ht, k1, Abort)Lu1(ht, k1, v0)

C2Ins2(ht, k1, v1) C2Ins2(ht, k1, v1)

A1
Lu1(ht, k1, Abort)

T1

T2

T1

T2

A1
Lu1(ht, k1, v0)

C2Ins2(ht, k1, v1)

C1
T1

T2

Figure 3.19: Advantages of lookup validated once

Algorithm 2 STM lookup(t id ↓, obj id ↓, key ↓, value ↑, op status ↑ )
DESCP :If the transaction to which this operation belongs has locally done an operation on
the same key then returns apt value and status(wrt the previous local operation). Else do the
lslSearch() to find the correct location of the key and validate it.
IN : obj id, key
OUT : value, op status

8: function STM LOOKUP

9: STATUS op status← RETRY ;
10:
11: /* get the txlog of the current transaction by t id */ ;
12: txlog← getTxLog(t id ↓);
13: /* If already in log update the le with the current operation */
14: if (txlog.findInLL(t id ↓, obj id ↓, key ↓, le ↑)) then
15: opn← le.getOpn(obj id ↓, key ↓) ;
16: /* if previous operation is insert/lookup then current method

would have value/op status same as previous log entry */
17: if ((INSERT = opn )||( LOOKUP = opn)) then
18: value← le.getV alue(obj id ↓, key ↓) ;
19: op status← le.getOpStatus(obj id ↓, key ↓) ;
20: /* if previous operation is delete then current method would

have value as NULL and op status as FAIL */

21: else if (DELETE = opn) then
22: value← NULL ;
23: op status← FAIL ;
24: end if
25: else
26: /* common function for rv method, if node corresponding to

the key is not the part of underlying DS */
27: commonLu&Del(t id ↓, obj id ↓, key ↓, value ↑

, op status ↑);
28: end if
29: /* update the local log */
30: le.setOpn(obj id ↓, key ↓, LOOKUP ↓) ;
31: le.setOpStatus(obj id ↓, key ↓, op status ↓) ;
32: return 〈value, op status〉;
33: end function

STM delete() (Algo 3) in rv method execution phase executes as similar to rv method and in upd method

execution phase executes as upd method. In rv method execution phase, the STM delete() first checks if their
is already a previous method on same key using the local log. In case their is already a method that executed
on same key, STM delete() does not need to touch shared memory and sees the effect of the previous method
and returns accordingly (Line 39 to Line 57). For example if previous executed method is an insert then the
current STM delete() method will return OK (Line 42 to Line 46). If the previous executed method is an
STM delete() then the current STM delete() should return FAIL (Line 48 to Line 51). In case previous method
was STM lookup() then current STM delete() returns the status same as that of the previous STM lookup()

method also overwriting the log for the value and opn.
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Algorithm 3 STM delete(t id ↓, obj id ↓, key ↓, value ↑, op status ↑ )

34: function STM DELETE

35: STATUS op status← RETRY;
36: /* get the txlog of the current transaction by t id */
37: txlog← getTxLog(t id ↓);
38: /* If le〈obj id, key〉 already in log, update the le with the current

operation */
39: if (txlog.findInLL(t id ↓, obj id ↓, key ↓, le ↑)) then
40: opn← le.getOpn(obj id ↓, key ↓) ;
41: /* if previous local method is insert and current operation is

delete then overall effect should be of delete, update log accordingly */
42: if (INSERT = opn) then
43: value← le.getV alue(obj id ↓, key ↓) ;
44: le.setV alue(obj id ↓, key ↓, NULL ↓) ;
45: le.setOpn(obj id ↓, key ↓, DELETE ↓) ;
46: op status← OK ;
47: /* if previous local method is delete and current operation is

delete then overall effect should be of delete, update log accordingly */
48: else if (DELETE = opn) then
49: le.setV alue(obj id ↓, key ↓, NULL ↓) ;
50: value← NULL ;
51: op status← FAIL ;

52: else
53: /* if previous local method is lookup and current operation

is delete then overall effect should be of delete, update log accordingly
*/

54: value← le.getV alue(obj id ↓, key ↓) ;
55: le.setV alue(obj id ↓, key ↓, NULL ↓) ;
56: le.setOpn(obj id ↓, key ↓, DELETE ↓) ;
57: op status← le.getOpStatus(obj id ↓, key ↓) ;
58: end if
59: else
60: /* common function for rv method, if node corresponding to

the key is not the part of underlying DS */
61: commonLu&Del(t id ↓, obj id ↓, key ↓, value ↑

, op status ↑);
62: end if
63: /* update the local log */
64: le.setOpn(obj id ↓, key ↓, DELETE ↓) ;
65: le.setOpStatus(obj id ↓, key ↓, op status ↓) ;
66: return 〈value, op status〉;
67: end function

In case the current STM delete() is not the first method on key then it touches the shared memory to identify
the correct location over the hash-table from Line 59 to Line 65. lslSearch() gives the correct location
for the current STM delete() to take effect over the hash-table in form of preds and currs (Line 70 in
Algo 4) along with the validation status which reveals weather the STM delete() will succeed or abort. If the
op status is Abort, the method simply aborts the transaction. Otherwise, STM delete() updates the local log
and the time stamps of the corresponding nodes in the lazyskip-list of the hash-table from line Line 75 to
Line 65.

From Line 77 to Line 81, STM delete() observes that the node to be deleted is reachable from bl i.e. it is
sh currs[1] thus it updates it’s time-stamp field and returns op status to OK with the value of sh currs[1] (the
update corresponding to this case takes place in STM tryC() as represented in Figure 3.23). From Line 82
to Line 86, STM delete() observes that the node to be deleted is reachable by rl i.e. it is sh currs[0] thus it
updates its time-stamp field and sets op status to FAIL (as the node is dead node or marked for deletion)
and value returned is NULL. Otherwise, in Line 87 to Line 92 the node is not at all present in lazyskip-list.
Thus first STM delete() adds a node in rl and updates its time-stamp and returns the value as NULL and sets
the op status as FAIL (Figure 3.20 and Figure 3.21 represents the case). Line 98, Line 99 and Line 64 sets
the value, location and opn in local log respectively. At Line 95 the locks acquired(in invoked lslSearch()) to
update shared memory time-stamps are released in order.

k1 k3 k6

+∞−∞ k8k7

Figure 3.20: k10 is not present in bl as well as rl

k1 k3 k6

+∞

k10

−∞ k8k7

Figure 3.21: Adding k10 into rl
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Algorithm 4 commonLu&Del(t id ↓, obj id ↓, key ↓, value ↑, op status ↑ )

68: function COMMONLU&DEL

69: /* le〈obj id, key〉 is not in log, search correct location for the op-
eration over lsl and lock the corresponding sh preds[]and sh currs[]. */

70: lslSearch(t id ↓, obj id ↓, key ↓, RV ↓, sh preds[] ↑,
sh currs[] ↑, op status ↑ ) ;

71: if (op status = ABORT) then
72: /* release local memory in case lslSearch returns abort */
73: handleAbort(t id ↓) ;
74: return 〈op status〉;
75: else
76: /* if node〈obj id, key〉 is present update its lookup timestamp

as delete in rv phase behaves as lookup */
77: if (read(sh currs[1].key) = key) then
78: /* node〈obj id, key〉 is part of blue list */
79: op status← OK ;
80: write(sh currs[1].max ts.lookup, TS(t id)) ;
81: value← sh currs[1].value ;
82: else if (read(sh currs[0].key) = key) then
83: /* node〈obj id, key〉 is part of red list */
84: op status← FAIL ;

85: write(sh currs[0].max ts.lookup, TS(t id)) ;
86: value← NULL ;
87: else
88: /* if node〈obj id, key〉 is neither in blue or red list add the

node in red list and update timestamp */
89: lslIns(sh preds[] ↓, sh currs[] ↓, RL ↓) ;
90: op status← FAIL ;
91: write(sh node.max ts.lookup, TS(t id)) ;
92: value← NULL ;
93: end if
94: /* release all the locks */
95: releasePred&CurrLocks(sh preds[] ↓, sh currs[] ↓);
96: /* create new log entry in log */
97: le← new ll entry〈obj id ↓, key ↓〉;
98: le.setV alue(obj id ↓, key ↓, NULL ↓) ;
99: le.setPreds&Currs(obj id ↓, key ↓, sh preds[] ↓,

sh currs[] ↓) ;
100: end if
101: return 〈value, op status〉
102: end function

STM insert() method in rv method execution phase simply checks if their is a previous method that executed
on the same key. If their is already a previous method that has executed within the same transaction it simply
updates the new value, opn as insert and op status to OK (Line 112, Line 113 and Line 114 respectively). In
case the STM insert() is the first method on key it creates a new log entry for the ll list of txlog at Line 109.
Finally the STM insert() gets to modify the underlying hash-table using lslIns() at the upd method

execution phase in STM tryC().

Algorithm 5 STM insert (t id ↓, obj id ↓, key ↓, value ↓, op status ↑) : updates log entry and return
op status locally.

103: function STM INSERT

104: STATUS op status← OK;
105: /* get the txlog of the current transaction by t id */
106: txlog← getTxLog(t id ↓);
107: if (!txlog.findInLL(t id ↓, obj id ↓, key ↓, le ↑)) then
108: /* no le present for this 〈obj id, key〉, create one */
109: le← new ll entry〈obj id ↓, key ↓〉;
110: end if

111: /* le present for 〈obj id, key〉, merely update the log */
112: le.setV alue(obj id ↓, key ↓, value ↓) ; //Φlp

113: le.setOpn(obj id ↓, key ↓, INSERT ↓) ;
114: le.setOpStatus(obj id ↓, key ↓, OK ↓) ;
115: /* return op status to the transaction that invoked insert */
116: return 〈op status〉;
117: end function
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Algorithm 6 STM tryC(t id ↓, tx status ↑)
118: function STM TRYC
119: /* get the txlog of the current transaction by t id */
120: ll list← txlog.getLlList(t id ↓);
121: /* sort the local log in increasing order of keys and copy into or-

dered list */
122: ordered ll list← txlog.sort (ll list ↓) ;
123: /* identify the new preds and currs for all update methods of a tx

and validate it */
124: while (lei ← next(ordered ll list)) do
125: (key, obj id)← le.getKey&Objid(lei ↓) ;
126: /* search correct location for the operation over lsl and lock

the corresponding sh preds[]and sh currs[] */
127: lslSearch(t id ↓, obj id ↓, key ↓, TRY C ↓,

sh preds[] ↑, sh currs[] ↑, op status ↑ ) ;
128: /* if lslSearch return op status as ABORT then method will

return ABORT */
129: if (op status = ABORT) then
130: /* release local memory in case lslSearch returns abort */
131: handleAbort(t id ↓) ;
132: return 〈op status〉;
133: end if
134: /* modify the log entry to help upcoming update method of

same tx */
135: le.setPreds&Currs(obj id ↓, key ↓, sh preds[] ↓,

sh currs[] ↓) ;
136: end while
137: /* get each update method one by one and take the effect in under-

lying DS */
138: while (lei ← next(ordered ll list)) do
139: (key, obj id)← le.getKey&Objid(lei ↓) ;
140: /* get the operation name to local log entry */
141: opn← lei.opn ;
142: /* if operation is insert then after successful completion of it

node corresponding to the key should be part of bl */
143: if (INSERT = opn) then
144: /* if node corresponding to the key is part of bl */
145: if read(sh currs[1].key) = key) then
146: /* get the value from local log */
147: value← le.getV alue(obj id ↓, key ↓) ;
148: /* update the value into underlying DS */
149: write(sh currs[1].value, value) ;
150: /* update the max ts of insert for node corresponding

to the key into underlying DS */
151: write(sh currs[1].max ts.insert, TS(t id)) ;

152: /* if node corresponding to the key is part of rl */
153: else if (read(sh currs[0].key) = key) then
154: /* connect the node corresponding to the key to bl as

well */
155: lslIns(sh preds[] ↓, sh currs[] ↓, RL BL ↓) ;
156: /* update the max ts of insert for node corresponding

to the key into underlying DS */
157: write(sh currs[0].max ts.insert, TS(t id)) ;
158: else
159: /* if node corresponding to the key is not part of bl as

well as rl then create the node with the help of lslIns() and add it into bl
*/

160: lslIns(sh preds[] ↓, sh currs[] ↓, BL ↓) ;
161: /* update the max ts of insert for node corresponding

to the key into underlying DS */
162: write(node.max ts.insert, TS(t id)) ;
163: /* need to update the node field of log so that it can be

released finally */
164: lei.node← sh preds[0].bl

165: end if
166: /* if operation is delete then after successful completion of

it node corresponding to the key should not be part of bl */
167: else if (DELETE = opn) then
168: /* if node corresponding to the key is part of bl */
169: if (read(sh currs[1].key) = key) then
170: /* delete the node corresponding to the key from the bl

with the help of lslDel() */
171: lslDel(sh preds[] ↓, sh currs[] ↓) ;
172: /* update the max ts of delete for node corresponding

to the key into underlying DS */
173: write(sh currs[1].max ts.delete, TS(t id)) ;
174: end if
175: end if
176: /* modify the preds and currs for the consecutive update meth-

ods which are working on overlapping zone in lazyskip-list */
177: intraTransValdation(lei ↓, sh preds[] ↑, sh currs[] ↑) ;
178: end while
179: /* release all the locks */
180: releaseOrderedLocks(ordered ll list ↓) ;
181: /* set the tx status as OK */
182: tx status← OK ;
183: return 〈tx status〉;
184: end function
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Algorithm 7 lslSearch(t id ↓, obj id ↓, key ↓, val type ↓, sh preds[] ↑, sh currs[] ↑, op status ↑) : finds
location (sh preds[]& sh currs[]) for given 〈obj id, key〉 and returns them in locked state else returns ABORT.

185: function LSLSEARCH

186: STATUS op status← RETRY;
187: while (op status = RETRY) do
188: /* get the head of the bucket in hash-table */
189: head← getLslHead(obj id ↓, key ↓);
190: /* init sh preds[0] to head */
191: sh preds[0]← read(head) ;
192: /* init sh currs[1] to sh preds[0].bl */
193: sh currs[1]← read(sh preds[0].bl) ;
194: /* search node 〈obj id, key〉 location in blue list */
195: while (read(sh currs[1].key) < key) do
196: sh preds[0]← sh currs[1] ;
197: sh currs[1]← read(sh currs[1].bl) ;
198: end while
199: /*init sh preds[1] to sh preds[0]*/
200: sh preds[1]← sh preds[0] ;
201: /*init sh currs[0] to sh preds[0].rl*/
202: sh currs[0]← sh preds[0].rl ;
203: /*search node 〈obj id, key〉 location in red list between

sh preds[0]& sh currs[1]*/

204: while (read(sh currs[0].key) < key) do
205: sh currs[0]← sh currs[0] ;
206: sh currs[0]← read(sh currs[0].rl) ;
207: end while
208: /* acquire the locks on increasing order of keys */
209: acquirePred&CurrLocks(sh preds[] ↓, sh currs[] ↓);
210: /* validate the location recorded in sh preds[]& sh currs[].

Also verify if the transaction has to be aborted. */
211: validation(t id ↓, key ↓, sh preds[] ↓, sh currs[] ↓,

val type ↓, op status ↑);
212: /* if validation returns op status as RETRY or ABORT then

release all the locks */
213: if ((op status = RETRY) ∨ (op status = ABORT)) then
214: /* release all the locks */
215: releasePred&CurrLocks(sh preds[] ↓, sh currs[] ↓)
216: end if
217: end while
218: return 〈sh preds[], sh currs[], op status〉 ;
219: end function

Algorithm 8 lslIns(sh preds[] ↓, sh currs[] ↓, list type ↓) : Inserts or overwrites a node in underlying
hash table at location corresponding to preds & currs.

220: function LSLINS

221: /* inserting the node which is red list to bluelist */
222: if ((list type) = (RL BL)) then
223: write(sh currs[0].marked, false) ;
224: write(sh currs[0].bl, sh currs[1]) ;
225: write(sh preds[0].bl, sh currs[0]) ;
226: /* inserting the node into red list only */
227: else if ((list type) = RL) then
228: node = Create new node() ;
229: write(node.marked, True) ;
230: write(node.rl, sh currs[0]) ;
231: write(sh preds[1].rl, node) ;

232: else
233: /* inserting the node into red as well as blue list */
234: node = new node() ;
235: /* after creating the node acquiring the lock on it */
236: node.lock();
237: write(node.rl, sh currs[0]) ;
238: write(node.bl, sh currs[1]) ;
239: write(sh preds[1].rl, node ) ;
240: write(sh preds[0].bl, node) ;
241: end if
242: return 〈〉;
243: end function
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Figure 3.22: Execution of lslIns(): (i) key k5 is present in rl and adding it into bl, (ii) key k5 is not present in
rl as well as bl and adding it into rl, (iii) key k5 is not present in rl as well as bl and adding it into rl as well

as bl.
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lslIns() (Algo 8) adds a new node to the lazyskip-list in the hash-table. There can be following cases:
if node is present in rl and has to be inserted to bl: such a case implies that the lslIns() is invoked in
upd method execution phase for the corresponding STM insert() in local log represented by the block from
Line 222 to Line 225. Here we first reset the sh currs[0] mark field and update the bl to the sh currs[1] and
sh preds[0] bl to sh currs[0]. Thus the node is now reachable by bl also. Figure 3.22(i) represents the case. if
node is meant to be inserted only in rl: This implies that the node is not present at all in the lazyskip-list
and is to be inserted for the first time. Such a case can be invoked from rv method of rv method execution

phase, if rv method is the first method of its transaction. Line 227 to Line 231 depict such a case where a new
node is created and its marked field is set, depicting that its a dead node meant to be reachable only via rl.
In Line 230 and Line 231 the rl field of the node is updated to sh currs[0] and rl field of the sh preds[1] is
modified to point to the node respectively. Figure 3.22(ii) represents the case. if node is meant to be inserted
in bl: In such a case it may happen that the node is already present in the rl (already covered by Line 222 to
Line 225) or the node is not present at all. The later case is depicted in Line 232 to Line 240 which creates a
new node and add the node in both rl and bl note that order of insertion is important as the lazyskip-list can be
concurrently accessed by other transactions since traversal is lock free. Figure 3.22(iii) represents the case.

Algorithm 9 lslDel(sh preds[] ↓, sh currs[] ↓) : Deletes a node from blue link in underlying hash table at
location corresponding to preds & currs.

244: function LSLDEL

245: /* mark the node〈obj id, key〉 for deletion */
246: write(sh currs[1].marked, True) ;
247: /* set the update the blue links */

248: write(sh preds[0].bl, sh currs[1].bl) ;
249: return 〈〉;
250: end function

lslDel() removes a node from bl. It can be invoked from upd method execution phase for corresponding
STM delete() in txlog. It simply sets the marked field of the node to be deleted (sh currs[1]) and changes the
bl of sh preds[1] to sh currs[0] as shown in Line 246 and Line 248 of Algo 9 respectively. Figure 3.23 shows
the deletion of node corresponding to k5.
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Figure 3.23: Execution of lslDel(): (i) lazyskip-list before k5 is deleted, (ii) lazyskip-list after k5 is deleted
from bl

validation: rv method and upd method do the validation in rv method execution phase and upd method

execution phase respectively. validation invokes methodValidation() and then does the transValidation() in the
mentioned order. methodValidation() is the property of the method and transValidation() is the property of the
transaction. Thus validating the method before the transaction intuitively make sense.

Algorithm 10 validation(t id ↓, key ↓, sh preds[] ↓, sh currs[] ↓, val type ↓, op status ↑)
251: function VALIDATION

252: /* validate against concurrent updates */
253: op status ← methodValidation(sh preds[] ↓,

sh currs[] ↓);
254: /* on succesfull method validation validate of transactional order-

ing to ensure opacity */

255: if (RETRY 6= op status) then
256: op status ← transValidation(t id ↓, key ↓,

sh currs[] ↓, val type ↓, op status ↑) ;
257: end if
258: return 〈op status〉 ;
259: end function
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In methodValidation() each transaction ensures that no other transaction has concurrently updated the same
location in lazyskip-list where it wants to perform the operation. This is done by checking that the sh preds[0]
and sh currs[1] are not marked for deletion and next node of sh preds[0] and sh preds[1] is still the same as
observed by lockfree traversal over the lazyskip-list.

Algorithm 11 methodValidation(sh preds[] ↓, sh currs[] ↓)
260: function METHODVALIDATION

261: if (read(sh preds[0].marked)||read(sh currs[1].marked)||read(sh preds[0].bl) 6=
sh currs[1]||read(sh preds[1].rl) 6= sh currs[0]) then

262: return 〈RETRY 〉 ;
263: else
264: return 〈OK〉 ;
265: end if
266: end function

In transValidation() rv method always conflicts with the upd method (as established in conflict notion
Section 3.1.3). If the node corresponding to the key is present in the lazyskip-list (Line 274) we compare with
time-stamp of the transaction that last executed the conflicting method on same key. If the current method
that invoked the transValidation() is rv method then Line 277 handles the case. Otherwise, if the invoking
method is upd method then Line 281 handles the case. Figure 3.24 and Figure 3.25 show the execution of
transValidation(). Here Lu1(ht, k1) will return Abort in Figure 3.25 because Del2((ht, k1) of T2 has already
updated the time-stamp at the node corresponding to k1. So, when Lu1(ht, k1) does its transValidation() at
Line 281, TS(t1) < curr.max ts.delete(k) holds true (since, T1 < T2) leading to abort of T1 at Line 282.
This gives us a equivalent sequential schedule which can be shown co-opaque. Figure 3.24 shows the schedule
where no sequential schedule is possible if transValidation() is not applied as there is no way to recognize the
time-order violation.

Lu1(ht, k2, v0)

Ins2(ht, k2, v1)

T1

T2

C2Del2(ht, k1, v0)

Lu1(ht, k1, Nil) A1

Figure 3.24: non opaque history. Without time-stamp
validation in transValidation()
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Ins2(ht, k2, v1)

T1

T2

C2

Lu1(ht, k1, Abort)

Del2(ht, k1, v0)

A1

Figure 3.25: opaque history H1. With time-stamp
validation in transValidation()

intraTransValidation() handles the case where two consecutive updates within same transaction having
overlapping preds and currs may overwrite the previous method such that only effect of the later method is
visible. This happens because the previous method while updating, changes the lazyskip-list causing the preds
& currs of the next method working on the consecutive key to become obsolete. Thus, intraTransValidation()

corrects this by finding the new preds and currs of the current method on the consecutive key. There might
be two cases (i) if previous method is STM insert() or (ii) previous method is STM delete(). For case(i) we
find the sh preds[0] (at Line 292 to Line 294 using previous log entry) and for case(ii) we find sh preds[0]
using previous log entry’s sh preds[0] (Line 299) and finally find the new sh preds[1] and sh currs[0] between
the new found sh preds[0] and sh currs[1] at Line 304 to Line 306.
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Algorithm 12 transValidation(t id ↓, key ↓, sh currs[] ↓, val type ↓, op status ↑) : Time-order validation
for each transaction.
268: function TRANSVALIDATION

269: /* by default setting the op status as RETRY */
270: STATUS op status← OK ;
271: /* get the appropriate sh curr (red or blue) correspondinjg to key */
272: le.getAptCurr(sh currs[] ↓, key ↓, sh curr ↑) ;
273: /* if sh curr is not NULL and node corresponding to the key is equal to sh curr.key then check for TS */
274: if ((sh curr 6= NULL) ∧ ((sh curr.key) = key)) then
275: /* if val type is RV then transaction validation for rv method */
276: if ((val type = RV ) ∧ (TS(t id) < (read(sh curr.max ts.insert(k))) ||
277: (TS(t id) < (read(sh curr.max ts.delete(k))))) then
278: op status← ABORT ;
279: /* transaction validation for upd method */
280: else if ((TS(t id) < (read(sh curr.max ts.insert(k))) || TS(t id) < (read(sh curr.max ts.delete(k))) ||
281: TS(t id) < (read(sh curr.max ts.lookup(k)))) then
282: op status← ABORT ;
283: end if
284: end if
285: return 〈op status〉 ;
286: end function

Algorithm 13 intraTransValidation(le ↓, sh preds[] ↑, sh currs[] ↑)
287: function INTRATRANSVALIDATION

288: le.getAllPreds&Currs(le ↓, sh preds[] ↑, sh currs[]

↑) ;
289: /* if sh preds[0] is marked or sh currs[1] is not reachable

from sh preds[0].bl then modify the next consecutive upd method
sh preds[0] based on previous upd method */

290: if ((read(sh preds[0].marked))|| (read( sh preds[0].bl)
!= sh currs[1])) then

291: /* find k ¡ i; such that lek contains previous update method
on same bucket */

292: if ((lek .opn) = INSERT) then
293: lei.sh preds[0].unlock() ;
294: sh preds[0]← (lek.sh preds[0].bl) ;
295: lei.sh preds[0].lock() ;
296: else
297: /* upd method method sh preds[0] will be previous

method sh preds[0] */
298: lei.sh preds[0].unlock() ;
299: sh preds[0]← (lek .sh preds[0]) ;
300: lei.sh preds[0].lock() ;
301: end if
302: end if
303: /* if sh currs[0] & sh preds[1] is modified by prev operation

then update them also */
304: if (read(sh preds[1].rl) != sh currs[0]) then
305: lei.sh preds[1].unlock()
306: sh preds[1]← (lek .sh preds[1].rl) ;
307: lei.sh preds[1].lock()
308: end if
309: return 〈sh preds[], sh currs[]〉;
310: end function

findInLL is an utility method that returns true to the method that has invoked it, if the calling method is not
the first method of the transaction on the key. This is done by linearly traversing the log and finding an entry
corresponding to the key. If the calling method is the first method of the transaction for the key then findInLL

return false as it would not find any entry in the log of the transaction corresponding to the key. Since we
consider that their can be multiple objects (hash-table) so we need to find unique 〈obj id, key〉 pair (refer
Line 315).

While executing the transValidation() the time-stamp field of the corresponding node has to be updated.
Such a node can be either the marked (dead or sh currs[0]) or the unmarked (live sh currs[1]). get aptcurr in
Algo 15 is the utility method which returns the appropriate node corresponding to the key.
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Algorithm 14 findInLL(t id ↓, obj id ↓, key ↓, le ↑) : Checks whether any operation corresponding to
〈obj id, key〉 is present in ll list.
311: function FINDINLL
312: ll list← txlog.getLlList(t id ↓) ;
313: /* every method first identify the node corresponding to the key into local log */
314: while (lei ← next(ll list)) do
315: if ((lei.first = obj id)&(lei.first = key)) then
316: return 〈TRUE, le〉 ;
317: end if
318: end while
319: return 〈FALSE, le = NULL〉 ;
320: end function

Algorithm 15 get aptcurr(sh currs[] ↓, key ↓, sh curr ↑) : Returns a curr node from underlying DS which
corresponds to the key of lei.

321: function GET APTCURR

322: /* by default set curr to NULL */
323: sh curr← NULL;
324: /* if node corresponding to the key is part of bl then curr is

sh currs[1] */
325: if (sh currs[1].key = key) then
326: sh curr← sh currs[1] ;

327: /* if node corresponding to the key is part of rl then curr is
sh currs[0] */

328: else if (sh currs[0].key = key) then
329: sh curr← sh currs[0] ;
330: end if
331: return 〈sh curr〉 ;
332: end function

release ordered locks in Algo 16 is an utility method to release the locks in order of the keys to avoid
deadlock.

Algorithm 16 release ordered locks(ordered ll list ↓) : Release all locks taken during lslSearch().

333: function RELEASE ORDERED LOCKS

334: /* releasing all the locks on preds, currs and node */
335: while (lei ← next(ordered ll list)) do
336: lei.sh preds[0].unlock() ;//Φlp

337: lei.sh preds[1].unlock() ;
338: if lei.node then
339: lei.node.unlock()

340: end if
341: lei.sh currs[0].unlock() ;
342: lei.sh currs[1].unlock() ;
343: end while
344: return 〈〉;
345: end function

acquirePred&CurrLocks in Algo 17 & releasePred&CurrLocks in Algo 18 do what their names denote.
They are used as helping methods in Algo 7.

Algorithm 17 acquirePred&CurrLocks(sh preds[] ↓, sh currs[] ↓) : acquire all locks taken during
lslSearch().

346: function ACQUIREPRED&CURRLOCKS

347: sh preds[0].lock();
348: sh preds[1].lock();
349: sh currs[0].lock();

350: sh currs[1].lock();
351: return 〈〉;
352: end function

Algorithm 18 releasePred&CurrLocks(sh preds[] ↓, sh currs[] ↓) : Release all locks taken during
lslSearch().

353: function RELEASEPRED&CURRLOCKS

354: sh preds[0].unlock();//Φlp

355: sh preds[1].unlock();
356: sh currs[0].unlock();

357: sh currs[1].unlock();
358: return 〈〉;
359: end function
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3.4 Optimizations

In case a STM delete() method returns FAIL then it would just behave as a STM lookup() because it does not
modify the underlying data structure. Thus, we do not need to revalidate such failed STM delete() method
in upd method phase inside STM tryC(). This helps in saving extra computation and time spent during
upd method phase leading to speedup of the transaction.

Furthermore, twice validating the failed STM delete() also may lead to unnecessary aborts as shown with
an example in Figure 3.26. The Figure 3.26(i) shows the schedule where T1 validates del1(k1) two times.
During STM tryC() it aborts realizing during its validation that T2 has scheduled a conflicting insert operation
on same node. On the other hand, if would not have validated this failed delete in STM tryC() the schedule can
be accepted hence saving an unnecessary abort as shown in Figure 3.26(ii).

(i) Invalid schedule of two time validation (ii) Valid schedule of one time validation

tryC{

C2Ins2(ht, k1, v1)

T1

T2

A1
Del1(ht, k1, FAIL)

C2Ins2(ht, k1, v1)

C1
T1

T2

Del1(ht, k1, FAIL)Del1(ht, k1, Abort)

Figure 3.26: Advantage of validating STM delete() once, if its returning FAIL in rv method execution phase

Second optimization could be that during lslSearch() if node corresponding to the node is part of the
underlying data structure and the corresponding methodValidation() returns a retry (unsuccessful) then instead
of retrying again we can do a transValidation() so that in case the transaction is doomed to abort we would
avoid unnecessary computation in retrying a transaction that is bound to abort.
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Chapter 4

Proof Of Correctness

Brief Summary:
Methods in Read/Write STMs are atomic read/write methods. Proving that such methods can be partially

ordered or linearized is a complex task. In HT-OSTM where methods are intervals which also overlap with
methods of different transactions exacerbates this task. We need to establish that all methods can be linearized
at operational level before arguing about the co-opacity of HT-OSTM history at transaction level. We present
the proof sketch in this section.

HT-OSTM design ensures representational invariants that 1) every node in hash-table represents an
unique key (Corollary 11), 2) head and tail nodes represent minimum and maximum keys and are immutable,
3) all nodes of lazyskip-list are always in increasing order of their keys (Lemma 14), 4) all updates to shared
object are done by acquiring locks (Observation 24), 5) all unmarked nodes are reachable by bl (Lemma 15)
and every node (marked or unmarked) is reachable by rl (Lemma 10). From code it can be observed lslSearch()

is guaranteed to return correct location for a method (Observation 7 and Lemma 8).
Linearization Points: Here, we list the linearization points (LPs) of each method. Note that each method of

the list can return either OK, FAIL or ABORT . So, we define the LP for all the methods:

1. STM begin(): (global cntr++) at Line 5 of STM begin().

2. STM insert(ht, k, OK/FAIL/ABORT): Linearization point for the STM insert() follows the LPs of the
STM tryC().

3. STM delete(ht, k, OK/FAIL/ABORT): preds[0].unlock() at Line 95 of STM delete().

4. STM tryC(ht, k, OK/FAIL/ABORT): ll entryi.preds[0].unlock() at Line 336 of releaseOrdered-

Locks(). Which is called at Line 180 of STM tryC().

Operational level correctness: Here we establish the above HT-OSTM invariants (using observations di-
rectly from code or formulating them as lemma) and subsequently prove that STM insert(), STM delete(),
STM lookup() and STM tryC() ensure that the invariants are adhered and the HT-OSTM history is equivalent to
the execution in which all the methods are linearized. This we achieve by identifying the linearization points
(first unlock point of each successful HT-OSTM method (Definition 5)) such that each method execution leads
the object from one correct state to the another (refer Lemma 20, Lemma 21 and Lemma 22 in appendix) and
the 2PL locking mechanism [10] as observed in Observation 25 and Observation 26. We prove that lost update

validation is not violated by subsequent updates in STM tryC() in Lemma 18.

36



Lemma 1. Consider a concurrent history, EH , let there be a successfull STM tryC() method of a transaction

Ti which last updated the node corresponding to k. Now, Consider a successful rv method of a transaction

Tj on key k then,

1.1 If in the the pre-state of LP event of the rv method , node corresponding to the key k is part of bl and

value is v. Then the last upd method of STM tryC() would be insert on same key k and value v and it

should be the previous closest to the rv method.

1.2 If in the the pre-state of LP event of the rv method , node corresponding to the key k is not part of

the bl. Then the last upd method in STM tryC() would be delete on same key k and it should be the

previous closest to the rv method.

Transactional level correctness: Operational level correctness gives us a linearizable history which needs
to be shown co-opaque by obtaining a sequential order of the involved transactions. We consider sequential
(linearized) history generated by the HT-OSTM. We then show that it is co-opaque[17] by showing its conflict
graph is acyclic. Since our algorithm uses time-order validation[10], we show that conflict graph is acyclic by
showing that all the edge follow timestamp order as proved in Lemma 2, Lemma 3.

Lemma 2. If (Ti, Tj) ∈ conflict(H)⇒ TS(Ti) < TS(Tj).

Lemma 3. If ( T1, T2 · · · Tn ) is a path in CG(H), this implies that (TS(T1) < TS(T2) < · · · < TS(Tn)).

Finally, using the fact that HT-OSTM generates legal histories whose conflict graph is acyclic. We show
that HT-OSTM histories are co-opaque [17] as stated below (proved in Theorem 48).

Theorem 4. A legal history H is co-opaque iff CG(H) is acyclic.

Safety of HT-OSTM: We formally say that HT-OSTM generates linearizable history at operational level
(Observation 34) and the conflict graph generated by HT-OSTM history is acyclic (Theorem 47). For a complete
proof of all the above lemmas and theorem please refer the Appendix ??. Above discussion gives enough
intuition to believe that HT-OSTM will indeed be co-opaque[17] hence opaque[16]. Moreover, depending upon
the lock implementation HT-OSTM can be starvation free(if locks provide starvation free mutual exclusion).
Deadlock freedom of HT-OSTM: The algorithm is guaranteed to be deadlock free due to the locking invariant
maintained throughout the transaction life cycle. The locking invariant holds that locks are always acquired
and released in increasing order of the keys.
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4.1 Proof Sketch of OSTMs

4.1.1 Operational Level

For a global state, S, we denote evts(S) as all the events that has lead the system to global state S. We denote
a state S′ to be in future of S if evts(S) ⊂ evts(S′). In this case, we denote S @ S′. We have the following
definitions and lemmas:

Definition 3. PublicNodes: Which is having a incoming rl, except head node.

Definition 4. Abstract List (Abs): At any global abstract state S, S.Abs can be defined as set of all public

nodes that are accessible from head via red links union of set of all unmarked public nodes that are accessible

from head via blue links. Formally, 〈S.Abs = S.Abs.rl
⋃

S.Abs.bl〉, where,

S.Abs.rl := {∀n|(n ∈ S.PublicNodes) ∧ (S.Head→∗rl S.n)}.
S.Abs.bl = {∀n|(n ∈ S.PublicNodes) ∧ (¬S.n.marked) ∧ (S.Head→∗bl S.n)}

Observation 5. Consider a global state S which has a node n. Then in any future state S′ of S, n is a node

in S′ as well. Formally, 〈∀S, S′ : (n ∈ S.nodes) ∧ (S @ S′)⇒ (n ∈ S′.nodes)〉.

With Observation 5 , we assume that nodes once created do not get deleted (ignoring garbage collection for
now).

Observation 6. Consider a global state S which has a node n, initialized with key k. Then in any future state S′

the key of n does not change. Formally, 〈∀S, S′ : (n ∈ S.nodes)∧(S @ S′)⇒ (n ∈ S′.nodes)∧(S.n.key =

S′.n.key)〉.

Observation 7. Consider a global state S which is the post-state of return event of the function lslSearch()
invoked in the STM delete() or STM tryC() or STM lookup() methods. Suppose the lslSearch() method

returns (preds[0], preds[1], currs[0], currs[1]). Then in the state S, we have,

7.1 (preds[0] ∧ preds[1] ∧ currs[0] ∧ currs[1]) ∈ S.PublicNodes

7.2 (S.preds[0].locked) ∧ (S.preds[1].locked) ∧ (S.currs[0].locked) ∧ (S.currs[1].locked)

7.3 (¬S.preds[0].marked) ∧ (¬S.currs[1].marked) ∧ (S.preds[0].bl = S.currs[1]) ∧ (S.preds[1]

.rl = S.currs[0])

In Observation 7, lslSearch() method returns only if validation succeed at Line 211.

Lemma 8. Consider a global state S which is the post-state of return event of the function lslSearch() invoked

in the STM delete() or STM tryC() or STM lookup() methods. Suppose the lslSearch() method returns

(preds[0], preds[1], currs[0], currs[1]). Then in the state S, we have,

8.1 ((S.preds[0].key) < key ≤ (S.currs[1].key)).

8.2 ((S.preds[1].key) < key ≤ (S.currs[0].key)).

Proof. 8.1 (S.preds[0].key < key ≤ S.currs[1].key) :
Line 191 of lslSearch() method of Algo 7 initializes S.preds[0] to point head node. Also, (S.currs[1] =
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S.preds[0].bl) by line 193. As in penultimate execution of line 195 (S.currs[1].key < key) and at line
196 (S.preds[0] = S.currs[1]) this implies,

(S.preds[0].key < key) (4.1)

The node key doesn’t change as known by Observation 6. So, before executing of line 200, we know
that,

(key ≤ S.currs[1].key) (4.2)

From eq(4.1) and eq(4.2), we get,

(S.preds[0].key < key ≤ S.currs[1].key) (4.3)

From Observation 7.2 and Observation 7.3 we know that these nodes are locked and from Observation 6,
we have that key is not changed for a node, so the lemma holds even when lslSearch() method of Algo 7
returns.

8.2 (S.preds[1].key < key ≤ S.currs[0].key) :

Line 200 of lslSearch() method of Algo 7 initializes S.preds[1] to point S.preds[0]. Also, (S.currs[0]

= S.preds[0].rl) by line 202. As in penultimate execution of line 204 (S.currs[0].key < key) and at
line 205 (S.preds[1] = S.currs[0]) this implies,

(S.preds[1].key < key) (4.4)

The node key doesn’t change as known by Observation 6. So, before executing of line 209, we know
that

(key ≤ S.currs[0].key) (4.5)

From eq(4.4) and eq(4.5), we get,

(S.preds[1].key < key ≤ S.currs[0].key) (4.6)

From Observation 7.2 and Observation 7.3 we know that these nodes are locked and from Observation 6,
we have that key is not changed for a node, so the lemma holds even when lslSearch() method of Algo 7
returns.

Lemma 9. For a node n in any global state S, we have that,〈∀n ∈ S.nodes : (S.n.key < S.n.rl.key)〉.

Proof. We prove by Induction on events that change the rl field of the node (as these affect reachability),
which are Line 230, 231, 237 & 239 of lslIns() method of Algo 8 . It can be seen by observing the code that
lslDel() method of Algo 9 do not have any update events of rl.
Base condition: Initially, before the first event that changes the rl field, we know the underlying
lazyskip-list has immutable S.head and S.tail nodes with (S.head.bl = S.tail) and (S.head.rl = S.tail).
The relation between their keys is (S.head.key < S.tail.key) ∧ (head, tail) ∈ S.nodes.
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Induction Hypothesis: Say, upto k events that change the rl field of any node, (∀n ∈ S.nodes :

S.n.key < S.n.rl.key).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the rl field be only
one of the following:

1. Line 230 of lslIns() method: By observing the code, we notice that Line 230 (rl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. Line 228 of
the lslIns() method creates a new node, node with key and at line 229 set the (S.node.marked =
true) (because inserting the node only into the redlink). Line 230 then sets (S.node.rl = S.currs[0]).
Since this event doest not change the rl field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

2. Line 231 of lslIns() method: By observing the code, we notice that Line 231 (rl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. From Lemma 8.2,
we know that when lslSearch() method of Algo 7 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (4.7)

To reach line 231 of lslIns() method, line 87 of commonLu&Del() method of Algo 4 should ensure that,

(S.currs[0].key 6= key)
eq(4.7)
====⇒ (S.preds[1].key) < key < (S.currs[0].key) (4.8)

From Observation 7.3, we know that,

(S.preds[1].rl = S.currs[0]) (4.9)

Also, the atomic event at line 231 of lslIns() sets,

(S.preds[1].rl = node)
eq(4.8)
====⇒ (S.sh preds[1].key < node.key)

=⇒ (S.preds[1].key < S.preds[1].rl.key)
(4.10)

Where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence, (S.preds[1].key <

S.preds[1].rl.key).

3. Line 237 of lslIns() method: By observing the code, we notice that Line 237 (rl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. Line 234 of
the lslIns() method creates a new node, node with key. Line 237 then sets (S.node.rl = S.currs[0]).
Since this event doest not change the rl field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

4. Line 239 of lslIns() method: By observing the code, we notice that Line 239 (rl field
changing event) can be executed only after the lslSearch() Algo 7 method returns. From Lemma 8.2, we
know that when lslSearch() method of Algo 7 returns then,

(S.preds[1].key) < key ≤ (S.currs[0].key) (4.11)
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To reach line 239 of lslIns() method, line 158 of STM tryC() method of Algo 6 should ensure that,

(S.currs[0].key 6= key)
eq(4.11)
=====⇒ (S.preds[1].key) < key < (S.currs[0].key) (4.12)

From Observation 7.3, we know that,

(S.preds[1].rl = S.currs[0]) (4.13)

Also, the atomic event at line 239 of lslIns() sets,

(S.preds[1].rl = node)
eq(4.12)
=====⇒ (S.sh preds[1].key < node.key)

=⇒ (S.preds[1].key < S.preds[1].rl.key)
(4.14)

where (S.node.key = key). Since (preds[1], node) ∈ S.nodes and hence, (S.preds[1].key <

S.preds[1].rl.key).

Lemma 10. In a global state S, any public node n is reachable from Head via red links. Formally, 〈∀S, n :

n ∈ S.PublicNodes =⇒ S.Head→∗rl S.n〉.

Proof. We prove by Induction on events that change the rl field of the node (as these affect reachability),
which are Line 230, 231, 237 & 239 of lslIns() method of Algo 8 . It can be seen by observing the code that
lslDel() method of Algo 9 do not have any update events of rl.
Base condition: Initially, before the first event that changes the rl field of any node, we know that
(head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.marked) ∧ (S.head→∗rl S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node, (∀n ∈ S.PublicNodes,
(S.head→∗rl S.n)).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the rl field be only
one of the following:

1. Line 230 of lslIns() method: Line 228 of the lslIns() method creates a new node, node
with key and at line 229 set the (S.node.marked = true) (because inserting the node only into the
redlink). Line 230 then sets (S.node.rl = S.currs[0]). Since this event doest not change the rl field
of any node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

2. Line 231 of lslIns() method: By observing the code, we notice that Line 231 (rl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. From line 230
& 231 of lslIns() method, (S.node.rl = S.sh currs[0]) ∧ (S.sh preds[1].rl = S.node) ∧ (node ∈
S.PublicNodes) ∧ (S.node.marked = true) (because inserting the node only into the redlink). It is
to be noted that (from Observation 7.2), (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) are locked, hence no other thread can change marked field of S.sh preds[1]

and S.sh currs[0] simultaneously. Also, from Observation 6, a node’s key field does not change after
initialization. Before executing line 231, sh preds[1] is reachable from head by rl (from induction
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hypothesis). After line 231, we know that from sh preds[1], public marked node, node is also reachable.
Thus, we know that node is also reachable from head. Formally, (S.Head →∗rl S.sh preds[1]) ∧
(S.sh preds[1]→∗rl S.node)⇒ (S.Head→∗rl S.node).

3. Line 237 of lslIns() method: Line 234 of the lslIns() method creates a new node, node
with key. Line 237 then sets (S.node.rl = S.currs[0]). Since this event doest not change the rl field
of any node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

4. Line 239 of lslIns() method: By observing the code, we notice that Line 239 (rl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. From line 237
& 239 of lslIns() method, (S.node.rl = S.sh currs[0]) ∧ (S.sh preds[1].rl = S.node) ∧ (node ∈
S.PublicNodes) ∧ (node.marked = false) (because new node is created by default with unmarked
field). It is to be noted that (from Observation 7.2), (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) are locked, hence no other thread can change marked field of S.sh preds[1]

and S.sh currs[0] simultaneously. Also, from Observation 6, a node’s key field does not change
after initialization. Before executing line 239, sh preds[1] is reachable from head by rl (from in-
duction hypothesis). After line 239, we know that from sh preds[1], public unmarked node, node
is also reachable. Thus, we know that node is also reachable from head. Formally, (S.Head →∗rl
S.sh preds[1]) ∧ (S.sh preds[1]→∗rl S.node)⇒ (S.Head→∗rl S.node).

Corollary 11. Each node is associated with an unique key, i.e. at any given state S, their cannot be two nodes

with same key.

As every node is reachable by redlinks and has a strict ordering and from Observation 5 and Observation 6
we get this.

Corollary 12. Consider the global state S such that for any public node n, if there exists a key strictly greater

than n.key and strictly smaller than n.rl.key, then the node corresponding to the key does not belong to S.Abs.

Formally, 〈∀S, n, key : S.PublicNodes ∧ (S.n.key < key < S.n.rl.key) =⇒ node(key) /∈ S.Abs〉.

Observation 13. Consider a global state S which has a node n is reachable from head via rl. Then in

any future state S′ of S, node n is also reachable from head via rl in S′ as well. Formally, 〈∀S, S′ : (n ∈
S.nodes) ∧ (S @ S′) ∧ (S.head→∗rl S.n)⇒ (n ∈ S′.nodes) ∧ (S′.head→∗rl S′.n)〉.

Proof. From Observation 5, we have that for any node n, n ∈ S.nodes⇒ n ∈ S′.nodes. Also, we have that
in absence of garbage collection no node is deleted from memory and the redlinks are preserved during delete
update events (refer lslDel() method of Algo 9).

Lemma 14. For a node n in any global state S, we have that,〈∀n ∈ S.nodes : (S.n.key < S.n.bl.key)〉.

Proof. We prove by Induction on events that change the bl field of the node (as these affect reachability),
which are Line 224, 225, 238 & 240 of lslIns() method of Algo 8 and Line 248 of lslDel() method of Algo 9 .
Base condition: Initially, before the first event that changes the bl field, we know the underlying
lazyskip-list has immutable S.head and S.tail nodes with (S.head.bl = S.tail) and (S.head.rl = S.tail).
The relation between their keys is (S.head.key < S.tail.key) ∧ (head, tail) ∈ S.nodes.
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Induction Hypothesis: Say, upto k events that change the bl field of any node, (∀n ∈ S.nodes :

(S.n.key < S.n.bl.key)).
Induction Step: So, as seen from the code, the (k + 1)th event which can change the bl field be only
one of the following:

1. Line 224 & 225 of lslIns() method: By observing the code, we notice that Line 224 &
225 (bl field changing event) can be executed only after the lslSearch() method of Algo 7 returns. From
Lemma 8.1 and Lemma 8.2, we know that when lslSearch() method of Algo 7 returns then,

((S.preds[0].key) < key ≤ (S.currs[1].key)) ∧ ((S.preds[1].key) < key ≤ (S.currs[0].key))

(4.15)

To reach line 224 of lslIns() method, line 153 of STM tryC() method of Algo 6 should ensure that,

(S.currs[1].key 6= key) ∧ (S.currs[0].key = key)
eq(4.15)
=====⇒

((S.preds[0].key) < key < (S.currs[1].key))

∧((S.preds[1].key) < (key = S.currs[0].key))

(4.16)

From Observation 7.3, we know that,

(S.preds[0].bl = S.currs[1]) ∧ (S.preds[1].rl = S.currs[0]) (4.17)

The atomic event at line 224 of lslIns() sets,

(S.currs[0].bl = S.currs[1])
eq(4.16),Lemma 10
============⇒

Lemma 9
(S.currs[0].key) < (S.currs[1].key) =⇒

(S.currs[0].key) < (S.currs[0].bl.key)

(4.18)

Also, the atomic event at line 225 of lslIns() sets,

(S.preds[0].bl = S.currs[0])
eq(4.16)
=====⇒ (S.preds[0].key) < (S.currs[0].key) =⇒

(S.preds[0].key) < (S.preds[0].bl.key).
(4.19)

Where (S.currs[0].key = key). Since (preds[0], sh currs[0]) ∈ S.nodes and hence, (S.preds[0].

key < S.preds[0].bl.key).

2. Line 238 of lslIns() method: By observing the code, we notice that Line 238 (bl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. Line 234 of
the lslIns() method creates a new node, node with key. Line 238 then sets (S.node.bl = S.currs[1]).
Since this event doest not change the bl field of any node reachable from the head of the list (because
node /∈ S.PublicNodes), the lemma is not violated.

3. Line 240 of lslIns() method: By observing the code, we notice that Line 240 (bl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. From Lemma 8.1
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and Lemma 8.2, we know that when lslSearch() method of Algo 7 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) ∧ (S.preds[1].key) < key ≤ (S.currs[0].key)

(4.20)

To reach line 240 of lslIns() method, line 158 of STM tryC() method of Algo 6 should ensure that,

(S.currs[0].key 6= key) ∧ (S.currs[1].key 6= key)
eq(4.20)
=====⇒

(S.preds[0].key) < key < (S.currs[1].key)

∧(S.preds[1].key) < key < (S.currs[0].key)

(4.21)

From Observation 7.3, we know that,

(S.preds[0].bl = S.currs[1]) (4.22)

Also, the atomic event at line 240 of lslIns() sets,

(S.preds[0].bl = S.node)
eq(4.21)
=====⇒ (S.preds[0].key < S.node.key)

=⇒ (S.preds[0].key < S.preds[0].bl.key)
(4.23)

Where (S.node.key = key). Since (preds[0], node) ∈ S.nodes and hence, (S.preds[0].key <

S.preds[0].bl.key).

4. Line 248 of lslDel() method: By observing the code, we notice that Line 248 (bl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. From Lemma 8.1,
we know that when lslSearch() method of Algo 7 returns then,

(S.preds[0].key) < key ≤ (S.currs[1].key) (4.24)

To reach line 248 of lslDel() method, line 169 of STM tryC() method of Algo 6 should ensure that,

(S.currs[1].key = key)
eq(4.24)
=====⇒ (S.preds[0].key) < (key = S.currs[1].key) (4.25)

From Observation 7.3, we know that,

(S.preds[0].bl = S.currs[1]) (4.26)

We know from Induction hypothesis,

(currs[1].key < currs[1].bl.key) (4.27)

Also, the atomic event at line 248 of lslDel() sets,

(S.preds[0].bl = S.currs[1].bl)
eq(4.25),eq(4.27)
==========⇒ (S.preds[0].key < S.currs[1].bl.key)

=⇒ (S.preds[0].key < S.preds[0].bl.key)
(4.28)
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Where (S.currs[1].key = key). Since (preds[0], currs[1]) ∈ S.nodes and hence, (S.preds[0].key <

S.preds[0].bl.key)

Lemma 15. In a global state S, any unmarked public node n is reachable from Head via blue links. Formally,

〈∀S, n : (S.PublicNodes) ∧ (¬S.n.marked) =⇒ (S.Head→∗bl S.n)〉.

Proof. We prove by Induction on events that change the bl field of the node (as these affect reachability),
which are Line 224, 225, 238 & 240 of lslIns() method of Algo 8 and line 248 of lslDel() method of Algo 9.
Base condition: Initially, before the first event that changes the bl field of any node, we know that
(head, tail) ∈ S.PublicNodes ∧ ¬(S.head.marked) ∧ ¬(S.tail.marked) ∧ (S.head→∗bl S.tail).
Induction Hypothesis: Say, upto k events that change the next field of any node, ∀n ∈ S.PublicNodes,
(¬S.n.marked) ∧ (S.head→∗bl S.n).

Induction Step: So, as seen from the code, the (k + 1)th event which can change the bl field be only
one of the following:

1. Line 224 & 225 of lslIns() method: By observing the code, we notice that Line 224 &
225 (bl field changing event) can be executed only after the lslSearch() method of Algo 7 returns. It is to
be noted that (from Observation 7.2), (sh preds[0], sh preds[1], sh currs[0], sh currs[1]) are locked,
hence no other thread can change S.sh preds[0].marked and S.sh currs[1].marked simultaneously.
Also, from Observation 6, a node’s key field does not change after initialization. Before executing line
224, from Observation 7.3 ,

(S.sh preds[0].marked = false) ∧ (S.sh currs[1].marked = false) (4.29)

And from Lemma 10 and induction hypothesis,

(S.Head→∗rl S.sh currs[0]) ∧ (S.Head→∗bl S.sh currs[1]) (4.30)

After line 224, we know that from sh currs[0], public unmarked node, sh currs[1] is also reachable,
implies that,

(S.sh currs[0]→∗bl S.sh currs[1]) (4.31)

Also, before executing line 225, from induction hypothesis and Lemma 10 ,

(S.Head→∗bl S.sh preds[0]) ∧ (S.Head→∗rl S.sh currs[0]) (4.32)

After line 225, we know that from sh preds[0], public unmarked node (from line 223 of lslIns() method),
sh currs[0] is also reachable via bl, implies that,

(S.sh preds[0]→∗bl S.sh currs[0]) ∧ (S.sh currs[0].marked = false) (4.33)

From eq(4.31) and eq(4.33),

(S.sh preds[0]→∗bl S.sh currs[0]) ∧ (S.sh currs[0]→∗bl S.sh currs[1])∧

(S.sh currs[0].marked = false)
(4.34)
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Since (sh preds[0], sh currs[0]) ∈ S.PublicNode and hence, (S.Head →∗bl S.sh preds[0]) ∧
(S.sh preds[0]

→∗bl S.sh currs[0]) ∧ (S.sh currs[0].marked = false)⇒ (S.Head→∗bl S.sh currs[0]).

2. Line 238 of lslIns() method: Line 234 of the lslIns() method creates a new node, node
with key. Line 238 then sets (S.node.bl = S.currs[1]). Since this event doest not change the bl field
of any node reachable from the head of the list (because node /∈ S.PublicNodes), the lemma is not
violated.

3. Line 240 of lslIns() method: By observing the code, we notice that Line 240 (bl field
changing event) can be executed only after the lslSearch() method of Algo 7 returns. It is to be noted
that (from Observation 7.2), (sh preds[0], sh preds[1], sh currs[0], sh currs[1]) are locked, hence
no other thread can change S.sh preds[0].marked and S.sh currs[1].marked simultaneously. Also,
from Observation 6, a node’s key field does not change after initialization. Before executing line 238,
from Observation 7.3 ,

(S.sh preds[0].marked = false) ∧ (S.sh currs[1].marked = false) (4.35)

And from induction hypothesis,

(S.Head→∗bl S.sh currs[1]) (4.36)

After line 238, we know that from node, public unmarked node, sh currs[1] is also reachable via bl,
implies that,

(S.node→∗bl S.sh currs[1]) (4.37)

Also, before executing line 240, from induction hypothesis,

(S.Head→∗bl S.sh preds[0]) (4.38)

After line 240, we know that from sh preds[0], public unmarked node (because new node is created by
default with unmarked field), node is also reachable via bl, implies that,

(S.sh preds[0]→∗bl S.node) ∧ (S.node.marked = false) (4.39)

From eq(4.37) and eq(4.39),

(S.sh preds[0]→∗bl S.node) ∧ (S.node→∗bl S.sh currs[1]) ∧ (S.node.marked = false) (4.40)

Since (sh preds[0], node) ∈ S.PublicNode and hence, (S.Head→∗bl S.sh preds[0])∧(S.sh preds[0]→∗bl
S.node) ∧ (S.node.marked = false)⇒ (S.Head→∗bl S.node).

Corollary 16. All public node n, is reachable from head via bluelist is subset of all public node n, is reachable

from head via redlist. Formally, 〈∀S, n : (n ∈ S.nodes) ∧ (S.head→∗bl S.n) ⊆ (S.head→∗rl S.n)〉.
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Proof. From Lemma 10 , we know that all public nodes either marked or unmarked are reachable from head
by rl, also from Lemma 15 we have that all unmarked public nodes are reachable by bl. Unmarked public
nodes are subset of all public nodes thus the corollary.

Lemma 17. Consider a concurrent history, EH , for any successful method which is call by transaction

Ti, after the post-state of LP event of the method, node corresponding to the key should be part of rl

and max ts of that node should be equal to method transaction time-stamp. Formally, 〈(node(key) ∈
([EH .Post(mi.LP )].Abs.rl)) ∧ (node.max ts = TS(Ti))〉.

Proof. 1. For rv method method: By observing the code, each rv method first invokes lslSearch()

method of Algo 7 (line 70 of commonLu&Del() method of Algo 4). From Lemma 9 & Lemma 14 we
have that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 . So,
when the lslSearch() is invoked from a method, it returns correct location (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).

In the pre-state of LP event of rv method , if (node.key ∈ S.Abs.rl), means key is already there in rl

and time-stamp of that node is less then the rv method transactions time-stamp, from transValidation()

method of Algo 12 , then in the post-state of LP event of rv method, node.key should be the part of
rl from Observation 13 and key can’t be change from Observation 6 and it just update the max ts field
for corresponding node key by method transaction time-stamp else abort.

In the pre-state of LP event of rv method , if (node.key /∈ S.Abs.rl), means key is not there in rl

then, in the post-state of LP event of rv method, insert the node corresponding to the key into rl by
using lslIns() method of Algo 8 and update the max ts field for corresponding node key by method
transaction time-stamp. Since, node.key should be the part of rl from Observation 13 and key can’t be
change from Observation 6 , in post-state of LP event of rv method.

2. For upd method method: By observing the code, each upd method also first invokes lslSearch()

method of Algo 7 (line 127 of STM tryC() method of Algo 6 ). From Lemma 9 & Lemma 14 we have
that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 . So,
when the lslSearch() is invoked from a method, it returns correct location (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).

(a) If upd method is insert: In the pre-state of LP event of upd method, if (node.key ∈
S.Abs.rl), means key is already there in rl and time-stamp of that node is less then the upd method

transactions time-stamp, from transValidation() method of Algo 12 , then in the post-state of LP
event of upd method, node.key should be the part of rl and it just update the max ts field for
corresponding node key by method transaction time-stamp else abort.

In the pre-state of LP event of upd method, if (node.key /∈ S.Abs.rl), means key is not there in
rl then in the post-state of LP event of upd method, it will insert the node corresponding to the
key into the rl as well as bl, from lslIns() method of Algo 8 at line 167 of STM tryC() method of
Algo 6 and update the max ts field for corresponding node key by method transaction time-stamp.
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Once a node is created it will never get deleted from Observation 13 and node corresponding to a
key can’t be modified from Observation 6.

(b) If upd method is delete: In the pre-state of LP event of upd method, if (node.key ∈
S.Abs.rl), means key is already there in rl and time-stamp of that node is less then the upd method

transactions time-stamp, from transValidation() method of Algo 12 , then in the post-state of LP
event of upd method, node.key should be the part of rl, from lslDel() method of Algo 9 at line
173 of STM tryC() method of Algo 6 and it just update the max ts field for corresponding node
key by method transaction time-stamp else abort.

In the pre-state of LP event of upd method, (node.key /∈ S.Abs.rl) this should not be happen
because execution of STM delete() method of Algo 3 must have already inserted a node in the
underlying data-structure prior to STM tryC() method of Algo 6 . Thus, (node.key ∈ S.Abs.rl)

and update the max ts field for corresponding node key by method transaction time-stamp else
abort.

In HT-OSTM we have a upd method execution phase where all buffered upd method take effect together
after successful validation of each of them. Following problem may arise if two upd method within same
transaction have at least one shared node amongst its recorded (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]), in this case the previous upd method effect might be overwritten if the next
upd method preds and currs are not updated according to the updates done by the previous upd method.
Thus program order might get violated. Thus to solve this we have intra trans validation after each upd method

in STM tryC(), during upd method execution phase.

Lemma 18. intraTransValidation() preserve the program order within a transaction.

Proof. We are taking contradiction that intraTransValidation() is not preserving program order means two con-
secutive upd method of same transaction which are having at least one shared node amongst its recorded(sh preds[0]

, sh preds[1], sh currs[0], sh currs[1]) then effect of first upd method will be overwritten by the next
upd method.

By observing the code at line 177 of STM tryC() method of Algo 6, current upd method will go for
intraTransValidation() and at line 290 of intraTransValidation() method of Algo 13 , current upd method

will validate its (sh preds[0].marked) and (sh preds[0].bl! = sh currs[1]). If any condition is true then,
at line 292 of intraTransValidation() method of Algo 13, will check for previous upd method. If the pre-
vious upd method is insert then the current upd method update its sh preds[0] to previous upd method,
node.key else set current upd method sh preds[0] to previous upd method sh preds[0].

After that at line 304 of intraTransValidation() method of Algo 13 , current upd method validate its
(sh preds[1].rl! = sh currs[0]). If condition is true then current upd method set its sh preds[1] to previous
upd method, node.key.

If we will not update the current method preds and currs using intraTransValidation() then effect of first
upd method will be overwritten by the next upd method.

Observation 19. For any global state S, the intraTransValidation() in STM tryC() preserves the properties of

lslSearch() as proved in Observation 7 & Lemma 8 .
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Lemma 20. Consider a concurrent history, EH , after the post-state of LP event of successful STM tryC()
method, where each key belonging to the last upd method of that transaction, then,

20.1 If upd method is insert, then node corresponding to the key should be part of bl and node.val should be

equal to v. Formally, 〈(node(key) ∈ ([EH .Post(mi.LP )].Abs.bl ) ∧ (node.val = v)〉.

20.2 If upd method is delete, then node corresponding to the key should not be part of bl. Formally,

〈(node(key) /∈ ([EH .Post(mi.LP )].Abs.bl )〉.

Proof. By observing the code, each upd method also first invokes lslSearch() method of Algo 7 (line 127
of STM tryC() method of Algo 6 ). From Lemma 9 & Lemma 14 we have that the nodes in the underlying
data-structure are in increasing order of their keys, thus the key on which the method is working has a unique
location in underlying data-structure from Corollary 11 . So, when the lslSearch() is invoked from a method,
it returns correct location (sh preds[0], sh preds[1], sh currs[0], sh currs[1]) of corresponding key as
observed from Observation 7 & Lemma 8 and all are locked, hence no other thread can change simultaneously
(from Observation 7.2).

20.1 If upd method is insert: In the pre-state of LP event of upd method at Line 145, 153 of
STM tryC() method of Algo 6, if (node.key ∈ S.Abs.rl), means key is already there in rl and time-
stamp of that node is less then the upd method transactions time-stamp, from transValidation() method
of Algo 12, then in the post-state of LP event of upd method, node.key should be the part of bl and it
will update the value as v.

In the pre-state of LP event of upd method at Line 158 of STM tryC() method of Algo 6 , if
(node.key /∈ S.Abs.rl), means key is not there in rl then in the post-state of LP event of upd method,
it will insert the node corresponding to the key into the bl, from lslIns() method of Algo 8 at line 160
of STM tryC() method of Algo 6 and update the value as v. Once a node is created it will never get
deleted from Observation 13 and node corresponding to a key can’t be modified from Observation 6.

20.2 If upd method is delete: In the pre-state of LP event of upd method at Line 169 of STM tryC()

method of Algo 6 , if (node.key ∈ S.Abs.bl), means key is already there in bl and time-stamp of that
node is less then the upd method transactions time-stamp, from transValidation() method of Algo 12 ,
then in the post-state of LP event of upd method, node.key should not be the part of bl, from lslDel()

method of Algo 9 at line 169 of STM tryC() method of Algo 6 .

In the pre-state of LP event of upd method, (node.key /∈ S.Abs.rl) this should not be happen because
execution of STM delete() method of Algo 3 must have already inserted a node in the underlying
data-structure prior to STM tryC() method of Algo 6 .

Lemma 21. Consider a concurrent history, EH , where S be the pre-state of LP event of successful rvm

method, in that, if node corresponding to the key is the part of bl and node.val is equal to v then, rv method

return OK and value v. Formally, 〈(node(key) ∈ ([EH .P re(mi.LP )].Abs.bl)) ∧ (S.node.val = v) =⇒
rvm(key,OK, v)〉.

Proof. Let the rv method is STM lookup() method of Algo 2 and it is the first key method of the transaction,
we ignore the abort case for simplicity.
From line 70 of commonLu&Del() method of Algo 4 , when lslSearch() method of Algo 7 returns we
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have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observation 7.1 &
Observation 7.2) until STM lookup() method of Algo 2 return. Also, from Lemma 8.1 ,

(S.preds[0].key < key ≤ S.currs[1].key) (4.41)

To return OK, S.currs[1] should be reachable from the head via bluelist from Definition 4 , in the pre-state of
LP of rv method. And after observing code, at line 77 of commonLu&Del() method of Algo 4,

(S.currs[1].key = key)
eq(4.41)
=====⇒ (S.preds[0].key < (key = S.currs[1].key)) (4.42)

Also, from Observation 7.3 ,
(S.preds[0].bl = S.currs[1]) (4.43)

And (currs[1] ∈ S.nodes), we know (currs[1] ∈ S.Abs.bl) where S is the pre-state of the LP event
of the method. From Lemma 20.1 , there should be a prior upd method which have to be insert and
sh currs[1].val is equal to v. Since Observation 6 tells, no node changes its key value after initialization.
Hence (node(key) ∈ ([EH .P re(mi.LP )].Abs.bl) ∧ (S.node.val = v)).

*Same argument can be extended to STM delete() method.

Lemma 22. Consider a concurrent history, EH , where S be the pre-state of LP event of successful rv method,

in that, if node corresponding to the key is not the part of bl then, rv method return FAIL. Formally,

〈(node(key) /∈ ([EH .P re(mi.LP )].Abs.bl)) =⇒ rvm(key, FAIL)〉.

Proof. Let the rv method is STM lookup() method of Algo 2 and it is the first key method of the transaction,
we ignore the abort case for simplicity.

1. From line 70 of commonLu&Del() method of Algo 4, when lslSearch() method of Algo 7 returns we
have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observation 7.1
& Observation 7.2) until STM lookup() method of Algo 2 return. Also, from Lemma 8.2 ,

(S.preds[1].key < key ≤ S.currs[0].key) (4.44)

To return FAIL, S.currs[0] should not be reachable from the head via bluelist from Definition 4 , in the
pre-state of LP of rv method. And after observing code, at line 82 of commonLu&Del() method of
Algo 4 ,

(S.currs[0].key = key)
eq(4.44)
=====⇒ (S.preds[1].key < (key = S.currs[0].key)) (4.45)

Also, from Observation 7.3 ,
(S.preds[1].rl = S.currs[0]) (4.46)

And (currs[0] ∈ S.nodes), we know (currs[0] ∈ S.Abs.rl) where S is the pre-state of the LP event of
the method and (S.sh currs[0].marked = true). Thus, (sh currs[0] /∈ S.Abs.bl) from Definition 4 .
Hence (node(key) /∈ ([EH .P re(mi.LP )].Abs.bl)

2. From line 70 of commonLu&Del() method of Algo 4, when lslSearch() method of Algo 7 returns we
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have (preds[0], preds[1], currs[0], currs[1] ∈ S.PublicNodes) and are locked(from Observation 7.1
& Observation 7.2) until STM lookup() method of Algo 2 return. Also, from Lemma 8.2 ,

(S.preds[1].key < key ≤ S.currs[0].key) (4.47)

And after observing code, at line 87 of commonLu&Del() method of Algo 4 ,

(S.currs[1].key 6= key) ∧ (S.currs[0].key 6= key)
eq(4.47)
=====⇒

(S.preds[1].key < key < S.currs[0].key)
(4.48)

Also, from Observation 7.3 ,
(S.preds[1].rl = S.currs[0]) (4.49)

From eq(4.48), we can say that, (node(key) /∈ S.Abs) and from Corollary 12, we conclude that
node(key) not in the state after lslSearch() returns. Since Observation 6 tells, no node changes its key
value after initialization. Hence (node(key) /∈ ([EH .P re(mi.LP )].Abs.bl)).

*Same argument can be extended to STM delete() method.

Observation 23. Only the successful STM tryC() method working on the key k can update the Abs.bl.

By observing the code, only the successful STM tryC() method of Algo 6 is changing the bl. There is no
line which is changing the bl in STM delete() method of Algo 3 and STM lookup() method of Algo 2 . Such
that rv method is not changing the bl.

Observation 24. If STM tryC() and rv method wants to update Abs on the key k, then first it has to acquire

the lock on the node corresponding to the key k.

If node corresponding to the key k is not the part of Abs then STM tryC() and rv method have to create
the node corresponding to the key k and before adding it into the shared memory(Abs), it has to acquire the
lock on the particular node corresponding to the key k.

Definition 5. First unlocking point of each successful method is the LP .

Linearization Points: Here, we list the linearization points (LPs) of each method. Note that each method
of the list can return either OK, FAIL or ABORT . So, we define the LP for all the methods:

1. STM begin(): (global cntr++) at Line 5 of STM begin().

2. STM insert(ht, k, OK/FAIL/ABORT): Linearization point for the STM insert() follows the LPs of the
STM tryC().

3. STM delete(ht, k, OK/FAIL/ABORT): preds[0].unlock() at Line 95 of STM delete().

4. STM tryC(ht, k, OK/FAIL/ABORT): ll entryi.preds[0].unlock() at Line 336 of releaseOrdered-

Locks(). Which is called at Line 180 of STM tryC().

Observation 25. Two concurrent conflicting methods of different transaction can’t acquire the lock on the

same node corresponding to the key k simultaneously.
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Observation 26. Consider two concurrent conflicting method of different transactions say mi of Ti and mj

of Tj working on the same key k, then, if ul(mi(k)) happen before the l(mj(k)) then LP (mi) happen before

LP (mj). Formally, 〈(ul(mi(k)) ≺ l(mj(k)))⇒ (LP (mi) ≺ LP (mj))〉

If two concurrent conflicting methods are working on the same key k and want to update Abs then they
have to acquire the lock on the node corresponding to the key k from Observation 24 and one of them succeed
from Observation 25 . If ul(mi(k)) happen before the l(mj(k)) then from Definition 5 , LP (mi) happen
before the LP (mj).

Lemma 27. Consider two state, S1, S2 s.t. S1 @ S2 and S1.bl.value(k) 6= S2.bl.value(k) then there exist

S′ s.t. S′ @ S2 and S′ contain the STM tryC() method on the same key k. Formally, 〈(S1.bl.value(k) 6=
(S2.bl.value(k)) ⇒ ∃(S′s.t., S1.bl ≺ S′.LP (tryC) ≺ S2.bl)〉. Where S1 is the post-state of LP event of

STM tryC() method and S2 is the pre-state of LP event of rv method.

Proof. In the state S1 and S2, if the value corresponding to the key k is not same then from Observation 23
, we know that only the successful STM tryC() method working on the same key k can update the Abs.bl.
For updating the Abs on the key k it has to acquire the lock on the node corresponding to the key k from
Observation 24. Such that, l(tryC(k)) happen before the l(S2(k)) from Observation 25 , then, ul(tryC(k))

happen before the l(S2(k)) then LP (tryC) happen before the LP (S2) from Observation 26 .

Lemma 28. Consider a concurrent history, EH , let there be a successfull STM tryC() method of a transaction

Ti which last updated the node corresponding to k. Now, Consider a successful rv method of a transaction

Tj on key k then,

28.1 If in the the pre-state of LP event of the rv method , node corresponding to the key k is part of bl and

value is v. Then the last upd method of STM tryC() would be insert on same key k and value v and it

should be the previous closest to the rv method.

28.2 If in the the pre-state of LP event of the rv method , node corresponding to the key k is not part of

the bl. Then the last upd method in STM tryC() would be delete on same key k and it should be the

previous closest to the rv method.

Proof. 28.1 For proving this we are taking a contradiction that in the pre-state of rv method, node corre-
sponding to the key k is the part of bl and value as v, for that, there exist a previous closest successful
tryC method should having the last upd method as insert on the same key k from Corollary 11 , node
corresponding to the key k is unique and value is v′. If the value of the node corresponding to the key k

is different for both the methods then from Lemma 27 , there should be some other transaction tryC

method working on the same key k and its LP should lies in between these two methods LP . Therefore
that intermediate tryC should be the previous closest method for the rv method and it will return the
same value as previous closest method inserted.

28.2 For proving this we are taking contradiction that previous closest successful tryC method should having
the last upd method as insert on the same key k. If the last upd method is insert on the same key k

then after the post-state of successful tryC method, node corresponding to the key k should be the part
of bl from Lemma 20.1 . But we know that in the pre-state of rv method, node corresponding to the
key k is not the part of bl. Such that previous closest successful tryC method should not having last
upd method as insert on the same key k. Hence contradiction.
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Theorem 29. The sequential history generated by HT-OSTM at operation level is legal.

Theorem 30. The legal sequential history generated by HT-OSTM at operation level is Linearizable.

Construction of sequential history based on the LP of concurrent methods of a concurrent history, EH ,
and execute them in their LP order for returning the same return value.

Lemma 31. Let there be a successfull STM tryC() method of a transaction Ti which last updated the node

corresponding to k. Now, consider a successful rv method of a transaction Tj on key k then,

31.1 If in the the pre-state of rv method , node corresponding to the key k is part of bl and value is v. Then

the last upd method of STM tryC() would be insert on same key k and value v and it should be the

previous closest to the rv method.

31.2 If in the the pre-state of rv method , node corresponding to the key k is not part of the bl. Then the last

upd method in STM tryC() would be delete on same key k and it should be the previous closest to the

rv method.

Proof. 31.1 For proving this we are taking a contradiction that in the pre-state of rv method, node corre-
sponding to the key k is the part of bl and value as v, for that, there exist a previous closest successful
tryC method should having the last upd method as insert on the same key k from Corollary 11 , node
corresponding to the key k is unique and value is v′. If the value of the node corresponding to the key k

is different for both the methods then from Lemma 27 , there should be some other transaction tryC

method working on the same key k and its LP should lies in between these two methods LP . Therefore
that intermediate tryC should be the previous closest method for the rv method and it will return the
same value as previous closest method inserted.

31.2 For proving this we are taking contradiction that previous closest successful tryC method should having
the last upd method as insert on the same key k. If the last upd method is insert on the same key k

then after the post-state of successful tryC method, node corresponding to the key k should be the part
of bl from Lemma 20.1 . But we know that in the pre-state of rv method, node corresponding to the
key k is not the part of bl. Such that previous closest successful tryC method should not having last
upd method as insert on the same key k. Hence contradiction.

Lemma 32. Consider a sequential history, ES , for any successful method which is call by transaction Ti, after

the post-state of the method, node corresponding to the key should be part of rl and max ts of that node should

be equal to method transaction time-stamp. Formally, 〈(node(key) ∈ (P.Abs.rl)) ∧ (P.node.max ts =

TS(Ti))〉. Where P is the post-state of the method.

Proof. 1. For rv method method: By observing the code, each rv method first invokes lslSearch()

method of Algo 7 (line 70 of commonLu&Del() method of Algo 4). From Lemma 9 & Lemma 14 we
have that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 . So,
when the lslSearch() is invoked from a method, it returns correct location (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).
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In the pre-state of rv method , if (node.key ∈ S.Abs.rl), means key is already there in rl and time-
stamp of that node is less then the rv method transactions time-stamp, from transValidation() method
of Algo 12 , then in the post-state of rv method, node.key should be the part of rl from Observation 13
and key can’t be change from Observation 6 and it just update the max ts field for corresponding node
key by method transaction time-stamp else abort.

In the pre-state of rv method , if (node.key /∈ S.Abs.rl), means key is not there in rl then, in the post-
state of rv method, insert the node corresponding to the key into rl by using lslIns() method of Algo 8
and update the max ts field for corresponding node key by method transaction time-stamp. Since,
node.key should be the part of rl from Observation 13 and key can’t be change from Observation 6 , in
post-state of rv method.

2. For upd method method: By observing the code, each upd method also first invokes lslSearch()

method of Algo 7 (line 127 of STM tryC() method of Algo 6 ). From Lemma 9 & Lemma 14 we have
that the nodes in the underlying data-structure are in increasing order of their keys, thus the key on
which the method is working has a unique location in underlying data-structure from Corollary 11 . So,
when the lslSearch() is invoked from a method, it returns correct location (sh preds[0], sh preds[1],

sh currs[0], sh currs[1]) of corresponding key as observed from Observation 7 & Lemma 8 and all
are locked, hence no other thread can change simultaneously (from Observation 7.2).

(a) If upd method is insert: In the pre-state of upd method, if (node.key ∈ S.Abs.rl),
means key is already there in rl and time-stamp of that node is less then the upd method transac-
tions time-stamp, from transValidation() method of Algo 12 , then in the post-state of upd method,
node.key should be the part of rl and it just update the max ts field for corresponding node key

by method transaction time-stamp else abort.

In the pre-state of upd method, if (node.key /∈ S.Abs.rl), means key is not there in rl then in
the post-state of upd method, it will insert the node corresponding to the key into the rl as well
as bl, from lslIns() method of Algo 8 at line 162 of STM tryC() method of Algo 6 and update
the max ts field for corresponding node key by method transaction time-stamp. Once a node is
created it will never get deleted from Observation 13 and node corresponding to a key can’t be
modified from Observation 6.

(b) If upd method is delete: In the pre-state of upd method, if (node.key ∈ S.Abs.rl),
means key is already there in rl and time-stamp of that node is less then the upd method

transactions time-stamp, from transValidation() method of Algo 12 , then in the post-state of
upd method, node.key should be the part of rl, from lslDel() method of Algo 9 at line 173 of
STM tryC() method of Algo 6 and it just update the max ts field for corresponding node key by
method transaction time-stamp else abort.

In the pre-state of upd method, (node.key /∈ S.Abs.rl) this should not be happen because
execution of STM delete() method of Algo 3 must have already inserted a node in the underlying
data-structure prior to STM tryC() method of Algo 6 . Thus, (node.key ∈ S.Abs.rl) and update
the max ts field for corresponding node key by method transaction time-stamp else abort.

Corollary 33. After the post-state of any successful method on a key ensures that underlying rl contains a

unique node corresponding to the key and max ts field is updated by methods transactions time-stamp.
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4.1.2 Transactional Level

From Section 4.1.1 we are guaranteed to have a sequential history or in other terms we have a linearizable
history. Now we shall prove that such linearizable history obtained from HT-OSTM is opaque.

Observation 34. H is a sequential history obtained from HT-OSTM, as shown at operational level using LP.

Definition 6. CG(H) is a conflict graph of H.

Lemma 35. Conflict graph of a serial history is acyclic.

Proof. If conflict graph of serial history contains an conflict edge ( T1, T2 ), then T1.lastEvt ≺H T2.firstEvt.
Now, assume that conflict graph of a serial history is cyclic, then their exist a cycle path in the form (T1, T2

· · · Tk, T1), (k ≥ 1). So, transitively,

((T1.lastEvt ≺H Tk.firstEvt) ∧ (Tk.lastEvt ≺H T1.firstEvt))⇒

(T1.lastEvt ≺H T1.firstEvt)
(4.50)

This contradict our assumption as eq(4.50) is impossible, from definition of program order of a transaction.
Thus, cycle is not possible in serial history.

Observation 36. H2 is an history generated by applying topological sort on CG(H1).

Observation 37. Topological sort maintains conflict-order and real-time order of the original history H1.

Definition 7. conflict(H) is a set of ordered pair (Ti, Tj), such that their exists conflicting methods mi, mj in

Ti & Tj respectively, such that mi ≺MR
H mj . And it is represented as ≺CO

H .

Lemma 38. H1 is legal & CG(H1) is acyclic. then,

38.1 H1 is equivalent to H2⇒ (methods(H1) = methods(H2)).

38.2 ≺CO
H1 ⊆ ≺CO

H2 . i.e. H1 preserves the conflicts of H2

Proof. Lemma 38.2
We should show that ∀( Ti, Tj ), such that ( ( Ti, Tj ) ∈ ≺CO

H1 ⇒ ( ( Ti, Tj ) ∈ ≺CO
H2 ).

Lets assume that their exists a conflict (Ti, Tj) in ≺CO
H1 but not in ≺CO

H2 . But, from Observation 36 &
Observation 37 we know that (Ti, Tj) ∈ ≺CO

H2 . Thus, ≺CO
H1 ⊆ ≺CO

H2 .

The relation is of improper subset because topological sort may introduce new real-time orders in H2 which
might not be present in H1.

Lemma 39. Let H1 and H2 be equivalent histories such that ≺CO
H1
⊆ ≺CO

H2
. Then, H1 is legal =⇒ H2 is

legal.

Proof. We know H1 is legal, wlog let us say (rvj(ht, k, v) ∈ methods(H1)), such that (upp(ht, k, vp) =

H1.lastUpdt(rvj(ht, k, v))) where, (v = vp 6= nill), if (upp(ht, k, vp) = t insertp(ht, k, vp)) or
(v = nill), if (upp(ht, k, vp) = t deletep(ht, k, vp)). From the conflict-notion conflict(H1) has,

upp(ht, k, vp) ≺MR
H1

rvj(ht, k, v) (4.51)
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Let us assume H2 is not legal. Since, H1 is equivalent to H2 from Lemma 38.1 such that (rvj(ht, k, v) ∈
methods(H2)). Since H2 is not legal, there exist a (upr(ht, k, vr) ∈ methods(H2)) such that (upr(ht, k, vr) =

H2.lastUpdt(rvj(ht, k, v))). So conflict(H2) has,

upr(ht, k, vr) ≺MR
H2

rvj(ht, k, v) (4.52)

We know, (≺CO
H1
⊆ ≺CO

H2
) so,

upp(ht, k, vp) ≺MR
H2

rvj(ht, k, v) (4.53)

From Lemma 38.1 (upr(ht, k, vr) ∈ methods(H1)). Since H1 is legal upr(ht, k, vr) can occur only in one of
following conflicts,

upr(ht, k, vr) ≺MR
H1

upp(ht, k, vp) (4.54)

or

rvj(ht, k, v) ≺MR
H1

upr(ht, k, vr) (4.55)

In H1 eq(4.55) is not possible, because if (eq(4.55) ∈ conflict(H1)) implies (eq(4.55) ∈ conflict(H2)) from
(≺CO

H1
⊆ ≺CO

H2
) and in H2 eq(4.52) and eq(4.55) cannot occur together. Thus only possible way upr(ht, k, vr)

can occur in H1 is via eq(4.54). From eq(4.54) we have,

upr(ht, k, vr) ≺MR
H2

upp(ht, k, vp) (4.56)

From eq(4.52), eq(4.53) and eq(4.56) we have,

upr(ht, k, vr) ≺MR
H2

upp(ht, k, vp) ≺MR
H2

rvj(ht, k, v)

This contradicts that H2 is not legal. Thus if H1 is legal −→ H2 is legal.

Observation 40. Each transaction is assigned a unique time-stamp in STM begin() method using a shared

counter which always increases atomically.

Observation 41. Each successful method of a transaction is assigned the time-stamp of its own transaction.

Lemma 42. Consider a global state S which has a node n, initialized with max ts. Then in any future state

S′ the max ts of n should be greater then or equal to S. Formally, 〈∀S, S′ : (n ∈ S.Abs) ∧ (S @ S′) ⇒
(n ∈ S′.Abs) ∧ (S.n.max ts ≤ S′.n.max ts)〉.

Proof. We prove by Induction on events that change the max ts field of a node associated with a key, which
are Line 80, 85 & 91 of commonLu&Del() method of Algo 4 and Line 151, 157, 162 & 173 of STM tryC()

method of Algo 6.
Base condition: Initially, before the first event that changes the max ts field of a node associated with a
key, we know the underlying lazyskip-list has immutable S.head and S.tail nodes with (S.head.bl = S.tail)

and (S.head.rl = S.tail).
Lets assume, a node corresponding to the key is already the part of underlying rl which is having a

time-stamp of m1 as T1 from Observation 41 . Let say m2 of T2 wants to perform on that node, by observing
the code at line 6 of transValidation() method of Algo 12 , if TS(T2) < curr.max ts.m1(), T2 will return abort,
else to succeed, TS(T2) > curr.max ts.m1() should evaluate to true. Thus, for successful completion of m2 of
T2, TS(T2) should be greater then the TS(T1). Hence, node corresponding to the key, max ts field should be
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updated in increasing order of TS values.
Induction Hypothesis: Say, upto k events that change the max ts field of a node associated with a
key always in increasing TS value.
Induction Step: So, as seen from the code, the (k + 1)th event which can change the max ts field be
only one of the following:

1. Line 80, 85 & 91 of commonLu&Del() method of Algo 4 : By observing the code,
line 57 of commonLu&Del() method of Algo 4 first invokes lslSearch() method of Algo 7 for
finding the node corresponding to the key. Inside the lslSearch() method of Algo 7 , it will do the
transValidation() method of Algo 12 , if (curr.key = key).

From induction hypothesis, node corresponding to the key is already the part of underlying rl which
is having a time-stamp of mk of Tk from Observation 41. Let say mk+1 of Tk+1 wants to perform
on that node, by observing the code at line 6 of transValidation() method of Algo 12 , if TS(Tk+1) <
curr.max ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max ts.mk() should evaluate
to true. Thus, for successful completion of mk+1 of Tk+1, TS(Tk+1) should be greater then the TS(Tk).
Hence, node corresponding to the key, max ts field should be updated in increasing order of TS values.

2. Line 151, 157, 162 & 173 of STM tryC() method of Algo 6 : By observing the
code, line 127 of STM tryC() method of Algo 6 first invokes lslSearch() method of Algo 7 for finding the
node corresponding to the key. Inside the lslSearch() method of Algo 7 , it will do the transValidation()

method of Algo 12 , if (curr.key = key).

From induction hypothesis, node corresponding to the key is already the part of underlying rl which
is having a time-stamp of mk as Tk from Observation 41 . Let say mk+1 of Tk+1 wants to perform
on that node, by observing the code at line 6 of transValidation() method of Algo 12 , if TS(Tk+1) <
curr.max ts.mk(), Tk+1 will return abort, else to succeed, TS(Tk+1) > curr.max ts.mk() should evaluate
to true. Thus, for successful completion of mk+1 of Tk+1, TS(Tk+1) should be greater then the TS(Tk).
Hence, node corresponding to the key, max ts field should be updated in increasing order of TS values.

Corollary 43. Every successful methods update the max ts field of a node associated with a key always in

increasing TS values.

Lemma 44. If STM begin(Ti) occurs before STM begin(Tj) then TS(Ti) preceds TS(Tj). Formally,

〈∀T ∈ H : (STM begin(Ti) ≺ STM begin(Tj))⇔ (TS(Ti) < TS(Tj))〉.

Proof. (Only if) If (STM begin(Ti) ≺ STM begin(Tj)) then (TS(Ti) < TS(Tj)). Lets assume (TS(Tj) <

TS(Ti). From Observation 40 ,

STM begin(Tj) ≺H STM begin(Ti) (4.57)

but we know that,
STM begin(Tj) �H STM begin(Ti) (4.58)

Which is a contradiction thus, (TS(Ti) < TS(Tj)).
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(if) If (TS(Ti) < TS(Tj)) then (STM begin(Ti) ≺ STM begin(Tj)). Let us assume (STM begin(Tj) ≺
STM begin(Ti)). From Observation 40 ,

TS(Tj) < TS(Ti) (4.59)

but we know that,
TS(Tj) > TS(Ti) (4.60)

Again, a contradiction.

Lemma 45. If (Ti, Tj) ∈ conflict(H)⇒ TS(Ti) < TS(Tj).

Proof. (Ti, Tj) can have two kinds of conflicts from our conflict notion.

1. If (Ti, Tj) is an real-time edge: Since, Ti & Tj are real time ordered. Therefore,

Ti.lastEvt ≺H Tj .firstEvt (4.61)

And from program order of Ti,

Ti.firstEvt ≺H Ti.lastEvt⇒ STM begin(Ti) ≺H Ti.lastEvt (4.62)

From eq(4.61) and eq(4.62) implies that,

Ti.firstEvt ≺H Tj .firstEvt⇒ STM begin(Ti) ≺H STM begin(Tj)

Lemma 44
======⇒ TS(Ti) < TS(Tj)

(4.63)

2. If (Ti, Tj) is a conflict edge: We prove this case by contradiction, lets assume (Ti, Tj)
∈ conflict(H) & TS(Tj) < TS(Ti). Given that (Ti, Tj) ∈ conflict(H) and from Definition 7 we get, mi

≺MR
H mj .

mi can be rv methods or upd methods (which are taking the effects in STM tryC() method of Algo 6
) and we know that after the LP of mi of Ti, node corresponding to the key should be there in rl (from
Corollary 33 & Definition 4 ) and the time-stamp of that node corresponding to key should be equal to
time-stamp of this method transaction time-stamp from Corollary 33 & Observation 41 .

From Lemma 9 & Lemma 14 we have that the nodes in the underlying data-structure are in increasing
order of their keys, thus the key on which the operation is working has a unique location in underlying
data-structure from Corollary 11 . So, when the lslSearch() is invoked from a method mj of Tj , it
returns correct location (sh preds[0], sh preds[1], sh currs[0], sh currs[1]) of corresponding key as
observed from Observation 7 & Lemma 8 .

Now, mj similar to mi take effect on the same node represented by key k (from Observation 6 &
Corollary 11 ) & from Observation 13 we know that the node corresponding to the key k is still
reachable via rl. Thus, we know that Ti & Tj will work on same node with key k.

By observing the code at line 6 & 9 of transValidation() method of Algo 12 , we know since, TS(Tj) <
curr.max ts.mi(), Tj will return abort from Corollary 43 . In Algo 12 for transValidation() to succeed,
TS(Tj) > curr.max ts.mi() should evaluate to true from Corollary 43 . Thus, TS(Tj) < TS(Ti), a
contradiction. Hence, If (Ti, Tj) ∈ conflict(H)⇒ TS(Ti) < TS(Tj).
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Lemma 46. If ( T1, T2 · · · Tn ) is a path in CG(H), this implies that (TS(T1) < TS(T2) < · · · < TS(Tn)).

Proof. The proof goes by induction on length of a path in CG(H).

Base Step: Assume ( T1, T2 ) be a path of length 1. Then, from Lemma 45 (TS(T1) < TS(T2)).

Induction Hypothesis: The claim holds for a path of length (n− 1). That is,

TS(T1) < TS(T2) < · · · < TS(Tn−1) (4.64)

Induction Step: Let Tn is a transaction in a path of length n. Then, (Tn−1, Tn) is path in CG(H).
Thus, it follows from Lemma 45 that,

TS(Tn−1) < TS(Tn)
eq(4.64)
=====⇒ (TS(T1) < TS(T2) < · · · < TS(Tn)) (4.65)

Hence, the lemma.

Theorem 47. CG(H) is acyclic.

Proof. Assume that CG(H) is cyclic, then their exist a cycle say of form ( T1, T2 · · · Tn, T1 ), for all (n ≥
1). From Lemma 46 ,

TS(T1) < TS(T2) · · · < TS(Tn) < TS(T1) =⇒ TS(T1) < TS(T1) (4.66)

But, this is impossible as each transaction has unique time-stamp, refer Observation 40 . Hence the
theorem.

Theorem 48. A legal history H is co-opaque iff CG(H) is acyclic.

Proof. (Only if) If H is co-opaque and legal, then CG(H) is acyclic: Since H is co-opaque, there exists a
legal t-sequential history S equivalent to H̄ and S respects ≺RT

H and ≺CO
H (from Definition 2). Thus from the

conflict graph construction we have that (CG(H̄)=CG(H)) is a sub graph of CG(S). Since S is sequential, it can
be inferred that CG(S) is acyclic using Lemma 35. Any sub graph of an acyclic graph is also acyclic. Hence
CG(H) is also acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque: Suppose that CG(H) = CG(H̄) is acyclic. Thus
we can perform a topological sort on the vertices of the graph and obtain a sequential order. Using this order,
we can obtain a sequential schedule S that is equivalent to H̄ . Moreover, by construction, S respects ≺RT

H =
≺RT

H̄
and ≺CO

H = ≺CO
H̄

.
Since every two operations related by the conflict relation in S are also related by ≺CO

H̄
, we obtain ≺CO

H̄

⊆ ≺CO
S . Since H is legal, H̄ is also legal. Combining this with Lemma 39, We get that S is also legal. This

satisfies all the conditions necessary for H to be co-opaque.
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Chapter 5

Results

Setup: We evaluate OSTM against the lockfree hash-table of Synchrobench[31] benchmark’s ESTM and a
concurrent hash-table implementation with the read/write STM[18]. We perform two kind of experiments
for lookup-instensive and update intensive workloads. In first experiment, we measure throughput (trans-
actions/second) of hash-table with OSTM, ESTM and read/write STM ( with basic time stamp ordering
protocol) against the varying number of threads in power of 2. In the second experiment we measure the
throughput against varying range of transaction object Id’s(100 to 1000) i.e. bucket size which represents
varying contention at each lazyskip-list (bucket). We perform all the experiments on Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz machine with 56 NUMA CPUs. For better readability of the plots we re-scale the
throughputs to log2 scale.

Parameters: For all the experiments we have considered a hash-table of size 5. Each bucket of the hash-
table may have node id (transaction object Id) ranging from 1 to 1000. Please note lesser the range of the
transaction objects (lazyskip-list (or bucket) size) higher would be the contention amongst the transactions.
The transactions in the applications may be allowed to run for a 100, 1000 or 100000 milli-second time window.
Within this time window each transaction randomly decides to execute a method (insert, lookup or delete)
based on the type of work load(lookup intensive or update intensive.) For the experiments where throughput is
compared against the transcation object range we use 64 number of threads. Each transaction can generate 10
methods. The throughput is averaged over 10 runs of the application.
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5.1 Test application

The test application is designed to evaluate the throughput (transactions/second) of the HT-OSTM for the
composability of the underlying hash-table methods. Each transaction that executes the Algo 19 randomly
generates the STM insert(), STM delete(), STM lookup() methods based on the workload distribution. Each
thread executes the transaction unless the timeout seconds. Finally, the number of transactions committed by
the HT-OSTM are reported for the given number of threads or the transaction object range (the range of keys
allowed in the hash-table), depending upon the type of the experiment.

Algorithm 19 test app() : test application to evaluate the composability of the HT-OSTM.
1: function TEST APP

2: STATUS ops, txs← ABORT;
3: int* val← new int;
4: bool retry← true;
5: /*keep on executing transactions unless timeout*/
6: while !timeout do
7: /*keep retrying untill the transaction commits*/
8: while retry do
9: txlog← lib.begin();

10: for int op; op < num op per tx; op++ do
11: int opn← rand()%100;
12: /* generate operations with given probability */
13: if opn < prinsert then
14: opn← INSERT;
15: else if opn < (prinsert+prdelete) then
16: opn← DELETE;
17: else
18: opn← LOOKUP;
19: end if
20:
21: /*Execute the randomly generated method*/
22: if INSERT == opn then /*INSERT*/
23: ops← lib.t insert(txlog);;
24: else if DELETE == opn then
25: ops← lib.t delete(txlog);
26: else
27: ops← lib.t lookup(txlog);
28: end if
29: if ABORT == ops then
30: break;
31: end if
32: end for
33: /*commit the transaction*/
34: if ABORT ! = ops then
35: txs← lib.tryCommit(txlog);
36: end if
37: if ABORT == ops||ABORT == txs then
38: retry← true;
39: else
40: retry← false;
41: end if
42: end while
43: end while
44: return txs;
45: end function
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5.2 Lookup intensive workload

This section presents the evaluation results for the two experiments of lookup intensive workload i.e.
STM lookup() operation is produced with 80% & 50% probability in Section 5.2.1 & Section 5.2.2 respectively.

5.2.1 Experiment 1: 80% lookup

Table 5.1 states various parameters during the evaluation.
parameters:

Time window 100 ms

Parameters values

transaction object
range

1000

hash-table size 5

lookup% 80

delete% 5

insert% 15

num operation per
transaction

10

Table 5.1: Evaluation parameters for 80% lookup

plots:

(a) varying number of threads (b) varying range of transaction objects

Figure 5.1: ESTM vs HT-OSTM

Figure 5.1a shows the throughput against the varying number of threads for the comparison of ESTM and
HT-OSTM. HT-OSTM comprehensively beats ESTM and the difference is of 1000 transactions per second
in magnitude. Similarly, Figure 5.1b shows the throughput evaluation against the varying range of allowed
key (transcation object) range in the underlying hash-table of HT-OSTM. The number of threads for
Figure 5.1b are 64.
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(a) varying number of threads (b) varying range of transaction objects

Figure 5.2: ESTM vs rwSTM(BTO protocol)

Figure 5.2a shows the throughput against the varying number of threads for the comparison of HT-OSTM

and BTO (basic time stamp ordering)protocol of RWSTMs. HT-OSTM comprehensively beats BTO. Similarly,
Figure 5.2b shows the throughput evaluation against the varying range of allowed key (transaction object)
range in the underlying hash-table of HT-OSTM. It can be seen that initially for lower number of threads
(2 to 16) and lower transaction object range BTO is comparable to HT-OSTM. This can be attributed to the
overheads in HT-OSTM. The logging or validation overhead exceeds the performance benifits of HT-OSTM

for lower number of threads. The number of threads for Figure 5.2b are 64.

5.2.2 Experiment 2: 50% lookup

Table 5.2 states various parameters during the evaluation.
parameters:

Time window 100 ms

Parameters values

transaction object
range

1000

hash-table size 5

lookup% 50

delete% 10

insert% 40

num operation per
transaction

10

Table 5.2: Evaluation parameters for 50% lookup.

plots:
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(a) varying number of threads (b) varying range of transaction objects

Figure 5.3: ESTM vs HT-OSTM

Figure 5.3a shows the throughput against the varying number of threads for the comparison of ESTM and
HT-OSTM. HT-OSTM comprehensively beats ESTM and the difference is of 1000 transactions per second in
magnitude. Similarly, Figure 5.3b shows the throughput evaluation against the varying range of allowed key
(transcation object) range in the underlying hash-table of HT-OSTM. To enhance the readability of the
plots, the Y axis is plotted on log2 scale.

(a) varying number of threads (b) varying range of transaction objects

Figure 5.4: ESTM vs rwSTM(BTO protocol)

Figure 5.4a shows the throughput against the varying number of threads for the comparison of HT-OSTM

and BTO (basic time stamp ordering)protocol of RWSTMs. HT-OSTM comprehensively beats BTO and the
difference is of 1000 transactions per second in magnitude. Similarly, Figure 5.4b shows the throughput
evaluation against the varying range of allowed key (transaction object) range in the underlying hash-table
of HT-OSTM. It can be seen that initially for lower number of threads (2 to 16) and lower transaction object
range BTO is comparable to HT-OSTM. This can be attributed to the overheads in HT-OSTM. The logging or
validation overhead exceeds the performance benifits of HT-OSTM for lower number of threads.
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5.3 Update intensive workload

This section presents the evaluation results for the update intensive workload i.e. upd method (insert and delete
operation) is produced with 70% probability. Each of ensuing subsections present the results for experiments
with different time windows.

5.3.1 Experiment 1: 100 ms window

parameters:

Time window 100 ms

Parameters values

transaction object
range

1000

hash-table size 5

lookup% 30

delete% 20

insert% 50

num operation per
transaction

10

Table 5.3: Evaluation parameters for 100ms window and update intesive workload.

plots:

(a) varying number of threads (b) varying range of transaction objects

Figure 5.5: ESTM vs HT-OSTM

Figure 5.5a shows the throughput against the varying number of threads for the comparison of ESTM and
HT-OSTM. HT-OSTM comprehensively beats ESTM and the difference is of 1000 transactions per second in
magnitude. Similarly, Figure 5.5b shows the throughput evaluation against the varying range of allowed key
(transcation object) range in the underlying hash-table of HT-OSTM. To enhance the readability of the
plots, the Y axis is plotted on log2 scale. The number of threads for Figure 5.5b are 64.
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Figure 5.6a shows the throughput against the varying number of threads for the comparison of HT-OSTM

and BTO (basic time stamp ordering)protocol of RWSTMs. HT-OSTM comprehensively beats BTO and the
difference is of 1000 transactions per second in magnitude. Similarly, Figure 5.6b shows the throughput
evaluation against the varying range of allowed key (transaction object) range in the underlying hash-table
of HT-OSTM. It can be seen that initially for lower number of threads (2 to 16) BTO is comparable to
HT-OSTM. This can be attributed to the overheads in HT-OSTM. The logging or validation overhead exceeds
the performance benifits of HT-OSTM for lower number of threads. Please note that the number of threads for
Figure 5.6b are 64.

(a) varying number of threads (b) varying range of transaction objects

Figure 5.6: ESTM vs rwSTM(BTO protocol)

5.3.2 Experiment 2: 1000 ms window

parameters:

Time window 1000 ms

Parameters values

transaction object
range

1000

hash-table size 5

lookup% 30

delete% 20

insert% 50

num operation per
transaction

10

Table 5.4: Evaluation parameters for 1000ms window and update intesive workload.

plots:
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(a) varying number of threads (b) varying range of transaction objects

Figure 5.7: ESTM vs HT-OSTM

Figure 5.7a shows the throughput against the varying number of threads for the comparison of ESTM and
HT-OSTM. HT-OSTM comprehensively beats ESTM and the difference is of 1000 transactions per second in
magnitude. Similarly, Figure 5.7b shows the throughput evaluation against the varying range of allowed key
(transcation object) range in the underlying hash-table of HT-OSTM. To enhance the readability of the
plots, the Y axis is plotted on log2 scale. The number of threads for Figure 5.7b are 64.

Figure 5.8a shows the throughput against the varying number of threads for the comparison of HT-OSTM

and BTO (basic time stamp ordering)protocol of RWSTMs. HT-OSTM comprehensively beats BTO and the
difference is of 1000 transactions per second in magnitude. Similarly, Figure 5.8b shows the throughput
evaluation against the varying range of allowed key (transaction object) range in the underlying hash-table
of HT-OSTM. It can be seen that initially for lower number of threads (2 to 16) BTO is comparable to
HT-OSTM. This can be attributed to the overheads in HT-OSTM. The logging or validation overhead exceeds
the performance benifits of HT-OSTM for lower number of threads. Please note that the number of threads for
Figure 5.8b are 64.
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(a) varying number of threads (b) varying range of transaction objects

Figure 5.8: ESTM vs rwSTM(IITHSTM)

5.3.3 Experiment 3: 10000 ms window

parameters:

Time window 10000 ms

Parameters values

transaction object
range

1000

hash-table size 5

lookup% 30

delete% 20

insert% 50

num operation per
transaction

10

Table 5.5: Evaluation parameters for 10000ms window and update intesive workload.

plots:
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(a) varying number of threads (b) varying range of transaction objects

Figure 5.9: ESTM vs HT-OSTM

(a) varying number of threads (b) varying range of transaction objects

Figure 5.10: ESTM vs rwSTM(IITHSTM)

Figure 5.9a shows the throughput against the varying number of threads for the comparison of ESTM and
HT-OSTM. HT-OSTM comprehensively beats ESTM and the difference is of 1000 transactions per second in
magnitude. Similarly, Figure 5.9b shows the throughput evaluation against the varying range of allowed key
(transcation object) range in the underlying hash-table of HT-OSTM. To enhance the readability of the
plots, the Y axis is plotted on log2 scale. The number of threads for Figure 5.9b are 64.

Figure 5.10a shows the throughput against the varying number of threads for the comparison of HT-OSTM

and BTO (basic time stamp ordering)protocol of RWSTMs. HT-OSTM comprehensively beats BTO. Similarly,
Figure 5.10b shows the throughput evaluation against the varying range of allowed key (transaction object)
range in the underlying hash-table of HT-OSTM. It can be seen that initially for lower number of threads
(2 to 16) BTO is comparable to HT-OSTM. This can be attributed to the overheads in HT-OSTM. The logging
or validation overhead exceeds the performance benifits of HT-OSTM for lower number of threads. Please
note that the number of threads for Figure 5.10b are 64.
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Chapter 6

Conclusion

In this dissertation we develop OSTM:- an alternative theoretical model for building highly concurrent and
composable data structures which are heart of any software application trying to leverage underlying multi-core
architecture in presence of multiple threads. OSTM utilizes the software transactional memory approach to
synchronize the access to underlying shared memory which is basically the concurrent data structure. We differ
from the classic STM approach where the interface is mere read/write operations. The read/write operation
are naive as they do not offer any other useful information apart from the fact that a write operation on a
shared memory always conflicts with any concurrent read/write operation. On the other hand, we consider
semantically rich higher level operations of the underlying shared data structure. These higher level primitives
are exported to the programmers instead of mere read/writes. The enhanced semantics available through the
OSTM interface provide better concurrency and performance as corroborated by the evaluation results.

We implement the proposed model using an closed addressed hash table named HT-OSTM. Each bucket of
the underlying concurrent hash-table is a lazyskip-list. The lazyskip-list is shared data structure which is
augmented by the meta-information needed for ensuring consistency in concurrent executions. Thus, we do
not use any separate data structure to store the information. This aids efficient memory usage and avoids access
or maintenance over heads of maintaining meta-information. HT-OSTM exports STM begin, STM insert(),
STM delete(), STM lookup() and STM tryC(). The STM insert(), STM delete() and STM lookup() are the
semantically rich higher level methods. Each transaction in HT-OSTM has methods executing in rv method
execution phase and upd method execution phase. In rv method phase the STM delete(), STM lookup() (which
return a value) and STM insert() execute without modifying the underlying data structure. In upd method
phase the STM delete() and STM insert() methods execute for modifying the underlying hash-table inside
STM tryC().

The STM lookup() is validated during the rv method phase returning its fate at the point of its execution
thus avoiding unnecessary work if the transaction is eventually supposed to abort because of this STM lookup()

operation. The STM delete() is validated twice once during rv method phase (to avoid doing unnecessary
execution of the transaction that is destined to abort) and next during upd method to ensure consistency during
concurrent executions.

In the STM tryC() we perform intraTransValidation() which aids in updating the underlying data structure
without losing any update of the same transaction in case they happen to occur at same location. This help us
in solving the problem where irrevocable updates may occur within a transaction which might abort. Also, the
validation strategy employed help us to perform rollback-free commit.
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We provide detailed proof of correctness for HT-OSTM where we establish the properties of the underlying
data structure and prove that each of the method is linearizable, resulting in a legal sequential history. Further
we show that such a legal sequential history is co-opaque by showing that the time order validation strategy
ensures that HT-OSTM generates an history which would be equivalent to some serial history. please note that
Peri et. al.[17] has shown that co-opacity is subset of opacity. Hence, HT-OSTM is co-opaque.

It can be seen easily that the OSTM model can be easily extended with underlying list, set or queue data
structure. Implementing OSTM with tree as underlying data structure may need some extra effort.

HT-OSTM combines the scalable abstraction and ease of programming from STMs with our efficient
mechanism of achieving composability using object level semantics. Our prototype implementation of
HT-OSTM shows significant performance gain (as detailed in Chapter 5) over composable hash-table
implementation of Synchrobench against ESTM and RWSTM with basic time-stamp ordering protocol.
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