

Csikor, L., Toka, L., Szalay, M., Pongrácz, G., Pezaros, D. P. and Rétvári, G. (2018)

HARMLESS: Cost-Effective Transitioning to SDN for Small Enterprises. In: IFIP

Networking 2018, Zurich, Switzerland, 14-16 May 2018, pp. 217-225. ISBN

9783903176089.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/159141/

Deposited on: 16 March 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/159141/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

HARMLESS: Cost-Effective Transitioning to SDN
for Small Enterprises

Levente Csikor∗, László Toka†, Márk Szalay†, Gergely Pongrácz‡, Dimitrios P. Pezaros∗
and Gábor Rétvári†∗School of Computing Science, University of Glasgow, Email: {firstname.lastname}@glasgow.ac.uk

†High Speed Networks Lab, Budapest University of Technology and Economics, Email: {lastname}@tmit.bme.hu
‡Ericsson Research, TrafficLab Hungary, Email: gergely.pongracz@ericsson.com

Abstract—Software-Defined Networking (SDN) offers a new
way to operate, manage, and deploy communication networks
and to overcome many long-standing problems of legacy net-
working. However, widespread SDN adoption has not occurred
yet due to the lack of a viable incremental deployment path and
the relatively immature present state of SDN-capable devices
on the market. While continuously evolving software switches
may alleviate the operational issues of commercial hardware-
based SDN offerings, namely lagging standards-compliance, per-
formance regressions, and poor scaling, they fail to match the
cost-efficiency and port density.

In this paper we propose HARMLESS, a new SDN switch
design that seamlessly adds SDN capability to legacy network
gear, by emulating the OpenFlow switch OS in a separate
software switch component. This way, HARMLESS enables a
quick and easy leap into SDN, combining the rapid innovation
and upgrade cycles of software switches with the port density
and cost-efficiency of hardware-based appliances into a fully
dataplane-transparent and vendor-neutral solution. HARMLESS
incurs an order of magnitude smaller initial expenditure for an
SDN deployment than existing turnkey vendor SDN solutions
while it yields matching, or even better data plane performance
for smaller enterprises.

Index Terms—SDN, Migration, OpenFlow, Switch design

I. INTRODUCTION

SDN offers a radical break with traditional ways of building,
operating and managing networks. By the physical and logical
separation of the network control plane from the packet pro-
cessing functionality, SDN exposes new levels of abstraction
to the operator. SDN hides the specifics of the underlying data
plane technologies from the network control applications be-
hind a standardized southbound interface, and unprecedented
network and service programmability, since the network is
now controlled by an adaptable software functionality via an
open API. Migration to SDN architecture improves network
operations by eliminating the need for box-by-box manage-
ment and troubleshooting, eases to create network functions
and services due to the flexibility of the global network view
in the centralized SDN control plane, and allows the operator
to easily buy into new models for network management and
operations, like automated orchestration, on-the-fly chaining
of services, and “as-a-service” schemes [1]–[4].

Despite the fact that many large corporations (e.g.,
Google [5]) and telcos (e.g., Deutsche Telekom [6]) have al-
ready gained significant foothold in SDN, smaller businesses,

campus network operators, and service providers without
substantial in-house expertise and select IT staff (“organiza-
tions that aren’t called Google” [7]) face significant business,
economic, and technical deployment barriers, since migration
to SDN requires a nontrivial amount of forward planning,
an extensive investigation of vendor offerings/options, and a
fairly radical change in the mental model, producing a typical
chicken and egg problem [1]–[4], [7].

First, there is a broad selection of SDN migration strategies:
incremental deployment strategies may offer the smoothest
upgrade path and the least interference with daily network
operations [8], yet managing heterogeneous network archi-
tectures may prove challenging [2], [4]. Jumping outright to
full-blown SDN by swapping all legacy network gear to
SDN-capable devices overnight may mitigate this pain fac-
tor, but greenfield migration is hardly an option for small
businesses due to the huge capital expenditure, the flag-day
deployment, and the induced service downtime. A lightweight
SDN migration combining the smoothness and reversibility
of incremental upgrades with the swiftness and transparency
typical to greenfield deployments is still largely missing [9].

Second, there is the paradox of choice inherent to the
booming and immature state of the SDN market today, with a
breadth of vendor SDN offerings, turnkey solutions, technol-
ogy trends, and marketing hype, that a less informed operator
may find very challenging to explore and evaluate [1], [6].
For a starter, to obtain an SDN-enabled appliance a network
operator has essentially two nontrivial choices: buying com-
mercial off-the-shelf (COTS) and white-box (i.e., generically
branded switches with no default network operating system)
hardware switches or relying on, possibly already purchased
and deployed, general-purpose servers and running a virtual
software switch on top (e.g., Open vSwitch, OVS [10]).
Thanks to the use of special-purpose ASICs and network
processors, hardware SDN network gear has traditionally been
praised for providing high port density at a reasonable price
tag, albeit notorious for lacking standards-compliance, limited
TCAM sizes (typical 1st and 2nd generation devices can have
at most 100s and couple of 1000s of flow rules in TCAM),
performance regressions, and unscalability [9], [11], [12]. In
particular, users are widely complaining about missing OF
features (even as elementary as IP address rewrite [9]), switch
control plane performance and delays in updating the data

(a) SDN with OpenFlow (b) HARMLESS

Fig. 1: HARMLESS: SDN with an extra level of separation.

plane, atomic flow modification commands not being applied
atomically or at all [11], [13], etc. Note that some newer
generation OF switches (e.g., from NoviFlow, Corsa,
Barefoot) offering high performance with up to 1 million
flow rules have recently become available in the market,
however not just their costs hinders smaller enterprises to
obtain one, but due to the way ASICs are designed an arbitrary
forwarding pipeline cannot be applied without fulfilling certain
requirements [14] (e.g., wire-speed VLAN handling can only
be done in table 0).

Software SDN switches, on the other hand, struggle to
match the port density of hardware switches due to the
physical space limits of blades and the steep price of multi-
port NICs, but at the same time excel at programmability,
extensibility, rapidly evolve with new standards and receive
bug fixes very fast [10], [15]. While, thanks to recent advances
in softswitch design and implementation (e.g., multi-threaded
switch design, hierarchical flow caching, custom-compiled OF
datapaths [10], [15]–[19]) the performance tax of software
switching has greatly decreased, programmability and port
density are still competing, if not mutually exclusive, goals
in current SDN networking equipment.

In this paper, we propose HARMLESS, the Hybrid AR-
rchitecture to Migrate Legacy Ethernet Switches to SDN, to
foster SDN migration for smaller enterprises. HARMLESS
leverages the current trend for “software-defined-everything”,
but takes this idea to the extreme: it applies an additional level
of abstraction on top of the conventional control plane–data
plane separation by further decoupling the packet processing
hardware from the switch’s operating system, which are today
integrated in COTS devices in a single box, and implementing
the OpenFlow (OF) OS in a dedicated software switch (see
Fig. 1). This makes it possible to add SDN capability to
plain Ethernet switches, or to any legacy network device
for that matter, through bypassing the legacy switch OS.
Thanks to the additional level of virtualization, HARMLESS
realizes a delicate sweet spot between hardware and software
SDN switching. In particular, it combines the advantages
of software and hardware switching, whereas the hardware
component delivers the high port density and raw packet
processing functionality, and the softswitch adds programma-
bility, adaptability, and standards-compliance. Using extensive
measurements with a HARMLESS prototype, we show that the
benefits of HARMLESS are realized with no significant impact
on raw packet processing performance, latency, and dataplane

transparency (note that the performance is upper bounded by
the used software switch).

From an economical aspect, HARMLESS offers a viable
migration strategy to smaller enterprises. Since HARMLESS
leverages the existing network infrastructure it offers distinct
price advantages over SDN alternatives available on the market
(see details in Sec. III). Crucially, in cases where legacy
switches and bare-metal servers for running the OF component
are readily available, like in smaller private clouds, enterprise
and research networks, HARMLESS makes it possible to get
into SDN instantly, incurring zero expenditure for a partial
or even a complete deployment. And even if equipment must
be purchased anew, HARMLESS can save up to an order of
magnitude investment. In a broader perspective, HARMLESS
sheds a fresh new light on the ages-old, and often highly
contentious, “hard switch vs softswitch” debate and presents
an interesting new dimension in switch architectures [20]–[25].

Roadmap: in Sec. II we present the HARMLESS architec-
ture, in Sec. III we give a cost analysis, in Sec. IV we evaluate
HARMLESS in many aspects, in Sec. V we summarize related
work, and finally Sec. VI concludes the paper.

II. THE HARMLESS ARCHITECTURE

So how to magically turn a legacy device, say, a dumb
Ethernet switch, into an OpenFlow-speaking one? After all,
this would require to open up what is traditionally a closed
black box and substitute the legacy switch OS with an SDN-
capable one, something that has proved notoriously difficult
to do so far. Instead, we adopt a more viable and backward
compatible approach for the purposes of HARMLESS by ex-
tending the “Tagging and Hairpinning” technique (also called
“anything-on-a-stick” [26], [27] or distributed switch design
[28]), originally advocated for hypervisor switches by Cisco
and HP, to the general context of SDN [24].

The idea behind “Tagging and Hairpinning” is to offload
VM-to-VM communication from the hypervisor to the first
hop switch. When a VM sends a packet it is marked by a
unique VLAN id (“tagging”) and forwarded to the access
switch, which will then do a forwarding/policy lookup to
decide whether to loop the packet back to another VM, in
which case it is marked with the unique VLAN id of the
target VM (“hairpinning”), or send it further along the data
center fabric, or drop it right away. The rationale for this
technique is that packet processing is done on efficient special
purpose hardware at the first hop switch instead of a potentially
less powerful hypervisor switch, while the downsides are
doubling bandwidth utilization and increased latency. The
main contribution of this paper is the observation that, when
cast in the general context of SDN switching, the “Tagging
and Hairpinning” technique yields a uniquely cost-efficient
organization of packet processing functionality and forward-
ing intelligence, and presents an appealing incremental SDN
deployment path.

For the purposes of presenting HARMLESS, suppose that
an operator is given a manageable Layer-2 (L2) 802.1Q
Ethernet switch with free high-speed trunk ports, a general

Fig. 2: Transparent HARMLESS: Software Switch Twice (S4).

purpose server that has spare NICs and available capacity to
run an OpenFlow vswitch, and adequate cabling, backplane
capacity, or other means for interconnecting the switches’
trunk ports with the softswitch NICs (see bottom of Fig. 2).
Suppose further that a host with IPv4 address 192.168.2.3
connected to port 7 on the legacy switch wishes to send
packets to another host with address 192.168.0.1 con-
nected to port 10 on the same switch, and suppose that a
security policy is in place according to which these two hosts
are permitted to exchange traffic only between each other.
Accordingly, suppose that the operator wants to control the
switch through OpenFlow and so wishes to program this
forwarding behavior as given by the Flow table of SS 2 in
Fig. 2. This would handle communication between the two
hosts adequately, except that it would be impossible to control
the legacy switch through OpenFlow due to the black box
nature of legacy COTS appliances.

This is where the “Tagging and Hairpinning” technique
comes in: let the legacy switch tag each packet with a unique
VLAN id that identifies the access port it was received from,
forward the tagged packet to the software switch along the
trunk-port–softswitch interconnect (the uplink) to enforce the
OpenFlow forwarding and security policies, and send the
packet back to the legacy switch via another uplink “hair-
pinned”, i.e., tagged with the unique VLAN id of the proper
outgoing port as per the specified flow table. (If the packet
was already VLAN-tagged, the legacy switch can use VLAN
Q-in-Q tunneling [29] or any other tagging scheme.)

In a strawman’s approach, the controller would need to
program a slightly modified flow table into the software
switch, whereas the “match on ingress port X” rules are
converted to “match on VLAN id X” rules and the “output
to port Y” actions are rewritten to “modify VLAN id to Y
and output to default port” actions. However, to avoid having
to tailor controller programs to the underlying HARMLESS
layer, we introduce a transparent HARMLESS setup, where

the novel idea is to carefully extend the framework with an
additional OpenFlow Translator Component (OTC) to serve
as an adaptation layer. OTC is realized by an additional
softswitch [30], which is connected to the OF component by
as many patch ports (10 in our example) as the number of the
access ports managed and dispatches packets to and from patch
ports based on the VLAN ids (see Fig. 2). In our particular
example, upon receiving a packet on port 7 from the first host,
the legacy switch would tag it with a unique VLAN id, say,
107, and send it along the uplink. The OTC then dispatches
the packet (with the VLAN tag removed) to patch port 7
towards the the softswitch SS 2 (managed by the controller),
which in turn identifies the original input port based on the
patch port and makes sure that the originating host is allowed
to communicate with the destination host by matching the
first flow entry in the flow table (see Flow Table of SS 2 in
Fig. 2). Then, SS 2 sends out the packet on its patch port 10
towards the OTC, which pushes a unique VLAN id, say, 110
onto the packet, then it is looped back to the legacy switch,
which, after doing a VLAN-to-port translation, forwards it to
the destination host (on physical port 10). Note that the only
requirements for the legacy switch are manageability (to setup
the VLANs on the access ports), support for 802.1Q (to do
the VLAN un/tagging), and free trunk ports to be used for
an uplink (later, in Sec. IV we will deal with the “loss” of
trunks), which allows to use HARMLESS over basically any
legacy Ethernet switch on the market today [31], [32].

These modifications render HARMLESS data plane-
transparent enabling to write controller programs ignoring
the fact that the underlying data plane is realized with
HARMLESS, to make controller programs portable between
deployments, and to allow to invoke higher-level languages
and policies to setup the data plane [33], [34].

III. COST ANALYSIS

Below, we argue that HARMLESS strikes a fine balance be-
tween the cost-efficiency of COTS switches and the flexibility
of softswitches in terms of deployment costs.

A. Hard vs. Softswitch
The great majority of COTS and white-box SDN switch

market options come with 24 or 48 ports at 1G (or 10G),
supplemented with 2–4 uplink ports operating at 10G (or
40G, respectively) in 1U or 2U form-factor. In case of carrier
grade port rates, e.g., 40G, the vendor offerings are even more
diverse, often having no designated uplink ports. Prices vary
in a wide range; the cheapest OpenFlow-capable 24x1G-port
switch (HP-2920) can be purchased at $1, 200 while the most
expensive 48x10G offering comes at a whopping $30, 000.
The 48-port form factor seems to provide the most economic
per-port prices, with the average price tag of $2, 700 for a
48x1G+4x10G OF switch and $11, 200 for a 48x10G+4x40G
device. Based on these considerations, the following formulas
estimate the CAPEX of hardware switch deployment with a
total of x ports:

C1G
HW = $2700

⌈ x
48

⌉
, C10G

HW = $11200
⌈ x
48

⌉
.

0

5K

10K

15K

24 48 96

O
ve

ra
ll

co
st

s
[$

]

Number of ports

SW switch
HW switch

HARMLESS

x
x HP 3500

x Brocade CER 2000

x
x HP 5130x x NEC PL5240xx HP 3800

x

HP 5412 x

DELL S6000 x

(a) CAPEX per 1G port density

0

10K

20K

30K

24 48 96

O
ve

ra
ll

co
st

s
[$

]

Number of ports

SW switch
HW switch

HARMLESS

x
x Cisco WS-C4500x HP 5920

x Extreme Summit x670

x Cisco 7700

HP 5940 x

x Quanta T3048

x

(b) CAPEX per 10G port density

Fig. 3: CAPEX for a software, COTS/white-box hardware, and
HARMLESS switch as the function of the number of (a) 1G
access ports and (b) 10G access ports (prices from 2017).

In case of softswitches, the main CAPEX factor is purchas-
ing servers with a sufficient number of NICs and CPUs. We
consider x86-based 1U servers at a bulk price of $1, 400 on
average, including the motherboard with 1 CPU, 4x1G built-in
ports, 3 PCIe (3.0 x8 or x16) slots, memory, disk, power, etc.
A server can host up to 3 additional NICs, costing $160 for
4x1G (Intel i350), $480 for 4x10G (Intel X710), and $500 for
2x40G (Intel XL710), which total up to 16 ports per server at
1G, 12 ports at 10G, and 6 ports at 40G. Note that when a
single server cannot provide the required port density another
server must be purchased. Furthermore, in most cases the third
PCIe slot is hardwired to the second CPU socket, therefore
a single CPU server can host up to 12 1G (8 at 10G, 4 at
40G) ports; for more ports per server a second CPU must be
installed (hence the last negative term in the below formulas,
where the variable #extraCPU indicates in both the 1G and
10G cases whether the last server is sufficient to serve the rest
of the ports w/o an additional CPU). The price of a server CPU
ranges between $200 and $7, 000 depending on the CPU class,
cache size, clock rate, and power consumption; we calculate
with the price of a 6-core Intel E5-2620v3 CPU at $400.

With this in mind, the following formulas estimate the
CAPEX of a software switch deployment with x ports:
C1G

SW = $1400
⌈ x
16

⌉
+ $160

(⌈x
4

⌉
−
⌈ x
16

⌉)
+ $400

(⌈ x
16

⌉
−#extraCPU1G

SW

)
C10G

SW = $1400
⌈ x
12

⌉
+ $480

⌈x
4

⌉
+ $400

(⌈ x
12

⌉
−#extraCPU10G

SW

)
#extraCPU1G

SW =

{
1, if 0 < (x mod 16) < 13

0, otherwise

#extraCPU10G
SW =

{
1, if 0 < (x mod 12) < 9

0, otherwise

For the sake of simplicity, in the price analysis for
softswitches and HARMLESS we do not account for OPEX
components (e.g., energy consumption, cooling, cabling, rack
space occupancy); we return to further CAPEX/OPEX issues
later. Fig. 3 shows the CAPEX analysis for the purchase of
a single hardware-based and software-based SDN switch. The

price figures show that hardware switches are more economical
at port density 24 and 48, due to software switches needing
many expensive NICs and additional servers to match the same
number of ports (even though the price advantages level off
at high-end switches with 96 ports).

In summary, current market trends suggest that hardware
SDN switches provide high port density at moderate prices
but lag behind software switches in scalability, standards-
compliance and programmability.

B. HARMLESS: High port density at low cost

Next, we evaluate HARMLESS as a cost-efficient middle-
ground between the two extremes. HARMLESS unifies the
advantages of hardware and software switches, by decoupling
the raw forwarding functionality from the OpenFlow glue,
resulting in an optimal separation of concerns: high port
density by legacy devices, while the softswitch component
enables implementing the packet processing intelligence in a
clear and extensible way. Observe that the softswitch does not
need to match the port density of the legacy switch effectively
removing the major cost component, NIC prices.

HARMLESS leverages the existing and deployed comput-
ing and networking infrastructure, readily available in many
prospective SDN deployments like SOHO networks, small
and medium sized enterprises, private data centers, campus
networks and private clouds. For these use cases, HARMLESS
offers an instantaneous SDN transition path with zero initial
expenditure, apart from the usual practice of server relocation,
cabling, etc. Note, however, that the server running the Open-
Flow component and the legacy switches do not even need to
be co-located; in fact, the OpenFlow logic can be virtualized
at a remote site or even delegated to a public cloud at the price
of proper traffic forwarding and slightly increased latency.

Even in cases where spare servers or Ethernet switches
are not available, purchasing them anew in a HARMLESS
setup is still much less costly than purchasing equivalent
SDN network gear from commercial suppliers. For the below
CAPEX analysis, we assume that the legacy 48x1G+4x10G
(or 48x10G+4x40G at 10G access) Ethernet switches are
already on stock (if not, add another couple of hundred USD
per switch), so only bare-metal servers for the OpenFlow
components and 10G NICs (respectively, 40G) need to be
purchased. We aggregate 12 access ports to each trunk port,
over-committing the uplink at a similar rate as plain Ethernet
networks [35], multiplexing up to 144 access ports (72 at 10G)
to a single OpenFlow component. Accordingly, the CAPEX for
a HARMLESS (HL for short) deployment with x ports are as
follows:

C1G
HL = $1400

⌈ x

144

⌉
+ $480

⌈ x
48

⌉
+ $400

(⌈ x

144

⌉
−#extraCPU1G

HL

)
C10G

HL = $1400
⌈ x
72

⌉
+ $500

⌈ x
24

⌉
+ $400

(⌈ x
72

⌉
−#extraCPU10G

HL

)

#extraCPU1G
HL =

{
1, if 0 < (x mod 144) < 97

0, otherwise

#extraCPU10G
HL =

{
1, if 0 < (x mod 72) < 49

0, otherwise

Similar to software switches, the first term accounts for the
server, the second term for the NICs, and the third for the
additional CPUs. Using this estimate, the CAPEX analysis in
Fig. 3 shows that HARMLESS is by a large margin the most
cost-efficient SDN migration option, thanks to the high level
of aggregation that reduces the number of costly servers and
NICs as compared to pure softswitches, providing one order
of magnitude more economical option.

IV. EVALUATION

Next we turn to the practical aspects of HARMLESS
and compare it against market alternatives. We evaluate the
scalability, standards compliance, data plane performance,
latency in diverse use cases taken from practical networking
applications and under different workloads, and we present
the results side by side with the SDN migration cost anal-
ysis (CAPEX/OPEX) for each possible SDN switch option
(softswitch, COTS and white-box switches, and HARMLESS).
First, we describe our testbed and the measurement method-
ology, then we present the specific use cases, and finally we
present the evaluation results.

A. Testbed and methodology

Our testbed includes two IBM x3550 M5 servers with Intel
Xeon E5-2620v3 processors and 16GB of memory running
Debian Linux Jessie 8.0/kernel 4.9, each server equipped
with an Intel X710 NIC (10G) and Intel XL710 (40G) NIC,
respectively. The setup also contains two legacy switches, a
Cisco 3750X (24x1G + 4x10G) and an Arista 7048T
(48x1G + 4x10G), three COTS OpenFlow switches, an HP
3500 (24x1G), an Extreme X440 (28x1G + 2x10G), and
a Brocade ICX6610 (28x1G + 4x10G), and two white-
box switches (Quanta T1048 and Edge-Core AS4610)
all supporting OpenFlow v1.3. The COTS switches represent
the state-of-the-art in COTS SDN switching as of 2015, while
the white-box switches are from the low-end market of 2016.
The switches have the following flow table size limitations:

• HP 3500: 1 flow table in TCAM with max. 1500 rules,
and 4 further logical tables (processed in software);

• Extreme X440: 1 flow table in TCAM with max. 255
flow rules, assuming each one has limited length in terms
of match fields, and another table for MAC and VLAN
matching rules (also in TCAM);

• Brocade ICX6610: 1 flow table with max. 3000 rules
in TCAM (half if rules match on both L2 and L3 headers),
and no further tables.

• Quanta T1048: 1 flow table in TCAM with roughly
2000 flow rules and 6 logical tables for tens of thousands
of flow rules and different layer matching (e.g., matching

on both source and destination MAC address can only be
implemented in a logical table).

• Edge-Core AS4610: supports multiple flow tables,
one of them containing actions, carrying maximum only
3840 flow rules in TCAM (plus 24, 576 and 32, 768 flow
rules for exact matching on destination MAC address and
destination IP address, respectively)

In each experiment, one of the servers was configured to
run NFPA [36], an Intel DPDK pktgen-based benchmarking
tool, back-to-back with the system-under-test (SUT). For the
software switch evaluations the SUT was provisioned on the
other IBM server, running a stable version of OVS (v2.7.0)
and ESwitch [15], both compiled with a stable Intel DPDK
v16.11.1. The hardware switch option was evaluated on each
of our COTS switches, while for HARMLESS the Open-
Flow component was again configured on the IBM server
running OVS (HARMLESS-OVS) or ESwitch (HARMLESS-
ESwitch), connected to one of the legacy switches.

The measurements were conducted over synthetic traffic
traces, specially tailored to each use case (see below) to
contain a configurable number of flows. Note that packets were
never dropped intentionally, instead the OpenFlow pipelines
contain default catch-all rules to forward unmatched/dropped
packets to the external port; our aim was to measure raw
throughput and not whether the switches can filter traffic
adequately (they can). With this configuration, packet loss
only occurs when the SUT becomes a physical bottleneck and
therefore the packet rate received at the packet generator is rep-
resentative of the raw performance. Packets were minimum-
sized (i.e., 64 bytes) and Receive Side Scaling (RSS) was
turned on in multi-core setups [37]. All measurements were
conducted at 40G for at least 60 seconds [38]. At first the
packet rates were measured in a single-core setup; note that
the attainable throughput using a single core and PCIe x8 v3
bus speed is 15 Gbps (22 Mpps) with 64-byte packets; multi-
core scalability is studied in a separate measurement round.

1) Use cases: We considered 4 realistic use cases [36],
from private data centers to telco gateways. All scenarios
will be cast in a single hypothetical service provider’s legacy
network (see Fig. 4). The setup contains a smaller data center
(DC) with 4 racks connected into a CLOS topology with
separate L2 domains at the leaves and an L3 domain as the
spine [39], an industrial-scale load-balancer [40], and a telco
access gateway [41] that aggregates subscribers located behind
Customer Endpoints (CEs) [42].

The lower layer of the DC topology represents the L2 use
case, with each top-of-rack (ToR) switch provisioned as a
separate L2 domain; a sample L2 traffic flow is marked with
orange in Fig. 4. While certain data centers may differ in the
configuration of L2/L3 domains [43] this use case describes
large L2 networks illustratively, to be migrated from traditional
802.1 to SDN with the aim of eliminating dependency on
spanning trees and benefiting from centralized control [44].

The L3 use case embodies the upper layer of the CLOS
network interconnecting the L2 islands, a common setup in
DCs [39]; a sample traffic is marked with cyan in Fig. 4.

Fig. 4: Use cases in a service provider network.

The load balancer and access control list use case in the
middle of Fig. 4 captures the functionality of a web frontend,
balancing incoming web traffic (TCP port 80) for 100 different
web services, each available at a unique IP address [36].
During the measurements, traffic traces were crafted so that
70% of packets go to a randomly chosen web service while
the rest is filtered at the ACL.

The telco access gateway use case [36] on the right hand
side of Fig. 4 is the most complex one consisting of a
Virtual Provider Endpoint (VPE) that serves Internet access
to subscribers located behind Customer Endpoints (CEs). For
brevity, we identify CEs with the MAC address and we
assume that the operator sets 10 CEs, each serving 20 users
provisioned with unique private IP addresses.

B. Measurement results

1) Scalability and standards-compliance: Configuring the
use cases on COTS and white-box switches proved far from
trivial, due to the prohibitive flow table sizes and subtle
restrictions on flow matching rules. The hardware switches
support only a single flow table in TCAM and may or may not
provide additional tables in software. Thus, multi-table Open-
Flow pipelines had to be tediously collapsed into a single table
by hand; in case of the white-box devices their software, e.g.,
Pica8 PicOS on Quanta and ONL+Indigo on EdgeCore,
do this automatically. Unfortunately, even then the switches
rapidly run out of TCAM space because of the flow-state
explosion effects for which table collapsing is notorious [10].
In the access gateway use case for instance a separate flow
entry must be created for every (user, CE, IP prefix) tuple,
yielding so many entries that none of the hardware offerings
could implement this use case. Furthermore, one has to take
into account the ramifications of the chip in each individual
switch, e.g., the HP switch does not support static matching
on MAC addresses, the Brocade switch does not support
MAC rewrite, the EdgeCore switch cannot modify IP fields,
only on slow-path. Current hardware switches do not scale
beyond small and medium workloads, and even in that case
may require hand-tweaking the OpenFlow pipeline, while
softswitches and HARMLESS support very large deployments.

2) Performance: Fig. 5a, 5b, 5d, and 5e compare the raw
packet rate with the hardware switches, the software switches,
and HARMLESS measured in the L2, L3, load balancer and

access gateway use case, respectively. Recall that due to the
attainable packet rate of a single CPU core the y axes are
scaled up to 22 million packets per seconds (Mpps). Note that
for each use case results are reported only for the hardware
switches that could handle the use case.

Our observations are as follows. First, as long as hardware
OpenFlow switches manage to forward packets purely in the
fast path they perform at wirespeed. However, as soon as a
hardware switch runs out of TCAM space and forwarding falls
back to the software slow path performance plummets. Note,
however, that among the devices providing logical tables only
HP can use TCAM and logical tables at the same time for
the same scenario; Quanta installs as many flow rules in its
TCAM as it can (2K), and silently ignores the rest without
notifying the controller. For instance, in the L2 use case the
Extreme switch could handle 100 flows at line rate (1K and
2K flows with the Brocade and the Quanta, respectively)
but could not tackle 1K flows at all (10K for the Brocade
and the Quanta). On the other hand, all hardware switches
can support the relatively small flow table of the load balancer
use case adequately (even though the HP proved to be slower).

Meanwhile the ESwitch-based OpenFlow softswitch per-
forms close to line rate at small and medium sized workloads
and only becomes worse at very large flow tables. Depending
on the workload, the HARMLESS-ESwitch combination attains
a performance very close to that of the TCAM-based fast path
of hardware switches and the best softswitches, in the majority
of the cases reaches up to 90–95% and it robustly outperforms
the hardware’s slow-paths and the HP switch. Results with
OVS (only presented for the load balancer and the access
gateway use cases for brevity) are much worse, but then again
the HARMLESS-OVS mix is very close to pure OVS. This
suggests that the performance of HARMLESS is eminently
conditioned on the OpenFlow softswitch component; here, the
HARMLESS-ESwitch combination seems very appealing.

We measured the throughput on multiple CPU cores (Fig. 6)
under the larger workloads (namely, in the L3/100K and
LB/10K use cases [36]); this time, we use 128-byte packets
as the Intel XL710 NIC cannot be saturated with smaller
packets [45]. The results indicate that HARMLESS scales
to multiple cores linearly, however the HARMLESS-ESwitch
mix already achieves its maximum performance (much higher
than OVS can attain with 6 cores) with only 4 cores.

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(a) L2 performance

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(b) L3 performance

0

25K

50K

75K

85 144 300 500

O
ve

ra
ll

co
st

s
[$

]

Number of forwarding ports

HW switch
SW switch

HARMLESS

(c) CLOS CAPEX

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

SW-ESwitch
SW-OVS
HW-Brocade
HW-Extreme
HW-HP
HW-Quanta
HW-Edgecore
HL-ESwitch
HL-OVS

(d) LB performance

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(e) GW performance

0

50K

100K

150K

200 400 600

O
ve

ra
ll

co
st

s
[$

]

Number of forwarding ports

SW switch
HW switch

HARMLESS

(f) GW CAPEX

Fig. 5: Raw packet throughput as the function of the workload size in (a) the L2, (b) the L3, (d) the load balancer (LB) and
(e) the access gateway (GW) use cases, and the CAPEX at different deployment scales for (c) a full CLOS topology that
integrates the L2 and L3 use cases, and (f) the access gateway. Note the common legend for panel (a), (b), (d), and (e) in plot
(d): SW: software switches, HW: hardware switches, HL: HARMLESS.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6

Th
ro

ug
hp

ut
 [G

bp
s]

Number of cores

HL-ESwitch-LB
HL-ESwitch-L3
HL-OVS-LB
HL-OVS-L3

Fig. 6: HARMLESS Multi-core scalability: throughput (Gbps)
with ESwitch and OVS (128-byte).

3) CAPEX: Fig. 5c compares the CAPEX for a greenfield
deployment in the CLOS-based telco DC (the L2 and L3
use cases combined) as the function of access port density
supported at the ToR switches. Note that due to the different
form factors the spine layer scales differently: purchasing four
48x10G hardware switches for the spine incurs a huge initial
investment but can then scale to 48 leaf switches economically;
in case of software switching, one leaf switch, offering similar
aggregation ratios as a typical hardware device provides (e.g.,
48x1G vs. 4x10G), mounts 12x1G + 1x10G, thus we only
need one server with 12x10G capacity as the spine resulting
in a small CLOS topology (providing 144 access ports at the
most). Observe in Fig. 5c that in contrast to COTS devices
and HARMLESS, where we are given 4 spine switches (the
most expensive parts of the CLOS topology), the necessity of

only one spine server is the only reason why software switches
involve less initial investment.

Since in case of HARMLESS the trunk ports of the legacy
devices are used to provide the OpenFlow capability, special
attention is needed in order to preserve the non-blocking 1:1
over-subscription ratio of the CLOS topology. Therefore, in
HARMLESS a spine switch is comprised of a 48x10G+4x40G
legacy switch plus a server with two 4x10G NICs for the
softswitch component, and 2x100G NIC with an additional
CPU for compensating the inherent “loss” of uplink ports
resulting in a sum of $4,100 per spine switch (for the NIC
we considered the average price of a Mellanox ConnectX-5
NIC of $1,300). Nonetheless, a legacy leaf switch of 48x1G
+ 4x10G only requires a HARMLESS server with two 4x10G
NICs resulting in an average price of $2,350 per leaf switch.

Fig. 5f gives the CAPEX for a telco access gateway
greenfield SDN deployment in a simple tree topology (Fig. 4)
with a depth of 3 consisting of 48x1G forwarding ports at the
leafs, 48x10G aggregation switches in the middle, and one
switching gear with 40G forwarding ports as the core (we
considered the average price of $21,500 USD) offering an
overall 1:1 over-subscription ratio. One can observe that when
relying merely on software switches, expenses can easily reach
high even for fewer number of ports. On the other hand, in
case of the hardware devices and HARMLESS the steep cost
steps arrive at 576 forwarding ports: those indicate the price
of the 32x40G OpenFlow-enabled core switch, and the three
2x100G NICs for HARMLESS, respectively. Crucially, in all

TABLE I: Latency over in a bridge and in the L2/1K use cases,
energy consumption, and rack space.

SDN switch Latency [µs] Power [W] RackBridge L2 Min Max
SW-ESwitch 238 233 70 230 3U
HW-HP 138 NA 142 616 1UHW-HP-SW 697 730
SL-ESwitch 268 265 164 350 1.3U

cases HARMLESS is the most cost-efficient option, supporting
roughly the same performance at the fraction of the price:
on average HARMLESS is 2–4 times less expensive than a
softswitch-, a COTS-, or a white-box-based deployment, but
the price difference can even reach to an order of magni-
tude. Here, we assume that the legacy Ethernet switches for
HARMLESS are on stock; if not, HARMLESS is still 1.5–3
times more cost-efficient due to the economical price tag of
commodity Ethernet switches; however, if Ethernet switches
and spare servers are available in adequate number then, recall,
SDN migration with HARMLESS incurs zero cost.

4) Latency: In order to check whether the additional
softswitch in the loop increases the latency of HARMLESS
prohibitively (extra latency occurs for inter-port communica-
tion only, but not for out-of-switch traffic), we conducted a
series of latency measurements in various setups; Table I gives
the results for a single port-forwarding rule in the OpenFlow
pipeline and for the L2/1K workload. The HP switch, when us-
ing the TCAM-based fast path, yields roughly 130 µsec delay,
but it is much less efficient when it falls back to the software
datapath (around 700 µsec). ESwitch’s delay is around 230
µsec reliably, with HARMLESS only 10% more thanks to the
fast underlying plain Ethernet switch (adding roughly 30–50
µsec to the softswitch latency), but still much faster than the
software fallback of the COTS switch. The results indicate
that the additional softswitch does not introduce prohibitive
latency in HARMLESS, just the contrary, its latency is on par,
and in some cases even better than, alternatives; accordingly,
HARMLESS latency seems sufficient for anything but the
most delay-critical applications.

5) OPEX: Below, we extend our analysis with operational
costs, which can constitute a significant factor in the total
spending. Table I shows an evaluation of two important OPEX
components. The energy consumption is estimated from the
datasheets of the switches and the CPUs (note that the legacy
Ethernet switch used in HARMLESS consumes less power
than a full-scale SDN switch). The rack space occupancy
is normalized for the standard 48x1G form factor: 1U for
a hardware switch, 3U for the three 16x1G servers needed
for a 48-port software switch, and for HARMLESS 1U for
the legacy 48x1G switch and 1U for the 12x10G server, but
the latter can handle 2 additional legacy switches as well
which gives 1.3U normalized to 48 ports overall. Cabling
might be more difficult though, since some high-speed uplinks
that could otherwise be used for aggregation are allocated for
HARMLESS; yet, the flexibility of access port assignment
in HARMLESS may be exploited to optimize cabling costs.

Overall, the costs for operating HARMLESS are at the same
level as that of the alternatives.

V. RELATED WORK

SDN migration. The new levels of abstraction, programmabil-
ity, and logically centralized control are important motivators
for deploying SDN in operational networks [1], like enterprise
networks [46], DC fabrics [47], transport networks [48], [49],
WANs [3], [5], and Internet exchanges [50]. However, most
deployments involve the complete and irreversible overhaul
of the existing legacy networking infrastructure. Incremental
deployment strategies [8] seek to find a smoother migration
path than a flag-day greenfield upgrade [1], [2]. Managing a
heterogeneous network, however, can become rather unwieldy
due to the potential interference between coexisting legacy and
SDN control planes. For example, forwarding loops may be
formed due to the legacy control plane masking certain for-
warding decisions from the SDN controller [4]. HARMLESS
fits into any of these SDN migration paths smoothly, thanks to
its dataplane transparency, fine-grained upgrades, and vendor
neutrality.
Hybrid SDN. Similar to HARMLESS, the hybrid SDN
scheme Panopticon [2] connects legacy device ports to SDN-
capable switches using VLAN tagging. The objective in
Panopticon is different though: guaranteeing that each for-
warding path traverses at least one SDN switch that can
exert control over the traffic along that path. On the con-
trary, HARMLESS is dataplane-transparent and can accommo-
date any SDN policy without special tweaking. Furthermore,
Panopticon needs a nontrivial number of newly purchased
SDN switches, while HARMLESS can introduce the existing
legacy network infrastructure to under SDN control and hence
is more economical.

Fibbing [3], [49] is also similar to HARMLESS in that
it endues a legacy network employing a distributed routing
protocol with SDN control. However, it is bound by the
limitations of destination-based routing, while HARMLESS
opens up the full power of SDN to realize any forwarding and
security policy.

VI. CONCLUSION

Recently, SDN has grown out of the “niche status” and
found important use in communication networks. However,
there still exist areas it has not penetrated, mainly service
provider networks and smaller businesses with less technically
savvy IT staff. In this paper, we presented HARMLESS, a new
SDN switch design to offer an attractive deployment path for
such cases.

The main idea in HARMLESS is opening up traditional
black-box network gear and virtualizing the switch OS in
a separate softswitch component. HARMLESS allows an
operator to start experimenting with SDN instantaneously: by
connecting the trunk port of a legacy Ethernet switch to a
spare x86 server and firing up HARMLESS, an operator can
immediately engage with OpenFlow controller programs with
zero initial investment. Later, any combination of legacy ports

and switches can be connected to the HARMLESS software
switch to incrementally reach a full SDN deployment.

HARMLESS realizes an appealing combination of hardware
and software switching, with the hard switch providing the
port density and the softswitch delivering programmability.
Our comprehensive CAPEX analyses on realistic SDN mi-
gration scenarios indicate that HARMLESS attains the most
economic SDN migration strategy today, with performance
close to (90–95%), and in some cases even higher than that
of the alternatives. Crucially, HARMLESS is exempt from
the dataplane quirks and performance regressions experienced
with COTS OpenFlow appliances. With the continuous evolu-
tion of software-based switching and general-purpose packet
processing solutions, throughput achieved with HARMLESS
will likely further improve in the future.

ACKNOWLEDGEMENTS

The work has been supported in part by the European
Cooperation in Science and Technology (COST) Action CA
15127: RECODIS - Resilient communication and services;
and by the UK Engineering and Physical Sciences Research
Council (EPSRC) projects EP/L026015/1, EP/N033957/1, and
EP/P004024/1.

REFERENCES

[1] Open Networking Foundation, “SDN Migration Considerations and Use
Cases,” ONF Solution Brief, Nov 2014.

[2] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in USENIX ATC, 2014, pp. 333–345.

[3] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in SIGCOMM, 2015, pp. 43–56.

[4] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” SIGCOMM
CCR, vol. 44, no. 2, pp. 70–75, 2014.

[5] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in SIGCOMM, 2013.

[6] Brocade, “Migrating to SDN: planning for a smooth transition,” [Online:
https://goo.gl/cgPFTs], 2014.

[7] M. McNickle, “With hybrid SDN deployment, no need for network
forklift,” TechTarget SearchSDN, 2013.

[8] M. K. Mukerjee, D. Han, S. Seshan, and P. Steenkiste, “Understanding
tradeoffs in incremental deployment of new network architectures,” in
CoNEXT, 2013, pp. 271–282.

[9] I. Pepelnjak, “Q&A: Vendor Openflow Limitations,” http://blog.ipspace.
net/2016/12/q-vendor-openflow-limitations.html, Dec 2016.

[10] B. Pfaff et al., “The design and implementation of open vswitch,” in
NSDI, 2015.

[11] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
SDN flow tables,” in PAM, 2015, pp. 347–359.

[12] I. Pepelnjak, “Table Sizes in OpenFlow Switches,” http://blog.ipspace.
net/2016/03/table-sizes-in-openflow-switches.html, March 2016.

[13] M. Kuzniar et al., “A SOFT way for OpenFlow switch interoperability
testing,” in CoNEXT, 2012.

[14] A. Pavlidis et al., “Overview of SDN Pilots Description and Findings:
Part A,” Deliverable D7.1, 2017.

[15] L. Molnár et al., “Dataplane specialization for high-performance open-
flow software switching,” in Proceedings of ACM SIGCOMM, 2016, pp.
539–552.

[16] Intel, “Guide: Data plane development kit for linux,” Guide, April 2015.
[17] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,

“Towards high performance virtual routers on commodity hardware,” in
CoNEXT, 2008, pp. 1–12.

[18] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
parallelism to scale software routers,” in SOSP, 2009, pp. 15–28.

[19] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “PISCES: A programmable, protocol-independent software
switch,” in SIGCOMM, 2016, pp. 525–538.

[20] M. Casado, T. Koponen, D. Moon, and S. Shenker, “Rethinking packet
forwarding hardware,” in HotNets, 2008.

[21] D. Moon, J. Naous, J. Liu, K. Zarifis, M. Casado, T. Koponen,
S. Shenker, and L. Breslau, “Bridging the software/hardware forwarding
divide,” uC Berkeley.

[22] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,
E. Kohler, M. Manesh, S. Nedevschi, and S. Ratnasamy, “Can software
routers scale?” in PRESTO, 2008, pp. 21–26.

[23] G. Pongrácz, L. Molnár, Z. L. Kis, and Z. Turányi, “Cheap silicon:
A myth or reality? picking the right data plane hardware for software
defined networking,” in HotSDN, 2013, pp. 103–108.

[24] J. Gross, A. Lambeth, B. Pfaff, and M. Casado, “The rise of soft
switching, Part I, II, III,” Network Heresy, 2011.

[25] G. Ferro, “Soft switching fails at scale,” EtherealMind, 2011.
[26] N. Gaur, “Fundamentals of vlans: Router on a stick,” CCENT/CCNA

R&S Study Group, 2014.
[27] Cisco, “Network address translation on a stick,” Technical study, Doc-

ument ID: 6505, 2008.
[28] F. F. Andrew Lunn, Vivien Didelot, “Distributed switch architecture,”

Netdev Conf 2.1, 2017.
[29] IEEE, “Std 802.1ad - 2005 IEEE Standard for Local and metropolitan

area networks – virtual Bridged Local Area Networks, Amendment 4:
Provider Bridges”,” 2005.

[30] M. Szalay, L. Toka, G. Rétvári, G. Pongrácz, L. Csikor, and D. P.
Pezaros, “Harmless: Cost-effective transitioning to sdn,” in Proceedings
of the SIGCOMM Posters and Demos, 2017, pp. 91–93.

[31] Cisco, “Campus network for high availability design guide,” Design
Guide, 2008.

[32] Juniper, “Campus networks reference architecture,” 2010.
[33] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker, “Frenetic: a network programming language,”
in ICFP, 2011, pp. 279–291.

[34] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with Pyretic,” USENIX Mag., vol. 38, no. 5, 2013.

[35] H. Hudson, “Extending access to the digital economy to rural and
developing regions,” The MIT Press, 2002.

[36] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “NFPA: Network
function performance analyzer,” in Proc. of NFV-SDN, 2015, Pipelines
available: http://nfpa.tmit.bme.hu/?page=usecases.

[37] Microsoft, “MSDN: Introduction to Receive-Side Scaling,” [Online:
http://goo.gl/BpoErm, accessed 05-07-2016].

[38] S. Bradner et al., “Benchmarking methodology for network interconnect
devices,” RFC 2544, 1999.

[39] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in NSDI, 2014.

[40] R. Gandhi and othersg, “Duet: Cloud scale load balancing with hardware
and software,” in SIGCOMM, 2014, pp. 27–38.

[41] Intel, “Network function virtualization: Virtualized BRAS with Linux
and Intel architecture,” https://goo.gl/TVj8co.

[42] S. K. N. Rao, “SDN and its USE-CASES-NV and NFV,” White Paper,
NEC technologies India Limited, 2014.

[43] Cisco, “Cisco Data Center Infrastructure 2.5 Design Guide,” https://goo.
gl/kW78VM, Nov 2011.

[44] C. Kim et al., “Floodless in Seattle: a scalable Ethernet architecture for
large enterprises,” in SIGCOMM, 2008, pp. 3–14.

[45] Intel Corporation, “Intel Ethernet Converged Network Adapters XL710
10/40 GbE,” Datasheet, 2015.

[46] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in HotSDN,
2012, pp. 115–120.

[47] N. Mysore et al., “PortLand: a scalable fault-tolerant Layer 2 data center
network fabric,” SIGCOMM CCR, vol. 39, no. 4, pp. 39–50, 2009.

[48] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in CoNEXT, 2013,
pp. 13–24.

[49] M. Chiesa, G. Rétvári, and M. Schapira, “Lying your way to better
traffic engineering,” in CoNEXT, 2016.

[50] A. Gupta, M. Shahbaz, L. Vanbever, H. Kim, R. Clark, N. Feamster,
J. Rexford, and S. Shenker, “SDX: a software defined Internet Ex-
change,” in SIGCOMM, 2014, pp. 551–562.

