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Abstract

The link between prostate cancer (PC) development and lipid metabolism is well 

established, with AR intimately involved in a number of lipogenic processes 

involving SREBP1, PPARG, FASN, ACC, ACLY and SCD1.  Recently, there is 

growing evidence implicating the role of obesity and peri-prostatic adipose 

tissue (PPAT) in PC aggressiveness and related mortality, suggesting the 

importance of lipid pathways in both localised and disseminated disease.  A 

number of promising agents are in development to target the lipogenic axis in 

PC, and the likelihood is that these agents will form part of combination drug 

strategies, with targeting of multiple metabolic pathways (e.g. FASN and CPT1), 

or in combination with AR pathway inhibitors (SCD1 and AR).  

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



3

Introduction

Prostate cancer (PC) is the commonest adult male cancer in the developed world, 

and the second leading cause of cancer related death in men (1).  The majority of 

patients are likely to die with, rather than from PC, making it important to 

identify key pathways that confer poor prognosis, thus minimising 

overtreatment.

Huggins et al in 1941 demonstrated that PC epithelial growth and survival was 

dependent upon androgens (2).  Androgen deprivation therapy (or ADT) is often 

the first line treatment in patients with advanced disease.  This is achieved via 

drug treatments designed to block androgen activity, either by direct 

suppression of the Luteinising Hormone Releasing Hormone (LHRH) or 

Androgen Receptor (AR) axis, thus, mimicking surgical castration.  With time, PC 

develops resistance to these treatments and the disease progresses to CRPC 

(castrate resistant PC) form, which is uniformly fatal (3).  Thus, a need exists to 

identify other signalling pathways in PC development and progression, and 

design specific treatments that exploit the dependencies and vulnerabilities of 

CRPC. 

In 1953 Medes and colleagues (4) observed a relationship between lipid 

metabolism and cancer.  They demonstrated that cancer tissues could generate 

fatty acids (FAs) and phospholipids through cellular de novo lipogenesis, and 

were not solely reliant upon lipid/FA uptake from the environment.  This is turn 

provided the support required for the excessive growth and proliferation, which 

is a hallmark of cancer.  The use of FAs in the cell can be utilised for the 
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generation of energy via their breakdown by β-oxidation to generate ATP.  The 

energy demands within cancer cells are much higher than that for non-cancerous 

cells, at least in part to support uncensored growth and proliferation.  However, 

the use of FAs to synthesise lipids is of equal importance.  Membrane synthesis, 

which is a pre-requisite of growth and cell division, is linked to G1 phase of cell 

cycle (5).  In G1 phase, cell cycle arrest results from suppressed expression of 

key lipid metabolism genes such as Fatty Acid Synthase (FASN) and Acetyl-CoA 

Carboxylase (ACC) (6).  Besides membrane synthesis, lipogenesis is necessary for 

other functions (7).  For instance, de novo synthesis of mono-unsaturated and 

saturated lipids plays key roles in signal transduction, intracellular trafficking, 

cell polarisation and migration (8-10).  Each of these processes are often 

hijacked and deregulated in cancer cells to promote their survival.  As such it is 

not unreasonable to think that disruption or blocking of the lipid metabolism 

pathways would be detrimental to tumour cell growth, proliferation and 

ultimately survival, thus representing potential therapeutic targets. 

Whilst androgens have long been established as a key player in PC, it has also 

been observed that advanced prostate tumours accumulate lipid droplets (11).  

It is now recognised that androgens may play a role in this due to effects they 

have on lipid metabolism (11, 12).  Androgens regulate the mRNA and protein 

expression of one of the key regulators of lipid metabolism, the sterol regulatory 

element-binding protein (SREBP).  SREBPs not only increase lipid metabolism, 

but also increase cholesterol metabolism (13), which in turn can aid androgen 

synthesis.  It has also been observed that as well as utilising FA’s for de novo 

lipogenesis, PC cells tend to use fatty acids over glucose as an energetic substrate 
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through increased β-oxidation and this is not the case in non-tumorigenic cell 

lines (14), making lipid metabolism an attractive as well as specific avenue for 

treatment. 

Key Regulators of Lipid Metabolism in PC

Sterol Regulatory Element-Binding Protein 1 (SREBP1)

SREBP1 is a master regulator in FA metabolism.  It controls the transcription of 

ATP Citrate Lyase (ACYL), ACC, Stearoyl-CoA Desaturase 1 (SCD1) and FASN.  

Un-regulated SREBP activation has been linked to obesity, fatty liver disease, 

insulin resistance, autoimmune diseases, as well as cancer development (15).  It 

is frequently overexpressed in many cancers and is highly associated with 

increased tumorgenicity and invasion. 

As previously mentioned, in PC androgens increase the activity of SREBP (13).  

This has recently been attributed to androgen receptor (AR) mediated 

transcription of SREBP-cleavage activating protein (SCAP).  SCAP binds to 

SREBP, and a complex translocates from the endoplasmic reticulum (ER) to the 

Golgi apparatus, where the complex is cleaved by the proteases SP1&2, thus 

releasing SREBP from SCAP, with the N-terminal DNA binding and 

transcriptional activation domains of SREBP exposed for transcriptional 

functions on its target genes (16, 17).  This situation is further compounded by 

the ability of SREBP, once activated, to further enhance AR expression through 

binding to a SRE (sterol regulatory element) present in the AR gene (18).  SREBP 

has also been identified as an oxygen sensor in yeast (19).  The SREBP pathway 

can monitor oxygen-dependent sterol synthesis as a measure of oxygen 
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availability, and control a transcriptional program required for adaptation to 

hypoxia, which is frequently found in solid tumours such as those of the prostate. 

In addition to response to oxygen and androgens levels, SREBP is also activated 

by the AKT/PI3K pathway (20, 21).  AKT signalling in a PTEN null environment 

(a situation common in PC with PTEN loss being a driver mutation in the 

disease) increases SREBP expression which in turn up-regulates expression of 

the Low-density Lipoprotein (LDL) receptor, thus increasing the uptake of 

particles, containing cholesteryl esters (CE).  Depletion of this CE storage led to 

an impairment in PC aggressiveness, has been observed to attenuate cell growth, 

both in vitro and in vivo through limitation of the uptake of essential fatty acids 

(11).

In summary, SREBP is crucial factor in PC progression and interference with its 

associated pathways in PC may be a possible avenue for treatment of advanced 

disease.  Physiologic inhibitory mechanisms already exist within the cell to 

prevent over-activation of SREBP.  AMPK can phosphorylate SREBP, which 

prevents the proteolytic action of SP1 and SP2 in the Golgi apparatus, thus 

preventing SREBP1 activation (22).  Another negative regulator of SREBP is 

Farnesoid X receptor (FXR).  Upon its activation through ligand binding of 

Chenodexycholic acid (CDCA), FXR reduces the mRNA and proteins levels of 

SREBP, which in turn attenuates SREBP controlled lipid metabolism and 

consequently reduces tumour growth and proliferation (23).  It has been 

observed that FXR inhibits co-activator recruitment to the SREBP promoter 

thereby reducing its expression and consequently affecting various downstream 
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effectors (24).  Interestingly, FXR may also further impact on PC via up-

regulation of PTEN (25). 

Regardless, as a master regulator of lipid metabolism it has been shown that by 

attenuating its function tumour growth and proliferation are diminished and 

thus it remains as an attractive drug target.

Peroxisome proliferator-activated receptor gamma (PPARG)

PPARG is a transcription factor belonging to the nuclear hormone receptor 

superfamily.  It is known to have roles in adipocyte differentiation, lipid 

metabolism, peripheral glucose utilisation and inflammatory response.  It has 

two isoforms PPARG1 and PPARG2.  PPARG1 is expressed in most tissues whilst 

PPARG2 is present in adipocytes.  Previous studies have demonstrated its role as 

a tumour suppressor in a variety of cancers, showing that upon treatment with 

PPARG agonists that proliferation of tumour cells is reduced (26-30). It was also 

thought to be the case in PC (31), however our work (32) and that of others (33) 

has challenged this view. 

In our forward genetic screen using a murine transgenic mouse prostate cancer 

model driven by Pten deletion (32), PPARG was found to promote metastatic PC 

by associated up-regulation of the lipid metabolism pathways, more specifically 

those involved in de novo lipogenesis.  Additionally, inhibition of PPARG 

supressed tumour growth and down-regulated the lipid synthesis pathway 

genes.  PPARG levels were observed to correlate strongly with that of FASN, a 

key enzyme in the lipid synthesis pathway, and that high PPARG/FASN levels 

along with PTEN loss conferred poor prognosis.  This finding could be used 
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therapeutically to stratify patients, identifying those with more aggressive 

disease who would benefit from a PPARG/FASN derived treatment program.  

Furthermore, our work as well as that of others suggests that PPARG does not 

affect the initiation of the primary tumour (34), at least in the mouse models 

examined, but has a role more specific to the development of aggressive 

metastatic disease (32).  In a separate study, a link was also established between 

PPARG and PC progression, identifying Fatty acid binding protein 5 (FABP5) as a 

potential agonist for PPARG, with increasing FABP5 and PPARG levels 

correlating with disease severity (35).  This is in line with earlier work where 

FABP5 was found to be positively associated with an invasive more aggressive 

phenotype, which could be abrogated by addition of PPARG inhibitor GW9662, 

leading the authors to surmise that the metastatic effects they observed through 

FABP5 over-expression resulted from an FABP5 delivery of fatty acid ligand to 

nuclear membrane bound PPARG resulting in its activation (36).

A further study also made the prostate specific observation regarding the role of 

PPARG as an oncogene (33)  Whilst attempting to elucidate the mechanism of 

long-term warfarin (a vitamin K antagonist) and its role in reducing the risk of 

PC, they established a functional link between warfarin, AR and PPARG function.  

Their study demonstrated that warfarin could inhibit AR transcriptional activity, 

independent of its -carboxylation, through inhibition of PPARG signalling.  This 

suggests that PPARG can act as a regulator of AR, with its inhibition causing 

reduction in PC growth and proliferation via AR.  However, the authors were not 

able to demonstrate a direct effect of AR on PPARG.  This is at odds with another 

recent study that demonstrates that AR can regulate the activity of PPARG, 
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showing that AR normally functions to supress PPARG expression within AR 

positive PC cells (37).  These conflicting observations may simply be because of 

context and cell line differences, but highlight the need for further investigation 

into the intersecting regulatory pathways of PPARG and AR, as any potential 

therapy designed around these axes may lead to a worsening of the disease 

rather alleviating it.  Indeed, it may be that a two-pronged approach is required, 

targeting both AR and PPARG simultaneously.

As PPARG has been a therapeutic target in disease areas other than cancer, there 

are already agents available in the clinic known to target PPARG.  

Thiazolidinediones (TZDs) or ‘glitazones’ are agonists of PPARG used in the 

treatment of type 2 diabetes, through improvements of insulin sensitivity (38).  

However, the concentration at which the TZDs are used to treat diabetes are far 

higher than the concentration required for full PPARG activation and thus the 

mechanism may in fact be due to a PPARG independent effect (39, 40).  Given the 

link between diabetes and obesity, and the emerging evidence of the role of 

obesity and PC (to be discussed later) it is worth re-considering the potential 

risks of using a drug known to activate PPARG in (these obese and diabetic) men. 

PPARG represents an exciting new target for cancer therapy, but further 

investigation is needed to identify the subgroup of patients who would benefit 

from this targeted treatment.

Fatty acid synthase (FASN)

FASN) is a key component of the lipid synthesis pathway and has been 

implicated in many cancers (41, 42).  FAs are essential constituents of membrane 
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lipids, and are an essential substrate for energy metabolism.  There are two 

sources of FAs for animal metabolism, namely exogenous (dietary) FAs and 

endogenous (FASN synthesised) FAs.  FASN synthesises long-chain FAs from 

acetyl-CoA and malonyl-CoA, producing the 16C FA, palmitate (42).  In healthy 

individuals, FASN has minimal effect since there is adequate levels of FA 

available from dietary fat.  Thus, most normal cells will preferentially utilise 

circulating FA for the synthesis of new structural lipids.  In normal conditions, 

FASN converts excess carbohydrate into FAs, which are then esterified to 

triacylglycerols that can be stored (and if needed provide energy via β-

oxidation). 

FASN has been shown to be one of the downstream effectors of the 

PTEN/PI3K/AKT pathway in the PC cell line LNCaP (43).   Similarly, Migita et al 

demonstrated that forced overexpression of FASN increased cell proliferation 

both in vitro and in vivo, dependent on the presence of AR in the PC cells (44).  

Knock down of FASN in the same cells triggered apoptosis, suggesting that FASN 

can act as an oncogene in the presence of AR, and that FASN exerts its oncogenic 

influence by inhibiting apoptosis.

P300 (also known as EP300 or E1a binding protein 300) is an acetlytransferase 

that acts as a transcription co-activator and has been linked to PC growth.  It is 

known to acetylate histone H3 lysine 27 (H3K27Ac) within the FASN gene 

promoter region, and studies have demonstrated that it acts to increase FASN 

expression, driving lipid accumulation and PC cell growth (45). 

Immumohistochemical (IHC) studies of FASN expression suggest that it is one of 

the earliest and commonest events in the development of PC (46, 47).  As the 
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disease progresses, FASN levels correlate with Gleason Scores (tumour 

differentiation) and PSA levels (48).

Upon epithelial to mesenchymal transition (EMT), a process crucial for 

metastasis, FASN levels appear to rise along with increases in lipid droplet and 

triacylglycerides (TAG) formation in DU145 PC cells (49).  It remains unclear 

what role FASN plays in EMT or what the TAGs contained inside the lipid 

droplets are doing, but it is possible that the accumulation of stored TAGs may 

contribute to EMT through provision of fuel source with the generation of ATP as 

well as biomass for membrane synthesis (5).  Inhibition of FASN has been 

observed to suppress both proliferation and key EMT phenotypes including cell 

adhesion, migration and invasion (50).  FASN knockdown is observed to reduce 

the synthesis of phospholipids and triglycerides but not cholesterol (6).  

Androgens have been observed to induce FASN expression and subsequent lipid 

accumulation in vitro in multiple PC cell lines (51). It is probable that this effect 

is presided over by SREBP and/or PPARG, however other androgen regulated 

factors may also have a role to play.  Androgens may exert their effect on FASN 

through their ability to increase expression of ubiquitin-specific protease-2a 

(USP2a), an isopeptidase, which is able to stabilise FASN by deubiquitinating it at 

a preproteasomal level (52).  Thus, androgens can induce FASN expression both 

through activation of SREBP and PPARG, but also further downstream by 

stabilisation of the resultant protein, allowing PC cells to achieve even greater 

levels of FASN expression.  Aside from androgens, FASN expression has also been 

linked hypoxia due through the activation of Akt and SREBP1 in breast cancer, 

another hormone driven cancer (53). 
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The specific oncogenic nature of FASN in PC seems to mark it out as an ideal 

candidate for drug development (41).  Its increased levels and function 

correlating with the most aggressive forms of the disease give promise that such 

a treatment would potentially be useful at all stages, from chemoprevention up 

to even the most severe cases.  

Stearoyl-CoA desaturase 1 (SCD1)

SCD1 (Δ-9-destaurase) is an endoplasmic reticulum (ER) enzyme that catalyses 

the rate-limiting step in the formation of mono-unsaturated FAs (MUFAs) 

from stearoyl-CoA and palmitoyl-CoA (54).  These MUFAs (oleate and 

palmitoleate) are major components of membrane phospholipids and 

cholesterol esters.  SCD1 is a key enzyme in FA metabolism, introducing a double 

bond at the Δ9 position in newly synthesised FAs.  

Like FASN, SCD1 expression is regulated by SREBP.  FASN acts upstream to 

produce saturated FAs, which SCD1 can then unsaturate.  A recent study 

demonstrated that SCD1 inhibition altered the cellular lipid composition, and 

importantly impeded cell viability in the absence of exogenous lipids (55).  

Inhibition also altered cardiolipin composition, leading to the release of 

cytochrome C and induction of apoptosis.  Silencing of SCD1 expression in a 

prostate orthograft model using LNCaP cells efficiently blocked tumour growth 

and significantly increased animal survival (55).  This corresponds with previous 

studies where pharmacological inhibition of SCD1 impaired lipid synthesis by 

depleting MUFA and slowed PC xenograft growth in nude mice (56, 57).  
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Despite this it has also been observed that loss of SCD1 function can induce 

increased ER- and oxidative stress, bought about by accumulation of saturated 

fatty acids in membrane phospholipids, which induces an unfolded protein 

response (UPR) (58).  Indeed, it has been shown that PC cells have increased 

levels of membrane lipid saturation which may protect from free radicals and 

chemotherapeutics (59).  Intriguingly, out with its direct role in lipid 

metabolism, proteolytic cleavage of SCD1 protein generates a small peptide that 

has been shown to can exert a positive effect on the transcriptional activity of AR 

(60). 

The role of SCD1 in PC therefore seems twofold.  Firstly, to function in its 

capacity as a desaturase to increase the levels of mono-unsaturated lipids in the 

cancer cell.  This can meet the increased need for these lipids in rapidly dividing 

and growing cells.  Secondly, upon proteolytic cleavage of SCD1, a small peptide 

fragment can enhance AR mediated signalling, thus further promoting PC growth 

and proliferation.  If a therapy can be designed around this peptide it may be 

represent an opportunity to attenuate the effects of AR on PC.

ATP Citrate Lyase (ACLY) and Acetyl-CoA Carboxylase (ACC)

ACC and ACLY are both up-stream of FASN in the lipid synthesis pathway.  ACLY 

is responsible for the conversion of citrate (derived from the TCA cycle and 

metabolism of glucose) to acetyl CoA.  Linking glucose metabolism to FA 

synthesis, ACC then takes the acetyl CoA produced by ACLY and converts it to 

malonyl-CoA, which can then be fed to FASN to generate saturated FA.  

Knockdown or chemical inhibition of either of these two enzymes has been 
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shown to inhibit the growth of a variety of solid tumours, including PC (6, 61-

64).  Both ACC and ACLY expression has been linked to androgens (13).  

Reduction in ACLY levels by RNAi and the inhibitor SB-204990 has been 

observed to cause a dramatic reduction in growth of human PC3 orthografts.  

This is due to their higher rate of glycolysis, and correspondingly high rate of 

glucose-dependent lipid synthesis, making them sensitive to ACLY inhibition 

(61).  

A recent study has demonstrated that it is possible to target the ACLY-AMPK-AR 

axes to sensitise CRPC cells to AR antagonism (65).  A combined pharmacological 

approach with an AR antagonist and ACLY inhibition in CRPC cells promotes 

energetic stress and AMPK activation, resulting in further suppression of AR 

levels and target gene expression, inhibition of proliferation, and apoptosis.

Gross effects of the adiposity within the tumour microenvironment

Obesity is a risk factor in many cancers, including PC.  Levels in males in 

developed countries are set to rise to 83% by 2025 (66).  A recent meta-analysis 

has demonstrated that whilst not significantly correlated with PC incidence (RR, 

1.00; 95% CI, 0.95–1.06), obesity correlates strongly with increased risk of 

developing aggressive PC (RR, 1.14; 95% CI, 1.04–1.25) and PC specific mortality 

(RR, 1.24; 95% CI, 1.15–2.33) (67). 

Knowing that androgens are major drivers of PC, it is surprising that high BMI 

and visceral/subcutaneous fat content actually inversely correlates with 

testosterone levels (68).  Consequently, in obese men, testosterone (androgen) 

levels are reduced.  Therefore, it is surprising that obesity, as a low testosterone 

phenotype, correlates with PC growth and development. 
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The fat deposit closest to the prostate is the peri-prostatic adipose tissue (PPAT), 

which is found surrounding the prostate.  PPAT volume, measured both on 

Magnetic Resonance Imaging (MRI) and Ultrasound (US), has been established as 

a potential biomarker for PC aggressiveness (69, 70).  Periprostatic fat volume 

was found to be highest in patients at highest risk of developing Castrate 

Resistant Prostate Cancer (CRPC).  This highlights a potential role of PPAT in 

predicting the effectiveness of ADT treatment. 

It has been observed that PC cells grown in conditioned media (CM) from PPAT 

have a significant increase in proliferation and motility in vitro (71, 72).  This 

effect was specific to PPAT, with factors derived from alternative adipose CM 

sources showing minimal effect.  The specific “adipokines” causing these effects 

in the PPAT CM has only recently begun to be elucidated.  Matrix 

metalloproteinase (MMP) activity, known to be required for migration and 

metastasis, has been associated with PPAT (72).  PPAT is able to promote 

tumour growth and migration through increased matrix metalloproteinase 

activity of MMP2 and MMP9, which are released into the tumour 

microenvironment (72).  Furthermore, the expression level of the adipokine 

receptor CCR3 was found to increase in tandem with increasing volume of PPAT 

(69).  Similarly, secretion of CCL7 from periprostatic adipocytes was found to 

promote the migration of CCR3 expressing PC cells in vitro and in vivo  (73).  In 

obesity, there is higher secretion of CCL7 by cancer associated adipocytes (CAA), 

which may mechanistically promote the development of locally advanced 

disease.  The increased migration of PC cells was inhibited with suppression of 

the CCR3/CCL7 axis.  Clinically, increasing expression of CCR3 is associated with 
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higher Gleason Sum Score, higher pathological tumour (T) stage, lymph node 

invasion and an increased risk of biochemical recurrence (73).  

A variety of pro-inflammatory cytokines and chemokines are found to increase 

relative to levels of obesity; one such chemokine IL-6 has been shown to be 

associated with PC (74, 75) with increasing levels correlating with advanced 

aggressive castrate resistant metastatic disease (76, 77).  IL-6 is produced by the 

adipose tissue surrounding the prostate, such as the PPAT, and is involved in 

regulation of proliferative responses and cell death (78).  Following migration of 

tumour cells along this chemokine (IL-6) gradient and upon contact with the 

PPAT, it appears that PPAT volume is reduced, which may be due to re-modelling 

of the PPAT by the invading tumour (73).  However, given that tumour cells have 

been observed to induce lipolysis in neighbouring adipocytes and thus parasitise 

their lipid stores to fuel tumour growth and proliferation (79, 80), it is also 

possible that this loss of PPAT upon contact with tumour is a result of the 

tumour utilising the fuel stored there to grow and divide.

Another fat deposit utilised by PC cells is bone marrow adipocytes.  Given bone is 

a site to which PC preferentially metastasises, it raises the question as to 

whether this is related to the presence of the marrow fat cells.  It is similarly 

hypothesised the reason that PC metastasises at a later stage compared to other 

cancers is because of the relative abundance of locally accessible fat stores, and 

only when these are exhausted do the PC cell metastasise to within proximity of 

local lipid rich marrow fat cells.  These PC cells can then induce the marrow fat 

cells to undergo lipolysis, releasing free FAs and glycerol, the latter of which can 
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then feed into the glycolytic pathway of the PC cells (81).  Highlighting the 

impact of tumour micro-environment, bone marrow adipocytes can alter the 

gene expression profile of PC cells to enhance utilisation of the glycolytic 

pathway with concurrent increase in lactate production, indicating a shift to a 

glycolytic metabolic profile, which is consistent with the Warburg Phenotype 

(81).  

Fat metabolism targeted treatments for prostate cancer

With the evidence linking PC to lipid metabolism growing, a number of 

treatment strategies targeting various stages of the pathway have been 

investigated.

Silibinin is compound that is isolated from the seeds of the milk thistle plant and 

is widely consumed for the liver health benefits it offers, including its use as a 

potential treatment in PC (82).  Silibinin activates AMPK, which in turn 

phosphorylates SREBP preventing SREBP cleavage and its subsequent nuclear 

translocation and resultant activation of SREBP target genes (83, 84).  This 

reduces lipid and cholesterol content in PC cells compared to benign prostate 

epithelial cells, making it a PC specific treatment option (84).  Inactivation of 

SREBP1 by silibinin causes downstream reduction in expression levels and 

activities of multiple lipid and cholesterol metabolic genes; among them are 

FASN, ACYL, ACC, AMACR (an isomerase involved in the β-oxidation pathway of 

fatty acids) and HMGCR (an enzyme that is the rate limiting step in the 

mevalonate pathway that produces cholesterol) (83).  Thus, silibinin acts to 

inhibit both lipid metabolism and cholesterol synthesis through SREBP 
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inhibition, halting proliferation and inducing cell cycle arrest, as well as 

preventing the development of androgen resistance in PC cells (84). 

Another molecule, Fatostatin, a synthetic diarylthiazole derivative, is known to 

block adipogeneis through inhibition of SREBP (85).  It has been observed to 

bind to SCAP, the escort protein of SREBP, blocking the ER-Golgi translocation of 

SREBP, and thus preventing its activation (85).  Whilst this work has not been 

performed in PC, it represents another potential mechanism for blocking SREBP 

activation (86). 

When considering PPARG we have already mentioned the differing opinions 

upon its role as an oncogene or a tumour suppressor.  The evidence supporting 

its role as a tumour suppressor advocates the use of PPARG synthetic agonists 

for treatment of PC.  Thiazolidinediones (TZDs) are synthetic PPARG agonists 

and have been successfully used in the treatment of type II diabetes, for review 

see (87).  The premise behind their use being that upon treatment with TZD’s 

PPARG is activated and in a dose dependant manner relieving the effects of 

hyperglycaemia.  However further research has discovered that the 

concentrations at which TZD’s are being used to treat diabetes is far higher than 

required for the full activation of PPARG (88).  When applied at more physiologic 

(lower) concentrations for full PPARG activation, TZD was in fact protective 

against apoptosis, possibly through enhancing the cells’ ability to maintain the 

mitochondrial membrane potential (88).  This suggests that treatment with 

TZD’s at high concentrations is not necessarily resulting in specifically PPARG 

driven effect and indeed the activation of PPARG in this context may be 
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counterintuitive.  Recent work now appears to suggest that PPARG activation 

may be tumourigenic in PC (32, 33), and compounding this with the fact that 

those suffering type II diabetes are often overweight/obese, then an activation of 

PPARG by TZD could accelerate tumourigenesis.  

Conflicting evidence surrounds the role of statins in PC, reviewed in (89).  

Studies of PC cell lines and animal models have shown that statins have anti-

tumourigenic potential, by inhibiting proliferation and growth of PC cells (90, 

91).  Recent Danish registry based studies also demonstrated a positive role of 

statins in reducing PC mortality, both pre-and post-diagnosis (92, 93).  A UK 

registry based study found that post-diagnosis statin use was associated with 

reduced PC mortality, particularly among patients who had used it prior to the 

diagnosis of PC (94).  Two meta-analyses failed to find an association between 

statin use and PC recurrence among patients following radical prostatectomy or 

radiotherapy (95, 96).  In contrast, a more recent meta-analysis demonstrated up 

to 25% risk reductions for PSA recurrence, and both PC-specific and overall 

survival (97).  The recent Finnish Randomised Study for PC screening showed no 

reduction in PC mortality with pre-diagnosis statin use, whereas post-diagnosis 

use was associated with reduced mortality, especially in patients on Androgen 

Deprivation Treatment (ADT) (98).  Another recent study examining selection 

bias found that once this was accounted for, statin use within 6 months of cancer 

diagnosis did not appear to improve 3-year cancer specific survival or overall 

survival (99).
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FASN is now accepted as a bona fide oncogene.  Inhibition of FASN has been 

found to cause selective apoptosis of cancer cell in multiple cancer types (100), 

however the mechanism behind this remains unclear.  It is possible that loss of 

FASN affects membrane function, DNA replication or inhibition of anti-apoptotic 

proteins and/or the accumulation of Malonyl-CoA (101).  The selective apoptotic 

effects caused by loss of FASN activity on cancer cells make it an attractive target 

for therapy.  Cerulenin, a naturally derived inhibitor of FASN, is produced by a 

fungus Cephalosporum caerulens.  Cerulenin binds the B-ketoacyl synthase 

domain of FASN to suppress its function.  It is highly potent but is also unstable 

with toxic side effects.  The synthetic analogue C75 of cerulenin was developed 

with a better side effect profile and greater stability (102).  However, the major 

side effect of both C75 (and cerlenin) is dramatic and rapid weight loss 

seemingly resulting from stimulation of carnitine palmitoyltransferase-1 (CPT1), 

which activates mitochondrial fatty acid oxidation, is the limiting factor in 

developing these agents as cancer therapies (102, 103). 

Novel combination strategies with co-inhibition of FASN and AMPK have also 

been explored in pre-clinical models, with the use of AMPK inhibitor compound 

C (cC) and C75.  Blocking lipid synthesis with concurrent AMPK inhibition, 

results in accumulation of toxic metabolites such as malonyl-CoA and NADPH as 

well as generating of toxic reactive oxygen species (ROS) inducing apoptosis and 

arrest of tumour cell proliferation (104).

Another naturally occurring FASN inhibitor exists in the form of various plant 

flavonoids, one of which is found in green tea, namely Epigallocatechin-3-gallate 

(EGCG).  EGCG has been shown to block the formation of tumours in a range of 
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animal models (105).  Similar to treatments with C75 and cerlenin, EGCG 

treatment also resulted excessive and speedy weight loss, possibly through 

activation of CPT1 (103).   The use of CPT1 inhibitors such as etomoxir result in 

reduced PC growth in vitro and in vivo, so combination therapy with FASN 

inhibitors may allow inhibition of tumour growth whilst mitigating the 

unwanted side effects of weight loss. (106). 

Orlistat, an anti-obesity drug, has also been found to inhibit the thioesterase 

domain of FASN; thus halting PC cell proliferation, inducing apoptosis and 

reducing tumour cell growth in nude mice (107). In its current formulation, 

Orlistat is limited as an anti-cancer therapy.  It has a poor solubility and 

bioavailability, and when given orally is only functional in the areas it directly 

comes into contact with, inhibiting pancreatic lipases in the gut (107) . 

TVB-2640 is the first-in-class, small molecule reversible inhibitor of FASN that 

demonstrates Phase I clinical efficacy in KRAS mutant NSCLC, ovarian and breast 

cancer (108, 109).  In this trial, prolonged stable disease was seen with 

monotherapy.  In addition, when given in combination with paclitaxel, there is 

evidence of prolonged stable disease in both NSCLC and breast cancer patients, 

with a confirmed partial response in an patient with peritoneal serous carcinoma 

(108).

Conclusions

The link between PC and fat metabolism is well established, with AR intimately 

involved as up- and down-stream factors (mediators) for a number of metabolic 
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enzymes.  Furthermore, the evidence surrounding the risk of developing more 

advanced and aggressive PC with increased obesity and gross fat volume 

surrounding the prostate suggests the importance of lipid pathways not only on 

primary tumour growth but also on the development of advanced and metastatic 

disease.

Despite this, there is a paucity of agents in clinical trials for PC.  It is likely that 

these agents will form part of combination drug strategies, with targeting of 

multiple metabolic pathways (e.g. FASN and CPT1), or in combination with AR 

pathway inhibitors (SCD1 and AR).  Pre-clinical studies suggest this may improve 

“cancer kill” whilst reducing the toxic side effect profile.
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Figure 1: Interaction of lipid pathways in prostate cancer 
Some key regulatory proteins PPARG, SREBP and SCAP (red ellipses) govern 
fatty acid metabolism, the activity of these three is observed to fall under the 
overall control of Androgens and Androgen Receptor activation (blue ellipse, 
solid black arrows).  Downstream of this hub of control (solid black arrows) are 
the effector of lipid synthesis, ACC, ACLY, FASN and SCD1 (red ellipses with 
dashed black arrows showing progression through the pathway), up-regulation 
of these effectors is also implicated in Prostate Cancer (PC) progression.  Several 
therapeutic agents, Warfarin, Fatostatin, Orlistat (green rectangles red lines) are 
known to block key processes in lipid metabolism and have a negative effect on 
PC progression.  In addition to those proteins resident within the prostate 
tumour cells themselves, within the microenvironment including nearby peri-
prostatic fat, there are various other factors (yellow ellipses) that promote 
prostate cancer growth and progression.  Matrix metallo-proteases, MMP2 and 
MMP9 promote metastasis whilst CCL7 and CCR3 have been linked to generation 
of an adipokine gradient giving directionality to tumour cell migration.     
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Table 1: Key lipid regulating genes

Gene Function
SREBP1 Transcription factor, binding sterol regulatory element-

1 (SRE1) sites. Activity is governed by AR. It governs 
lipid homeostasis and metabolism as well as sterol 
biosynthesis.

PPARG Transcription factor of the nuclear hormone receptor 
family, binding PPAR response elements (PPRE).  It 
governs the activity of genes involved in lipid 
metabolism and adipocyte differentiation.

FASN Enzyme responsible for the generation of long chain 
saturated fatty acids from acetyl-CoA and malonyl-CoA. 

SCD1 Enzyme downstream of FASN responsible for the rate 
limiting step of converting of saturated fatty acids to 
unsaturated fatty acids, by insertion of a double bond at 
the Δ9 position.

ACLY Enzyme upstream of FASN responsible for the 
conversion of citrate to acetyl-CoA. 

ACC Enzyme that bridges the gap between ACLY and FASN, 
responsible for conversion of acetyl Co-A to malonyl-
CoA. 
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