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Abstract

Genome Wide Association Studies (GWASs) have identified variants associated with disease
that promise to deliver insights into disease aetiology. However, because many GWAS
variants lie in non-coding genomic regions, it is difficult to define the genes and pathways
underlying a GWAS signal. The possibility of linking GWAS variants to molecular traits,
combined with the development of high throughput assays, has motivated the mapping of
molecular quantitative trait loci (QTLs), genetic associations with molecular traits such as
gene expression (eQTLs) and DNA methylation (mQTLs).

The Finland-United States Investigation of NIDDM (FUSION) tissue biopsy study is mo-
tivated by the desire to understand the molecular pathogenesis of Type 2 diabetes (T2D),
a complex disease where the vast majority of the ~100 independent GWAS loci occur in
non-coding regions. To elucidate the molecular mechanisms underlying these signals, we
collected skeletal muscle biopsies, a T2D-relevant tissue, from 318 extensively phenotyped
individuals who exhibit a range of glucose tolerance levels. From these biopsies, we gener-
ated genotype, gene expression, and DNA methylation information, enabling us to directly
measure the effects of T2D on molecular traits, and to link non-coding T2D GWAS loci to
candidate molecular targets. In this thesis, I present a catalogue of genetic effects on gene
expression and DNA methylation. I use this catalogue firstly, to reveal basic biology of the
genetic regulators of skeletal muscle molecular traits, and secondly, to identify molecular
traits that are relevant to T2D, glycemic, and other complex traits.

In regards to basic biology, I characterise the broader genomic context of QTLs by calculating
the enrichment of QTLs in chromatin states across a diverse panel of cell/tissue types. I
also identify key skeletal muscle transcription factors (TFs) and classify them as activators
or repressors by aggregating the effects of QTLs predicted to perturb TF binding sites. In
addition, I characterise the properties of methylation sites associated with gene expression
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and use inference models to dissect these methylation-expression relationships, classifying
cases where the genetic effect is mediated by methylation, expression, or is independent.

I also integrate molecular trait genetics with complex traits. First, I perform a conditional
analysis, mapping GWAS variants for T2D and glycemic traits to molecular traits, prioritising
disease relevant skeletal muscle molecular traits. Second, recognising QTLs may also be
specific to a disease state or environmental context, I leverage the rich phenotyping of
participants to map genotype by environment (GxE) effects on gene expression—eQTLs
that exhibit effects specific to an environmental context. Altogether, these analyses form a
thorough survey of the genetic regulators of skeletal muscle expression and DNA methylation,
and provide an important resource for interpreting complex diseases.
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Chapter 1

Introduction

1.1 Preface

This thesis describes a genetic analysis of gene expression and DNA methylation (DNAme)
in skeletal muscle. This is one of the largest studies of DNA methylation in skeletal muscle,
and the only study with extensive phenotypic characterisation of the tissue donors. Unless
specified otherwise, as in segments of Chapter 2, Chapter 4, and Chapter 6, I conducted
the research presented in this thesis. In Chapter 2, I describe the quality control measures
taken in this study. In Chapter 3, I characterise the relationship between expression and
DNAme. In Chapter 4, I analyse maps of genetic regulators of gene expression and DNAme.
In Chapter 5, I analyse the effects of disease-associated genetic variation on gene expression
and DNAme. Finally in Chapter 6, I map context-specific genetic effects on gene expression.

This study was motivated by the desire to understand the molecular effects of genetic variants
associated with risk of type 2 diabetes (T2D) and T2D-related traits. In this introductory
chapter, I describe the underlying motivation for this study in the context of T2D genetics.
Since T2D genetics has advanced rapidly in the last decade with the advent of studies on
common genetic variation, I begin this chapter by giving a brief overview of the history
of genetics. Following this overview, I describe T2D pathophysiology and T2D genetics,
highlighting the motivations for this study. Finally, I position this study in relation to the
larger field of molecular quantitative trait genetics.



2 Introduction

1.2 A brief history of genetics

1.2.1 Etymology

The use of the term genetics to describe a scientific discipline was first suggested by William
Bateson in a letter dating 18 April 1905 to Adam Sedgwick, discussing the founding of a
“Professorship relating to Heredity and Variation” [25, p. 93] at the University of Cambridge
[72]. In an attempt to compress these ideas and describe this emerging discipline, Bateson
suggested the word genetics, presumably drawn from the Greek word ‘genos’ (plural ‘genē’)
referring to a group claiming common descent or kinship [75].1 One year later, at the
Royal Horticultural Society’s 1906 International Conference on Plant Hybridisation, the
term was popularised when Bateson proposed using genetics to describe the new science of
heredity based on the laws of an Austrian monk, Gregor Mendel. The proposal was met with
enthusiasm and the proceedings were published as a the “Report of the Third International
Conference 1906 on Genetics” [324].

1.2.2 Mendel’s laws of inheritance

This new field of genetics was founded on the seminal work by Gregor Mendel who, analysing
how traits were passed on from parent to offspring in peas (Pisum sativum), deduced a series
of laws describing inheritance. In his now famous experiments, Mendel treated wrinkled
and round pea seeds as traits and crossed wrinkled peas with round peas. Contrary to the
intermediate wrinkled/round pea hybrid that may have been expected, Mendel observed only
round peas in the resulting offspring or first filial (F1) generation. When Mendel crossed F1
peas with each other, he found the wrinkled trait reappeared at a roughly 1:3 ratio in the F2
generation—one wrinkled to every three round. Remarkably, the recessive wrinkled trait was
not lost in the F1 generation, even though the round trait was completely dominant in the F1
generation. Mendel experimented with seven other pea traits such as pea colour and stem
length, and even combined pairs of traits. Based on his observations, he published a famous
set of laws in 1866, laying the foundational principles of inheritance [249]:

1Some have also drawn a link to the Greek word ‘genesis’ meaning origin [284, 283]
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1. Two alleles are present for any given trait and are passed on to the offspring at random
(law of segregation).

2. Separate traits are inherited independently (law of independent assortment).

3. Recessive alleles are masked by dominant alleles (law of dominance).

Unfortunately, Mendel’s ideas went unappreciated by the scientific community at the time.

1.2.3 Rediscovery of Mendel and the biometrician dispute

Nearly 30 years later, in 1900, Mendel’s research was rediscovered and separately replicated
by three botanists: Hugo de Vries, Erich von Tschermak, and Carl Correns [374, pp. 25-29].
However, it was the aforementioned William Bateson who played a central role popularising
Mendel’s ideas (reviewed in [127]). In May 1900, Bateson presented Mendel’s ideas and
de Vries’ work to the Royal Horticultural Society in London [374, p. 30]. Later in 1902,
Bateson published Mendel’s Principles of Heredity: A Defense [26]. Bateson wrote this
book in response to a paper published earlier that year by W.F.R. Weldon [418] critiquing
Mendel’s laws [127].2

Weldon was part of an intellectual community known as the biometricians, who can be traced
back to Francis Galton, the half-cousin of Charles Darwin. Inspired by Darwin’s The Origin
of Species [73], one of Galton’s life passions was to understand the heredity of variation in
humans [292, p. 86]. This passion was likely motivated by his unfortunate desire to apply
breeding principles to the human race [116], which lead to his coining of the term ‘eugenics’
in 1883, stemming from the Greek ‘eugenes’ which means good in stock or “hereditarily
endowed with noble qualities” [119].3 To that end Galton applied himself to the study of
biometrics, quantifying a myriad of human traits including height, reaction time, strength of
pull, and even intelligence [127].

By all accounts, Galton was an innovator. In his career, he established many concepts
commonly used today. He helped pioneer the use of fingerprints in forensics [368]. In

2In this same book and an earlier lecture, Bateson introduced terms like allelomorph, meaning alternative
forms of a Mendelian factor, as well as homozygote and heterozygote, describing individuals carrying the same
or different alleles at a given locus.

3As described earlier, ‘genos’ refers to a kinship group, and ‘eu-’ is simply a prefix meaning good.
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statistics, he developed concepts like regression towards the mean [116] and independently
rediscovered the idea of a correlation coefficient [118]. He even laid the foundations for
the concept of using of twins to study the “powers nature and nurture” [117],4 a term he
popularised presumably from Shakespeare’s The Tempest Act 4 Scene 1 [346].

Importantly, Galton also developed a theory of inheritance, the Law of Ancestral Heredity
[120, 48], which states the heritable component of a trait can be calculated as a continuous
series, such that parents contribute one-half of the total heritage (0.5), grandparents one-
quarter (0.5)2, great-grandparents one-eighth (0.5)3, and so on. Thus, the Law of Ancestral
Heredity separates the contributions of each ancestor to the total heritage. This theory of
inheritance was pitted against Mendel’s theory of inheritance, which led to a heated and at
times personal dispute between the Mendelians, lead by Bateson, and the biometricians, lead
by W.F.R. Weldon and the famous Karl Pearson (reviewed in [127]).

Over time, the dispute came to center on the mechanism of heritability for continuous,
quantitative traits (reviewed in [127, 298]). On one side, the Mendelians prescribed a set of
laws that elegantly described inheritance patterns of discrete, qualitative traits. Furthermore,
these laws were beginning to be linked to biological mechanisms (see Section 1.2.4 below).
On the other hand, the biometricians argued that quantitative traits are inherently continuous
and therefore Mendel’s qualitative laws could not possibly apply. Moreover, the biometricians
questioned the assumption that many qualitative traits were really discrete, and did not
actually exist on a continuum. This continuum may be readily observable (e.g., [127, p. 72])
or may potentially lie in a latent liability distribution, such that only segments of this
distribution (e.g., the extremes) present with a phenotype [291].

Although G. Udny Yule suggested Mendelian principles may underlie the Law of Ancestral
Heredity in 1902 [437], the feud continued to simmer until finally Ronald Fisher concisely
ended the debate in 1918 with a paper [99] that became the cornerstone for the modern field
of quantitative genetics. In his seminal paper, Fisher demonstrated a normal distribution
can emerge from the sum of multiple Mendelian (i.e., genetic) factors of small, roughly
equal effects that are individually inherited in a Mendelian fashion (see also [298, Box 1]).
Fisher’s ingenious insight, made in the 20th century, is still highly relevant today, as modern
genetics research has shown that the genetic architecture of many complex traits is indeed
highly polygenic, consisting of many variants of small effect size (see Section 1.2.6 and
Section 1.3.2.3 below).

4Although important, this was not the classical twin study of today, as the mechanism of inheritance had not
fully been worked out [309].
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1.2.4 Chromosomal theory and linkage

Returning to the rediscovery of Mendel, part of the interest in Mendel’s ideas stemmed
from emerging research in the cytology community. At the time, cytologists were captivated
by structures that appeared around cell division and, when stained, looked like coloured
(khrōma) bodies (sōma), termed chromosomes [281]. Most intriguingly, during meiosis,
these chromosomes, which appear to act independently of one another, moved through
a beautifully choreographed dance where they pair and equally segregate into gametes.
Around 1902, Walter Sutton and Theodor Boveri independently recognised such behaviour
of chromosomes during meiosis closely paralleled the properties of Mendel’s particles, and
posed the chromosomal theory of inheritance, or the Boveri-Sutton chromosome theory, that
states chromosomes are the material of inheritance [377, 378, 42].

The chromosomal theory of inheritance ignited vigorous debate, as there were significant,
unresolved issues in synthesising Mendel’s laws with chromosomal theory. Specifically,
Mendel’s second law of independent assortment states that traits are inherited independently.
This law raised many questions. Is each chromosome an independent entity? If chromosomes
truly house or are themselves Mendel’s particles, how can traits be independent given that
there are more traits than chromosomes, and therefore some chromosomes must have multiple
traits? Was Mendel simply lucky in choosing traits that localised on different chromosomes
in peas?

Troubled by this incomplete synthesis, Thomas Morgan studied the chromosomal theory of
inheritance in relationship to Mendel’s laws of inheritance. Analysing fruit fly (Drosophila
melanogaster) trait inheritance patterns, Morgan observed that recombinant (non-parental)
allele combinations in the F2 generation of a test cross did not always follow the 50%
recombinant rate predicted by Mendel’s second law of independent assortment. Informed by
the cytologists’ microscopy images, Morgan hypothesised that information was exchanged
between chromosomes during meiosis, termed crossover, and that the recombination rates
reflected the likelihood of crossover events which changed according to the chromosomal
distance between the loci of two alleles [262]. A talented student of Morgan’s, Alfred
Sturtevant, conclusively proved this theory of “loci along a linear structure” in 1913 by
integrating recombinant rates of multiple traits and showing recombination rates could be
predicted additively, as one would expect given a linear structure. Thus, the first chromosomal
linkage map was made which measured the distance between two loci in genetic map units
(m.u.; also called centimorgan, cM) where 1 product of 100 meiosis events is recombinant
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[373]. These experiments also compellingly synthesised Mendel’s laws of inheritance and
the chromosomal theory of inheritance.

Following Morgan and Sturtevant, the next years saw a plethora of revolutionary discoveries
including conceptually connecting genes to enzymes via George Beadle and Edward Tatum’s
“one gene-one enzyme” hypothesis in 1941 (bringing together genetics and biochemistry)
[28],5 determining the structure of deoxyribonucleic acid (DNA) by Francis Crick and James
Watson in 1953 [412], and the invention of technology to sequence DNA by Frederick
Sanger in 1977 [334]. These developments, along with many others (reviewed in [374, 124]),
enabled the study of human genetics in ways that were previously unimaginable.

1.2.5 Human linkage studies

Similar to the phenotypic markers, like body or eye colour, that Morgan and Sturtevant
used to build linkage maps in fruit flies, molecular markers can also be used for linkage
mapping, and through the development of molecular biology, many molecular markers
emerged. Initially, restriction fragment length polymorphisms (RFLPs) were the primary
marker sets [86, 40], but with the advent of polymerase chain reaction (PCR) microsatellites
(tandemly repeated DNA sequences that produced length polymorphisms) became widely
used [414, 276, 417]. Further advances in genome sequencing and microarray technology
(reviewed in Section 1.4.1.2) now provide the ability to directly assay the genotype of a
sample with dense single nucleotide polymorphisms (SNPs), and these are the primary
markers used in modern studies.

To be more specific, early human genetic studies in the 1980s applied RFLP linkage maps
of molecular markers to disease pedigrees across multiple families to locate a disease locus
within the human genome [40, 198]. RFLPs were identified by digesting DNA with restriction
enzymes and separating the resulting DNA fragments by length through gel electrophoresis.
The fragment patterns were imaged as Southern blots, where bands were representative
of different alleles. By analysing RFLP patterns of a pedigree in conjunction with RFLP
linkage maps that oriented RFLPs relative to each other [86], it was possible to use RFLPs
as milestone markers to close in on a specific disease locus. The closer an RFLP was to

5Although this connection was already made in 1902 by Archibald Garrod studying alkaptonuria [122].
Like Mendel’s laws, the idea that genes were connected to enzymes was largely unappreciated by the scientific
community.
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the causal gene, the less likely that recombination events would occur, and therefore strong
cosegregation patterns will be observed among the presenting families.

Once a region was identified, it could be narrowed further by using additional markers of
increased density in the specific region (fine mapping). If a researcher could narrow down to
a small enough region, it could be sequenced and candidate genes identified. But prior to the
development of complete physical maps and high throughput DNA sequencing, this kind of
positional cloning was a long and painstaking process [334]. Until 1989, the only disease
genes identified by this approach were those in which rare chromosomal rearrangements
pointed to the precise location of the responsible gene, such as Duchenne muscular dystrophy
[269]. The successful identification of the cystic fibrosis gene in 1989 by pure positional
cloning [320, 313, 183] proved that this technique could be successfully used in the absence
of such chromosomal rearrangements, though the work took many years.

With the success of the Human Genome Project [199, 396] and the advent of modern
sequencing technologies (reviewed in [131]), linkage studies are now far less laborious and
can cheaply be performed at the level of DNA sequence. Linkage studies continue to be
extremely useful for Mendelian traits, a subset of traits caused by, in its simplest form, a
single mutation of high penetrance (meaning a high proportion of the cases with the mutation
also exhibit the trait of interest), or allelic heterogeneity, where multiple rare mutations
occur at the same locus giving rise to the phenotype [280]. At the time of writing, more
than 4,000 Mendelian disorders have had their precise molecular cause uncovered by this
approach—most of those in the last 15 years [64].

1.2.6 Genome wide association studies (GWASs)

Despite early successes for rare, monogenic diseases like cystic fibrosis, little headway
was made in unraveling the genetics of common diseases and traits using linkage studies.
Recognising such results may signal a genetic architecture similar to Fisher’s 1918 paper
[99], defined by common genetic variants of small effect sizes, visionary calls [314, 197]
were made for common variant association studies or genome wide association studies
(GWASs), a study design that would be better powered to detect polygenic effects where
allele frequencies are compared between cases and controls or associated with continuous
traits. These visionary calls stimulated the development and application of technologies to
cheaply assay the genetic diversity of human populations (reviewed in [194]).
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The pivotal technological advancements that enabled GWA studies were the development of
microarray technology (described in Section 1.4.1.2), combined with growing catalogues
of common human SNPs [327, 162, 163], and crucially the ability to pinpoint these SNPs
precisely along the sequence of the human genome [199, 396].

Human genetic variation is rare and distributed across the genome: one person has on average
of ~10 million common SNPs out of the 3.2 billion base pairs (bp) in the human genome
[193]. Furthermore, variants are inherited non-randomly in linkage disequilibrium (LD)
blocks, neighbourhoods of 1 to ~100s of kilobases (kb), bounded by recombination hotspots
[181, 134]. Because Homo sapiens has a relatively recent origin and recombination is rare
outside of hotspots, specific combinations of alleles tend to travel together on a particular
chromosome, known as haplotypes. This feature of the human genome provides a significant
advantage for GWA studies. By cataloguing the common SNP pool through large scale
SNP discovery and haplotype mapping [327, 162, 163], researchers did not need to assay
every SNP to capture genome wide information (which contains redundant information due
to LD), but rather could scale down to a subset of SNPs that tagged each LD block and
would fit on a single microarray, typically consisting of ~200 thousand to 2 million probes
[401]. Subsequently, after genotyping a participant, the individual’s patterns of genetic
variation could be matched against a database of more complete haplotypes and the missing,
unmeasured genetic variation could be accurately recovered through statistical imputation
[239, 45, 220]. Of course, such methods only work for common genetic variation with a
minor allele frequency (MAF) > ~1%; nonetheless, for common variants, these innovations
enabled high throughput and cost effective genotyping across thousands of participants,
leading to successful mapping of polygenic traits.

In the early 2000s, the first GWA studies were launched and published results began to appear
in as early as 2005 [187]. By 2007, the feasibility of GWA studies across a variety of traits
was firmly established with publication of the Wellcome Trust Case Control Consortium
(WTCCC) papers, which encompassed 7 common diseases of major importance to public
health (including T2D as described in Section 1.3.2.2) [419]. Since then, the field has
expanded at a phenomenal rate, encompassing a host of common human traits and yielding
many insights, especially in the area of complex disease (reviewed in [400, 401]). Overall,
two clear trends have emerged [400]. First, it is clear that many complex traits are highly
polygenic, influenced by the combined small effects of hundreds to thousands of common
variants, perhaps even more than predicted by the early biometricians. Second, pleiotropy,
where a variant influences multiple apparently unrelated phenotypes, is the rule for complex
traits rather than the exception (reviewed in [399, 401]).
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1.2.7 Interpreting GWAS loci

Despite the routine success of GWA studies, only a small fraction of the ~10,000 [231]
independent variant-trait associations from GWA studies have led to the identification of
specific genes or molecular mechanisms underlying complex diseases and traits. Increasing
our knowledge of the effect of trait-associated genetic variation on specific genes and
molecular mechanisms would enable targeted development of efficacious treatments and
interventions. The knowledge gap is due to the fact that the vast majority of the GWAS loci
for complex traits lie in non-coding portions of the genome [243, 409]. Because these loci
are often surrounded by several genes or no genes at all (i.e., gene deserts), it is far from
straightforward to identify target genes and molecular pathways through which they exert
their effects. Furthermore, sets of variants are commonly inherited in tandem, due to LD,
thereby obscuring the actual causal variant (or series of causal variants) identified in the
region of a GWAS association.

Driven by the desire to hone in on the specific causal variants and genes underlying disease,
and enabled by the development of sequencing-based high throughput molecular assays,
the biomedical research community launched efforts to understand the effects of genetic
variation in the context of molecular traits across human cell and tissue types. Through
global projects like the Encyclopedia of DNA Elements (ENCODE) [90], NIH Roadmap
Epigenomics [316], and BLUEPRINT [2], the focus has been to chart a map of the regulatory
landscape for key cell and tissue types, generating public databases of gene expression
and epigenomic signatures such as transcription factor binding, histone modifications, and
chromatin interactions. These resources have enabled researchers to (1) identify key tissues
underlying disease based on enrichment of GWAS loci in regulatory features, and (2) narrow
down a GWAS locus to a smaller subset of variants that are likely to perturb key regulatory
features. Building on the success of earlier studies (described in Section 1.4.3), the Genotype-
Tissue Expression (GTEx) project [137] was also launched to further enrich these databases
with in vivo information on gene expression in multiple tissues from large numbers of deeply
genotyped individuals. By testing for associations between genetic variation and a molecular
trait, molecular quantitative trait loci (QTLs) can be identified. Such studies are extremely
powerful, as one can intersect loci from GWA studies with loci from QTL studies to identify
candidate molecular traits underlying a GWAS locus.

This thesis is a QTL study and is focused on two molecular traits, gene expression and
DNAme, in skeletal muscle. This study is motivated by the desire to fill in the knowledge
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gap particularly for T2D GWAS loci, as skeletal muscle is a relevant T2D tissue. Before
describing how this study fits in the context of other QTL studies, I first give an overview of
T2D aetiology and genetics, as T2D constitutes the underlying motivation for the study.

1.3 Type 2 diabetes (T2D)

1.3.1 T2D background and aetiology

One of the most studied polygenic diseases is non-insulin-dependent diabetes mellitus
(NIDDM), also known as type 2 diabetes (T2D). Over the last decade, GWA studies have
identified > 100 independent risk loci with high confidence [340, 82, 419, 439, 88, 402, 264,
83, 111, 342]. A sense of urgency surrounds research on this disease as T2D accounts for
~90% of diabetes cases, and diabetes affects ~415 million people worldwide and is projected
to increase 55% by 2040 [161]. Moreover, T2D is the 6th leading cause of death in the world,
costs an estimated $673 billion globally, and disproportionately affects individuals in lower
socioeconomic segments of society (2015 estimates [161, 426]).

Biologically, T2D is characterised by insulin resistance and dysfunction in insulin secretion.
Insulin, produced by the pancreatic islet beta cells, plays a central role in regulating blood
glucose, keeping glucose confined to a narrow range [176] through complex interactions
with a variety of tissues. Increased blood glucose levels trigger insulin release spikes that
promote glucose uptake in muscle, halt fat breakdown in adipose, stimulate glucose storage
in adipose, block increased glucose production in the liver, and trigger the hypothalamus to
regulate appetite (reviewed in [372, 177]). When this homeostatic equilibrium is disrupted,
blood glucose levels become unregulated leading to the onset of T2D and the accompanying
health difficulties. Severe elevation of glucose (hyperglycemia) can lead to diabetic coma.
But even modest hyperglycemia over many years produces long term health complications,
such as cardiovascular disease, neuropathy, nephropathy, retinopathy, diabetic foot syndrome,
and periodontitis [161].

T2D has its origins in nature, nurture, and complex interactions between the two. A combina-
tion of genetic (h2~26-69% from twin studies [300, 7]) and environmental factors contribute
to T2D risk. While it is clear that obesity, lack of physical exercise, a sedentary lifestyle,
and increased consumption of energy-dense foods have contributed to the rapid increase
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Implied Mechanism Exposure
Energy expenditure Basal metabolism, exercise (or lack thereof), ambient tem-

perature

Diet High energy content foods, vitamins (e.g., vitamin D),
macronutrients, micronutrients

Microbiome Diet (processed foods), antibiotic usage, bariatric surgery,
fecal transplant

Early life influences Maternal disease, maternal nutrition, postnatal growth

Other Sleep debt, environmental chemicals, chronic inflammation
Table 1.1 Examples of T2D exposures and implied mechanisms (these mechanisms have not neces-
sarily been shown to be causal). Table is not comprehensive and is derived from Franks and McCarthy
[108, Figure 1].

in T2D incidence [279], epidemiological studies have identified additional exposures that
indicate a variety of mechanisms that could potentially contribute to T2D development. These
exposures include the microbiome, early life influences (in utero and postnatal), environ-
mental chemicals, sleep deprivation, and inflammation (reviewed in [108]; Table 1.1). Such
observations are critically important in characterising T2D for the development of efficacious
therapies and lifestyle interventions; however, their interpretation is extremely complex,
especially since causality cannot be inferred due to the possibility of reverse causation or
other sources of confounding [360].

The need to unravel causality highlights one of the most promising and perhaps unforeseen
applications of human genetics—Mendelian randomisation (MR; summarised in [359]). In
cases where genetic studies have identified a strong genetic proxy for an exposure, the genetic
association can be used as an instrument variable to test for causality between the exposure
and outcome, since variants are set by Mendelian inheritance at conception (i.e., not subject
to reverse causality or confounding), and randomised at fertilisation (i.e., participants are
randomly assigned to the “risk allele” group). Thus, an MR study is analogous to randomised
controlled trials (RCTs) where the variant(s) substitutes for the drug perturbation and divides
the population into those who receive the exposure (i.e., drug or treatment) and those who do
not receive the exposure over a course of a lifetime.

Retrospective MR studies have mirrored the results of RCTs [148]. For instance, a recent MR
analysis focused on genetic variants that affect vitamin D levels finds no evidence for a causal
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relationship between 25(OH)D and T2D [431], which is consistent with the reports of a RCT
[195]. However, proper application and interpretation of MR requires deep, careful, and
critical thought on the overall analysis, especially in regards to the validity of the instrument
variable(s) [49, 50, 148]. Nonetheless, the rapidly growing MR field promises to tease apart
many of the causal mechanisms behind a myriad of intermediate and disease outcomes
including T2D [379], enabling the development of more efficacious therapies and lifestyle
interventions.

In addition, the past decade of epidemiological and genetic T2D studies have led to refined
understanding of T2D disease architecture [244]. Traditionally, T2D diagnosis has operated
by categorising individuals into rigidly defined classifications with standardised treatments
and protocols. But such categories can obscure important differences between individuals.
With the rise of precision medicine, the plethora of omics and imaging technologies are
thought to enable more precise categorisation. Indeed, for disorders like monogenic diseases
or cancer, where a small number of possible pathways can have a large phenotypic impact,
these technologies have enabled clinicians to more accurately assign patients to their appro-
priate classification (reviewed in [13]). However, hopes that a similar approach could classify
T2D patients into distinct subsets (T2D-A, T2D-B, etc.) with differing natural histories and
response to therapy have not yet been realised. Due to the multifaceted nature of the disease,
many patients occupy a grey space where assignment to a specific diagnostic bin simply
does not fit, and to insist on doing so would result in an overfocus of classifying rather than
treating.

Synthesising insights from the past decade of research, a new approach to understanding
T2D has been proposed that implicitly recognises the heterogeneity of the disease [244]. We
know islet function, islet regeneration (beta cell number), islet autoimmunity, obesity, fat
distribution, and insulin resistance are all critical components of T2D pathophysiology (list
drawn directly from McCarthy [244]). Instead of insisting on rigid cutoffs to define precise
disease boundaries across what arguably constitutes a continuous, multidimensional space,
the “palette model” inherently recognises the multifaceted disease space [244]. The analogy
is drawn from painting, where key disease pathways (i.e., the multidimensional vectors)
constitute base colours. The saturation of the colour for an individual, or their placement
along the continuous dimension, is determined by a combination of genetic and exposure
influences. As an individual moves through life, their placement in the multidimensional
space (i.e., colour) changes. Gradually, one may drift away from areas of homeostasis
towards diabetes across a combination of dimensions. Of course, some individuals will
occupy extremes of one or two vectors (for instance monogenic diabetes), and could be
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“classified” to some extent or alternatively, thought of as archetypes. However, the vast
majority of patients will fall somewhere within a continuous, multi-faceted palette spectrum,
where many individually modest risk factors collectively contribute to disease, such that by
themselves they are relatively unimportant.6

Recognising the inherent complexity of diabetes within the clinical model transforms the
mindset in which diabetes is considered and handled by patients and practitioners, bringing
the concept of diabetes closer to the aetiology. For instance, thinking of the disease as
a spectrum lends itself to a mindset that promotes preventative measures through healthy
lifestyle decisions, rather than deeming oneself as “healthy” until long term poor lifestyle
decisions suddenly manifest themselves as T2D. In addition, this refined understanding
suggests research on identifying and characterising the archetypes—the extremes of the mul-
tidimensional space—should be particularly fruitful, as the pathophysiological mechanisms
underlying these rare cases are limited compared to general disease cases.

1.3.2 History of T2D genetics and FUSION

1.3.2.1 T2D linkage studies

This refined understanding of T2D disease architecture has been the result of decades of
T2D genetics research. Like many early studies of disease genetics, early T2D studies were
linkage studies. Using a collection of genetic markers, these studies analysed a marker’s
segregation, or transmission patterns according to individuals with and without the disease in
family pedigrees.

One of the first T2D linkage studies was the Finland-United States Investigation of NIDDM
(FUSION) study (https://fusion.sph.umich.edu). This international collaboration between
Finland and the United States began under the leadership of Michael Boehnke (USA),
Francis Collins (USA), and Jaakko Tuomilehto (Finland). Subsequently over the years, the
collaboration has grown to include over 8 laboratories located in the United States, Finland,
and Europe. The study is exclusively focused on diabetes in Finland, for three reasons (1) the
excellent health records system; (2) the strong tradition of participation in medical research;
and (3) the relatively homogeneous Finnish population resulting from centuries of isolation,

6In some sense, our biological understanding of T2D has pushed us back towards thinking along the lines of
a liability distribution, proposed by Pearson and Lee in 1900 [291].

https://fusion.sph.umich.edu/
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amplifying the potential of unraveling hereditary factors compared to more outbred human
populations.

As one would expect, given the now known polygenicity of T2D consisting of many common
variants with small effect sizes, these early linkage studies, based on affected sibling pairs,
were underpowered and had limited success [391, 125, 126, 351]. However, in the case of
FUSION, these studies forged international relationships, led to a remarkably large and well
characterised clinical data set, and worked out the logistical framework for high throughput
genotyping and sophisticated data analysis. Thus, as technology matured and GWA studies
became feasible, FUSION was at the forefront of the field.

1.3.2.2 T2D GWASs

The stage was set, and by the late 2000s decades of genetics research enabled the first wave
of T2D GWA studies, which included FUSION [340], WTCCC [419, 438], and the Broad
Institute Diabetes Genetics Initiative (DGI) [82]. While these initial studies were modest
in success, bringing the total number of T2D loci to 10, it became apparent that, due to the
large penalty for multiple hypothesis testing, much larger sample sizes would be needed to
unlock the genetics of T2D. The most straightforward and low cost way to expand sample
sizes was through collaboration, and therefore, large consortia, consisting of many studies,
were formed—including DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
and the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC).

These studies rapidly expanded the list of genetic risk loci. The first DIAGRAM study identi-
fied 6 novel T2D loci [439]. Shortly thereafter, MAGIC, which had the goal of investigating
the effects putative T2D loci on glycemic and other T2D-relevant traits, identified 16 loci
associated with fasting glucose related traits and 2 loci with fasting insulin related traits [88].
In addition to greatly expanding the number of loci associated with T2D and T2D-related
traits, these studies stood out as examples to the broader human genetics community of the
importance of data sharing and the tremendous insights to be gleaned through collaboration.

Since these seminal studies, the T2D genetics community has continued to conduct even
larger GWA studies, collectively identifying > 100 T2D loci [340, 82, 419, 439, 88, 402,
264, 83, 111, 342]. However, despite these successes, these loci only explain a small portion
(~10%) of the overall heritability of T2D estimated from family and twin studies [264]. One
hypothesis is that this “missing heritability” resides in rare variants (MAF < 1%) of large
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effect sizes, primarily isolated to a family [237]. According to this hypothesis, while each
individual case is rare, their effects collectively add up to a significant heritability component.
Capturing these variants would require large sample sizes combined with whole genome
sequencing (WGS) or exome sequencing, since by definition these polymorphisms are not
common and therefore excluded from most genotyping arrays (minimum MAF ~1%). To
test the rare variant hypothesis, two studies were launched: T2D Genetic Exploration by
Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) and Genetics of T2D
(GoT2D). With the publication of the first results from these studies [111], the emerging
picture suggests that it is unlikely that the population-level missing heritability resides in rare
variants.

1.3.2.3 A decade of T2D GWASs: insights and future prospects

With few exceptions [258], the overwhelming message of the past decade of GWA studies
points to a model where T2D is simply a very polygenic disease and consists of many variants
of small effect sizes that will require an ever growing number of samples to detect.

Indeed, the genetic architecture of T2D and other complex traits appears so polygenic that
Boyle et al. [43] recently proposed an omnigenic model, whereby genetic effects on all
genes expressed in disease-relevant cell types contribute to disease risk. First, this model
posits that for any complex disease or trait, there are a handful of “core” genes with a
direct and biologically interpretable role on disease aetiology (likely to operate in a tissue or
cell type specific manner). Second, given a highly interconnected gene regulatory network
where genes are separated from each other by only a few degrees, the model suggests that
perturbations to almost any gene—even a peripheral, housekeeping gene expressed in all
tissues—are liable to affect the regulation or function of a core gene. Thus, through signal
propagation in a highly interconnected cellular regulatory network (e.g., transcriptional
regulation, protein-protein inactions), genetic effects on any gene in a disease-relevant cell
type are likely to contribute to disease risk, mediated by core genes. If such a model is
true, one would expect that the ever increasing number of loci associated with T2D and
other complex traits will spread uniformly throughout the genome (implying more and more
genes across diverse molecular pathways), rather than clumping around loci that imply a few,
common disease-relevant pathways. As described by the authors, initial evidence suggests an
omnigenic model may be accurate; however, a more robust evaluation of an omnigenic model
of complex trait genetics will be possible as more complete maps of the genetic risk factors
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for T2D and other complex traits are generated. Regardless of the outcome, the omnigenic
model is an important synthesis of existing information and will help shape further research
into the genetics of complex traits.

In addition, focusing on T2D, this high degree of polygenicity suggests, evolutionarily
speaking, little selection for or against the risk alleles that compose the population burden of
T2D, as there would be very little pressure on variants of small effect manifesting themselves
later in adult life, past the prime years of reproduction. The neutrality of T2D risk alleles in
human prehistory is further supported by formal adaptation studies that find little evidence for
selection [14, 98] and the fact that most T2D associations replicate across human populations
[411, 83]. Collectively, these results imply that the default model when considering T2D
risk allele is not a “thrifty model” where a T2D risk allele rose to frequency because it was
advantageous in the distant hunter-gatherer past; instead, most T2D risk alleles appear to be
common simply due to genetic drift [14, 111]. As with most models, however, there may be
exceptions and some cases likely caused by local adaptations to unique environments, for
instance the CREBRF mutation found for BMI in Samoans [257], but such cases are outliers,
not the majority of the population burden.

The future of T2D genetics will include GWA studies of ever larger sample sizes, gradually
transitioning from genotyping arrays to sequencing approaches as whole genome sequencing
prices continue to plummet [131]. Ongoing efforts to study T2D genetics in diverse human
populations will also be important, as such studies have the potential to identify variants with
particularly strong effects due to varying allele frequencies in isolated populations, as well
as potentially unique selective pressures of the local environment [258, 102, 350, 111]. In
addition, the value of studying the genetics of rare, monogenic, T2D-related diseases, like
Maturity Onset Diabetes of the Young (MODY), congenital hyperinsulinemia, and neonatal
diabetes, should not be overlooked. Indeed, the past decade of genetics research suggests the
biological divide between monogenic disorders and common disease is not binary, but rather
exists on a spectrum [245]. In many instances, genes in which certain mutations are causative
for monogenic conditions also harbor other alleles that represent risk factors for T2D. And
variable penetrance is regularly observed too: many of the specific alleles central to MODY
have also been observed in individuals clinically presenting as T2D, or even as completely
normal [101], suggesting penetrance estimates may have been overestimated perhaps in part
due to genetic background and environment. Finally, as mentioned to earlier, more complete
genetic maps for T2D will help inform whether an omnigenic model accurately represents
the genetic architecture of T2D.
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Filling in the “missing heritability” and generating a comprehensive catalogue of the genetics
of T2D is only part of the puzzle. Like most loci identified through GWA studies, the vast
majority of T2D loci are found in non-coding portions of the genome [341], obscuring
the underlying genes and molecular pathways. The T2D research community thus faces a
significant challenge of linking non-coding variation to specific genes and other molecular
traits, in order to understand the molecular mechanisms of disease. Since this is a problem not
only for T2D but for many complex diseases, widespread efforts like GTEx (see Section 1.2.7)
have been launched to map expression QTLs in a variety of tissues [137]. The T2D genetics
community is further supplementing these efforts through additional QTL studies in key
T2D tissues such as pancreatic islets, which are difficult to obtain and not well assayed by
GTEx [95, 393, 395]. Already these efforts are beginning to bear fruit as nearly a third of
T2D GWAS loci now have a plausible mechanism, many of which are linked to pancreatic
islet biology [401].

However, the majority of T2D GWAS signals still lack a clear mechanism, highlighting
the need for ongoing research. FUSION is actively contributing to these efforts through
the FUSION tissue biopsy study, focused on the genetic regulators of gene expression and
DNAme in skeletal muscle and adipose tissue. Before describing the study, I provide a brief
overview of molecular traits and molecular QTLs.

1.4 Molecular traits

In this section, I describe and provide a brief overview of the two molecular traits most
relevant to this thesis—gene expression and DNA methylation. Subsequently, I provide an
overview of molecular quantitative trait loci—i.e., genetic associations with molecular traits.
This overview is particularly focused on expression as a quantitative trait, since the field
developed around expression before expanding into other traits.
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1.4.1 Gene expression

1.4.1.1 Gene expression biology

DNA is the stable, long term information storage molecule of the cell. By contrast, RNA is
more dynamic and serves both as information transfer molecule for protein synthesis, as well
as a functional molecule occupying a variety of regulatory roles (reviewed in [265]). There
are many types of RNA including transfer RNA (tRNA), ribosomal RNA (rRNA), messenger
RNA (mRNA), microRNA (miRNA), and a plethora of poorly characterised, non-coding
RNA (ncRNA; reviewed in [265]). Constituting a small fraction (1-2%) of the total RNA in
a cell [68], mRNA is one of the most studied forms of RNA, as it encodes the information
for the proteins of a cell.

RNA polymerase II (Pol II) transcribes mRNA from DNA sequence by binding at the
promoter of a gene, initiating transcription at the transcription start site (TSS), elongating
the growing mRNA molecule by moving along the DNA from the 5’ end towards the 3’
end, and finally terminating transcription, which in humans generally means simply falling
off the transcribed DNA at an ill defined region beyond the final exon (though occasionally
human genes do have a structured termination site). As Pol II transcribes the growing mRNA
molecule, a variety of mRNA processing steps occur including the addition of a 5’ cap,
splicing events, and the addition of ~200 adenosine residues, termed a poly(A) tail, to the 3’
end. The 5’ cap involves adding a modified guanosine triphosphate to the 5’ end and signals
to the cell the mRNA identity of the molecule—preventing its degradation by exonucleases
and facilitating both nuclear export and translation. Splicing occurs co-transcriptionally [251]
and describes a step where introns are excised from the mRNA molecule while exons are
maintained, forming an elegant system where the same gene can code for different proteins
across cell types through alternative splicing of gene isoforms. Other modifications such
as the addition of the 3’ poly(A) tail are thought to increase the stability of the molecule
and regulate degradation (reviewed in [304, 260]). Finally, as a quality control mechanism
and to clean up extra transcriptional byproducts, aberrant mRNA molecules are targeted
and degraded by various mechanisms including miRNAs (reviewed in [286, 166]), so that
only high quality mRNA is exported to the cytoplasm (reviewed in [375]), destined to be
translated to proteins.
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1.4.1.2 Gene expression quantification: from microarrays to sequencing

Clearly, gene expression is critical for the function of a cell and therefore expression quan-
tification has been the topic of extensive research (reviewed in [230]). Early quantification
techniques, such as Northern blots [8] or reverse transcriptase quantitative PCR (RT-qPCR;
[30]; reviewed in [109]), were low throughput, laborious, and consequently expensive. A
fundamental breakthrough came with the development of microarrays [336].

Microarrays consist of oligonucleotide probes that are arrayed onto glass, silicon, or plastic
substrates. During measurement, fluorescently labeled DNA is washed over the array and
the probes hybridise to their complementary sequence. By knowing the sequence behind
each probe and imaging the fluorescence intensity at each probe, a quantitative readout is
obtained [230]. Various forms of microarray technologies have been used for a wide variety
of applications including the measurement of genotypes, gene expression, and DNAme
(reviewed in [150]). In the context of gene expression, protocols generally involve isolating
total RNA, optionally selecting for specific types of RNA (e.g., mRNA), reverse-transcribing
RNA into complementary DNA (cDNA), labelling the cDNA with fluorescent dyes or biotin,
and hybridising the labeled cDNA products to the array [339, 230].

Microarrays enabled the first wave of expression studies, but they also had several limitations
including (1) only known sequences could be assayed (preventing novel transcript detection)
and (2) the dynamic range of detectable signal was limited due to high background levels of
noise [408]. These limitations were overcome with the advent of low-cost next generation
sequencing (NGS) technologies (reviewed in [131]).

These NGS technologies revolutionised molecular biology. With sequencing, nearly any
molecular phenomena that involves DNA can be scaled to a genome-wide level, as long as
the phenomena is reducible to the level of DNA sequence. For instance, one of the most
recent “seq” applications is “assay for transposase-accessible chromatin with high throughput
sequencing” (ATAC-seq), which uses Tn5 transposase to integrate sequencing adaptors into
regions of open chromatin. Thus, by enabling sequencing, the reads obtained from these
adaptors profile chromatin accessibility [46]. An overview of popular “seq” technologies is
provided by Wold and Myers [423] and Soon et al. [362]; however, it should be noted that
creative, new applications like ATAC-seq are always being devised and therefore a review is
quickly outdated.
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In the context of gene expression, NGS enabled the direct sequencing of cDNA libraries,
termed RNA-seq (reviewed in [408, 230]). RNA-seq overcame many of the microarray
limitations as RNA-seq (1) requires no prior knowledge of specific gene sequences to design
probes and (2) generates an extremely dynamic and digital signal (mapped reads) with
minimal background noise. Given these benefits, combined with the ever plummeting costs
of sequencing [131], RNA-seq has emerged as the standard assay for transcriptomics.

In a basic RNA-seq experiment, RNA is isolated from the cell, optionally filtered for specific
types of RNA, optionally fragmented to ~200-300 bp (required for most NGS technologies),
reverse-transcribed to cDNA, ligated to sequencing adaptors, optionally PCR amplified, and
sequenced (reviewed in [240, 230]). Following sequencing, digital reads that pass quality
control filters are assembled, or stitched back together. A variety of methods exist for
transcriptome assembly, including mapping back to a reference genome (or transcriptome)
and de novo assembly (reviewed in [240, 68]). Generally following mapping, gene level
expression is quantified by counting the number of uniquely mapped reads (as opposed to read
that map to multiple locations) overlapping the exons of a gene. Read counts are subsequently
normalised to account for various biases, such as gene-length and sequencing depth, to enable
within sample and between sample comparison of genes [68] (see Section 2.6.2). In addition,
RNA-seq enables quantification of other molecular features such as gene isoforms [386, 132],
exon fragments [9], splicing events [218], and (if variants are present in the transcribed
region) allele specific expression (ASE) [56].

The methods and applications for RNA-seq are rapidly evolving as new technologies continue
to emerge. One particularly exciting expansion is the development of single cell transcrip-
tomics, where the transcriptome of a single cell is assayed. The development and refinement
of single cell methods (reviewed in [329]) promises to revolutionise our understanding of
human biology, for instance by cataloguing all cell types in the human body [308].

In addition, new long-read sequencing technologies, such as nanopore sequencing, promise
to overcome limitations in accurately quantifying the abundance of specific transcripts by
sequencing entire molecules of RNA that have been reverse transcribed to cDNA [36, 52].
This technological development is particularly important, because many disease-associated
variants are thought to exert their effects through alternative splicing [219]. Current NGS
technologies are based on short reads (~200-300 bp). Therefore, transcripts are sampled
in fragmented form and must be computationally estimated through isoform deconvolution
[386, 132] or alternative measures like quantification of exons [9] or splicing events [218].
While such methods are useful, they are far from perfect, especially for highly spliced genes
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[36]. By essentially eliminating a fragmentation step, long accurate sequencing technology
would constitute a real advancement for transcriptome sequencing by directly measuring the
splice isoforms that all of these techniques attempt to reconstruct from short read data.

1.4.2 DNA methylation

1.4.2.1 Epigenetics

The word epigenetics was coined by Conrad Waddington in 1942 [403, 282]. The term
vaguely described the causal mechanisms by which genetic variation affects phenotype,
starting with the fertilised zygote and moving through developmental stages, ultimately
resulting in a complex organism with varied phenotypes (reviewed in [97]). Waddington later
clarified this concept of what would now be called developmental genetics, in his famous
diagram of the “epigenetic landscape” where the cell is envisioned as a ball, rolling down a
hill through valleys. As the ball encounters various ridges, it decides a path which places it
on a trajectory towards a specific valley or cell type [404]. Waddington’s term harkens back
to a late 19th century embryologist debate between those who envisaged development as the
enlargement of preformed elements (preformationism) and those who viewed development
as a series of chemical reactions, executing a complex developmental plan (epigenesis)
[97]. Thus, in its roots, one can see anticipations of the modern use of epigenetics to mean
“mitotically and/or meiotically heritable changes in gene function that cannot be explained in
DNA sequence” [326]. Based on this definition, epigenetics describes a variety of cellular
phenomena including DNA methylation (DNAme), histone modifications, and to some extent
ncRNAs (reviewed in [128, 97]).

1.4.2.2 DNA methylation mechanisms

Perhaps the most studied and characterised epigenetic modification is DNAme, proposed
as a mechanism of cell memory in 1975 [312, 155]. DNAme describes an additional
chemical modification to DNA where DNA methyltransferases (DNMTs) attach a methyl
group typically to the 5th carbon atom of a cytosine base, chemically changing it to 5-
methylcytosine (5mC).



22 Introduction

Generally in mammals, methylation occurs at cytosine residues adjacent to guanine residues
connected by the DNA phosphate backbone (CpG site), producing diagonally symmetric
methylation patterns across the DNA strands. Though uncommon, non-CpG methylation
such as CHG or CHH, where H is a non-G nucleotide, have been observed across a variety
of species and cell types, including human (reviewed in [289, 445, 168]). Depending on the
surrounding bases, these methylation patterns may not be symmetrical, suggesting that the
mechanisms which preserve CpG methylation through cell division (described below) do not
apply to non-CpG methylation [289]. Non-CpG methylation is generally rare and is more
rare in differentiated tissues compared to pluripotent cells or neuronal tissue [289, 168].

Early studies suggest non-CpG methylation sites may have functional importance (reviewed
in [289, 445]). For instance, compared to somatic tissues, induced Pluripotent Stem (iPS) cells
acquire non-CpG methylation [446, 224]. In neurons, CpH methylation is enriched around
methyl-CpG-binding protein 2 (MeCP2) binding [140], and is positionally conserved between
independent samples (i.e., not stochastic) [225]. Non-CpG methylation may also be linked to
response to environmental factors. For example, skeletal muscle non-CpG hypermethylation
patterns in the promoter of PPARGC1A are associated with decreased PPARGC1A expression,
T2D (T2D participants show hypermethylation), and are inducible by tumor necrosis factor
alpha as well as free fatty acid exposure [22]. These hypermethylation signals are also
associated with obesity and return to non-obese levels after gastric bypass surgery and weight
loss [24]. Finally, in healthy individuals, PPARGC1A promoter methylation decreases shortly
after exercise and is subsequently followed by increased PPARGC1A expression hours later.
Notably, by the time PPARGC1A expression changes are observed, methylation changes
were no longer apparent [23]. Across these several PPARGC1A studies, the key changes
were observed in non-CpG methylation, not CpG methylation. Collectively these findings
suggest an important role of non-CpG methylation; however, at this time it is difficult to draw
general conclusions as non-CpG methylation is still poorly characterised.

When a mammalian zygote is formed, DNAme is rapidly erased, or demethylated, throughout
the genome (reviewed in [212]). As the embryo develops, a series of de-novo methylation
events take place. These orchestrated DNAme events are performed by DNMTs, which
operate in either a de-novo or maintenance fashion. Currently, there are three DNMTs
of significant importance in mammals: DNMT1, DNMT3A, and DNMT3B (reviewed in
[174, 212]). DNMT3A and DNMT3B are essential to laying down de-novo DNAme patterns
during development. Though DNMT3A and DNMT3B may be involved in specific contexts
[174], DNMT1 primarily functions in maintaining DNAme patterns, by scanning the genome
and methylating cases of hemimethylated DNA, where a cytosine residue is methylated
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on only one strand. Such scenarios often occur during DNA replication where the newly
synthesized strand of DNA lacks chemical modifications. Thus, via this mechanism DNAme
can propagate through cell division, fulfilling the criteria of an epigenetic modification.

In contrast to the establishment of DNAme patterns, DNAme can be erased through passive
or active mechanisms during development or in response to environmental cues (reviewed in
[212]). Passive methylation involves the inhibition of DNMT1 such that methylated sites
are not maintained over DNA replication events. Active demethylation involves the direct
removal of the methyl group from 5mC and conversion back to an unmethylated cytosine
residue.

Recently, it was discovered that additional, oxidised 5mC derivatives exist in the mammalian
genome [382, 191], catalysed by the Ten-Eleven Translocation (TET) family of proteins
(reviewed in [212, 428]). These enzymes can convert 5mC to 5-hydroxymethylcytosine
(5hmC), 5hmC to 5-formylcytosine (5fC), and 5fC to 5-carboxylcytosine (5caC). 5fC and
5caC can in turn be actively converted to an unmethylated cytosine residue by thymine
DNA glycosylase and the base excision repair pathway. Alternatively, DNMT1 prefers
hemimethylated 5mC as a substrate, so 5mC derivatives may also be passively demethylated
[428].

To date, whether or not these oxidised 5mC derivatives have a functional role or are simply
intermediate products in a demethylation process is poorly understood (reviewed in [348,
428]). Across all CpGs, early experiments show oxidised 5mC derivatives are a minority with
5hmC constituting ~1-30% of CpGs and 5fC/5caC constituting ~8-10% of CpGs, depending
on cell type [445]. Such quantities are quite small compared to 5mC which can be found at
about ~70-90% of CpGs [445, 212]. Although scant, initial evidence suggests a functional
role worth further exploration. For instance, 5hmC is enriched around enhancers and DNase1
hypersensitivity sites (DHS), 5fC around poised enhancers and exons, and 5caC around
satellite repeats [445].

Unless special protocols are used [434, 38], 5hmC is indistinguishable from 5mC in com-
monly used DNAme readouts based on bisulfite conversion [156, 37] (see Section 1.4.2.4).
Therefore, due to the popularity of bisulfite treatment protocols, unless otherwise stated,
many studies, including this study, will describe DNAme patterns that do not truly represent
5mC, but rather the sum of 5mC and 5hmC. In this thesis, when I refer to DNAme, I am not
distinguishing between 5mC or 5hmC.
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1.4.2.3 DNA methylation function

As proposed in 1975 [312, 155], DNAme has been generally thought of as linked to repression,
silencing, and general inactivation of the genome. Indeed, many lines of evidence support
this notion. DNAme is essential to genome stability and is found around centromeres,
microsatellites, transposable elements, and other repetitive elements in mammalian genomes
(reviewed in [305]). DNAme is necessary for X-chromosome inactivation in females, where
one of the two female copies of the X-chromosome is silenced so that transcription occurs
on only one copy for the majority of X chromosome genes [212]. DNAme also serves in
imprinting where one parental copy of a gene is transcriptionally silenced (reviewed in [20]).
Finally, there has been incontrovertible evidence for some time that DNAme in promoters
silences gene expression (reviewed in [212]).

However, despite all of these observations, there is no established, comprehensive model
for how DNAme mechanistically functions in mammalian genomes. One model envisages
DNAme as a “locking” mechanism, where it aids in maintaining chromatin states rather
than initiating chromatin remodelling [173]. For instance in mouse, methylation of the Hprt
gene occurs after X-chromosome inactivation and Hprt silencing, suggesting DNAme is
not the primary mechanism in X-chromosome transcriptional silencing [227]. However,
DNAme can also attract TFs (reviewed in [445]), including methyl-CpG binding domain
proteins, like MeCP2, which associate with repressor complexes that alter the surrounding
chromatin structure, pointing to a role as a chromatin remodelling pioneer [212]. Still other
data suggest that nucleosome histone modifications may make DNA differentially susceptible
to methylation [174]. Through all of these lines of evidence, a picture emerges of a very
complex and intertwined relationship between DNAme, histone modifications, and other
regulatory mechanisms that is highly context dependent.

Enabled by high throughput technologies to assay methylomes genome wide, the past decade
of epigenetics research has helped establish and contextualize the diverse roles of DNAme. In
somatic mammalian tissues, the majority (~70-90%) of CpG sites are methylated [212, 445].
CpG dinucleotides are globally depleted (~5x) from the human genome [34], likely stemming
from the fact that 5mC is prone to spontaneously deaminate from a cytosine to a thymine
residue [212].

An important exception to this global CpG methylation pattern is the presence of specific ~1
kb stretches of mostly unmethylated CG-dense regions called CpG islands (CGIs; reviewed
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in [77]). CGIs generally mark TSSs. In humans and in mice, ~50% occur in canonical
promoters. The remaining “orphan CGIs” are split with ~25% occurring in intragenic regions
and ~25% occurring in intergenic regions. Despite the various genomic contexts of CGIs,
nearly all show evidence of transcriptional initiation, perhaps because CGIs mark open,
nucleosome deficient chromatin and therefore do not require additional ATP-dependent
chromatin remodelling complexes for nucleosome displacement [77]. Many of the orphan
CGIs show transcription of ncRNA, and exhibit tissue specific activity. Of all CGIs, the
intragenic CGIs show the greatest number of differences in DNAme across somatic tissues,
which may be linked to alternative splicing [77].

In addition, the high CpG content of CGIs can recruit proteins that promote H3K4me3,
an activating chromatin mark [385]. Conversely, the G+C richness of CpGs also attracts
proteins associated with H3K27me3, a repressive mark [250]. Therefore, in specific cellular
contexts like embryonic stem (ES) cells, many CGIs lie in a bivalent chromatin states. As
differentiation occurs, these states flip, like a switch, into active or repressed [77, 205].
Because of the peculiar fact that ~70% of all promoters have a CGI [77], CGI promoters have
been intensely studied. In this specific context, it is clear that DNAme of CGI promoters
blocks TF binding and gene transcription is inhibited [173, 77]. Because many early studies
focused on this specific context (promoter CGIs), this observation has shaped the general
perception that DNAme decreases gene expression [173].

However, as technologies have enabled the study of DNAme in other contexts, this intuition
that DNAme always decreases gene expression has been clearly refuted [173]. For instance,
DNAme in the context of gene bodies can be associated with increased levels of transcription,
possibly even stimulating the elongation phase of transcription [173]. Building on this
observation, there is a growing body of evidence that supports a regulatory role of gene body
DNAme in transcript splicing (reviewed in [210]). Compared to introns, DNAme is more
abundant in exons [210], and has been shown to be capable of directly causing alternative
splicing [432]. However, the effects of DNAme appear to be context specific—sometimes
promoting exon inclusion and other times promoting exclusion. In cases of strong splicing
programs for constitutive exons, perhaps due to a strong splice motif, weaker DNAme effects
on splicing are often suppressed. These observations have led to a model where DNAme
functions as a “fine-tuning” mechanism for alternative splicing. Such a model is consistent
with the fact that DNAme cannot be required for splicing since other organisms that lack
DNAme, like Drosophila melanogaster and Saccharomyces cerevisiae, have spliced genes
[210]. Mechanistically, DNAme has been shown to affect splicing by altering the kinetics of
Pol II elongation, for instance by creating “roadblocks” via CTCF or MeCP2 recruitment,
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as well as by attracting proteins which associate with splicing factors, such as HP1 [210].
Despite these clear cases, given the growing catalogue of TFs that read and write DNAme
(reviewed in [445]), there are likely many more key TFs involved in DNAme-linked splicing
that have yet to be discovered.

Even less characterised are intergenic regions, although initial evidence suggests that the
methylation patterns in these regions is very important. In mouse, Stadler et al. [364] describe
intergenic lowly methylated regions (LMRs) that are cell type specific and overlap DHSs
and enhancers. These regions were also strongly correlated with increased expression of
nearby genes (i.e., methylation of LMR reduced expression). In human cell lines, Charlet
et al. [58] found some H3K27ac peaks, a hallmark of active enhancers, coexist with DNAme
in enhancers, but not promoters. In cases where TCF4, a TF associated with enhancers
and H3K27ac peaks, was bound within a H3K27ac peak, an abrupt decrease DNAme
was observed. Furthermore, genetic or pharmacological reduction of DNAme decreased
H3K27ac, suggesting that DNAme is important to broader enhancer integrity, but lack of
DNAme is linked to TF binding within enhancers. It should be noted, however, that TF
binding does not always coincide with decreased DNAme, and indeed some TFs may prefer
DNAme when binding (reviewed in [445]). The important message from these studies is
DNAme shows complex patterns of functional importance in intergenic regions such as
enhancers. Given the importance of enhancers in regulating tissue specific gene expression
and the general enrichment of GWAS loci in disease relevant, tissue specific enhancer states
[287], such results may have important implications for disease and motivate the further
study of DNAme in this context.

Collectively, these observations demonstrate the role of DNAme is far more complex and
nuanced than previously appreciated. Understanding the functional importance of DNAme
will require the integration of multiple molecular traits, including gene expression, DNAme,
and histone marks, across multiple tissues.

1.4.2.4 DNA methylation quantification

Like gene expression, both array and sequencing-based approaches have been developed to
measure DNAme (reviewed in [433]). Most array based studies (including this study) use
Illumina microarrays, which were recently upgraded to the MethylationEPIC array from
the Methylation450 array. Both platforms use the same BeadArray technology (reviewed
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in [150]), except the EPIC array deploys more probes (850k vs 450k) that capture a greater
portion of intergenic genomic regions, like enhancers and DNase hypersensitive sites, and
also includes several non-CpG sites identified in human stem cells [261]. The gold stan-
dard, however, is whole genome bisulfite sequencing (WGBS), which assays genome wide
methylation, unrestricted by probe sites. Both of these methods use a bisulfite conversion
protocol.

Sodium bisulfite converts unmethylated cytosine to uracil, which after PCR, becomes thymine.
Thus, with this reaction, methylation can be measured by quantifying C→T changes, which
essentially enables the use of genotyping technologies to measure DNAme [35]. As men-
tioned earlier, both 5mC and 5hmC protect cytosine during a standard sodium bisulfite
protocol [156, 37], while cytosine, 5fC, and 5caC are converted to uracil [272]. Therefore,
unless otherwise stated, the DNAme readout from commonly used protocols will be both
5mC and 5hmC.

In contrast to the prolific use of RNA-seq to assay gene expression, WGBS is not yet the
current standard for methylation studies. The main reason is the prohibitive cost, as most
sequencing reads are wasted assaying non-methylated sites. For this reason, many studies
use arrays which are cheaper, but are restricted to predefined regions, and thus may miss key
methylation events (see Section 4.3.2). Alternative sequencing-based approaches have been
developed that reduce costs by enriching for methylated sites (reviewed in [433]), but are
still more expensive than array based technologies.

Looking to the future, new DNAme technologies stand on the horizon that promise to
overcome many of the current limitations. To date most methylation studies have been
conducted on cultured cell lines or bulk tissue samples, as existing protocols require relatively
large amounts of input DNA. Thus, the final methylation signal, derived from the aggregate
signal across all cells in the sample, ranges from 0 (unmethylated) to 1 (methylated). However,
new single cell technologies [139, 65] are beginning to shed light on the precise methylome
which, at the level of individual cells, is essentially binary apart from hemimethylated sites.
As technologies mature, these techniques will provide critical insights into the methylome
across a cell’s lifespan, cell types, and in relationship to disease. In addition, nanopore
sequencing has been shown to be able to directly detect 5mC [354]. New sequencing
technologies, combined with ever decreasing sequencing costs [131], promise to further drive
down the currently prohibitive price of WGBS, enabling widespread, unbiased methylome
surveys.
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1.4.3 Molecular quantitative trait loci (QTLs)

By 2001, it was clear that rapid technological advances could in theory enable genome
wide mapping of QTLs for molecular traits, and since mRNA could be easily captured
and quantified, it was the most obvious target [170]. One year after the initial proposal by
Jansen and Nap [170], Brem et al. [44] generated the first genome wide map of expression
quantitative trait loci (eQTLs) using yeast. Enabled by technology that allows for the
transformation of B lymphocytes into lymphoblastoid cell lines (LCLs; reviewed in [349]),
an immortal cell line essentially providing an unlimited resource of cellular material with
many applications, this initial success in yeast was quickly followed by studies in human
[61, 259, 263, 370, 371]. Since then, eQTL studies have been conducted across many
organisms, developmental stages, tissues, and molecular traits (reviewed in [112, 4]).

Mechanistically, a variant that affects gene expression can operate through cis regulation,
directly influencing expression from the same DNA molecule as the target gene in an allele
specific manner, or through trans regulation, indirectly influencing expression perhaps from
a different DNA molecule [317, 112, 4]. In general, regulatory variation that is proximal to
the target feature (the TSS of gene in the case of eQTLs) have been shown to operate in cis
[62, 294], and therefore proximal is often equated to cis regulation. However, that is not
always the case. For instance in yeast, the AMN1 protein indirectly regulates expression
of itself through interactions with other TFs. A variant in the AMN1 gene causes an amino
acid change that alters the regulatory interactions of the regulatory feedback loop, ultimately
perturbing the AMN1 expression. Notably, the ratio of expression of the amino acid changing
alleles in the diploid hybrid are not significantly different. Therefore, in this case, the amino
acid altering mutation is a proximal eQTL; however, the regulatory effect on expression is
trans as it affects both alleles in the heterozygous diploid [321]. Using sequencing data, cases
of true cis regulation can be detected by allele specific expression (ASE), where preferential
binding to one parental regulatory allele results in increased expression of a transcribed allele
in phase with the regulatory allele. In contrast, trans alleles may occur anywhere throughout
the genome, proximal or distal. Due to the severe statistical penalty that must be paid when
mapping distal QTLs, many studies only consider proximal regulation—often defined as +/-
1 Mb from the genomic feature (e.g., TSS in the case of genes) [275].

Since mRNA is critical to information transfer out of the nucleus and is easily isolated, the
majority of QTL studies to date focus on gene expression (eQTLs). Studies show that the
majority of eQTLs are shared across tissues [136, 104, 138], and that eQTLs are generally,
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but not always, located upstream of the genes they regulate [138]. In addition, Kilpinen et al.
[185] recently demonstrated that iPS cells contain a host of eQTLs not found in somatic
tissues. This supports a growing notion that many eQTL effects are specific to a cellular
context, such as a developmental time point [185, 54] or a specific environmental exposure
[356, 319, 135, 21, 238, 159, 235, 306, 430, 204, 96, 47, 267, 444, 188]. Identifying the
correct cellular context to observe an effect may make ascertaining the causal effect for
some GWAS loci difficult; however, a preliminary report suggests such response eQTLs
may exhibit effects on other molecular traits, like chromatin accessibility (caQTLs), in a
non-induced state, such that the cell is “primed” to respond to a specific context [3].

Finally, alongside eQTL studies, a growing number of studies have mapped genetic regulators
of other molecular traits (reviewed in [112, 4]) including DNA methylation (mQTLs), histone
marks (hQTLs), DNaseI sensitivity (dsQTLs), and more recently CTCF binding (CTCF-
QTLs) [84] as well as ATAC-seq (caQTLs) [196, 3]. In aggregate, these studies suggest a
substantial proportion of variation across many layers of molecular traits is driven by genetic
variation. To date, the extent to which genetic variants directly affect molecular traits or are
mediated through one trait or another is currently unknown—although initial studies suggest
that genetic effects across layers of molecular traits are often independent [141, 273]. It
should be stressed, however, that these studies span a limited number of molecular traits and
are by no means comprehensive.

1.4.4 QTL mapping

In order to model genetic effects, trait association studies commonly make two simplifications
[51]. First, variants that are not biallelic and contain more than two alleles are removed.
Second, only additive effects are modelled, meaning each minor allele copy results in a
similar proportional change in the phenotype. Dominant or recessive effects are not typically
modelled explicitly; however, in addition to capturing additive effects, additive models have
reasonable power to detect dominant effects [209].

Similar to the development of specialised tools like PLINK [57] during the maturing stages
of GWA studies, a variety of tools have been developed for QTL mapping for molecular traits
including matrix eQTL [345], LIMIX [222], RASQUAL [196], and QTLtools [81]. Each
tool provides slightly different options. For instance, LIMIX developed by Oliver Stegle’s
group at the EMBL-EBI is an extremely efficient, one stop toolkit for a variety of linear
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mixed model applications ranging from simple linear models to multivariate models. By
contrast, RASQUAL, which was released during my PhD studies, uses innovative models
that capture molecular trait biology to map truly cis QTLs by jointly modelling feature level
signal (e.g., gene expression) along with allele specific signal (e.g., allele specific expression)
in sequencing data. By utilising two orthogonal sources of information, RASQUAL boosts
power and identifies robust cis signals. Building on previous collaborations in the Birney
laboratory [54], I developed a QTL pipeline around LIMIX at the start of my PhD research;
however, for sequencing-based cis QTL mapping, RASQUAL is an excellent alternative
approach.

1.5 FUSION tissue biopsy study

Having helped lead the development of complex trait genetics from early linkage studies to
the now mature field of GWA studies, the collective FUSION laboratories have a record of
looking forward, envisioning the hurdles that need to be surmounted, with the overarching
goal of translating genetic findings into clinical applications. Recognising the need to link
non-coding GWAS loci to molecular traits, FUSION began designing a molecular trait
biopsy study in the 2000s with the goal of mapping molecular QTLs. Skeletal muscle and
adipose were selected as the primary target tissues since they are the only tissues related to
insulin response and glucose homeostasis that could be sampled from living participants who
could undergo extensive phenotyping (see Section 1.3.1 for a description of tissues critical
for glucose regulation). In its entirety, this study encompasses tissue samples of vastus
lateralis skeletal muscle, abdominal subcutaneous adipose, and skin from ~318 Finnish
individuals with Normal Glucose Tolerance (NGT), Impaired Glucose Tolerance (IGT),
Impaired Fasting Glucose (IFG), or recently diagnosed T2D before the onset of treatment
(Table 2.5). In most cases, all three tissues were collected from each participant, who had
previously undergone extensive phenotyping and genotyping. Focusing on T2D-related
tissues (muscle and adipose), each tissue sample has been subjected to deep RNA-seq and
DNAme analysis (Illumina Infinium MethylationEPIC BeadChip).

The primary goal of the FUSION biopsy study is to identify genes and DNAme sites linked
to T2D and T2D-related traits through direct associations and by integrating GWAS loci with
molecular QTLs. Molecular traits identified from this study, as well as others, can then be
followed up with functional studies to further clarify and establish the relationship with T2D
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and T2D-related traits. As noted, skin biopsies have also been acquired with the long term
goal of using these cells and iPS technology to generate islet cells, essential to T2D. In fact,
at the time of writing, 50 skin fibroblast cultures have already been transformed into iPS
cells.

1.6 The scope of this thesis

In this thesis, I present an analysis of genetic effects on expression and DNAme in skeletal
muscle, which was prioritised over adipose tissue in data generation.

In Chapter 2, I describe the measures taken to ensure good quality of the geno-
type, expression, and DNAme data. For expression, this section focuses on
skeletal muscle RNA-seq data, as muscle RNA-seq was prioritised over adipose
RNA-seq. For DNAme, I describe quality control steps across all FUSION
biopsy samples including the skeletal muscle and adipose, as well as several
additional pancreatic islet samples derived from cadaveric donors. Finally, I
also describe a measure of skeletal muscle specificity developed for both gene
expression and DNAme.

In Chapter 3, I characterise the relationship between expression and DNAme. In
this analysis, I find evidence of latent and potentially confounding sources of
correlation between expression and DNAme. I show that some of this correlation
may be due to differences in tissue heterogeneity across samples, which has been
previously underappreciated in similar studies. Accounting for this correlation, I
chart associations between expression and DNAme and characterise the genomic
context of these associations.

In Chapter 4, I generate maps of genetic regulators of gene expression and
DNAme. I analyse these maps in the context of a panel of chromatin states
across several cell/tissue types, identifying patterns of enrichment. In addition,
I integrate QTL maps with TF binding predictions in order to identify skeletal
muscle activators and repressors.

In Chapter 5, I integrate QTL maps with variation linked to T2D and T2D-related
traits. I find QTLs for many GWAS loci and summarise the top results, showing
how DNAme can potentially inform the location of key regulatory events (TF
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binding at the canonical promoter, alternative splicing, distal regulation, etc.). I
also describe QTLs for molecular traits with signal patterns highly specific to
skeletal muscle, as these loci have the greatest potential to inform skeletal muscle
T2D pathophysiology. I replicate an association with a T2D GWAS locus and
a highly muscle specific ANK1 isoform, previously identified using an earlier
version of this dataset [341]. I also analyse mQTLs at the same T2D GWAS
locus for highly muscle specific DNAme sites around ANK1, showing that the
strong genetic effects on ANK1 expression and DNAme appear to be statistically
independent. Inspired by this observation, I characterise the relationship between
expression and DNAme genome wide, through a mediation analysis using QTLs.
I show that in the majority of cases, associations between gene expression and
DNAme appear to be independent.

In Chapter 6, I map genetic effects on gene expression that are specific to an en-
vironmental context, treating the rich phenotyping data on FUSION participants
as potential environments. Though this study was underpowered, I highlight a
candidate context specific effect between FHOD3 and low-density lipoprotein
cholesterol as well as systolic blood pressure.

Finally, in Chapter 7, I summarise the key findings of each chapter and outline
steps for further research motivated by the results presented in this thesis.

Altogether, these analyses add new insight into the genetic regulators of skeletal muscle
expression and DNA methylation, and contextualise how these genetic regulators affect
fundamental muscle biology in normal individuals and those with T2D.



Chapter 2

Data generation and quality control

2.1 Introduction

In this chapter, I describe how my colleagues and I generated the data I analysed in this
thesis and the quality control procedures I employed for the DNAme data. To provide
the reader with the context of these data, I will briefly outline the key characteristics of
the cohort, sample collection, and the molecular traits generated on these samples. My
collaborators, primarily in the Collins laboratory, generated all of the data analysed (see
Acknowledgments and Scott et al. [341]). Data analysis was conducted by the FUSION tissue
analysis team, mainly composed of University of Michigan and NIH analysts, including
myself. To accomplish the many tasks involved in data analysis and quality control, we
subdivided the tissue analysis team into project oriented groups—phenotype, genotype, RNA-
seq, and DNAme. Within each task group, consisting of 3-4 analysts, decisions were made
and subsequently presented to the full analysis team for collective approval or modification.

My role in this process was as follows: in collaboration with a clinician, I processed the
medication phenotype information. I also led the genotype and RNA-seq data generation
and quality control—overseeing analysis steps, decisions about sample exclusions, and
performing specific analyses. Finally, I directed and executed the bulk of the DNAme
analysis and quality control.
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2.2 Participant recruitment

The FUSION tissue biopsy study is part of a long term epidemiological cohort, published
extensively on over the last 10 years (https://fusion.sph.umich.edu). The full details of partic-
ipant recruitment for the tissue biopsy study are described in detail in Scott et al. [341]. For
completeness sake, I have reproduced part of that text to provide relevant background infor-
mation. We attempted to contact still-living FUSION spouses and offspring who participated
in FUSION study visits between 1994 and 1998 [391], individuals who had participated in the
population-based Savitaipale Prospective Diabetes Study [390], the FINRISK 2007 survey,
the Dose Responses to Exercise Training (DR’s EXTRA) study [190] and the Metabolic
Syndrome in Men (METSIM) study [365]. Additional subjects were recruited by newspaper
advertisements. We excluded individuals: (1) with drug treatment for diabetes, (2) with
diseases that might be expected to confound the analyses (for example, cancer, skeletal
muscle diseases, acute or chronic inflammatory diseases), (3) with diseases that increase
haemorrhage risk during biopsy (for example, von Willebrand’s disease, haemophilia, severe
liver diseases), (4) taking medications that need to be taken daily and increase haemorrhage
risk in the biopsies including warfarin (patients on acetylsalicylic acid were instructed to
stop for 7 days prior to biopsy), (5) taking medications that could confound the analyses (for
example, oral corticosteroids, other anti-inflammatory drugs such as 5-ASA, infliximab or
methotrexate), and (6) of age < 18 years. The study was approved by the coordinating ethics
committee of the Hospital District of Helsinki and Uusimaa. A written informed consent
was obtained from all the subjects.

2.3 Clinical visit and phenotyping

Full clinical procedures are described in Scott et al. [341] and are copied below. Clinical visits
were performed in Helsinki, Savitaipale and Kuopio on average 14 days prior to biopsies.
The clinical visit followed a 12-hour overnight fast and centered around a 4-point (0, 30, 60,
120 min) 75 g oral glucose tolerance test (OGTT). We defined glucose tolerance categories of
normal glucose tolerance (NGT), impaired glucose tolerance (IGT), impaired fasting glucose
(IFG) and T2D using World Health Organization (WHO) criteria [427]. We determined
OGTT plasma glucose (fluoride citrate plasma) concentrations by hexokinase assay (Abbott
Architect analyser, Abbott Laboratories, Abbott Park, IL, USA).

https://fusion.sph.umich.edu
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Several metabolites were also measured at the first time point, during the fasting state. Serum
insulin and serum C peptide concentrations were assayed by chemiluminescent microparticle
immunoassays using the Abbott Architect analyser (Abbott Laboratories, Abbott Park,
IL, USA). Serum triglycerides, total and HDL cholesterol were measured by enzymatic
methods with the Architect analyser. LDL cholesterol concentration was calculated using
the Friedewald formula [110]. All laboratory analyses were performed at a certified core
laboratory at the National Institute for Health and Welfare, Helsinki, Finland. In addition,
during the clinical visit, anthropomorphic information, health history, medication, and
lifestyle questionnaires were collected. Height was measured to the nearest 0.1 cm. Height
and weight were measured in light clothing. Waist circumference was measured midway
between the lower rib margin and the iliac crest. Hip circumference was measured at the
level of the trochanters. Body mass index (BMI) was calculated as weight (kg) divided by
the square of height (m).

In collaboration with a physician (Andrea Ramirez, NIH), I processed the medication in-
formation. This involved (1) parsing the medical information which included Anatomical
Therapeutic Chemical (ATC) codes [425], (2) physician review and diagnosis, and (3) vali-
dation of physician diagnosis by cross referencing with the MEDication Indication (MEDI)
database [416]. I performed the computational steps of items 1 and 3. With the help of
the database managers (Heather Stringham, University of Michigan and Leena Kinnunen,
Finland National Institute for Health and Welfare), I verified that medication information was
missing from one participant who was excluded from medication analyses. This participant
was also the non-Finnish participant (see Section 2.5.2).

2.4 Biopsy visit

The following text is reproduced from Scott et al. [341] and describes biopsy procedures.
Biopsies were performed using a standardised protocol and one physician trained all doctors
performing biopsies. We instructed participants to avoid strenuous exercise for at least
24 hours prior to biopsy. Following overnight fast, we obtained ~250 mg vastus lateralis
skeletal muscle using a conchotome, under local anaesthesia with 20 mg ml -1 lidocaine
hydrochloride without epinephrine. Altogether 9 experienced and well-trained physicians
collected 331 muscle biopsies in 2009-2013 in 3 different study sites (Helsinki, Kuopio
and Savitaipale). Three physicians, one in each site, performed most of the biopsies (237
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biopsies). The muscle samples were cleaned of blood, fat and other non-muscle tissue by
scalpel and forceps, rinsed with NaCl 0.9% solution, and frozen in liquid nitrogen. Samples
were frozen within 30 seconds after sampling. Muscle samples were then stored at -80 °C
for a duration of 0-4 years before analysis. Overall, the biopsy procedure was well tolerated.
Apart from a few expected cases of bruising, numbness at the biopsy site and vasovagal
reactions, there were no clinically significant adverse sequelae. All biopsies were shipped to
the Collins lab at the NIH where they were processed to generate genotype and molecular
trait information.

2.5 Genotyping procedures and quality control

In the genotype quality control steps outlined below, I helped oversee the analysis carried
out by Narisu Narisu (NIH) and Anne Jackson (University of Michigan). I helped choose
the final filtering parameters for imputation, flagged the non-Finnish sample by analysing
genotype principal components (PCs), and set the final number of PCs we included in later
analyses as covariates. Below, I outline the genotyping steps. This text is partially drawn
from Scott et al. [341], but altered to account for additional genotypes.

We extracted DNA from blood. DNA samples were genotyped at the Genetic Resources Core
Facility of the Johns Hopkins Institute of Genetic Medicine. 327 samples were genotyped on
the HumanOmni2.5-4v1_H BeadChip array, while 4 were genotyped on the InfiniumOmni2-
5Exome-8v1-3 BeadChip array (Illumina, San Diego, CA, USA). We mapped the Illumina
array probe sequences to the GRCh37/hg19 genome assembly using the Burrows-Wheeler
Aligner [213]. We excluded SNPs with probe alignment problems, known variants in the 3’
end of probes, and reduced the original set to 2,277,032 common markers between arrays.
We further filtered out markers with call rates < 95%, minor allele count (MAC) < 1, or
Hardy-Weinberg equilibrium p-value < 10-4, leaving 1,571,557 SNPs for subsequent analysis
(including 33 chrY and chrM markers). All alleles were oriented relative to the reference.

2.5.1 Genotype imputation

In order to reduce the effect of ambiguous SNPs with respect to pre-phasing and subsequent
imputation, we removed array markers exhibiting an alternate allele frequency difference of



2.5 Genotyping procedures and quality control 37

> 20% with phase 3 1000 Genomes European data, palindromic SNPs with a minor allele
frequency > 40%, genotype missingness > 2.5%, or Hardy-Weinberg p-value < 10-4. A total
of 1,556,249 markers were used in pre-phasing and imputation.

We performed pre-phasing and imputation separately on autosomal and chrX markers using
the Michigan Imputation Server [74]. We used eagle v2.3 [228] for autosomal marker
pre-phasing and shapeit v2.r790 [80] for chrX markers. We subsequently used minimac3
[74] for imputation of missing genotypes using the Haplotype Reference Consortium (HRC)
panel (hrc.r1.1.2016) [246]. At the time of imputation, the HRC panel only supported SNP
imputation.

2.5.2 Sample quality control

We analysed sample relatedness and identified two unexpected pairs of first-degree relatives
using KING [236]. Each was an NGT-IGT pair; from each pair we excluded the NGT
participant. We performed PCA, merging the FUSION samples with a population reference
panel to verify Finnish ancestry using LASER [407]. We identified and removed one non-
Finnish participant (Figure 2.1, Table 2.1). Within the remaining FUSION samples we
performed PCA using eigenstrat [301] on 437,182 genotyped, autosomal SNPs with MAF >
1% and Hardy-Weinberg equilibrium p-value < 10-4, after excluding SNPs from regions of
high LD and LD pruning SNPs to a pairwise r2 threshold of 0.5 [302, 413]. We found the
first 4 PCs to be significant (p-value < 0.1) and included them in later analyses to account for
sample relatedness (Figure 2.2). One sample swap identified in the RNA-seq and DNAme
data was determined to be a genotype swap based on sib-pairs from previous FUSION studies.
This swap was corrected in the raw data before PCs were generated and after imputation.
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Figure 2.1 FUSION genotype PCs (black) projected onto European populations. We identified and
removed one non-Finnish participant that clustered with central Europeans.
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2.6 Measuring gene expression and quality control

We previously published the FUSION skeletal muscle gene expression data [341]. For the
initial publication, NIH colleagues, Michigan colleagues, and I developed the code used to
map reads and perform QC. Since completing the work for that publication, we sequenced
additional skeletal muscle biopsies and made modifications to the analysis pipeline. Here,
I briefly outline the major points of the RNA-seq analysis pipeline used in the bulk of this
thesis. I note differences between this section and Scott et al. [341] at the end of this chapter
(Section 2.8). When appropriate, parts of the text below are reproduced from Scott et al.
[341] and slightly updated to reflect additional samples and slight alterations to the data
processing pipeline. In regards to the pipeline, Peter Chines (NIH) executed the bulk of the
RNA-seq pipeline, and I helped decide on sample and gene filters, which were presented and
approved by the larger FUSION tissue analysis group. In addition to developing code that
was deployed in many sections of the RNA-seq analyses, I specifically ran the PCA outlier
analysis as well as the tissue deconvolution analysis, described below.

2.6.1 RNA isolation and sequencing

We visually dissected 30-50 mg of each frozen muscle biopsy sample (323 biopsies) to avoid
adipose tissue. Total RNA was extracted and purified with Trizol (Invitrogen, Carlsbad, CA).
RNA integrity numbers (RIN) ranged from 6.6 to 9.4 (median 8.4). RIN information was
missing from one sample due to a technical error in the Bioanalyzer machine (Agilent). All
other samples processed in the batch with the missing sample had an average RIN of 8.5,
suggesting high quality. Using all muscle RNA-seq samples, we mean imputed the missing
RIN for downstream analysis, estimating it to be 8.4.

To minimize and quantify batch effects, we randomly queued samples for sequencing
using a 24-sample barcode-pooling approach and targeted proportional representation of the
OGTT states (NGT, IGT, IFG and T2D) in each sequencing batch. External RNA Controls
Consortium (ERCC) RNA controls [171] were spiked prior to barcoding to facilitate library
QC. In total, we submitted 323 Poly(A)-selected RNA samples for sequencing at the NIH
Intramural Sequencing Center (NISC) using the Illumina TruSeq directional mRNA-seq
library protocol to a targeted depth of 80 million 100 bp paired-end reads per sample.
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2.6.2 RNA-seq processing and quality control

We retained RNA-seq reads passing the Illumina chastity filter and mapped reads to a
reference sequence composed of ERCC control fragments and all chromosomes and contigs
from GRCh37/hg19, excluding alternate haplotypes, replacing chromosome M with the
Cambridge Reference Sequence and masking the pseudoautosomal region on chromosome
Y. We aligned reads using STAR v2.3.1y [85] with default parameters and a splice junction
catalogue based on GENCODE v19 [146]. Duplicate read pairs were retained. Non-uniquely
mapping reads and read pairs with unpaired alignments were discarded.

We performed RNA-seq QC at the level of read groups, defined as a library on a lane, using
QoRTs v1.1.18 [147]. Seeing little variation from lane to lane, we summarised the QoRTs
measurements by taking the mean for each sample. We looked for outliers using a variety of
measures including GC content, transcriptional diversity, and gene body coverage. There
were no outliers for GC content. For transcriptional diversity, we calculated the distribution
of the fraction of total transcription in 500 roughly equal count bins, according to the median
counts for each gene, then compared each sample to the median of all samples using the
Kolmogorov-Smirnov test (ks.test function in R), dropping 7 outlier samples (p-value < 0.01;
Figure 2.3). Many of the samples removed as outliers in the transcriptional diversity analysis
also had a decreased fraction of skeletal muscle when included in tissue heterogeneity
estimates. Most notably, all 4 samples with an estimated skeletal muscle fraction < 90% were
dropped based on transcriptional diversity measures. For gene body coverage, we compared
samples based on the fraction of reads in 40 bins along the normalised length of all genes;
we dropped four samples as outliers based on their coverage the 3’ end in the (0.9,0.925] bin,
possibly indicating RNA degradation.

We used verifyBamID v1.1.1 [175] with the following parameters “--ignoreRG --precise
--best --maxDepth 100” to remove RNA-seq samples comprised of reads derived from more
than one individual and and identify sample swaps by comparing transcribed SNPs to SNP
chip genotype data. We identified two pairs of sample swaps and removed one sample
that showed high levels of contamination (~8%). In addition, we removed six intentional
replicates, one unintentional replicate, one participant of non-Finnish ancestry, and one of 2
pairs of first-degree relatives. After all exclusions, there were 301 muscle RNA-seq samples
available for analysis (Table 2.2).
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We previously [341] quantified gene expression as fragments per kilobase per million reads
(FPKM) [266, 386]. This unit of measure accounts for bias in transcript length, where even
if expressed at the same level, longer transcripts have more reads because they produce
more molecules in the fragmentation step of Illumina sequencing. In addition, the FPKM
unit of measure controls for variable sequencing depth (total number of reads obtained in
one sequencing run), which if not accounted for would make genes equally expressed in
two samples appear more expressed in the sample with greater sequencing depth. Within a
sample, for a gene, g, the FPKM is calculated as:

FPKMg =
cg109

lgN
(2.1)

where c is the number fragments mapping to a gene’s exons, l is the length of the gene (sum
of exons—number of possible start positions for a fragment), and N is the sequencing depth
of a sample (number of mapped reads).

Transcripts per million (TPM) is another expression measurement unit, slightly different
from FPKM, and is thought to be a more accurate measurement of relative molar RNA
concentration [405, 211]. Within a sample, for gene, g, among n total genes, the TPM is
calculated as:

T PMg =
cg

sg
× 1

∑
n
j=1 c js j

×106 (2.2)

where c is the number fragments mapping to a gene’s exons and s the effective gene length
defined as the length of unioned exons for a gene minus the median insert length of a sample.

Given these reports on TPM [405, 211], we decided to change the unit of measure for
gene expression from FPKM to TPM. However, for exon expression, it was unclear how to
calculate effective gene length, because, unlike for genes, the exon fragment length is often
smaller than the insert size. In such cases, the effective gene length, s, would be negative.
Therefore, we used FPKM as a unit of measure for exon fragments.
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Definitions for all transcriptome features were based on GENCODE v19 [146]. We counted
fragments mapping to genes using htseq-count v0.5.4 [10], and used QoRTs to parse GEN-
CODE v19 exon annotations into non-overlapping fragments and count exon reads. To reduce
the number of transcripts per gene, to avoid identifiability issues, and to restrict analysis
to high-confidence transcripts, we estimated transcript expression values for the subset of
GENCODE transcripts with the tag “basic” in the GTF file.

After the above exclusions and swaps, we adjusted the gene expression TPMs for age, sex,
batch, and RIN, and performed PCA on the residuals to look for additional outliers. We
selected the first 2 PCs, which accounted for > 40% of the cumulative variance explained
and transformed the PCs to z-scores. We found no striking outliers that warranted removal,
defined as |z-score| > 5 (Figure 2.4). For subsequent linear models, we filtered for genes with
≥ 5 counts in > 25% of samples and inverse normalised the TPMs. Additionally, using the
filtered expression data did not affect the PCA outlier decisions.
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Figure 2.4 Expression PCA. (a) Cumulative variance explained by each PC. (b) No outliers were
identified in the first 2 PCs.
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2.6.3 Gene expression tissue specificity index

My collaborators at the University of Michigan previously developed a method to measure
the cell/tissue type specificity of gene expression, termed the expression specificity index
(ESI) [341, 395]. Genes with a large ESI are highly and specifically expressed in a single
cell/tissue type based on the reference panel used to generate the index. For instance, we
previously used this method to identify genes with muscle specific expression patterns based
on a muscle expression specificity index (mESI) that was generated using 16 tissues from
Illumina Human Body Map 2.0 [341].

In order to calculate mESI values over a more comprehensive reference panel, I applied
this method to 49 tissues from GTEx (v6p), removing tissues with < 25 samples (bladder,
ectocervix, endocervix, and fallopian tube). Using the raw read counts, Peter Chines and I
quantified GTEx gene expression as TPMs as opposed to RPKMs in order to be consistent
with the FUSION data. For each gene in each tissue type, I calculated the average expression
across samples to build a reference transcriptome panel. With this reference transcriptome
panel, I calculated muscle specificity as previously described [341, 395] and reproduced here,
slightly modified to fit the GTEx data.

We calculated the relative expression of each gene (g) in skeletal muscle compared with all
49 tissues (t) as p:

pg,muscle =
xg,muscle

∑
49
t=1 xg,t

(2.3)

We next calculated the entropy for expression of each gene across all 49 tissues as H:

Hg =−
49

∑
t=1

pg,t log2(pg,t) (2.4)

Following previous studies [149, 338] we defined muscle tissue expression specificity (Q)
for each gene as:
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Qg,muscle = Hg− log2(pg,muscle) (2.5)

To aid in interpretability, we divided Q for each gene by the maximum observed Q and
subtracted this value from 1 and refer to this new score as the mESI:

mESIg = 1−
Qg,muscle

max(Qmuscle)
(2.6)

The final mESI scores near zero represent low and/or ubiquitously expressed genes, and
scores near one represent genes that are highly and specifically expressed in skeletal muscle.

It should be stressed that the actual cell/tissue type specificity of this measurement depends
on the quality of the reference panel used. In this case, I used GTEx as a reference panel
since it is the most comprehensive multi-tissue gene expression dataset to date. However, like
the FUSION data described in Section 2.6.4, the GTEx data are derived from tissue biopsies
that are composed of a population of heterogeneous cell/tissue types, which could obscure
the true cell/tissue type expression signature of a gene. In the future, such issues could be
mitigated by using a multi-tissue, single cell expression dataset as a reference panel [308].

2.6.4 Gene expression tissue deconvolution

To estimate tissue heterogeneity in the FUSION tissue biopsies, I compared FUSION TPMs
across all protein coding genes, not filtering for genes with ≥ 5 counts in > 25% of samples,
to the average TPM in the GTEx data using DeconRNASeq v1.16.0 [129]. I did not filter
genes for counts because genes that are not expressed may be useful in tissue deconvolution.
For instance, if a highly expressed gene specific to adipose was not expressed in our data, it
would indicate adipose contamination is unlikely. In order to limit to the most relevant genes
per tissue, I selected the top 500 tissue specific genes for each considered tissue in the GTEx
reference panel. For skeletal muscle, I selected “skin not sun exposed suprapubic”, “whole
blood”, “adipose subcutaneous”, “muscle skeletal”, and “EBV transformed lymphocytes”
as a reference panel from GTEx. Across the skeletal muscle samples after QC, I estimated
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< 0.1% adipose, 0-2% skin, 0-2% lymphocytes, 0-8% whole blood, and 91-99% skeletal
muscle tissue heterogeneity (Figure 2.5a).

In order to quantify the reproducibility of our tissue estimates, I compared the tissue fraction
estimates of 6 replicates (obtained by separately processing the same source tissue) and one
unintentional replicate due to a sample swap, confirmed by genotypes. I found the tissue
estimates between these samples to be remarkably similar (Figure 2.5b).

Because these replicates were a separate processing of the same tissue source, such replicates
are similar to how we generated the DNAme data—by separately processing the same
frozen tissue stock. Since the expression-based tissue heterogeneity estimates between
these replicates is so similar, I used them for the DNAme data, as no appropriate reference
methylation panel could be found without integrating data from many studies, which would
introduce confounding batch effects.

Finally, I note that these estimates are not foolproof as (1) the reference panel is also
composed of heterogeneous tissue (e.g., no “pure” muscle) and (2) the reference panel may
not encompass all relevant cell types, for instance specific blood cell types instead of simply
“whole blood”. Therefore, in subsequent analysis, I treated the tissue heterogeneity estimates
as an approximation of the true tissue heterogeneity.
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Figure 2.5 Tissue heterogeneity estimates. (a) Estimates across samples. (b) Estimates across
biological replicates.
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2.7 Measuring DNA methylation and quality control

I oversaw the DNA methylation QC and directly ran most of the steps, outlined below. The
muscle samples used in this thesis were submitted along with several other samples for
DNAme measurement including adipose, blood, islet, and EndoC betaH1 (pancreatic beta
cell line). The adipose and blood samples were also collected as part of the FUSION biopsy
study and are matched to the skeletal muscle biopsy participants. I processed all of these
samples together and therefore describe the QC steps across all samples, even though this
thesis focuses on the muscle biopsy samples.

2.7.1 DNA isolation and methylation quantification

We visually dissected ~25 mg of each frozen muscle and ~100-150 mg of frozen adipose
biopsy sample, taking care to avoid adipose tissue in muscle and particularly bloody tissue
sections in adipose. Genomic DNA was obtained from ~2,000 islet equivalents of islet tissue,
cultured in various glucose stimulation states. Finally, for the pilot plate, DNA was extracted
from ~6 ml of whole blood.

For each tissue and blood sample, genomic DNA was extracted using DNeasy Blood &
Tissue Kits (QIAGEN), according to the manufacturer’s recommendations. Genomic DNA
extraction from pancreatic islets and EndoC was performed using the Gentra Puregene Cell
kit (QIAGEN), according to the manufacturer’s protocol. We submitted 200 ng of genomic
DNA for 736 samples (41 islets, EndoC, 333 adipose, 337 muscle, and 24 blood samples)
to the Center for Inherited Disease Research (CIDR) at the Johns Hopkins University,
where they were bisulfite-converted using EZ DNA methylation Kits (ZYMO research), as
part of the TruSeq DNA Methylation protocol (Illumina). Following bisulfite-conversion,
CIDR measured DNAme using the Illumina Infinium HD Methylation Assay with Infinium
MethylationEPIC BeadChips according to manufacturer’s instructions.

With the addition of 4 controls (ZYMO research) per plate (two 100% methylation, one 0%
methylation, and one 50% methylation generated by mixing 100% and 0% in an equimolar
mixture), we filled the 768 total possible samples spanning 96 sentrix slides, each containing
8 arrays, run in batches of 12 across 8 plates. In order to test the CIDR pipeline before
submitting the entire FUSION sample set, one plate (WG3000808) was submitted as an
earlier pilot plate which contained all of the blood samples as well as 21 samples that were
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technical replicates of samples located on later plates. The 644 remaining adipose, muscle,
and islet samples were randomised across the remaining plates.

2.7.2 Technical sample filters and quality control

I processed the idat files, which contain the raw methylation signal, using minfi v1.20.2
[12]. I dropped 15 failed samples (5 islet, 3 adipose, and 7 muscle) where > 1% of probes
had a detection p-value > 0.05, as performed by Hannon et al. [144]. Similar to Aryee et al.
[12], I compared the median signal intensity of the raw methylated (Meth) and unmethylated
(Unmeth) channels across samples. I dropped one adipose sample where the difference
between the median Meth and Unmeth signal was > 1 as well as 5 samples (1 adipose, 4
muscle) where the either the Meth and Unmeth signal was < 10 (Figure 2.6).
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Figure 2.6 Median signal intensity of the methylated (x axis) and unmethylated (y axis) channels
across samples, coloured by QC status. The solid black line is the identity line. Small dot black lines
depict boundaries where the deviation from the identity line is greater than 1. Grey lines show the
intensity cutoff at 10.
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Next, using the returnControlStat function from shinyMethyl v1.10.0 [107], I analysed
the bisulfite conversion, extension, hybridisation, negative, non-polymorphic, specificity,
staining, and target removal control probes. Many of the samples flagged in the previous steps
were also outliers in the control probes (Figure 2.7). Of the samples that passed previous QC
measures, I removed 1 islet, 8 adipose, and 3 muscle samples where the absolute value of the
signal intensity z-score was > 3. The samples that were slight outliers, yet passed this filter,
were not obvious outliers when looking at final tissue specific PCs after removing sample
plate, sentrix position, plate position, age, and sex effects.
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Figure 2.7 Control probe QC. Mean control probe signal, transformed into z-scores across various
classes of control probes, generated using returnControlStat from shinyMethyl. Samples coloured by
QC status up to this filter.
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2.7.3 Sample swap identification using genotypes

On the EPIC array, there are 59 SNP probes, designed to enable users to verify sample
identity [295]. Peter Chines and I verified sample identity by comparing EPIC genotype
calls from beta values to imputed genotypes. From the 59 EPIC SNP probes, we dropped
(1) rs11249206 and rs2857639 because a variant in the HRC panel overlapped the last 10
bp of the probe (Section 2.7.5), (2) 6 markers that fail Hardy-Weinberg (p-value < 10-20),
(3) rs6471533 because it had many beta values in-between genotype clusters, (4) rs939290
because it is tri-allelic in the HRC reference panel, and (5) two additional SNPs with more
than 10 mismatches across samples. In total we compared 47 markers to imputed genotypes.

We dropped samples with a Manhattan distance between dosage vectors > 3 using the EPIC
genotypes and the expected genotypes. In cases where we identified a perfect genotype match
with a different sample, we changed the DNAme sample identifier to match the genotype
sample identifier. Other cases with no match may indicate cases of contamination by another
sample. In total, we dropped 15 samples that did not match the imputed genotypes (4 islet,
3 adipose, and 8 muscle). Of these failed samples, 10 were already removed due to a high
fraction of failed probes. The additional 5 failed samples included 1 adipose and 4 muscle
samples. We dropped an additional islet sample, despite a perfect genotype match, because
we could not determine the glucose stimulation state due to the sample swap. Finally, we
identified one sample swap previously found in the RNA-seq data, as well as three mislabeled
adipose samples, two of which created sample replicates which were used in the later replicate
analysis (however one replicate failed QC). After correcting sample swaps using genotypes,
we further verified the identity of samples by comparing the recorded sex to the predicted sex
based on methylation using the minfi getSex function with default parameters (Figure 2.8).

2.7.4 Plate quality control

I analysed bulk signal trends across arrays. I found that the pilot array, WG3000808, showed
different trends in the overall distribution of beta values, M-values, Meth, and Unmeth signal
intensities (Figure 2.9). In order to ensure these trends were not due to a different tissue
being included in the pilot plate (blood), I removed all blood samples and found the batch
effect persisted. I further analysed the median Meth and Unmeth signal of each sample and
found a consistent, different profile for the WG3000808 plate (Figure 2.10). As per design,
the muscle and adipose tissue samples on the WG3000808 array are technical replicates. I
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Figure 2.8 Recorded sex validation using methylation. Facets show the recorded sex and colours
show the predicted sex.

compared the raw beta signal of these samples to replicate pairs scattered across other plates
and found a general trend in direction of the skewing of DNAme estimates across samples
(Figure 2.11).

Unless specified otherwise, I removed the WG3000808 plate from further analyses, described
after this section. However, before doing so, I included WG3000808 in the sample QC steps
(see Section 2.7.7) before re-running these steps without this plate. Including or excluding
WG3000808 did not affect the final result of any filters. Compared to other sample QC steps,
excluding WG3000808 had the largest effect on the tissue specific PCA analysis, although
this effect was still only marginal and did not affect the final outlier samples. Of the additional
QC steps, when analysed with the other plates, no WG3000808 samples were flagged as
outliers in the tissue methylation distribution analysis, the multi-tissue PCA analysis, or
tissue specific PCA analysis on residuals after accounting for sample plate, sentrix position,
plate position, age, and sex effects. Three adipose samples that failed on the other plates
could have been rescued by drawing from WG3000808, but I rejected that option based on
the large batch effect.
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Figure 2.9 Plate methylation distribution. WG3000808-nb depicts WG3000808-“no blood” where
blood samples on WG3000808 are dropped. (a) Beta values. (b) M-values. (c) Methylated signal
intensity. (d) Unmethylated signal intensity.
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(a) Difference across replicates

(b) Zoomed

Figure 2.11 Difference in raw methylation across replicates. Colors indicate the order of subtraction
for comparison. For all green plots, methylation differences were calculated by taking the WG3000808
replicate, the non-WG3000808 replicate. Note that the orange replicate occurs on the same plate. (a)
Full difference scale. (b) Zoomed in differences.
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2.7.5 Probe filters and quality control

Peter Chines and I also worked together to remove potentially bad probes from the EPIC
array. Some probes have been reported to be cross-reactive, mapping to more than one
genomic location [60, 303, 247, 442]. Measurements from such probes are unreliable as they
likely represent aggregate DNAme signal across multiple sites. To identify cross-reactive
probes on the EPIC chip, we mapped non-control probes back to the entire bisulfite-converted
genome (leaving out alternative haplotypes, and ignoring a single hit to a random contig
when there is a single corresponding hit to a primary chromosome), using Novoalign’s -b4
option, with allowance for up to three mismatches in the 50 bp probe alignment beyond
the best alignment seen (-R120 option). We kept only uniquely mapping probes, removing
49,495 probes (Figure 2.12).
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Figure 2.12 Summary of blacklist probes excluded from analysis. ProbeProver is the term used to
describe the method developed and used by FUSION for ambiguous probe mapping.

In addition, probes may also contain SNPs, which if common to the population of interest,
could lead to biases in inter-individual studies. For example, “methylation” signals at
polymorphic CpGs merely reflect the underlying genetic polymorphism [60] as well as
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exhibit significantly increased variation compared to all other probes [303]. In order to avoid
such biases, we removed probes with a SNP within 10 bp of the 3’ end of the probe, within
the target CpG itself, and finally, in the case of type I probes, if the variant overlaps the single
base extension site. We used 10 bp as a cutoff because it is consistent with previous studies
[303].

For variants we used common (MAF ≥ 1%) SNPs, indels or structural variants in the phase
3 1000 Genomes European dataset, common (MAF ≥ 1%) SNPs in the HRC reference panel
r1.1, and SNPs appearing at all in our own samples, even at low frequency, after imputation
to the HRC reference panel. We chose to filter probes overlapping a SNP at any frequency in
our imputed HRC genotypes, because we will likely use different sample subsets for future
integrated muscle and adipose studies. We wanted a consistent analysis data frame across all
studies, instead of applying a different MAF filter for only adipose or only muscle samples.
In total we removed 63,840 probes due to SNP overlaps. As a final step, we combined our
blacklist with a previously published EPIC probe blacklist from McCartney et al. [247] for a
total of 120,627 unique probes which were removed from subsequent analysis (Figure 2.12).

After removing blacklist probes, I flagged probes with a high detection p-value, defined as
p-value > 0.05 in ≥ 5% of samples, for removal before later analyses. The probe detection
p-value quantifies the probability that the combined Meth and Unmeth signal is above the
background signal, estimated using negative control probes. One potential cause of such low
quality signal could be due to spatial artefacts on the array [79]. I evaluated various methods
to remove low quality probe filters. First, I considered across all tissues using four samples
sets: (1) all samples and controls, (2) dropping controls, (3) only samples that passed QC, and
(4) only the final, analysis samples (after dropping samples removed in genotype QC step and
selecting one of each replicate pair). Overall, I found the different sample subsets affected
only a small number of probes, relative to the whole dataset (Figure 2.13; note WG3000808
was dropped for this analysis). Second, using the final analysis samples (after tissue specific
filters), I evaluated a per tissue probe filter. I found an increased number of probes that failed
in islet samples, likely due to the fact that fewer islet samples were assayed. I decided to use
a conservative approach, removing probes that failed ≥ 5% of the final analysis samples per
tissue type. After blacklist filters, I removed 578 adipose probes, 733 muscle probes, and
2,206 islet probes.
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(a) Failed probes across all tissues
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Figure 2.13 Overlap of low quality probes with a high detection p-value across different sample sets.
(a) S+C indicates that the probe failure rate was calculated across tissue samples and controls. S
excludes the controls from the probe failure rate calculations. Good S excludes controls and samples
that did not pass QC. Analysis S only uses samples that are included in the final analysis dataframe,
after dropping samples removed in genotype QC step and selecting one of each replicate pair. (b)
Comparison of failed probes across each tissue in the Analysis S set.

2.7.6 Normalisation

I processed the raw methylation data and compared potential normalisation techniques imple-
mented in minfi: preprocessRaw (no normalisation), preprocessIllumina, preprocessSWAN,
preprocessNoob, and preprocessFunnorm. For all methods I used default settings, except
for preprocessFunnorm where I also included sex information. As a QC metric, I used the
3 replicates pairs that passed sample QC (2 islet and 1 adipose), calculating the root mean
squared error (RMSE) between replicates across normalisation techniques, after removing
blacklist and failed probes. One of the three replicates was created by a sample swap and I
therefore could not determine if it was technical or biological replicate. This unintentional
replicate also occurs on the same plate. The two remaining replicates are technical replicates.

I found the Illumina normalisation method implemented in minfi minimised RMSE (Fig-
ure 2.14). I also observe increased variability in type II probes, consistent with previous
studies [78]. These trends were also consistent when drawing from the 16 additional technical
replicates on the WG3000808 plate that passed QC. Note that I excluded the WG3000808
plate before the normalisation step in Figure 2.14a, while in Figure 2.14b, I processed
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WG3000808 with the other plates in the normalisation step before splitting the two replicate
sets in the final plot.
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Figure 2.14 Comparison of difference in methylation across technical replicates. (a) Comparison of
non-WG3000808 replicates, where WG3000808 was excluded before normalisation. (b) Compari-
son including WG3000808 replicates, where WG3000808 was kept during the normalisation step.
Replicates facetted according to if one replicate pair was on WG3000808.

To generate the final dataset, I jointly processed the entire dataset using the Illumina normali-
sation method, so that complete dataset is available for future analyses. This joint processing
included the WG3000808 plate, as it makes no difference for Illumina normalisation because
the “reference” control sample was not on WG3000808. I used the default minfi settings
(bg.correct = TRUE, normalize = controls, reference = 1), which involves a two step proce-
dure. Step 1 normalises across samples using the control probes: (1.1) calculate the average
red and green signal intensity separately across control probes for each sample, (1.2) average
the red and green per sample signal intensity, (1.3) select one sample as a reference sample
(by default, the function selects the 1st sample, which for FUSION is A12001—a high quality
sample not flagged in any QC steps or in PCs and also not on the WG3000808 plate), (1.4)
scale the red and green signal intensity across all probes by a scaling factor such that the
average green and red signal intensity of control probes across samples and color channels is
identical to the reference sample (i.e., for the control probes the red signal is equivalent to
the green signal and is constant across all samples). Step 2 normalises the background signal
within each sample: (2.1) for each sample, sort the 411 negative EPIC control probes in
increasing order, selecting the 31st probe (i.e., select the probe with the 31st lowest intensity),
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and (2.2) subtract signal of this probe from all of the probes for each sample when the signal
goes negative, set the value to 0.

2.7.7 Tissue specific sample filters and quality control

For the analyses in this section, I used Illumina normalised M-values, as opposed to beta
values because M-values are more homoscedastic [87] and are therefore better suited for
standard statistical models that assume homoscedastic data (constant variance across the data
independent of the mean). In order to minimize noise, I removed blacklist probes.

From the remaining samples, I identified samples with abnormal methylation distributions
by calculating percentiles across probe types per sample and comparing this to the median
distribution per tissue using the Kolmogorov-Smirnov test (ks.test function in R). I identified
and dropped 3 samples (2 adipose and 1 muscle) with p-value < 0.01. The samples that failed
these filters show a significant deviation from the methylation distribution of samples that
passed technical QC filters (Figure 2.15, Figure 2.16, Figure 2.17).

I performed PCA across all samples and found the first two PCs separated tissue types. In
order to have a larger representation of tissue types, I included samples from the WG3000808
plate, which expanded our total tissues to blood, islet, adipose, and muscle. Based on
these clusters, I dropped 6 samples (1 islet, 2 adipose, and 3 muscle) that clustered with an
unexpected tissue (Figure 2.18).

To further remove potential outliers that would affect later analyses, I calculated PCs on a
per tissue basis after removing sample plate, sentrix position, plate position, age, and sex
effects from the Illumina normalised M-values values and dropping sex chromosome probes.
For each tissue, I selected the minimum number of PCs to explain 20% of the variance. I
transformed the PCs to z-scores and dropped samples where |z-score| > 5, removing one
muscle (outlier in PC2) and one adipose (outlier in PC5) sample. After a first pass of sample
exclusions, I repeated this process and found no additional strong outliers (Figure 2.19,
Figure 2.20, Figure 2.21).
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Figure 2.15 Muscle QC summary: methylation distribution. Distribution of Illumina normalised beta
values faceted by probe type and QC status of sample. Red line depicts the median across passed
samples.
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Figure 2.16 Adipose QC summary: methylation distribution. Distribution of Illumina normalised
beta values faceted by probe type and QC status of sample. Red line depicts the median across passed
samples.
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Figure 2.17 Islet QC summary: methylation distribution. Distribution of Illumina normalised beta
values faceted by probe type and QC status of sample. Red line depicts the median across passed
samples.
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Figure 2.18 Multi-tissue methylation PCA. Samples that clustered with unexpected tissues were
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Figure 2.19 Muscle methylation PCA outliers. (a) Cumulative variance explained by each PC. Orange
PCs are the minimum number of PCs to explain 20% of the variance. (b) PCs that explain 20% of the
variance, transformed into z-scores. Dashed lines indicate cutoffs. (c) Cumulative variance explained
after dropping outlier samples. (d) PCs after dropping outlier samples.
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Figure 2.20 Adipose methylation PCA outliers. (a) Cumulative variance explained by each PC.
Orange PCs are the minimum number of PCs to explain 20% of the variance. (b) PCs that explain
20% of the variance, transformed into z-scores. Dashed lines indicate cutoffs. (c) Cumulative variance
explained after dropping outlier samples. (d) PCs after dropping outlier samples.
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Figure 2.21 Islet methylation PCA outliers. (a) Cumulative variance explained by each PC. Orange
PCs are the minimum number of PCs to explain 20% of the variance. (b) PCs that explain 20% of the
variance, transformed into z-scores. Dashed lines indicate cutoffs.
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Finally, in order to choose between technical replicates, I selected the sample with the
largest number of detected probes (p-value ≤ 0.05). There were 4 replicate pairs not on the
WG3000808 plate. Of those pairs, one pair failed QC and one pair came from a non-Finnish
participant, leaving 2 remaining pairs. In addition to the adipose replicate, I dropped the
muscle sample from the non-Finnish participant. Finally, I dropped the adipose and muscle
samples from two participants that had a first degree relative (removed 4 total samples). In
total, after excluding WG3000808 samples and the other filters described above, there were
31 islet, EndoC, 276 adipose, and 282 muscle samples that passed all QC filters (Table 2.3).

2.7.8 Methylation specificity index

Similar to the gene expression specificity index described earlier, John Didion (NIH) gener-
ated a methylation specificity score (MeSS). This measure quantifies the tissue specificity of
the methylation patterns such that a high specificity score indicates instances where other
tissues are highly methylated and the target tissue is unmethylated, or vice versa. I helped
select the input tissue reference panel and performed a validation experiment using gene
expression. The input data sources and analysis pipeline are described below.

As a methylation reference panel, we used 21 human tissues (Table 2.6) from the Roadmap
Epigenomics project [316] that were processed using a standardised pipeline as part of the
MethBase repository [361]. Because of variable and sometimes low genome coverage across
tissues in the reference panel, we used BSmooth v1.8.2 [145] which utilizes local likelihood
smoothing techniques to smooth DNAme values and thereby increase the precision of low
coverage WGBS. As parameters for BSmooth, we set a minimum window size of 500 bp
and 50 CpGs, and maximum gap between consecutive CpGs of 1000 bp.

To calculate methylation specificity, we used a method recently developed by Liu et al. [226].
Briefly, using the raw methylation Beta values (rm), we calculate a weighted mean (TB) for
each CpG (r) across 21 cell/tissue types (s) using a one-step Tukey biweight:

T Br =
∑

21
s=1 wr,srmr,s

∑
21
s=1 wr,s

(2.7)
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where w is a weight parameter calculated as described in Zhang et al. [443]. Beta values
are transformed by taking absolute difference from the mean, setting the minimum allowed
absolute difference to 3:

mr,s = max(|rmr,s−T Br|,3) (2.8)

The transformed beta values (m) are converted to probability (p) by dividing the absolute
difference from the mean by the sum of absolute differences across all cell/tissue types:

pr,s =
mr,s

∑
21
s=1 mr,s

(2.9)

Using these probabilities, we calculate Shannon entropy (H), noting that the choice of the
logarithm base has no effect on the relative relationships of specificity values, so we follow
the practice of Liu et al. [226]:

Hr =−
21

∑
s=1

pr,slog21(pr,s) (2.10)

We weight entropy (HW) based on the observed range of beta values:

HW r = Hr×
1−Dr

100
(2.11)

where D is the difference between the minimum and maximum methylation values at CpG
r. Finally, the weighted entropy is converted to a Methylation Specificity Score (MeSS)
following the methodology described earlier for gene expression (Section 2.6.3).
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Qr,muscle = Hr− log21(pr,muscle) (2.12)

MeSSr = 1−
Qr,muscle

max(Qmuscle)
(2.13)

Similar to the gene expression specificity index (Section 2.6.3), the methylation specificity
score is dependent on the reference panel used. To date, the most comprehensive multi-tissue
panel is WGBS data from the Roadmap Epigenomics project; however, as sequencing costs
decrease and additional WGBS datasets are generated (possibly at the level of single cells), it
will be possible to obtain more accurate cell/tissue type methylation specificity scores.

Using the final expression-methylation associations (expression quantitative trait methylation;
eQTMs) described in Chapter 3, I validated the muscle methylation specificity score by
comparing the muscle specificity indices of associated expression and methylation sites. I
found that for nearby eQTMs, the gene expression and methylation specificity scores were
correlated and that the correlation diminished according to the eQTM distance (Figure 2.22).



72 Data generation and quality control

Figure 2.22 Gene-methylation specificity index correlation. Correlation facetted by eQTM distance.
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2.8 Intermediate data freeze note

The preliminary dataset published in Scott et al. [341] was used for Chapter 6 of this thesis.
Since that publication, we generated RNA-seq and genotype information on additional
samples and adjusted the analysis pipeline. Here, I describe the major differences between
Scott et al. [341] and the analysis described in this thesis chapter.

In Scott et al. [341], we analysed gene expression from 271 skeletal muscle biopsies, 267
of which had array genotype information. Since then, we generated RNA-seq data from
additional skeletal muscle biopsies from the same study, for a total of 301 samples after
QC—all genotyped on arrays. Previously, we dropped one library that was a slight outlier
in insert size. After evaluating this library in the context of the full dataset, we decided to
reinstate it. In addition, we previously quantified gene expression as fragments per kilobase
per million reads (FPKM), whereas in the revised pipeline we use TPM, which is better
measurement of relative molar RNA concentration [405, 211]. We also now consider genes
of all biotypes after count filters, instead of only protein_coding, pseudogene, antisense,
lincRNA, processed_transcript, sense_intronic, sense_overlapping gene biotypes from Scott
et al. [341] Additionally, we use GTEx as a reference panel for tissue deconvolution, as
opposed to the Illumina Human Body Map 2.0 dataset, which has the advantage of using
the average gene expression over many samples to generate tissue signatures, rather than a
single biopsy. Finally, we use a different genotype imputation pipeline, capitalising on the
newly developed Michigan Imputation Server [74].

2.9 Additional data sources

In addition to the data described above, I use other resources throughout this thesis. The first
resource is genome wide chromatin state maps generated by collaborators at the University
of Michigan [395]. These chromatin states were learned jointly by applying the ChromHMM
(v1.10) algorithm [92, 94, 93] at 200 bp resolution to six data tracks (Input, H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me3) from publicly available chromatin immuno-
precipitation followed by sequencing (ChIP-seq) data [94, 287, 316, 253]. Descriptions of
each cell/tissue type and the source study can be found in Table A.1. I do not include these
abbreviations in the Nomenclature of this thesis. As is described in Varshney et al. [395], my
collaborators selected a 13-state model and mapped the biological function names to match
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the Roadmap Epigenomics “extended” 18-state model [316]. In addition, to identify open
chromatin regions I used previously published skeletal muscle [341], islet [395], adipose
[6], and GM12878 [46] ATAC-seq data. All ATAC-seq data was uniformly processed as
described in Scott et al. [341], using the same read trimming, alignment, filtering and peak
calling pipeline.
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Samples Description
2 One sample from each of 2 first degree relative pairs (drop NGT and

keep IGT in both cases)
1 Non-Finnish participant
328 / 331 Total samples passed / total samples submitted

Table 2.1 Genotype QC summary of all FUSION biopsy samples.

Samples Description
1 Contaminated with a different sample ~8%
7 Outlier in transcriptional diversity
4 Extreme 3’ bias in gene body coverage
2 Genotype QC: drop one of 2 pairs of first degree relative
1 Genotype QC: drop non-Finnish participant
7 One sample from each of 7 replicate pairs
301 / 323 Total samples passed / total samples submitted

Table 2.2 RNA-seq QC summary of skeletal muscle biopsies.

All
Samples

Muscle
Samples

Description

13 5 Failed low quality probe filter
3 1 Outlier in median methylated and unmethylated plot
12 3 Outlier in control probes
6 4 No clear genotype match
3 1 Outlier in methylation distribution
6 3 Clustered outside of expected tissue in PCA
2 1 Failed residual PCA filter
4 2 Genotype QC: drop one of 2 pairs of first degree relative
3 1 Genotype QC: drop non-Finnish participant (also happened

to be an adipose sample replicate)
2 0 One sample from each of 2 replicate pairs that passed all

previous steps
590 / 644 282 / 303 Total samples passed / total samples submitted

Table 2.3 DNAme QC summary. WG3000808 plate not included.

Samples Description
301 Muscle RNA-seq after QC
282 Muscle EPIC DNAme after QC
265 Common samples between RNA-seq and DNAme
318 Union of all samples with RNA-seq and DNAme

Table 2.4 Summary of molecular trait overlaps in skeletal muscle biopsies.
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Tissue Mean coverage Median coverage
Adipose 129.04 133
Adrenal gland 72.65 70
Bladder 55.07 54
Blood (Macrophages) 36.43 30
Blood (Natural Killer cells) 26.97 24
Blood (T cells) 34.39 28
ES-derived Ectoderm 86.76 79
ES-derived Endoderm 37.77 36
ES-derived Mesoderm 64.82 61
Oesophagus 69.95 72
Gastric 23.45 23
Heart (Left ventricle) 109.57 111
Liver 50.1 51
Lung 79.260 80
Ovary 51.45 51
Placenta 27.47 25
Psoas muscle 42.24 40
Sigmoid colon 118.2 122
Small intestine 109.4 108
Spleen 99.44 100
Thymus 72.05 75

Table 2.6 Methylation specificity score (MeSS) reference panel. Psoas muscle was used to calculate
muscle specific methylation patterns.





Chapter 3

Relationships between molecular traits

3.1 Introduction

The relationship between gene expression and DNAme has been of great scientific interest
since DNAme was proposed as a mechanism of cell memory in 1975 [312, 155]. These initial
studies established the notion that DNAme is a repressive mark (i.e., negatively associated
with expression); however, more recent studies have shown DNAme can be positively
or negatively associated with gene expression (reviewed in [173] and Section 1.4.2.3).
Collectively, these findings paint a complex and poorly understood relationship between
expression and DNAme that varies greatly based on the genomic context of the DNAme site
(e.g., location in relationship to a gene body, CGI, or surrounding histone modifications).

In this chapter, I build on these studies by (1) mapping associations between gene expression
and DNAme in skeletal muscle and (2) analysing the relationship between expression and
DNAme (i.e., positive or negative) across a variety of genomic contexts (based on overlaps
with DNAme sites) including CGIs, muscle chromatin states, muscle ATAC-seq peaks, as
well as the distance of the DNAme site to the gene TSS. Drawing from Gutierrez-Arcelus
et al. [141], I call these associations expression quantitative trait methylation (eQTM). To
date, this is one of the first studies considering eQTMs using the EPIC array, which assays a
greater portion of intergenic genomic regions, such as enhancers [261], than the previous
450k arrays that focused on genic regions like promoters [333, 33]. The use of the EPIC
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array makes this study one of the most comprehensive charts of the regulatory network of
gene expression and DNAme to date.

In addition, prior to eQTM mapping and characterisation, I describe how I analysed and
largely removed possible confounding effects through latent factor analysis. I show that a
potential confounder for eQTM studies is variable tissue heterogeneity across samples and
that by learning latent factors, it is possible to control for this correlation structure.

As a final note, I called eQTMs both at the level of gene expression and at the level of exon
expression. To distinguish between the two I refer to gene level associations as eQTMs and
exon level associations as exQTMs. However, for the bulk of this chapter, I focus on eQTMs
to avoid redundancy as the eQTM trends hold true for exQTMs.

3.2 Controlling for unwanted variation in molecular traits

Before carrying out the analysis of any dataset, it is important to understand sources of
variation, as accounting and correcting for unwanted variation boosts power and safeguards
against drawing incorrect conclusions due to confounding signals. Many studies document
potentially hidden (i.e., latent) sources of variation in high throughput molecular technologies
(reviewed in [207]). These sources of variation can be (1) technical or (2) biological in
origin and are often masked by some level of background, stochastic noise. Technical
artefacts may be measured directly, indirectly, or in some instances may be completely
unknown. For instance, ’t Hoen et al. [381] describe strong batch effects approximated by
the specific sequencing laboratory site in RNA-seq data, even though special efforts were
made to use identical protocols across laboratories. This is an example of an indirectly
measured technical artefact, where sequencing site functions as a surrogate for underlying
differences (e.g., library insert size). Likewise, biological mechanisms, both known and
unknown, contribute to variability. Obviously the identification of certain biological signals
is the goal of a study, but potential confounding biological effects must also be considered.
For instance, using publicly available methylation data drawn from several studies, Jaffe
and Irizarry [167] demonstrate that differences in blood cell type composition are a key,
unmeasured confounder of age associated DNAme signals in whole blood. For the original
studies that Jaffe and Irizarry re-analysed, cell type heterogeneity represents an unknown
biological source of variability that had the potential to confound the detection of biological
signal of interest—age associated DNAme. Finally, biological systems are inherently noisy
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and there will always be some degree of random variation or noise in high throughput
molecular measurements.

The goal of latent factor analysis is to identify and control for unknown and unwanted
technical or biological sources of variation, while preserving the signals of interest. These
techniques [206, 366, 367, 315, 307], take advantage of the fact that high throughput molec-
ular technologies assay many features (e.g., genes or DNAme sites) and use these many
observations to derive factors that affect many features. However, these techniques cannot in
themselves distinguish the type of confounding—from technical to biological—and there-
fore careful thought must be given to the particular method employed. For instance, when
analysing proximal genetic effects on molecular traits, the goal of the study is to identify
genetic effectors that lie near their gene targets in genomic space, which inherently means
the signals of interest will not be widespread and will not affect a large number of features.
Rather, the signal of interest should be limited to a handful of features. In such a scenario, it
would be appropriate to use latent factor techniques liberally, since factor analysis techniques
do not learn factors that only affect a few features. Such insight informs the design and use
of techniques like PEER [366, 367].

On the other hand, if one is seeking to detect distal genetic effects, which are assumed
to function by perturbing a trans acting factor that regulates many other genes, strategies
that identify and remove many latent factors would not be appropriate. Instead, alternative
approaches that limit the aggressive identification of latent factors should be taken, such as
GNet-LMM [307]

As a final example, consider the case of a differential expression analysis or differential
methylation analysis where the outcome signal of interest is known beforehand and may be
associated with other measured features, such as a participant’s BMI. In such cases, since the
outcome of interest is known beforehand, it makes sense to use the outcome signal of interest
to ensure that the signal of interest is not washed away when identifying latent factors. Such
is the approach used by SVA [206].

3.2.1 PEER for latent factor analysis

To account for known and unknown technical and biological effects for all subsequent
molecular trait analyses (eQTL, exQTL, mQTL, eQTM, exQTM), I used PEER v1.0 [366,
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367]. For both gene expression and DNAme, I excluded sex chromosome features as in
previous mQTL studies [19, 406, 144]. Second, I transformed the gene expression (TPM),
exon expression (FPKM), and methylation (M-values) signal across all samples that passed
QC for each molecular trait (301 samples for gene expression and 282 samples for DNAme)
using rank-based inverse normalisation by ranking the data and then fitting it to a normal
distribution. Finally, I ran PEER with up to 110 latent factors and inverse normalised the
PEER residuals.

When running PEER, I included age, sex, OGTT status, and the top 4 genotype PCs as
covariates. These variables are standard, known sources of variation that could confound
analysis. In addition, I included OGTT status because I wanted to identify general QTLs
and QTMs that are not dependent on a particular disease context. Therefore, I needed to
account for the intentionally biased design of the FUSION study to sample each OGTT state,
even though we do not find many T2D associated signals in gene expression [341]. Finally, I
included additional measurements to capture known sources of technical variation. For gene
and exon expression, I included RIN and sequencing batch, two established sources of bias
in RNA-seq data [381, 115, 343]. For DNAme, I included sample plate, sentrix position, and
plate position as covariates, to account for well known batch and spatial effects of Illumina
methylation arrays [79].

3.2.2 Correlation between gene expression and methylation factors

As described previously, PEER does not have knowledge of technical or biological sources
of variation. If the effect of a particular source of variation (e.g., insulin response or cell type
heterogeneity) was extremely strong, PEER would likely identify factors that correlate to
that source of variation. Alternatively, in the cases of weaker effects, PEER may identify
factors that describe a combination of effects that may be technical or biological in nature. In
order to understand potential unknown biological sources of variation, I compared the PEER
factors discovered separately in gene level expression and DNAme to each other and to other
phenotypic traits of the FUSION tissue biopsy participants (see Table 2.5).

Because gene expression and DNAme are measured using two very different technologies,
and represent two completely different biological phenomena, one would expect any correla-
tion between PEER factors to relate to biological variation rather than technical variation.
The only potential source of correlated technical variation could be biases that occurred
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during tissue collection and processing that are subsequently apparent in all assays that
use the same tissue source. Comparing the first 70 PEER factors for gene expression and
DNAme,1 I find structured correlation, suggesting potential confounding effects (Figure 3.1).

Since this correlation structure is likely biological, I calculated the correlation between
each PEER factor and phenotypic traits to identify potential biological sources of factors.
Prior to associations, I removed sex and age effects from continuous traits by fitting a linear
model, and inverse normalised the residuals. For both gene expression and DNAme, the
first PEER factor showed some correlation with skeletal muscle fraction and whole blood
tissue estimates (derived from gene expression). In addition, I found the first PEER factor
from both expression and DNAme also clustered together and were most associated with
each other compared to all other factors (r = 0.24). Together, these results suggest that a
significant component of variation captured by the first PEER factor corresponds to tissue
heterogeneity. This would not be surprising, as I found tissue heterogeneity constituted the
first PCs in the methylation QC across an array of tissues (muscle, adipose, blood, and islets;
Section 2.7.7).

I also find a collection of factors that are associated with BMI, insulin, C peptides, and
triglycerides (TG). These results indicate a strong molecular response to such signals, which
is not surprising as (1) these traits are correlated, and (2) insulin is a key signalling hormone
that initialises a signal cascade in skeletal muscle to uptake circulating blood glucose. This
signalling cascade involves the relocation of many transporter proteins, so the fact that the
PEER factors suggest large changes in the transcriptome and methylome related to these traits
is expected. Indeed, as described in Scott et al. [341], we found many genes associated with
insulin and BMI, and preliminary DNAme results also suggest similar methylome trends.

Despite the association of PEER factors and tissue heterogeneity estimates, I decided not to
include the tissue heterogeneity estimates as covariates because these estimates are only as
good as the reference panel, which in this case was composed of a collection of heterogeneous
tissues, rather than profiles of specific cell types. Instead, for further analyses, I made the
assumption that PEER will properly account for tissue heterogeneity, which I believe is a
reasonable assumption given (1) the correlation of PEER factors and tissue heterogeneity
estimates, and (2) previous studies which find similar latent factor techniques perform fairly
well at capturing tissue heterogeneity [206, 248]. Thus, while tissue heterogeneity estimates

1I analysed up to 70 PEER factors as I found 70 PEER factors to be the optimal number of PEER factors for
eQTM mapping as described in Section 3.3.1 below.
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(c) Factor-trait correlation
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Figure 3.1 PEER factor correlations. (a) Association between 70 expression and 70 methylation
factors. (b) Associations between expression and methylation factors zoomed in on key correlation
structure in upper corner of panel a. (c) Association between all factors (70 expression, 70 methylation)
and traits. (d) Association between factors from panel b and traits.
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were a crucial QC step that gave me confidence in the “purity” of our skeletal muscle samples
(all samples in analysis had > 90% skeletal muscle), I did not use them in further analyses.

3.3 eQTM mapping

I mapped eQTMs, associations between gene expression and DNAme, across 265 samples
that passed QC using LIMIX v0.7.74 [222]. Prior to associations I used PEER to control
for known (e.g., batch) and unknown confounding effects. Let yj be a vector of inverse
normalised PEER expression residuals for gene or exon j across individuals. I consider the
following linear model to map eQTMs and exQTMs:

y j = α j1︸︷︷︸
intercept

+ β jm︸︷︷︸
methylation eff.

+ ψ j︸︷︷︸
noise

, ψ j ∼N (0,σ2
e I) (3.1)

where α j is the intercept, m denotes the inverse normalised PEER DNAme residuals of the
probe in consideration across individuals, ψ j Gaussian noise, and β j the effect of methylation.
I correct for the number of tests using Storey’s FDR [369].

Previous eQTM studies use a wide range of window sizes, defined as the distance between
the TSS (or exon) and the DNAme site, ranging from 50 kb [299, 141] to 1 Mb [59], as well
as distances in between [406]. In order to evaluate the potential window sizes, I mapped
eQTMs using all DNAme sites within 10 Mb from the TSS of the target gene. When only
accounting for known covariates (and no PEER factors), I find a constant eQTM discovery
rate at distances > 1 Mb (Figure 3.2). I reasoned this constant discovery rate was due to
confounding correlation between gene expression and DNAme. To test this hypothesis, I
randomly paired genes with DNAme sites on different chromosomes and calculated the
discovery rate, finding it to be nearly identical to the eQTM discovery rate on the same
chromosome at distances > 1 Mb. This result suggests there is indeed confounding correlation
between gene expression and DNAme, which one may have predicted from the PEER factor
association analysis (Section 3.2.2). Furthermore, drawing from the PEER factor association
analysis, this correlation structure is likely due to a combination of tissue heterogeneity and
perhaps insulin or BMI effects.
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Figure 3.2 eQTM discovery rate by distance: PEER 0. Discovery rate of eQTMs binned by distance
from TSS, accounting for known covariates but not for PEER factors.

3.3.1 PEER factor optimisation

In order to account for the confounding correlation between gene expression and DNAme, I
mapped eQTMs, iteratively increasing the number of PEER factors included in the expression
and DNAme analysis (i.e., 1 PEER factor means PEER was run learning 1 PEER factor in
expression and DNAme separately). Interestingly, I observed a striking drop in the number of
eQTMs discovered when I accounted for the first 2 PEER factors from both gene expression
and DNAme (Figure 3.3). Given the PEER factor-trait associations, this suggests that tissue
heterogeneity is a key driver behind the confounding correlation.
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(a) eQTMs discovered across PEER factors
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Figure 3.3 eQTM PEER optimisation. Dotted line at 2 PEER factors. Dashed line at 70 PEER factors.
(a) Number of eQTMs discovered (y axis), iteratively accounting for more PEER factors (x axis). (b)
Number of eQTMs discovered performing FDR over all eQTMs from 0-10 Mb in distance (green)
and FDR over binned groups (orange). (c) Same data from panel b, but on log2 scale.
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Recognising that the discovery of eQTMs > 1 Mb from the TSS may indicate confounding
correlation, I binned the eQTMs across PEER factors by distance to see if there is evidence of
nuanced trends missed when analysing 0-10 Mb eQTMs in bulk. In addition, I also re-ran the
eQTM mapping process separately controlling for FDR within eQTM distance bins, rather
than controlling for FDR at once across all eQTMs from 0-10 Mb. I performed this binning
test to test if the “significant” distal associations might appear to have signal due to the strong
signal of eQTMs near a TSS. Worded another way, I thought the distal eQTMs were being
called significant by the Storey FDR procedure [369] primarily due to the signal at nearby
eQTMs.

From this analysis, I discovered two trends. First, as I included additional PEER factors
beyond 2, I found that the number of eQTMs near the TSS (< 250 kb) increased across PEER
factors, while the number of eQTMs further away (> 1 Mb) were drastically reduced. The
simultaneous increase in proximal eQTMs and decrease in distal eQTMs reached a steady
state at 70 PEER factors. Second, I found far fewer distal eQTMs when performing the
Storey FDR procedure across distance bins.

Together, these results suggest very few true eQTM signals exist in regions far away from the
TSS. I therefore reduced the eQTM window to 1 Mb to be consistent with the window size
used for QTL mapping. An alternative option would have been to use a recently developed
method that performs multiple hypothesis correction while controlling for covariates, such as
distance [160]. I did not use this method, however, since I wanted to be consistent with QTL
methods and I was concerned about the scalability of using such an approach for QTLs—for
instance, when analysing ~700,000 features in the case of mQTLs.

Before settling on using 70 PEER factors from both gene expression and DNAme, where the
number of nearby and distal eQTMs stabilised, I wanted to understand the effect of including
so many PEER factors, since such a high number of factors is likely to remove a combination
of technical and biological effects. Therefore, I compared the p-values and the direction of
effect between eQTMs called using 2 PEER factors and 70 PEER factors (Figure 3.4). I
found that including 70 PEER factors increased power to detect the top, nearby eQTMs, and
did not change the sign of effect for the vast majority of eQTMs. In addition, I observed a
progressive downward shift in the of the best fit line towards the 2 PEER factor axis that
increased across eQTM distance bins. Together, these results suggest that increasing PEER
factors enhances the detection of the strongest, most robust eQTMs, while reducing eQTMs
likely caused by other correlation sources. Based on these results, I chose 70 PEER factors
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to call eQTMs for subsequent analysis. Compared to the initial eQTM discovery rate, 70
PEER factors essentially eliminates the distal eQTM discovery rate (Figure 3.5)

Finally, I note that after mapping eQTMs across gene level expression data, I repeated this
process for each exon, testing all DNAme sites within 1Mb, mapping eQTMs. For exQTMs,
I found similar trends as those noted above, using total gene expression.
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(a) Comparison of eQTM p-values

(b) Comparison of signed eQTM p-values

Figure 3.4 PEER 2 vs PEER 70 eQTMs. Comparison of eQTMs discovered accounting for 2 PEER
factors (plus covariates) and 70 PEER factors (plus covariates). Black line depicts the identity line.
Blue line shows the line of best fit. (a) Comparison of − log10(p-values). (b) Comparison of signed
− log10(p-values).
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Figure 3.5 eQTM discovery rate by distance: PEER 70. Discovery rate of eQTMs binned by distance
from TSS, accounting for known covariates and 70 PEER factors.

3.4 eQTM results

I mapped eQTMs using a 1 Mb window and molecular trait residuals after removing known
covariates and 70 PEER factors from each molecular trait separately. I found 38,115 eQTMs
(FDR 1%; 56,131 FDR 5%) spanning 6,697 genes, with > 75% falling within 250 kb of the
TSS. These trends were consistent across chromosomes, with the exception of chromosome
6, which was likely due to the complexity of the MHC region (chr6:28,477,797-33,448,354).
Likewise, I used the same parameters for exQTMs and discovered 251,012 exQTMs (FDR
1%; 368,325 FDR 5%) spanning 51,289 exon fragments, with > 75% falling within 250 kb
of the start of the exon.

3.4.1 eQTM overview

I found that genes on average were associated with 5.7 DNAme sites (Figure 3.6). With
178 eQTMs, HOXD8 had the largest number of significant eQTMs. The genes with > 100
eQTMs were HOXD3, HOXD9, HOXD8, HOXD-AS2, AC025183.1—all of which are HOX
related genes, except for AC025183.1, an antisense gene near IRX4 on chromosome 2 (IRX4
itself was associated with 95 eQTMs). DNAme sites were on average associated with 1.4
genes. With 13 gene associations, cg19051117 (chr19:21767566; within RP11-678G14.3)

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37.p13
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was associated with the most genes, including a variety of nearby zinc finger proteins as well
as other non protein coding genes (lincRNA, antisense, unprocessed pseudogenes, etc.).
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Figure 3.6 General eQTM and exQTM characteristics. (a) Distribution of the number of probes
associated with a gene. (b) Distribution of the number of genes associated with a probe. (c) Distribution
of the number of probes associated with an exon. (d) Distribution of the number of exons associated
with a probe.

The exQTMs showed similar trends. I found that on average an exon fragment is associated
with 4.9 DNAme sites. As with the eQTMs, exon fragment 12 in HOXD8 was associated
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with the largest number of DNAme sites at 175 significant associations. On average, DNAme
sites were associated with 7.5 exon fragments, which is more than for eQTMs, but unsur-
prising given the correlation structure of exon expression within isoforms. cg15710545
(chr6:32578114), located in the MHC region, was associated with 114 exon fragments, the
largest number in the whole data set.

3.4.2 Relationship of eQTM effect and genomic context

Early studies linked increased DNAme with transcriptional inactivation [155, 312]; however,
more recent studies show that DNAme can also be associated with increased expression,
often depending on the genomic context [151, 223, 141]. These studies paint an increasingly
complex and poorly understood picture of the relationship between gene expression and
DNAme. I sought to characterise such trends within the skeletal muscle data. First, I
summarised the overall trends across all DNAme sites (not just eQTMs) in relation to
genomic context and found promoter related regions and CGIs (most which localise to
promoters [335]), generally exhibit decreased methylation and variability in signal across all
muscle samples (Figure 3.7). In addition, I also observed increased variability in transcription
and enhancer related chromatin states. Both observations are consistent with the current
understanding of DNAme patterns (reviewed in [173]).

I then focused on trends in eQTM effects. At an FDR 1%, I found that 59.64% of identified
eQTMs were negatively associated with gene expression (i.e., repressive; 58.37% FDR 5%).
When split by the relationship of the DNAme site to CGI, the majority of eQTMs had a
negative effect across all CGI contexts (Figure 3.8a). I also evaluated the eQTM effect based
on the skeletal muscle chromatin state context of the DNAme site (Figure 3.8b). I found
that for TSS, enhancer, and other active transcription related states, the majority of eQTMs
have a negative effect. However for bivalent/poised TSS, repressed, and quiescent/low
signal states (states 14, 16, 17, and 18), the majority of eQTMs were positively associated
with transcription. This shift in the number of negative eQTMs between these two groups
of chromatin states was significant (chi-squared p-value < 2.2x10-16). These results are
consistent with a previous study that finds a larger proportion of eQTMs with negative effects
in promoter and enhancer states [141].

I also evaluated the chromatin state of DNAme sites that overlap a skeletal muscle ATAC-seq
peak (Figure 3.8c). Of the few overlaps, I found the majority of ATAC-seq peak overlapping
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(a) Median DNAme by chromatin state context
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(b) DNAme std. dev. by chromatin state context
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(c) Median DNAme by CGI context
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(d) DNAme std. dev. by CGI context
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Figure 3.7 Characterisation methylation by the probe genomic context. All calculations performed
on methylation Beta values. (a) Median DNAme of probe across all samples divided by skeletal
muscle chromatin state. (b) Standard deviation of DNAme across samples divided by skeletal muscle
chromatin state. (c) Median DNAme of probe across all samples divided by CGI context. (d) Standard
deviation of DNAme across samples divided by CGI context.
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Figure 3.8 Characterisation of eQTM effects by genomic context. Bins based on overlaps of the
methylation sites and various genomic features. Across all plots, the size of the x and y axis is
proportional to the fraction of eQTMs meeting that criteria. Dashed line at 50% and dotted lines
at 25% and 75%. (a) Fraction of negative eQTMs based on CGI context. (b) Fraction of negative
eQTMs based on skeletal muscle chromatin state context. (c) Fraction of negative eQTMs based on
skeletal muscle ATAC-seq peak context.

eQTMs had a negative association. When only considering eQTMs that overlapped ATAC-
seq peaks, the vast majority of ATAC-seq eQTMs (the DNAme sites) occurred within TSS
related or active enhancer states. Otherwise, the trends in CGI and chromatin states remained
largely the same.

Finally, I evaluated the fraction of negative associations with respect to distance. I found
that across all chromatin states, DNAme sites closer to the target gene TSS tended to have
a negative effect (Figure 3.9a). In addition, I found that eQTMs closer to the TSS also had
larger effect (Figure 3.9b). Finally, I found very similar trends when considering exQTMs.



96 Relationships between molecular traits

(a) Fraction of negative eQTMs by distance
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(b) eQTM effect size by distance

Figure 3.9 Characterisation of eQTM effects by distance. (a) Fraction of negative eQTMs by distance.
Dashed line at 0.5. Bins range from 100 bp, 1 kb, 10 kb, 100 kb, to 1 Mb, and are non-overlapping
(first point is 0 to 100 bp, second point is 101 bp to 1 kb, etc.). A minimum of 25 eQTMs required for
bin. (b) eQTM effect by distance.
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3.5 eQTM summary

In summary, these results highlight both the importance of latent factor analysis when
analysing molecular traits and the context specific nature of expression-DNAme relationships.
While mapping eQTMs, I found strong evidence for the existence of latent correlation
structure between expression and DNAme. Using PEER, I was able to account for the
correlation structure between gene expression and DNAme, enabling the identification of a
confident set of eQTMs and exQTMs. I characterised the properties of these eQTMs (and
exQTMs) and found them to be consistent with the current context specific understanding of
expression-DNAme relationships (reviewed in [173, 212]). Consistent with earlier studies,
which focused on DNAme in “active states” like TSS regions [173], I found eQTMs located
in genomic regions linked to active gene regulation (including enhancers which are better
captured by EPIC arrays than previous arrays) tended to be negatively associated with gene
expression (i.e., increased DNAme is associated with repressed expression). By contrast, I
found eQTMs in less active or repressed genomic regions, poorly analysed by earlier studies,
tended to show positive associations with expression, consistent with a more recent notion
that expression-DNAme trends are highly context specific [173]. Finally, I showed that
eQTMs closer to the target gene TSS have stronger effects that tend to be negative.





Chapter 4

Molecular quantitative trait loci

4.1 Introduction

In this chapter, I describe how I mapped proximal eQTLs, exQTLs, and mQTLs, as well
as characterise the general properties of these QTLs. I investigate the QTL enrichment
properties in chromatin states across cell/tissue types. For simplicity, I focus primarily on
eQTLs and mQTLs, since exQTLs follow nearly identical trends as eQTLs. In addition, I
describe how I used QTLs to understand the regulatory effects of transcription factors in
skeletal muscle. In the next chapter (Chapter 5), I specify how I integrated GWAS data in a
complementary analysis to the one presented here. I do not consider distal QTLs, because
the FUSION dataset is underpowered for such an analysis, both on theoretical grounds [275]
and as confirmed by a preliminary analysis performed by colleagues at the University of
Michigan.

4.2 QTL mapping

I mapped QTLs using LIMIX v0.7.74 [222]. As candidate SNPs, I considered all proximal
SNPs within 1 Mb of the start of the feature (TSS for genes, exon start for exons, and DNAme
sites). I used 1 Mb as it is a common distance threshold for proximal QTLs [275]. Using this
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window, I tested for genetic associations with rank-based inverse normalised PEER residuals,
y, of feature j across individuals using the linear model:

y j = α j1︸︷︷︸
intercept

+ β jg︸︷︷︸
genetic eff.

+ ψ j︸︷︷︸
noise

, ψ j ∼N (0,σ2
e I) (4.1)

where α j is the intercept, g the genotype vector of dosages across individuals, β j the genotype
effect, and ψ j Gaussian noise. After running all associations, I corrected for the number of
tests per QTL type using Storey’s FDR [369].

4.2.1 Pipeline validation

Prior to analysing the complete FUSION dataset, I used the data freeze from Scott et al.
[341], described previously (Section 2.8), to validate the LIMIX pipeline by comparing
LIMIX eQTLs to the Scott et al. [341] eQTLs which were called using matrix eQTL [345].
I compared the p-values and effect sizes across all 5,344,655 autosomal SNP-gene pairs
from the raw matrix eQTL output, as matrix eQTL thresholds the output based on a p-value
cutoff so that not all SNP-gene pairs are saved (Figure 4.1). I found the results from the
two pipelines to be nearly identical, with the exception of 17 SNP-gene pairs, spanning 11
total SNPs, where the MAF within FUSION samples was exactly 0.5. In these cases, the
LIMIX effect sizes were oriented to reference genome allele while the matrix eQTL effect
sizes were oriented to the alternate genome allele, flipping the orientation so that the effect
alleles matched produced identical results. In addition, I found the LIMIX p-values were
slightly smaller, possibly due to the likelihood-ratio test used by LIMIX compared to the
t-statistic used by matrix eQTL.

4.3 QTL results

My collaborator, Narisu Narisu, prepared the imputed genotypes across the 318 samples that
passed QC for QTL mapping, keeping only bi-allelic variants with r2 > 0.3 and MAC > 10. I
mapped QTLs across all available samples for each molecular trait: 301 for gene expression
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(a) Comparison of p-values (b) Comparison of effect sizes

Figure 4.1 LIMIX QTL pipeline QC. (a) Comparison of − log10(p-value) from LIMIX to matrix
eQTL. (b) Comparison effect sizes (beta) from LIMIX to matrix eQTL.

and 282 for DNAme. Similar to Scott et al. [341], I optimised the number of PEER factors
by mapping QTLs, iteratively increasing the number of PEER factors included in the model,
before selecting the number of PEER factors that produced the maximal number of significant
proximal QTLs. Based on this procedure, I estimated the optimal number of PEER factors to
be 75 for eQTLs, 75 for exQTLs, and 60 for mQTLs (Figure 4.2). Using the optimal PEER
factors I found 2,851,250 eQTLs (FDR 1%) spanning 15,416 genes, 19,740,690 exQTLs
(FDR 1%) spanning 154,229 exon fragments, and 26,622,999 mQTLs spanning 253,343
DNAme sites (FDR 1%).
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(a) Total eQTLs across PEER factors
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Figure 4.2 QTL PEER factor optimisation. Plots in the first column show the total number of QTLs
discovered. Plots in the second column show the total number of unique features. The dashed line
depicts the optimal number of PEER factors. (a-b) eQTL optimised at 75 PEER factors. (c-d) exQTL
optimised at 75 PEER factors. (e-f) mQTL optimised at 60 PEER factors.
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4.3.1 QTL overview

I characterised the general properties of each QTL type (Figure 4.3), taking the best QTL per
feature (SNP with minimum p-value; FDR 1%). As a quality control measure, I compared
the MAF to effect size, analysing the raw data behind outliers with a larger effect than what
was commonly seen at a given MAF. Within the raw data, there were no trends to raise cause
for concern in the outliers. Overall, the majority of outliers (7/9) were linked to particularly
complex regions of the genome either in the MHC region or in centromere regions.

I compared the distance of the best QTL per feature to the target feature and found that in
contrast to eQTLs and exQTLs, mQTLs generally occur closer to the target feature (DNAme
site in this case). In addition, I compared the effect size according to distance and found QTLs
of larger effects tend to be closer the target feature. This tendency was more pronounced for
eQTLs than for exQTLs and mQTLs.

Finally, in order to have a general understanding of overlapping QTL effects, I calculated
the overlap of QTLs between QTL types (i.e., the QTL tag SNP is associated with multiple
traits), both across all QTLs (FDR 1%) and taking the best QTL per feature, defined as the
minimum p-value (Figure 4.4). As expected, I found a high degree of overlap between eQTLs
and exQTLs (90% all eQTLs and 58% top eQTLs), and when considering all QTLs, many
eQTLs are also mQTLs (92%). Interestingly, I observed more overlap between exQTLs and
mQTLs than exQTLs and eQTLs (both panels). Across all exQTLs, 89% are mQTLs while
69% are eQTLs (Figure 4.4a); across top exQTLs, 15% are mQTLs while 10% are eQTLs
(Figure 4.4b). This overlap between exQTLs and mQTLs is also reflected in mQTLs where,
albeit a small amount of overlap, I found more overlap between mQTLs and exQTLs than
mQTLs and eQTLs.
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(a) Effect MAF

(b) QTL distance
(c) Effect distance

Figure 4.3 Comparison of QTL properties. (a) Overview of QTL effects by minor allele frequency.
(b) Comparison of QTL distance from feature. (c) Comparison of QTL effects by distance of the tag
SNP to the feature.
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(a) All QTLs
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Figure 4.4 QTL overlap (i.e., SNP associated with multiple traits). "Other QTL (merged)" means
a merged set of SNPs from all other molecular traits. As an example, for eQTLs this would be the
merged set of exQTLs and mQTLs. Numbers show the total counts. (a) Fraction of SNP overlap
across all QTLs (FDR 1%). (b) Fraction of SNP overlap across top QTL per trait.

4.3.2 QTL chromatin state enrichments

Narisu Narisu and I calculated enrichments of eQTLs and mQTLs across chromatin states
from Varshney et al. [395], described in Section 2.9. In addition, we used enhancer states
classified according to length in order to define stretch enhancers, a regulatory element shown
to be a signature of tissue-specific active chromatin [287]. For enhancer classifications,
active enhancers 1 and 2, weak enhancers, and genic enhancers were merged and classified
according to length: typical (< 800 bp), intermediate (≥ 800 and < 3000 bp), and stretch (≥
3000 bp).

We used GREGOR [337] to calculate the enrichment of QTLs relative to null SNP sets
matched for MAF, TSS-distance, and number of LD neighbours. Narisu Narisu ran GREGOR
while I led the overall analysis which involved preparing the input files and summarising the
results. For both eQTLs and mQTLs, we selected the best QTL per feature, defined as the
minimum p-value, and LD pruned (r2 < 0.8) the entire SNP set, keeping the SNP with the
minimum p-value per LD block. We used the following GREGOR parameters: r2 threshold
= 0.99, LD window size = 1 Mb, and minimum neighbour number = 500. In addition, we
grouped QTLs into bins based on (1) the effect size and (2) the specificity index of the
feature. For effect size bins, we removed all QTLs with a MAF < 0.2, to avoid including
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spuriously high effect sizes (Figure 4.3a), and split the data into quintiles, binning the data
into 50% overlaps forming 9 total bins. We also performed a similar binning procedure for
the specificity index.

Consistent with previous reports [341, 395], I found eQTLs to be highly enriched in TSS
related chromatin states (Figure 4.5), which also supports a model that eQTLs generally
perturb protein-DNA interactions of TFs [113]. In addition, as noted in other studies [59, 273],
I found mQTLs to be enriched in bivalent/poised TSS states.1 Both the eQTL and mQTL
enrichment patterns were generally similar across cell/tissue types, consistent with findings
that suggest many eQTLs [136, 104, 138] and to some extent mQTLs [357, 142] are shared
across tissues (note mQTLs are far less characterised due to limited tissue diversity). As
stated previously, I found exQTLs showed nearly identical trends in enrichment as eQTLs,
with perhaps a slight increased enrichment in genic enhancer states (data not shown).

Next, I focused on skeletal muscle chromatin states and evaluated enrichments of QTLs
binned by effect size (Figure 4.6). I found eQTLs of stronger effects were highly enriched in
TSS related states. For mQTLs, I found enrichment in TSS related states, most notably biva-
lent/poised TSS, increased according to effect size. The strongest of these patterns—active
TSS for eQTLs and bivalent/poised TSS for mQTLs—were generally consistent across
tissues, with slightly more variation for the mQTL enrichments (data not shown).

These trends changed when binning by the skeletal muscle specificity of gene expression or
DNAme (using the mESI and MeSS values described in Sections 2.6.3 and 2.7.8 respectively).
For eQTLs, I found muscle specific genes are enriched in TSS features, as well as stretch
enhancers (Figure 4.7). As noted previously, stretch enhancers mark highly tissue specific
chromatin regions [287], and the enrichment of muscle specific eQTLs in such regions
further supports this observation. Consistent with our previous report [341], I also found
this enrichment is unique to skeletal muscle stretch enhancers compared to other cell and
tissue types. I did not observe similar patterns in typical enhancers, which are not necessarily
highly tissue specific.

I found mQTLs for DNAme sites specific to skeletal muscle were enriched in skeletal muscle
flanking TSS, active enhancer state 1, and bivalent/poised TSS states (Figure 4.8a). Similar
to the eQTL analysis, I compared these enrichment patterns across cell/tissue types. Albeit

1Note that in Chen et al. [59], the “Repressed Polycomb TSS (H3K27me3, H3K4me3, H3K4me1)” state in
Figure 3G corresponds to the “bivalent/poised TSS” state from Varshney et al. [395] which is enriched in the
same signals [395, Figure S1C].
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(b) mQTL enrichment
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Figure 4.5 Enrichment of QTLs in chromatin states across cell/tissues types. log2 fold enrichment of
all QTLs in chromatin states across tissues. (a) eQTL enrichment. (b) mQTL enrichment.
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(b) mQTLs

1

2

3

4

5

6

7

8

9

1.
 A

ct
iv

e 
T

S
S

2.
 W

ea
k 

T
S

S
3.

 F
la

nk
in

g 
T

S
S

5.
 S

tr
on

g 
tr

an
sc

rip
tio

n
6.

 W
ea

k 
tr

an
sc

rip
tio

n
8.

 G
en

ic
 e

nh
an

ce
r

9.
 A

ct
iv

e 
en

ha
nc

er
 1

10
. A

ct
iv

e 
en

ha
nc

er
 2

11
. W

ea
k 

en
ha

nc
er

14
. B

iv
al

en
t p

oi
se

d 
T

S
S

16
. R

ep
re

ss
ed

 p
ol

yc
om

b
17

. W
ea

k 
re

pr
es

se
d 

po
ly

co
m

b
18

. Q
ui

es
ce

nt
 lo

w
 s

ig
na

l
Ty

pi
ca

l e
nh

an
ce

r
In

te
rm

ed
ia

te
 e

nh
an

ce
r

S
tr

et
ch

 e
nh

an
ce

r

Chromatin state

Q
T

L 
ef

fe
ct

 s
iz

e 
bi

n

−1.1

0.0

1.0

2.0

log2
enrichment

Figure 4.6 Enrichment of QTLs binned by effect size. (a) Enrichment of eQTLs binned by effect size
in muscle chromatin states. (b) Enrichment of mQTLs binned by effect size in muscle chromatin
states.

noisy, for flanking TSS I found muscle mQTLs were most strongly enriched in muscle
related cell/tissue types (Skeletal Muscle, HSMM, Stomach Smooth Muscle, Rectal Smooth
Muscle; Figure 4.8b). I did not observe enrichment in muscle related cell types for active
enhancer state 1 (Figure 4.8c) or stretch enhancers (Figure 4.8d). This could potentially
be due differences between the cell/tissue types represented in the methylation specificity
reference panel (Table 2.6) and those in the chromatin states (Table A.1). The trend may
also indicate poor quality methylation specificity scores, as only one sample per tissue type
was used (which itself is made of heterogenous tissue); however, as noted in Chapter 2, I do
observe correlation between the muscle specificity of methylation and the muscle specificity
of gene expression in cases of nearby eQTMs (Figure 2.22).

In addition, I found both general (non-specific) and muscle specific DNAme sites were
highly enriched in bivalent/poised TSS states. I focused on the bivalent/poised TSS states
and calculated enrichment across tissues. As with the previous analysis, I did not observe
muscle specific chromatin state trends (Figure 4.9a). I reasoned this could be due to persistent
bivalent/poised states from undifferentiated cells. To test this hypothesis, Narisu Narisu and I
subdivided bivalent/poised TSS chromatin states into those that overlapped bivalent/poised
TSS states of stem cells (ES-HUES6, ES-HUES64, hASC, and H1) and those that did not. I
found that the division of bivalent/poised TSS states in this manner partitioned the low MeSS
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(a) Muscle state enrichment
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(b) Active TSS

1

2

3

4

5

6

7

8

9

S
u

b
s
ta

n
ti
a

N
ig

ra
S

to
m

a
c
h

S
m

o
o

th
M

u
s
c
le

R
e

c
ta

lS
m

o
o

th
M

u
s
c
le

R
e

c
ta

lM
u

c
o

s
a

N
H

L
F

N
H

E
K

M
id

F
ro

n
ta

lL
o

b
e

L
iv

e
r

K
5

6
2

In
fe

ri
o

rT
e

m
p

o
ra

lL
o

b
e

H
u

ve
c

H
S

M
M

H
M

E
C

H
ip

p
o

c
a

m
p

u
s
M

id
d

le
H

e
p

G
2

h
A

S
C

−
t4

h
A

S
C

−
t3

h
A

S
C

−
t2

h
A

S
C

−
t1 H
1

E
S

−
H

U
E

S
6

4
E

S
−

H
U

E
S

6
D

u
o

d
e

n
u

m
M

u
c
o

s
a

C
o

lo
n

ic
M

u
c
o

s
a

C
in

g
u

la
te

G
y
ru

s
C

D
3

4
−

P
B

A
n

te
ri

o
rC

a
u

d
a

te
G

M
1

2
8

7
8

A
d

ip
o

s
e

S
ke

le
ta

lM
u

s
c
le

Is
le

ts

Cell/tissue type

m
E

S
I 

b
in

0.0

1.2

2.4

log2
enrichment

(c) Typical enhancer
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(d) Stretch enhancer
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Figure 4.7 Enrichment of eQTLs binned by muscle specificity across cell/tissues types. (a) Enrichment
in skeletal muscle states. (b) Enrichment in active TSS across tissues. (c) Enrichment in typical
enhancer across tissues. (d) Enrichment in stretch enhancer across tissues.
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(a) Muscle state enrichment
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(b) Flanking TSS

1

2

3

4

5

6

7

8

9

S
u

b
s
ta

n
ti
a

N
ig

ra
S

to
m

a
c
h

S
m

o
o

th
M

u
s
c
le

R
e

c
ta

lS
m

o
o

th
M

u
s
c
le

R
e

c
ta

lM
u

c
o

s
a

N
H

L
F

N
H

E
K

M
id

F
ro

n
ta

lL
o

b
e

L
iv

e
r

K
5

6
2

In
fe

ri
o

rT
e

m
p

o
ra

lL
o

b
e

H
u

ve
c

H
S

M
M

H
M

E
C

H
ip

p
o

c
a

m
p

u
s
M

id
d

le
H

e
p

G
2

h
A

S
C

−
t4

h
A

S
C

−
t3

h
A

S
C

−
t2

h
A

S
C

−
t1 H
1

E
S

−
H

U
E

S
6

4
E

S
−

H
U

E
S

6
D

u
o

d
e

n
u

m
M

u
c
o

s
a

C
o

lo
n

ic
M

u
c
o

s
a

C
in

g
u

la
te

G
y
ru

s
C

D
3

4
−

P
B

A
n

te
ri

o
rC

a
u

d
a

te
G

M
1

2
8

7
8

A
d

ip
o

s
e

S
ke

le
ta

lM
u

s
c
le

Is
le

ts

Cell/tissue type

M
e

S
S

 b
in

0.0

0.9

1.8

log2
enrichment

(c) Active enhancer 1
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(d) Stretch enhancer
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Figure 4.8 Enrichment of mQTLs binned by muscle specificity across cell/tissues types. (a) Enrich-
ment in skeletal muscle states. (b) Enrichment in flanking TSS across tissues. (c) Enrichment in active
enhancer 1 across tissues. (d) Enrichment in stretch enhancer across tissues.
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bin and high MeSS bin enrichment patterns to some extent; however, it did not elucidate
muscle specific chromatin state enrichment patterns (Figures 4.9b, 4.9c).

(a) Bivalent/poised TSS enrichment
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(b) Stem cell overlapping
bivalent/poised TSS
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(c) Non-stem cell overlapping
bivalent/poised TSS

1

2

3

4

5

6

7

8

9

S
ub

st
an

tia
N

ig
ra

S
to

m
ac

hS
m

oo
th

M
us

cl
e

R
ec

ta
lS

m
oo

th
M

us
cl

e
R

ec
ta

lM
uc

os
a

N
H

LF
N

H
E

K
M

id
F

ro
nt

al
Lo

be
Li

ve
r

K
56

2
In

fe
rio

rT
em

po
ra

lL
ob

e
H

uv
ec

H
S

M
M

H
M

E
C

H
ip

po
ca

m
pu

sM
id

dl
e

H
ep

G
2

D
uo

de
nu

m
M

uc
os

a
C

ol
on

ic
M

uc
os

a
C

in
gu

la
te

G
yr

us
C

D
34

−
P

B
A

nt
er

io
rC

au
da

te
G

M
12

87
8

A
di

po
se

S
ke

le
ta

lM
us

cl
e

Is
le

ts

Cell/tissue type

M
eS

S
 b

in

−0.5

0.0

1.1

2.3

log2
enrichment

Figure 4.9 Enrichment of bivalent/poised TSS mQTLs binned by muscle specificity across cell/tissues
types. (a) Enrichment in all bivalent/poised TSS. (b) Enrichment in bivalent TSS that overlap stem cell
bivalent/poised states. (c) Enrichment in bivalent TSS that do not overlap stem cell bivalent/poised
states.

As a final note, the observed mQTL enrichment trends may be partially attributed to properties
of the specific genomic regions targeted by the EPIC probes. Rather than an unbiased,
genome wide methylation signal, the EPIC array only measures methylation at specific,
predetermined regions. In the EPIC array, Illumina expanded the previous 450k array
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probes, which primarily assayed DNAme sites nearby or within gene bodies and promoters
[333, 33], by adding probes targeted to FANTOM5 enhancer regions, ENCODE enhancers,
and ENCODE open chromatin regions [261]. This could explain why I observe enrichment
of highly specific mQTLs in flanking TSS states of muscle related cell types but not in
enhancer states (Figure 4.8)—because DNAme sites at gene related features are generally
well represented on the array, while only a fraction of enhancer states are represented. For
example, Pidsley et al. [296] report only ~58% of FANTOM5 enhancers are assayed with ≥
1 probe. When considering ≥ 2 probes, <10% of FANTOM5 enhancers are assayed.

In addition, probe representation bias may explain the enrichment of MeSS bin 9 mQTLs
in active enhancer 1 states, but not in active enhancer 2 states (Figure 4.8a). Compared to
active enhancer 2, the active enhancer 1 states are more strongly enriched in H3K27ac and
H3K4me1 signals (Varshney et al. [395, Figure S1C]). The observed patterns in enrichment
could be because the EPIC probes target enhancers that were stronger enhancer calls, more
similar to active enhancer 1 states than active enhancer 2 states. Such a probe bias, coupled
with the fact that mQTLs generally occur very close to the target DNAme site (Figure 4.3b),
make it likely that probe bias might result in particular QTL chromatin state enrichment
trends.

Finally, to better understand the potential effects of probe bias, I evaluated the chromatin
state overlap of the mQTL tag SNP, binned by the chromatin state of the DNAme site
(Figure 4.10a). I found that the largest fraction of mQTL DNAme sites fall in weak repressed
polycomb and weak transcription chromatin states (x axis). As one would expect, given the
close distance of mQTLs to the target DNAme site, the mQTL tag SNP most often fell in the
same chromatin state as the DNAme site. However, a notable exception to this trend was that
a sizeable proportion of mQTL SNPs fell in the weak transcription state across all DNAme
site states.

Focusing on mQTL SNPs overlapping bivalent/poised TSS states in Figure 4.10a (purple
colour), the DNAme sites tended to fall in either a bivalent/poised TSS state or a repressed
polycomb state. Such a split may contribute to the divergent specificity score enrichment in
Figure 4.8a. I tested this hypothesis by comparing the distribution of DNAme skeletal muscle
specificity scores across chromatin states using only DNAme sites with a significant mQTL
(Figure 4.10b). I found that mQTLs where the DNAme site resides in a bivalent/poised
TSS state are generally less skeletal muscle specific than those in a repressed polycomb
state. These results suggest that some mQTLs perturb DNAme in genomic regions that are
specifically repressed in skeletal muscle compared to other cell/tissue types (e.g., PIEZO1
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(a) mQTL-DNAme site chromatin state overlap
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Figure 4.10 mQTL-DNAme site chromatin state overlap. Only DNAme sites of significant (FDR 1%)
mQTLs considered. (a) Fraction of mQTLs in skeletal muscle chromatin states sub-divided by probe
overlap (x axis) and SNP overlap (y axis). Dashed line at 0.5 and dotted line at 0.25 and 0.75. (b)
Distribution of DNAme site specificity of mQTLs across chromatin states.
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locus in Section 5.3.2.4). In addition, these trends were unchanged when only selecting
DNAme sites whose mQTL SNPs were in bivalent/poised TSS (data not sown).

Collectively these results suggest that indeed, some of the observed enrichment trends of
QTLs binned by target DNAme site muscle specificity may be due to the chromatin states
of the DNAme site. However, to truly test such a hypothesis, one would need genome wide
mQTLs from a less biased assay like WGBS.

4.3.3 Dissecting TF effects using QTLs

I also used QTLs to explore the binding effects of TFs on molecular traits, using a pipeline
developed by Arushi Varshney (University of Michigan) and Stephen Parker (University of
Michigan). The goal of this analysis was to classify skeletal muscle activators or repres-
sors—TFs that tend to increase or decrease gene expression or DNAme when they bind
across the genome. To summarise genome wide TF binding effects, Narisu Narisu and I
worked together to identify potential instances where a TF binds in skeletal muscle and a
QTL perturbs TF binding. Subsequently for each TF, we aggregated the effects of TF binding
on a molecular trait (gene expression or DNAme) oriented to the preferred allele across all
sites.

For in silico TF binding site (TFBS) predictions, we used data published in Scott et al.
[341]. Briefly, we predicted TF binding sites using FIMO [133] with default values. In order
to account for TF binding preference among common alleles, we scanned reference and
alternate alleles using biallelic SNPs from 1000 Genomes phase 3 (release v5) along with 29
bp of flanking sequence from the GRCh37/hg19 human reference on each side. For in silico
scans, we used a library of position weight matrixes (PWMs) from ENCODE [184], JASPAR
[241], and Jolma et al. [172]. In order to subset these TF binding predictions to those likely
bound in skeletal muscle, we integrated skeletal muscle ATAC-seq data (see Section 2.9)
using CENTIPEDE [297] to call ATAC-seq footprints. We considered a predicted TFBS
bound if the CENTIPEDE posterior probability was > 0.99 and the motif coordinates were
contained within an ATAC-seq peak. We called these bound instances “TF footprints”,
defined as a FIMO predicted TFBS plus chromatin accessibility data that has a cleavage
pattern indicative of TF binding.



4.3 QTL results 115

Many proximal QTLs are thought to act by perturbing the binding of regulatory TFs [112].
Therefore, one would expect QTLs to be enriched in overlaps of the binding sites of key
regulatory TFs. To reduce our search space to key skeletal muscle TFs for further analysis,
we calculated QTL enrichments in TFBSs for both eQTLs and mQTLs (FDR 1%), selecting
the best SNP per feature (gene or DNAme site), and pruning the SNP list for r2 < 0.8, keeping
the SNP with the minimum p-value per LD block. For the enrichment calculations, we
used GREGOR as described in the chromatin state enrichment Section 4.3.2. In addition, I
removed general, low information content PWMs with a total information content < 10, as
SNP effects on these TFBS predictions would be minimal (first quartile = 10.39; Figure 4.11).
From the remaining PWMs, I found a strong correlation between the enrichment p-values for
eQTLs and mQTLs, suggesting that a common set of key TFs drive a set of mQTL and eQTL
signals. After using the Bonferroni correction method to control for the number of tests
performed with eQTLs and mQTLs separately, I found 641 and 671 significantly enriched
TF footprints (Bonferroni p-value ≤ 0.05) respectively for eQTLs and mQTLs, which were
further analysed for aggregate QTL effects.
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Figure 4.11 QTL TF filters and comparison. (a) Distribution of total information content per PWM.
Dashed line depicts cutoff at 10. (b) Comparison of − log10(p-value) of TF enrichment between
eQTLs (x axis) and mQTLs (y axis).

To catalogue potential activators or repressors for each enriched TF footprint, Narisu Narisu
and I summarised the effect of TF binding by aggregating the direction of effect across
QTL overlaps, orienting the QTL effect to the allele that best matches the PWM. First,
we intersected the lead (smallest p-value) QTL SNP and SNPs in LD (r2 > 0.99) with TF
footprints. For each SNP-TF footprint, we recorded the binding probability of all bases
(A,T,G,C) at the particular SNP position in the PWM. Then, in order to select for cases
where a QTL SNP is likely to affect TF binding, I removed SNP-TF footprint pairs where the
information content of the SNP position was < 1.0 bits and one of the QTL alleles was not the
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allele with the greatest binding probability at that specific position. For instance, I removed
cases where the QTL tag SNP was A/G and the allele with the highest binding probability
at the specific site in the PWM was T, because in such a scenario it is unlikely that the A/G
allele will affect TF binding in an allele specific manner. In order to have confident effect
measurements, I removed instances where the SNP MAF was < 0.2, which stabilised the
range of effect sizes (Figure 4.3a).

At a single TF footprint, there could exist multiple QTLs, which have the potential to skew
genome wide TF binding effect estimates. For example, suppose we have 10 QTL-TF
pairs, but these actually only span 2 TF footprints, each with 5 separate QTLs. While
such an example seems farfetched, it demonstrates that if I were to naively consider all
QTL-TF pairs, I may not have a confident genome wide estimates of TF binding effects,
for in this case I would be “aggregating” over 2 total TF footprints. To resolve such issues,
I performed filters to select one QTL per TF footprint. For each TF footprint, I selected
the single SNP with maximum binding probability, across all SNPs that overlapped the
PWM. In cases where multiple SNPs within the PWM had the same maximum binding
probability, I selected the one with the largest effect size as a QTL. If a single QTL TF
footprint pair was not identified through the above filters, I randomly selected one QTL for
a TF footprint. This was a rare event, occurring for 1 TF footprint with eQTLs and 3 TF
footprints with mQTLs. Additionally, in some cases with highly repetitive motifs, a single
QTL overlapped multiple predicted TFBSs for the same TF on the positive and negative
strand. For instance, the MPP7-eQTL rs1148181 overlaps two TAL1_known5 binding
predictions (1) chr10:28616047-28616059 - strand and (2) chr10:28616045-28616057 +
strand. In such cases, I randomly selected one instance, so that each QTL was considered
once per motif. Such cases were infrequent, amounting to 587 cases out of 9,888 eQTL-TF
overlaps and 1,627 cases out of 30,508 for mQTLs.

After identifying one QTL for each TF footprint, I oriented the QTL effect according to the
allele that best matched the PWM, and for each motif, I summarised the fraction of QTL TF
overlaps where the QTL shows a positive effect (increased gene expression or DNAme). I
dropped cases where < 15 overlaps occurred and used the binomial test to calculate TFs that
showed significant skewing (p-value < 0.05).

I compared the number of QTL overlaps to the fraction of overlaps where TF binding shows
a positive effect (Figure 4.12). I found eQTLs were generally evenly distributed between
positive and negative, while mQTLs were shifted towards a negative effect. This shift
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suggests that TF binding generally co-occurs with a decrease in nearby DNAme (as shown in
Figure 4.3b, mQTLs are generally very close to their target DNAme site).

(a) eQTL TF effects by TF enrichment
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(b) mQTL TF effects by TF enrichment
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Figure 4.12 QTL TF effects. For all plots the x axis shows the fraction of cases where the pre-
ferred allele of the PWM results in increased signal (either gene expression or methylation). (a)
− log10(p-value) of TF mQTL enrichment (y axis) by fraction increased (x axis). (b)− log10(p-value)
of TF eQTL enrichment (y axis) by fraction increased (x axis).

In total, I identified 21 TF motifs that show evidence of skewing using either eQTLs or
mQTLs (Table 4.1). Many of these TFs are linked to known muscle biology. For instance, I
found RXRA acts as a transcriptional activator, increasing gene expression while decreasing
methylation, consistent with the UniProt annotation (http://www.uniprot.org/uniprot/P19793).
RXRA is part of the tetinoid X receptor (RXR) family, which is known to form heterodimers
with many other proteins (e.g., PPAR), play a role in tissue development, and help regulate
metabolic processes in developed tissues, including skeletal muscle (reviewed in [380]).

I found EGR1 is linked to slightly increased expression and decreased DNAme, which is
consistent with a recent study that reports an activating and important role of EGR1 in
differentiation of bovine skeletal muscle satellite cells potentially through MyoG activation
[441]. Likewise, I found a motif for STAT proteins, STAT_disc7, is linked with increased
expression and decreased DNAme. The JAK/STAT pathway is involved in myogenesis
[387, 429, 376], and more recently Jak3/STAT3 has been linked to skeletal muscle glucose
uptake through GLUT4 translocation [192]. I also found ZEB1 acts as a repressor, consistent
with UniProt (http://www.uniprot.org/uniprot/P37275), as well as previous studies which

http://www.uniprot.org/uniprot/P19793
http://www.uniprot.org/uniprot/P37275
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document repressor activity [420, 285, 331] and the importance of ZEB1 in regulating
skeletal muscle differentiation [352].

In addition, I found THAP1 is associated with decreased gene expression and increased
DNAme. THAP1 mutations have been linked to dystonia, a neurological disorder charac-
terised by muscle spasms (reviewed in [203]), perhaps by repression of another dystonia
related gene, TOR1A, by THAP1 [178]. Such a repressor role is consistent with the repressor
function I observe. Additionally, related THAP proteins have been shown to function as
repressors. For instance THAP5, important for apoptosis in cardiomyocytes [17], has been
reported to act as a repressor [18], as well as THAP7 [232]. Together these support the role
of THAP1 as a repressor in skeletal muscle, and perhaps important to skeletal muscle in
relationship to dystonia.

Not all of the binding effect annotations matched the predicted effect. For instance, ZNF263
is annotated a repressor in UniProt (http://www.uniprot.org/uniprot/O14978), while in this
analysis, it appears to act as an activator, increasing gene expression and decreasing methyla-
tion. The fact that I observe concordant activator trends separately in both gene expression
and DNAme suggests that, at least in skeletal muscle, ZNF263 acts as an activator. More-
over, when considering the trends across all TF motifs considered (significantly enriched in
QTL and ≥ 15 total counts after filters), I found a significant trend (r =−0.38, p-value =
4.22x10-5) of complementary binding effects across eQTLs and mQTLs, whereby a TF that
increases expression tends also to decrease methylation or vice versa (Figure 4.13). Together
these results suggest this analysis uncovers real, biological activators or repressor trends of
TF function.

However, caveats to this analysis should be stressed. First, it cannot be assumed that TFs
always function in one manner, as studies have shown TFs can exhibit a “dual role”—acting
both as a transcriptional activator or repressor depending on the genomic context [27, 328].
Second, TF binding predictions were based purely on sequence motifs and muscle ATAC-seq
patterns (to identify TFs likely bound in muscle). A growing body of evidence suggest many
TFs, not just those with methyl-CpG binding domains, recognise DNAme patterns and may
bind to alternative motifs in the presence of DNAme (reviewed in [445]). Thus, instances
where DNAme directly affects TF binding may be poorly captured. Finally, the DNAme
patterns in this analysis are based on aggregate proximal mQTL effects. Generally, such
effects are assumed to occur because a proximal variant perturbs TF binding which affects
DNAme, making the DNAme signal a consequence of TF binding, not causal. How (or
if) this effect on DNAme is then linked to gene expression is not entirely straightforward

http://www.uniprot.org/uniprot/O14978
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Figure 4.13 Comparison of eQTL and mQTL TF effects.

and cannot be assumed (see Section 1.4.2.3). The mQTL DNAme site may directly change
expression by perturbing the binding of a TF regulating gene expression, as described above.
Alternatively, the mQTL may also be an eQTL such that the variant perturbs the binding of a
TF that directly regulates gene expression. In such a scenario, DNAme (or lack thereof) may
simply function to promote/stabilise the TF-DNA interaction or higher chromatin structure
and not be directly causal to or necessary for the gene expression effect. Of course, genome
wide there are likely instances of both models, as well as other more complex scenarios.
Regardless, these results do not address such questions of expression-DNAme relationships,
but describe general effects of predicted TF binding on aggregate expression and DNAme
signals.

4.4 QTL summary

In summary, I mapped QTLs across three molecular traits: gene expression, exon expression,
and DNAme. I found that while many eQTLs are identified as exQTLs, several exQTLs are
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not identified as eQTLs, perhaps due to transcript specific effects identified when analysing
expression at the exon level. I also found that many gene expression QTLs (eQTLs and
exQTLs) show some effect on DNAme, although this effect may not be the strongest genetic
effect at a DNAme site. I analysed chromatin state enrichment trends, confirmed results from
previous studies [341, 395, 59, 273], and showed that enrichment of mQTLs is, to some
extent, effected by the genomic location of the DNAme probes. Finally, I used eQTLs and
mQTLs to dissect effects of TFs binding predictions in skeletal muscle, classifying activators
and repressors. I found that in cases where TF binding was associated with increased DNAme,
TF binding was also associated with decreased expression (and vice versa).
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Chapter 5

Effects of GWAS loci on molecular traits

5.1 Introduction

In the previous chapter, I discovered molecular trait QTLs and analysed aggregate trends
using the single locus most strongly associated with a molecular trait. In order to investigate
the effects of GWAS loci on molecular traits, I could identify cases where the previously
generated QTLs and the GWAS tag SNP are in high LD. However, if I simply took all SNPs
associated with a molecular trait and overlapped them with GWAS tag SNPs, I would not
guard against cases where the GWAS SNP accounts for variance that can be attributed to
other statistically independent variants in the region. In such instances, after conditioning
on the alternative, independent loci, the effect of the GWAS tag SNP could be drastically
reduced or removed entirely. Furthermore, using such methods would overlook instances
where a GWAS locus has nuanced effects on a molecular trait that are only apparent after
conditioning on other loci associated with a molecular trait.

In order to avoid such issues, I performed a conditional QTL analysis, described in this
chapter, where I calculated the effect of the T2D and T2D-related GWAS loci conditioned
on all other significant QTLs within the region. Based on this analysis, I found numerous
QTLs that overlap GWAS loci. I summarise the trends of the most strongly associated loci
through a series of vignettes. These vignettes also serve to generate hypotheses for further
experimental follow up.
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In addition, within these results, I also found many cases where a GWAS tag SNP was
associated with both gene expression and DNAme, which were themselves associated with
each other (i.e., eQTM). Such overlaps elicit questions in regards to the relationship between
genetic effects on gene expression and DNAme. Does a variant affect gene expression and
DNAme independently? Does a variant affect gene expression through DNAme? Or, does a
variant affect DNAme through expression? To address these questions, the final part of this
chapter describes a genome-wide mediation test of the genetic effects on gene expression
and DNAme.

5.2 Conditional QTL mapping

As described in the introduction to this thesis, the overarching goal of this study is to
interrogate the genetic effects of T2D and T2D-related GWAS loci on skeletal muscle
molecular traits. To do this, I used an approach from Scott et al. [341] and calculated the
effect of the GWAS tag SNP conditioned on all other significant, proximal QTLs. For
each GWAS locus I fit two models: (1) a marginal model without any conditional SNPs
(identical to Equation 4.1 in Chapter 4) and (2) a conditional model, herein described. Let y
be rank-based inverse normalised PEER residuals of feature j across individuals, using the
optimised number of PEER factors (75 for eQTLs/exQTLs and 60 for mQTLs). I calculated
the conditional GWAS tag SNP effect using the following linear model:

y j = α j1︸︷︷︸
intercept

+ γ jZ︸︷︷︸
SNP covariates

+ β jg︸︷︷︸
GWAS SNP eff.

+ ψ j︸︷︷︸
noise

, ψ j ∼N (0,σ2
e I) (5.1)

Where α j is the intercept, Z denotes the matrix design of covariates from SNP i to SNP k, g
the genotype vector of the GWAS tag SNP, ψ j Gaussian noise, and γ j and β j the effects of
SNP covariates and the genotype effect respectively. I controlled for the number of tests per
QTL type (gene expression, exon, DNAme) using Storey’s FDR [369] and the conditional
p-values.

In order to select the SNPs to include in the conditional model, I followed the procedures
described in Scott et al. [341]. Briefly, initialising with a GWAS locus represented as the



5.2 Conditional QTL mapping 125

GWAS tag SNP, I located all possible features (gene expression, exon expression, and
DNAme) within a +/− 1 Mb window. After identifying all features, I built the complete
conditional model per feature, starting with only the GWAS tag SNP in model and iteratively
adding the most strongly associated proximal SNP. I continued this stepwise forward selection
process until the minimum p-value across all proximal SNPs was > a threshold. I set the
threshold using the p-value from the primary QTL analysis corresponding to a 5% FDR
(0.0026 for eQTLs, 0.0012 for exQTLs, and 0.00058 for mQTLs). I chose a 5% FDR
instead of 1% as it would potentially allow more SNPs into the model and therefore be more
conservative. The entire algorithm is outlined below in pseudocode.

Algorithm 1 GWAS conditional QTL method

1: model← y j = α j1+β jgGWAS +ψ j ▷ Equation 4.1
2: pmin← threshold ▷ Force first iteration regardless of initial minimum p
3: while pmin ≤ threshold do ▷ Add additional variants to model
4: model←model+β jgp min ▷ Update model with minimum variant
5: pmin← min(pmodel) ▷ Update minimum p across proximal variants
6: end while
7: return model ▷ Model now contains all conditional variants

After constructing the complete model, I calculated the effect of the GWAS tag SNP condi-
tioned on all other SNPs in the model, as described in Equation 5.1.

5.2.1 Pipeline validation

Similar to the QTLs from Chapter 4, I first validated the conditional QTL LIMIX pipeline
using the Scott et al. [341] data freeze (Section 2.8). I compared the LIMIX conditional
QTLs to the Scott et al. [341] conditional QTLs (Figure 5.1), which were called using
an ordinary least squares (OLS) model implemented in the Python statsmodels package
(http://www.statsmodels.org). Overall, the LIMIX conditional QTLs were nearly identical
to those from Scott et al. [341], except for a few cases. For nearly all cases where the two
methods varied, the LIMIX model included a few additional SNPs beyond the SNPs included
in the OLS model. In these instances, the OLS method encounters an iteration where the
minimum p-value across all SNPs is > the cutoff and therefore ceases to add SNPs to the
model; however, for that same iteration LIMIX continues, because the minimum p-value is
≤ the cutoff. Similar to what was observed with the matrix eQTL/LIMIX comparison from
Chapter 4, the LIMIX p-values are slightly smaller, perhaps due to the likelihood-ratio test
used by LIMIX. The overall effect is that SNPs with p-values just barely over the threshold

http://www.statsmodels.org/
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in OLS are included when using LIMIX. The one instance where more SNPs were in the
OLS model, occurred with rs849134 and HOXA10, were LIMIX included 6 SNPs and Scott
et al. [341] included 7. In this instance, the LIMIX SNP choices were identical to Scott et al.
[341] in all but 2 of the total 6 SNPs (in addition to the 7th SNP included in OLS but not
LIMIX). I continued with the LIMIX method as it (1) slightly increased power, and (2) is
much faster computationally, which is critical for conditional mQTL mapping as there are
many more EPIC methylation sites than genes.
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Figure 5.1 LIMIX conditional QTL pipeline QC. (a) Comparison of conditional − log10(p-value)
from LIMIX to Scott et al. [341]. (b) Comparison of the number of SNPs included in the final model.

5.3 Conditional QTL results: T2D and T2D-related traits

Using the input data from the primary QTL mapping described in Chapter 4, I mapped
conditional eQTLs, exQTLs, and mQTLs for T2D and T2D-related traits from a man-
ually curated T2D database and the EBI-NHGRI GWAS catalogue (v1.0.1 downloaded
24 April 2017) [231]. For T2D-related traits I included entries with glucose, insulin,
A1C, HOMA-B, HOMA-IR, metabolic syndrome, and metabolic rate measurements in
the “MAPPED_TRAIT” variable of the EBI-NHGRI GWAS catalogue. I used all unique
entries, not pruning for LD, and testing all proximal features, regardless of whether or not
they had a QTL in the primary analysis (Equation 4.1).
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In the final models, I found expression related QTLs had on average more conditional SNPs
than mQTLs, with a mean of 3.6, 1.8, and 1.1 conditional SNPs for gene, exon, and DNAme
molecular traits respectively (Figure 5.2). The eQTL and mQTL with the most SNPs in the
final model was the T2D GWAS tag SNP rs1133146 with 23 SNPs for NDUFA3 and 15 SNPs
for cg04599149 (maximum of 14 SNPs for a NDUFA3 exon). The exQTL with the most
SNPs was 16 SNPs for rs2302063 and an AES exon. However, none of these genes, exons, or
DNAme sites were significantly associated with the GWAS tag SNP in the final conditional
model, where the tag SNP association is evaluated conditioned on the other SNPs (FDR
1%). Of the significant conditional QTLs, the cases with the most conditional SNPs were
rs12933472-CDH13 (eQTL) with 17 SNPs, rs2946504-FAM66D and rs12933472-PLCG2
both with 11 SNPs (exQTL), and rs895636-cg15044760 (near SIX3) with 13 SNPs (mQTL).
For all 4 of these cases, before conditioning on additional SNPs, none of the associations
were significant; the GWAS SNP associations became significant only after conditioning on
these additional SNPs.

eQTL exQTL mQTL
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Figure 5.2 Number of conditional SNPs in model.

Across all QTLs, I found many cases where conditioning on additional SNPs removed
the marginal association, as well as cases where including the additional SNPs strength-
ened the conditional association compared to the marginal association (Figure 5.3). As
shown in Figure 5.3, there are many points (GWAS SNP-molecular trait pairs; see figure
legend) that aggregate along the x axis with a small − log10(p-valueconditional) and a large
− log10(p-valuemarginal). These points are instances where the GWAS tag SNP was associ-
ated with the molecular trait before conditional analysis (small marginal p-value); however,
after conditioning on other SNPs in the region, the association of the GWAS locus was
removed. Although less frequent, there are also instances where the conditional association
was approximately equal to or greater than the marginal association. Such cases suggest the
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locus tagged by the GWAS SNP significantly affects the target molecular trait. Instances
where the association was increased in the conditional model indicate that the additional
SNPs helped to isolate the GWAS locus effect by removing variability caused by additional
genetic effects.

(a) eQTL (b) exQTL (c) mQTL

Figure 5.3 Conditional QTL results. Each point represents pairing of a GWAS tag SNP and a
molecular trait feature (gene, exon, or DNAme site). Comparison of − log10(p-value) from the
marginal model (x axis) to the conditional model (y axis). (a) Genes (eQTLs). (b) Exons (exQTLs).
(c) DNAme sites (mQTLs).

Overall at a FDR 1%, I found 337 significant eQTLs, 2,351 exQTLs, and 2,414 mQTLs
(Table 5.1). The top 25 results for each molecular trait based on the conditional p-value are
recorded in Tables 5.2, 5.3, 5.4.

QTL type GWAS-trait pairs Significant GWAS-trait pairs
eQTL 13629 337

exQTL 215510 2351
mQTL 492105 2414

Table 5.1 Summary of conditional GWAS QTLs.

5.3.1 Conditional QTL overview

I characterised each of these top results (Tables 5.2, 5.3, 5.4) by analysing the molecular
trait relationships across gene, exon, and DNAme signals (i.e., conditional QTL maps
and eQTMs/exQTMs). However, before considering these results, two caveats should be
highlighted. First, the method I have used does not fine map candidate functional variants,
meaning within the results, the actual functional variant(s) could be in high LD with the
GWAS tag SNP. Second, the method I have used does not accurately model instances where
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a GWAS locus harbours multiple, conditionally independent causal variants. Nonetheless,
given these caveats, the results I now describe are useful for identifying overlapping GWAS
and molecular trait genetic signals, as described in the introduction to this chapter.

Unsurprisingly, I found that nearly all of the top eQTLs also had exQTLs (and vice versa).
In most cases, a subset of exons were more strongly associated than the overall gene level
association. This could be because the exon level expression reduces additional variability
introduced to gene level expression by aggregating over multiple transcripts. Thus, if a
QTL affects the abundance of one particular transcript but not another, the genetic effect
may be less strong at the gene level (which aggregates over all transcripts) than at the exon
level (which would capture expression patterns at exons unique to a specific transcript). The
primary exceptions to this trend were lowly expressed genes where only gene level expression
passed minimal expression filters (not exons).

In cases where the GWAS locus was both strongly associated with gene expression (gene
level or exon level) and DNAme, which were frequent, I generally found the expression
feature was also associated with the DNAme signal (i.e., the DNAme site was an eQTM or
exQTM). For instance, just within the top conditional mQTLs (Table 5.4) there were several
cases (WFS1, FADS1, TMEM99, and CAMK2B) where the mQTLs were also top eQTLs or
exQTLs (Tables 5.2, 5.3), and the DNAme site was also associated with the implicated gene.
As described in Section 5.4, I found such cases were often driven by strong, independent
genetic effects on both gene expression and DNAme.

Finally, there were several loci that showed high complexity, where the GWAS locus was
strongly associated with multiple genes. For instance, the strongest eQTL and exQTL was
an association between the 2-hour glucose variant, rs1019503, and the ERAP2 gene (gene
level cond. p = 6.01x10-103).1 However, this variant was also strongly associated with
CTD-2260A17.2 and LNPEP (cond. p = 1.14x10-41 and cond. p = 1.65x10-41, respectively),
making it difficult to discern the regulatory effects linked to 2-hour glucose. Several other
loci also showed similar patterns of multiple effects including RCCD1 (with PRC1-AS1),
FADS1 (with TMEM258 and FADS2), RHOA (with NICN1 and many other genes), CCHCR1
(with TNXB), CYP21A2 (with HLA-B and many other genes), TMEM99 (with KRT10), INTS8
(with PLEKHF2), as well as several others. For further characterisation and follow up,

1This locus that has been identified across a number of tissues including islets [95, 393, 395] and LCLs [71].
For LCLs, rs2248374 (in high LD with rs1019503; r2 > 0.99 1000GENOMES:phase_3:FIN) has been shown
to affect splicing and create a premature stop codon. The isoform created is targeted for nonsense-mediated
decay (reviewed in [234]).
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I focused on cases where both the conditional eQTLs and exQTLs clearly indicated one
primary gene—except for instances DNAme instances where no gene was indicated, as
described below.

5.3.2 Conditional QTL vignettes and trends

In the following section, I present a series of vignettes or case studies at several GWAS loci
and attempt to infer candidate causal mechanisms at each locus. The observations in this
section serve to generate hypotheses for further experimental validation, beyond the scope of
this thesis.

Focusing in instances where one gene was clearly implied (or no genes in the case of some
DNAme signals), I further characterised these loci by integrating many sources of genomic
and molecular trait information (CGIs, TF binding, chromatin states, ATAC-seq signal, etc.)
as well as detailed literature review. I present these results below, summarising them through
a series of vignettes, grouped according to their molecular trait trends. In these vignettes, I
also highlight my own hypotheses on how each locus may contribute to disease risk, which
proved to be rather unique to each locus. Such results suggest that automating GWAS loci
hypothesis generation is not plausible and that understanding how each GWAS locus may
contribute to disease risk will require detailed, manual consideration, integrating as many
sources of information as possible.

Broadly speaking, scattered throughout these vignettes, one particularly interesting trend
emerged: the ability to use DNAme to generate hypotheses in regards to candidate regulatory
effects underlying a GWAS locus by honing in on specific genomic regions. For instance,
with mQTLs I was able to identify: (1) cases where the underlying molecular mechanism
likely involves differential TF binding at the canonical promoter of a gene (which often
fell just outside of the core CGI region of the promoter; e.g., WFS1, JAZF1), (2) cases
with candidate alternative promoters or splicing effects (e.g., CAMK2B, FGGY, ANK1),
and (3) cases involving distal gene regulation that may indicate chromatin interactions
(e.g., SDHAF4, KCNJ11). Such trends are consistent with a recent study that suggests the
regulatory chromatin landscape can be, to some extent, recapitulated using DNAme [106].
Moreover, in a few instances with particularly strong DNAme signals, I found a nearby
common variant that may perturb TF binding and is a good candidate for being a causal
variant. In one instance, ANK1, this candidate variant had already been identified independent
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of DNAme trends [341] and shown to perturb a TR4 TF binding site in a skeletal muscle
promoter that regulates ANK1 expression.

In addition, I found that few T2D-related GWAS risk loci appear to function exclusively in
skeletal muscle. For instance, I found several loci that have an established, T2D-related effect
within a non-muscle tissue—often pancreatic islets (e.g., CAMK2B/GCK, PROX1/PROX1-
AS1, WFS1, JAZF1, KCNJ11, ACHE). There are several ways to interpret such results, often
varying in a case-by-case manner. It could be that the skeletal muscle effects are totally
irrelevant to the GWAS effect (e.g., possibly ZFAND3). Alternatively, given that genetic
effects on gene expression [136, 104, 138] and potentially DNAme [357, 142] are shared
across tissues, the skeletal muscle trends may be informative for narrowing down regulatory
effects that are then causal to disease in the right tissue (or environmental) context (e.g.,
possibly WFS1). Finally, many of these cases may describe molecular pleiotropic effects,
where the same variant has different effects, depending on the tissue context. It could be
that the multiple effects across tissues collectively contribute to disease risk (e.g., possibly
CAMK2B/GCK). Distinguishing between these possibilities is not directly possible within
this dataset that focuses primarily on skeletal muscle. However, as the genomics community
continues to generate large scale multi-tissue QTL datasets, like GTEx, we will gain a better
understanding of the genetic architecture of molecular traits across tissues and be better
positioned to interpret molecular effects of GWAS loci.

5.3.2.1 mQTL with no gene related QTL

Within the top mQTLs, I found several cases (e.g., cg03523917, cg20564521, cg08035822,
cg13182339) with an extremely strong effect on DNAme, but a very weak or non-existent
effect on gene expression at the gene or exon level. For instance with rs4712523 (or
any of the other variants in LD with rs4712523 from Table 5.4), I found only one strong
DNAme effect, cg03523917 (cond. p = 2.93x10-69), and no significant effect on gene or
exon expression both in the marginal and conditional analysis (Figure 5.4). In contrast
to expression, rs4712523 was also slightly associated, but significant nonetheless, with 3
additional DNAme sites within the region. rs4712523 and the various other tag SNPs in
LD (from various GWA studies) fall in CDKAL1 introns. Likewise, cg03523917 lies in a
CDKAL1 intron that is in a weak transcription chromatin state in skeletal muscle. Across the
various ENCODE cell types, there are 6 ChIP-seq peaks immediately before cg03523917,
but none overlapping the DNAme site. Several common variants fall in these ChIP-seq peaks;
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the closest common variant to cg03523917 is rs9368218 which is in high LD with rs4712523
(r2 > 0.99 1000GENOMES:phase_3:FIN). Although speculative, these mQTLs without clear
gene effects may identify regulatory effects within a region that are poised and then amplified
within the right tissue or potentially environmental context, like the caQTLs described in the
introduction to this thesis [3]. However, without additional experiments the nature of these
effects is difficult to interpret.
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5.3.2.2 exQTL with no eQTL

I also identified three cases within the top QTL results, CAMK2B, FGGY, and PROX1-AS1,
that exhibit a strong conditional exQTL signal, but no eQTL signal. This pattern could be
due to specific alternative transcript effects that are lost when analysing aggregate gene level
signal.

CAMK2B (GCK T2D locus) In the case of CAMK2B and rs3757840 (which occurs in
GCK and is associated with T2D), I found rs3757840 is significantly associated with gene
level and exon level expression of YKT6, a gene with only a few exons that occurs be-
tween GCK and the 3’ end of CAMK2B (minimum exon cond. p = 6.72x10-18; Fig-
ure 5.5). However, rs3757840 is most strongly associated with several CAMK2B exon
fragments near the 3’ end of CAMK2B, the strongest of which is an exon fragment within
ENSE00001744696 (cond. p = 2.96x10-26; chr7:44259016-44259028).2 Furthermore,
rs3757840 is a strong conditional mQTL for 7 DNAme sites, primarily located at the 3’
end of CAMK2B. Notably, none of these DNAme sites are associated with gene level or
exon level expression of YKT6. The only DNAme sites associated with any expression
related feature are the two DNAme sites with the strongest mQTL effect, cg06032855
(cond. p = 3.87x10-61) and cg21330313 (cond. p = 1.59x10-17). Both cg06032855 and
cg21330313 are exQTMs for the CAMK2B:ENSE00001744696 fragment. The weaker
DNAme site, cg21330313, lies immediately before the CAMK2B:ENSE00001744696 frag-
ment, while the stronger site, cg06032855, lies in a CGI (chr7:44259670-44259923) within
a preceding exon, CAMK2B:ENSE00001522684 (whose expression levels are not associ-
ated with rs3757840). Both DNAme sites are in a weak transcription chromatin state in
a variety of tissues including skeletal muscle. Within CAMK2B:ENSE00001522684 and
closest to cg06032855 (the strongest DNAme association) are two synonymous variants,
rs1127065 and rs1065359, of which rs1065359 is somewhat in LD with rs3757840 (r2 = 0.73
1000GENOMES:phase_3:FIN). Finally, in H1 there is a REST binding site from ChIP-seq
data at the start of CAMK2B:ENSE00001522684 (chr7:44259848-44259951). REST bind-
ing has been linked to increased levels of methylation [364]. Such patterns are consistent
with cg06032855 which shows an average methylation of 0.83 across all samples (standard
deviation 0.06).

2All coordinates are on GRCh37/hg19.
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At this locus there are many indications of tissue specificity. As described earlier in this
thesis, the Collins laboratory and others recently identified stretch/super enhancers—large
enhancers that mark genomic regions associated with tissue specific activity, likely composed
of a series of many TF binding events in a restricted region [287, 421, 229]. In our stretch
enhancer paper, we noted a large stretch enhancer round GCK in islets [287]. Indeed, GCK
expression is highly specific to islets [395] and absolutely critical for glucose sensing and
insulin response in islets (reviewed in [242]). In addition, GCK is also expressed in liver,
where it regulates glucose storage, highlighting the possibility of a single genetic effect
contributing to disease risk based on physiological effects in multiple tissues (reviewed in
[242, 392]).

Within this region, I also found several intragenic CAMK2B skeletal muscle stretch en-
hancers, one of which (chr7:44255000-44258800) falls just beyond the CAMK2B exon
strongly associated with rs3757840 (there is an additional noteworthy skeletal muscle stretch
enhancer, chr7:44299400-44323400, that also shows some activity in brain and islets). In
addition, CAMK2B is expressed at very high levels in skeletal muscle in a tissue specific
manner (mESI 0.57). Interestingly, noting the surrounding chromatin states, the most muscle
specific CAMK2B chromatin patterns fall upstream of the observed splicing effect. While
poorly explored in the context of T2D (given such a clear and T2D-relevant effect at GCK),
CAMK2B is linked to the response of skeletal muscle to exercise [323]. Also in skeletal
muscle, CAMK2B is reported to interact with IRS1, a key mediator in the insulin signalling
cascade [55]. Therefore, CAMK2B may constitute an additional, molecular pleiotropic effect
contributing to T2D risk at this locus.
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Figure 5.5 CAMK2B (GCK T2D locus). Light yellow vertical line shows the position of rs3757840. I
found rs3757840 was strongly associated with a CAMK2B exon and a nearby DNAme site. There
are also several associations between rs3757840 and YKT6 exons, but these are not as strong as the
CAMK2B exon association. Detailed figure legend can be found in Figure 5.4.
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FGGY Similar to CAMK2B, I found an obesity linked SNP, rs835367 (which falls in
the FGGY promoter in a striking dip between two skeletal muscle ATAC-seq peaks), is
strongly associated with three 5’ end FGGY exon fragments (spanning chr1:59787208-
59805741 corresponding to ENSE00003609460 and ENSE00003592558), but not overall
FGGY expression (Figure 5.6). Layering in the DNAme information revealed two associated
intergenic DNAme sites: cg09869950 (cond. p = 2.19x10-23) and cg18580450 (cond. p
= 5.36x10-10). cg09869950 occurs immediately before FGGY:ENSE00003609460, the
strongest exon association with rs835367 (cond. p = 1.49x10-53), and is an exQTM for the
FGGY:ENSE00003609460 exon fragment. cg09869950 falls in a skeletal muscle intergenic
weak enhancer state, surrounded by two weak TSS states, as well as multiple common
variants and TF ChIP-seq peaks. The chromatin states surrounding FGGY show muscle
specific patterns, which is consistent with the high muscle specificity index for this gene
(mESI 0.57). FGGY is a poorly studied gene, although very preliminary evidence in mice
suggests it is linked to neurogenic skeletal muscle atrophy [76]. This is a potential locus
where the obesity risk allele may lead to alternative splicing of the FGGY gene.
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Figure 5.6 FGGY locus. Light yellow vertical line shows the position of rs835367. I found a
very strong association with two FGGY exon fragments, preceded by a strong DNAme association.
Detailed figure legend can be found in Figure 5.4.
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PROX1-AS1 Finally, at the PROX1-AS1/PROX1 T2D locus, I identified two very strong
DNAme signals associated with rs2075423—cg14810798 and cg05052969—that are also
eQTMs and exQTMs for PROX1-AS1 (Figure 5.7). rs2075423 falls in a non-coding exon
of PROX1-AS1 and, similar to CAMK2B and FGGY, is not associated with gene level
PROX1-AS1 expression after conditional analysis (PROX1-AS1 cond. p = 0.54; PROX1
cond. p = 0.03). However, rs2075423 is associated with the furthest 3’ end exon of PROX1-
AS1, ENSE00001785835 (cond. p = 4.43x10-7). After conditional analysis, rs2075423 is
significantly associated with 7 DNAme probes, localised at the shared PROX1-AS1 and
PROX1 TSS region.

The two strongest DNAme associations are cg14810798 (cond. p = 2.99x10-71) and
cg05052969 (cond. p = 1.64x10-68). Both cg14810798 and cg05052969 are 17 bp away
from each other, at the tail end of a CGI (chr1:214156001-214156851), and fall in a bivalent
promoter state common across many cell types, including skeletal muscle. Both probes
overlap several ChIP-seq peaks from various ENCODE ChIP-seq experiments, including
a CTCF ChIP-seq peak from A549 and HUVEC, where cg05052969 resides within the
canonical CTCF motif (chr1:214156841-214156855). Immediately before this motif, 18
bp from cg05052969, is a common variant, rs235924, that is also in high LD with the
T2D-tag SNP, rs2075423 (r2 = 0.98 1000GENOMES:phase_3:FIN). rs235924 is the closest
common variant to these probe sites and the only common variant that falls in this CTCF
peak, potentially suggesting that this variant perturbs CTCF binding or a related TF.

Little is known about the role of PROX1-AS1. However, PROX1 is known to be critical for
the development of many tissues including eye, liver, pancreas, and the lymphatic system
(reviewed in [89]). In rat, reduced Prox1 expression has also been shown to reduce glucose-
stimulated insulin secretion in the INS-1E beta cell line [202]. Interestingly, Prox1 has also
recently been shown to be necessary and sufficient for the differentiation of human and
rodent muscle myosatellite cells into slow muscle fibres [186]. These resident myosatellite
stem cells are critical for healthy muscle function as they enable the repair and regrowth
of skeletal muscle in response to injury (myosatellite cells become myoblasts, which then
become myocytes). Thus, similar to the CAMK2B/GCK locus, there is a clear islet-T2D
connection at this locus, but also additional pleiotropic effects important to other tissues that
could also potentially play a role in T2D pathogenesis.
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Figure 5.7 PROX1-AS1 locus. Light yellow vertical line shows the position of rs2075423. I found
one association with the furthest 3’ end exon of PROX1-AS1. There were also several, very strong
DNAme associations clustered at the CGI of a shared PROX1/PROX1-AS1 promoter. Detailed figure
legend can be found in Figure 5.4.
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5.3.2.3 One clear gene from eQTL and exQTL

Within the top results, there were 9 cases that clearly point to a single gene at the level of
whole gene and exon expression. However, several of these cases have rather weak, barely
significant, DNAme associations including SLU7, ZNF697, GLRX5, ZBTB20. I did not
characterise these cases further, and focused on other 5 associations with stronger DNAme
signals.

WFS1 In WFS1, I found rs4689388 (associated with T2D) has strong effects on expres-
sion and DNAme (Figure 5.8). rs4689388 lies immediately before the promoter of WFS1.
rs4689388 is associated with the total levels of WFS1 expression (cond. p = 2.02x10-22) as
well as exons near the 3’ end of the transcript (minimum cond. p = 5.34x10-16). The GWAS
tag SNP is also associated with 12 DNAme probes, the strongest of which cluster around
WFS1 promoter the on either side of a CGI (chr4:6271281-6272182): cg17816406 (cond.
p = 2.72x10-72), cg17662872 (cond. p = 3.99x10-56), cg25554036 (cond. p = 4.04x10-40),
and cg08703151 (cond. p = 2.11x10-32). These probes are also very strong exQTMs for
the top exQTL exons near the 3’ end. Of the 8 DNAme probes that fall within the CGI,
none of them were associated with rs4689388 (minimum cond. p = 0.011). The strongest
DNAme association, cg17816406, lies just beyond the canonical CGI, within the first WFS1
intron. There were no ENCODE TF binding sites overlapping or immediately surrounding
cg17816406. The closest common variants are rs11723602 and rs71173429, which is a 1
bp deletion, both in high LD with rs4689388 (r2 > 0.93 1000GENOMES:phase_3:FIN). In
addition, there are several other common indels that lie within the CGI. For instance, near
the beginning of the CGI is a frequent 6 bp deletion, rs148797429, that is in LD with the
GWAS tag SNP (r2 = 0.88 1000GENOMES:phase_3:FIN). Finally, in GTEx v6p, rs4689388
is a significant eQTL for WFS1 in ~8 different tissues, suggesting that the observed effect is
not unique to skeletal muscle.

WFS1 encodes for wolframin, a transmembrane protein that maintains Ca2+ homeostasis
in the endoplasmic reticulum (ER) [389]. Rare mutations in WFS1 are of high penetrance,
causing Wolfram syndrome (OMIM 222300), a disease characterised by neurological and
endocrine dysfunction. Indeed, the first manifestation of Wolfram syndrome is typically
diabetes by the age of 6 [389]. In addition, common variants (like rs4689388) have been
identified at the WFS1 locus that are associated with T2D [332, 123].
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Both pancreatic beta cells and neuronal cells are particularly sensitive to ER dysfunction.
Because of role of wolframin in normal ER function, mutations in WFS1 have a large
impact on these cells, leading to ER stress-associated cell death [389]. Such effects explain
the clinical manifestations of Wolfram syndrome, involving neurological and endocrine
dysfunction. They also suggest that beta cells are the critical tissue of origin for the observed
WFS1 T2D associations.

Given the general importance of ER function across all cell types, one would expect to
find similar transcription and translation programs of key ER genes/proteins in most tissues.
While the transcriptional rate or overall protein abundance may be dialed up or down, the
overall programs themselves would not change. Indeed, WFS1 fits such a model as there
are very few alternative splice isoforms of WFS1. Thus, if a variant altered the transcription
rate of a key gene like WFS1, one would expect to find similar effects across most cell
types (since most eukaryotic cells require a functioning ER), while the actual effect most
crucial to disease might be isolated to one cell type. With knowledge of WFS1 function from
Wolfram syndrome, the effects of rs4689388 on transcription, and the fact that the DNAme
signals localise around the canonical promoter, it seems likely that these skeletal muscle
effects are representative for many tissues, including beta cells. A reasonable hypothesis
is that while the rs4689388 risk haplotype has similar molecular effects across all tissues,
it gives rise to disease specifically through beta cells, given the crucial role of beta cells in
endocrine function. In such a model, mutations that seriously damage WFS1 function (for
instance by changing the protein sequence) rapidly give rise to diabetes through increased
beta cell death; however, variants that simply perturb the overall abundance levels increase
the fragility of an individual’s beta cell population that over time, combined with other
genetic and environmental factors, predisposes one to T2D.
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Figure 5.8 WFS1 locus. Light yellow vertical line shows the position of rs4689388. In addition to a
WFS1 eQTL effect, I found strong associations with exons near the 3’ end of WFS1 (the most highly
expressed exons). There were also very strong DNAme associations around either side of a CGI in
the WFS1 promoter. Detailed figure legend can be found in Figure 5.4.
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JAZF1 rs849135 (which occurs in a JAZF1 5’ intron) is associated with T2D and is
significantly associated with gene level and exon level JAZF1 expression (Figure 5.9). Like
WFS1, the strongest exon associations occur at the 3’ end of the JAZF1 transcript and the
strongest DNAme associations occur around the promoter. Of the 10 significantly associated
DNAme sites, all of the strongest sites cluster around the promoter and are exQTMs for
the exon most strongly associated with rs849135: cg01883759 (cond. p = 8.50x10-62),
cg21912938 (cond. p = 1.41x10-40), and cg02010481 (cond. p = 1.96x10-24). Both of the top
associations, cg01883759 and cg21912938, occur 18 bp from each other and lie right before
an annotated CGI (chr7:28220015-28220534). Within the ENCODE ChIP-seq data, these
two probes overlap a MAZ (HeLa-S3) and EZH2 (GM12878 and HepG2) peak, of which
EZH2 has been associated with DNAme through the recruitment of DNMTs [398]. None of
the common variants near this cluster of DNAme probes are in high LD with the GWAS tag
SNP (rs849135), perhaps indicating more distal regulatory effects.

JAZF1 (aka TIP27) primarily functions as a repressor of TR4 (aka NR2C2) mediated trans-
activation [270]. TR4 is a TF that targets many genes related to metabolism [277], including
the highly muscle specific ANK1 gene described below (Section 5.3.2.3). In mice, Jazf1 over-
expression has been shown to suppress lipogenesis in adipose [256], inhibit gluconeogenesis
in liver [169], block myoblast differentiation [436], and enhance overall insulin sensitivity
[435]. Using MIN6 cells (a mouse beta cell line), PDX1, a very important pancreatic islet
TF, has also been shown to preferentially bind to rs1635852 in the first JAZF1 intron, also in
LD with rs849135 (r2 = 0.75 1000GENOMES:phase_3:FIN) [105]. In human, higher levels
of JAZF1 islet expression are associated with increased insulin secretion, and T2D patients
have lower JAZF1 islet expression [383], which is consistent with T2D risk effect and the
observed effect of rs849135 in islets [105]. Additionally, in GTEx v6p, both rs849135 and
rs1635852 are significantly associated with JAZF1 expression and have similar effects (T2D
risk allele reduces expression) in several tissues including skeletal muscle, pancreas, adipose,
artery, and colon. Clearly, there is a connection between islet JAZF1 expression and T2D.
However, given the importance of JAZF1 in various T2D-related tissues, it seems likely
that the T2D risk haplotype effects JAZF1 expression in multiple tissues, possibly including
skeletal muscle, all of which contribute to T2D pathogenesis.
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Figure 5.9 JAZF1 locus. Light yellow vertical line shows the position of rs849135. In addition to a
JAZF1 eQTL effect, I found strong associations with exons near the 3’ end of JAZF1. I found several
strongly associated DNAme signals around the shared JAZF1/JAZF1-AS1 promoter. The strongest
DNAme associations lie right before a CGI. Detailed figure legend can be found in Figure 5.4.
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ZFAND3 I also identified rs9470794 (associated with T2D) as a ZFAND3-eQTL, ZFAND3-
exQTL, and mQTL. rs9470794 lies in a 3’ ZFAND3 intron and is most strongly associated
with the final, 3’ ZFAND3 exon fragments (Figure 5.10). After conditional analysis there
were 9 DNAme sites significantly associated with rs9470794. Unlike WFS1 and JAZF1, the
strongest associated DNAme probe, cg22213309 (cond. p = 5.44x10-36), did not occur in
the promoter, but rather in an intragenic region within ZFAND3. cg22213309 is the only
significant exQTM for the aforementioned ZFAND3 exon fragments. cg22213309 occurs in
a weak transcription chromatin state in most tissues, including skeletal muscle. However, for
a few cell types, such as HMEC and K562, this CpG site occurs in either a weak enhancer
or flanking TSS state. The CpG site overlaps 4 ChIP-seq peaks from various cell types,
including JUND in K562, which has been associated with DNAme [274].

Very little is known about ZFAND3 in tissues other than islets, where ZFAND3 expression
has recently been associated with insulin secretion [271]. Furthermore, in islets, a common
variant in East Asian populations > 10 kb upstream of the ZFAND3 promoter, rs58692659,
has been shown to disrupt NEUROD1 binding, a key islet TF, thereby abolishing an important
islet enhancer [288]. This variant is in high LD with the T2D tag SNP, rs9470794, which
was discovered to be associated with T2D in East Asians [63]. The genetics of European
populations support this being the causal SNP, as rs58692659 is monomorphic in European
populations and no SNPs in this region (including rs9470794) are associated with T2D in
Europeans (rs9470794 DIAGRAM p = 0.8 [63]). Therefore, in this instance the relevance of
the rs9470794 association with ZFAND3 in skeletal muscle is likely of little importance to
T2D aetiology.
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Figure 5.10 ZFAND3 locus. Light yellow vertical line shows the position of rs9470794. In addition
to a ZFAND3 eQTL effect, I found associations with 3’ ZFAND3 exon fragments. There was also one
strong DNAme association that occurred some distance away in an intergenic ZFAND3 region near
RNU1-87P. This DNAme site is also the only exQTM associated with the aforementioned ZFAND3
exon fragments. Detailed figure legend can be found in Figure 5.4.
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SDHAF4 I found rs1048886, which tags a T2D locus, is a strong SDHAF4-eQTL, SD-
HAF4-exQTL, and mQTL.3 However, at this locus, I also observed exceptionally unique
DNAme patterns (Figure 5.11). SDHAF4 is a small gene with one main middle exon
(ENSE00001013963). rs1048886 falls in the middle of SDHAF4:ENSE00001013963 and is
strongly associated with the expression of this exon (cond. p = 2.93x10-44). Unfortunately,
near the core exon, there are no DNAme probes, and the DNAme patterns around the sur-
rounding 5’ and 3’ exons are not associated with rs1048886. However, I did find 5 DNAme
probes associated with rs1048886, all of which were skewed upstream of SDHAF4.

The three probes most strongly associated with rs1048886 are cg21200554, cg20244062,
and cg18341098—which are also exQTMs for SDHAF4:ENSE00001013963. Two of these
probes, cg21200554 and cg18341098, fall just outside of the main CGI of the FAM135A
promoter. The third DNAme site, cg20244062 (cond. p = 2.38x10-13), falls at the 3’ end of
a lincRNA transcript, RP11-462G2.1 (ENSG00000237643), in an area of active chromatin
(TSS or enhancer related state) across all cell types. In islets, however, this DNAme site falls
just beyond an active TSS chromatin state in the tail of a very islet specific ATAC-seq peak,
suggesting islet specific effects. Indeed, using GTEx, I found RP11-462G2.1 expression is
highly specific to pancreas; however, SDHAF4 is not. This gene is also expressed in islet
RNA-seq data [95]. To date, very little is known about SDHAF4, other than it is essential for
the assembly of complex II of the mitochondrial electron-transport chain [394]. However,
these DNAme trends suggest particularly interesting and complex regulatory effects that may
operate in a basal state across tissues and be activated specifically in islets or other pancreatic
cell types.

3SDHAF4 is also commonly referred to as C6orf57.
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Figure 5.11 SDHAF4 locus. Light yellow vertical line shows the position of rs1048886. In addition
to a SDHAF4 eQTL effect, I found a very strong association with the SDHAF4 exon nearest to
rs1048886. However, the strongest DNAme site associated with rs1048886 falls in RP11-462G2.1,
a lincRNA with a very strong islet ATAC-seq peak. In GTEx, this gene is specifically expressed in
pancreas, as well as islets from other datasets. Detailed figure legend can be found in Figure 5.4.
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ANK1 Consistent with Scott et al. [341], I found the T2D associated rs516946 SNP is
a strong conditional GWAS eQTL for the highly muscle specific ANK1 gene (mESI 0.7;
Figure 5.12). With the addition of skeletal muscle DNAme data, I also discovered that
rs516946 is a strong conditional mQTL for several highly muscle specific methylation
sites (maximum of 0.81 MeSS), many of which are also associated with decreased ANK1
expression (the top eQTMs are cg12439423, cg01678292, and cg23241016). All of the top 5
DNAme probes (cond. p < 1.0x10-26)—cg01678292, cg12439423, cg23241016, cg11479568,
and cg17274126—fall within a 230 bp region in a skeletal muscle specific promoter and
ATAC-seq peak (chr8:41,522,721-41,522,951). Only one variant common to European
populations falls within this region, rs508419.

Interestingly, in Scott et al. [341] we independently identified rs508419 because it is the
only SNP in high LD (r2 ≥ 0.8) with rs516946 that falls within a skeletal muscle specific
promoter. Through in silico TF binding predictions, we computationally predicted this SNP
would perturb TR4 binding. We validated this prediction using an electrophoretic mobility
shift assay (EMSA) and nuclear extract from human skeletal muscle cells (SkMC), where
we observed an allele-specific supershift using the TR4 antibody. The analysis from Scott
et al. [341] suggests the rs508419 risk allele disrupts TR4 binding and repression, resulting
in increased overall ANK1 expression and alternative splice isoforms.

ANK1 is a highly spliced gene, with many alternative transcripts. Long isoforms are highly
expressed and specific to the cerebellum, while several alternative short isoforms are highly
expressed and specific to skeletal muscle (GTEx v6p). ANK1 links membrane proteins to the
spectrin-actin cytoskeleton [252], and rare ANK1 mutations cause hereditary spherocytosis
(OMIM 182900), where erythrocytes (red blood cells) become spherical rather than toroidal,
leading to many complications including an increased propensity for hemolysis [293]. ANK1
interacts with obscurin [422, 39], a component of the sarcoplasmic reticulum (SR) [15, 1].
The SR is critical for healthy skeletal muscle function as it regulates the translocation of
GLUT4, the primary glucose transport protein in skeletal muscle, to the plasma membrane in
response to insulin stimulation (reviewed in [69]). Furthermore, in skeletal muscle, ANK1
also interacts with IRS1 [55], which is critical for the glucose uptake of skeletal muscle cells
(SkMCs) in response to insulin stimulation [41]. These observations, combined with the
results from Scott et al. [341] clearly point to a skeletal muscle effect linked to T2D through
insulin response.

However, GLUT4 translocation is also important to other tissues, like adipose, and indeed
adipose and skeletal muscle share some of the proteins involved in GLUT4 trafficking
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[268]. Although ANK1 is not highly expressed in adipose, both rs508419 and rs516946 exert
significant effects on ANK1 in subcutaneous adipose expression (GTEx v6p). Furthermore,
an additional locus associated with T2D, rs12549902, that is not in LD with either rs516946
or rs508419 (r2 < 0.17 1000GENOMES:phase_3:FIN), has been shown to colocalise with
an ANK1-exQTL in islets [393]. While the islet effects are difficult to interpret, especially
since rs12549902 was also associated with NKX6-3 in gene level analysis [393], the adipose
observation suggests that at some GWAS loci, although the primary effect that significantly
contributes to disease risk may be isolated to one tissue, effects will be present and detectable
in other tissues that share similar molecular biological programs.
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Figure 5.12 ANK1 locus. Light yellow vertical line shows the position of rs508419. In Scott et al.
[341], we featured this locus and describe how rs508419 (in LD with the T2D SNP rs516946) likely
affects a small, muscle specific ANK1 isoform by altering TR4 binding. With the DNAme data,
I found the DNAme sites associated with rs508419 (and rs516946) all fall in the muscle specific
promoter near the TR4 binding site. Detailed figure legend can be found in Figure 5.4.
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5.3.2.4 Candidate muscle specific effects

Initial results from GTEx [138] and other studies [136, 104] suggest many eQTLs are shared
across tissues, and although far less characterised due to limited tissue diversity, studies
suggest mQTLs appear to be as well [357, 142]. Therefore, in order to investigate the
genetic effects of T2D related loci that are particularly relevant to skeletal muscle, I used
the specificity indices described earlier, to identify genes (mESI) and DNAme (MeSS) with
muscle specific patterns. For gene expression and DNAme, I used the 90th percentile genome
wide (i.e., not only across genes with a QTL) as a cutoff and sorted by the conditional p-value
(Table 5.5, 5.6). This cutoff corresponded to a mESI of 0.55 and a MeSS of 0.47.

Across the top eQTL results for muscle specific genes, I observed large regions of active
chromatin (TSS or enhancer related chromatin state) very specific to skeletal muscle within
the region of the target gene. These regions were often accompanied by specific skeletal
muscle ATAC-seq trends. In many cases, however, I did not find strong DNAme effects
or did not find a strong effect at both gene and exon level. Such trends often occurred for
instances with particularly weak marginal effects, and do not make a compelling case that
skeletal muscle is important to the GWAS effect. In addition, trends in the top DNAme
loci corresponded to regions that were either specifically activated or repressed in skeletal
muscle. Below I highlight the instances of candidate muscle specific effects with clear trends
in expression and DNAme.

KCNJ11 After ANK1, the second strongest conditional association for a highly muscle spe-
cific gene was for KCNJ11 (mESI 0.71) and rs5219 (Figure 5.13). rs5219 is a missense variant
in KCNJ11 where the T allele is associated with increased T2D risk, causing a K23 change in
ENST00000339994 and a K29 change in ENST00000528992 (C allele is ancestral, protective
against T2D, and corresponds to E23 and E29; see www.type2diabetesgenetics.org). At the
gene expression level, before conditional analysis, rs5219 was nominally associated with
KCNJ11 expression (marg. p = 0.023); however, after conditional analysis the association
increased drastically (cond. p = 3.09x10-8). In addition, rs5219 showed association with
NCR3LG1 (mESI 0.42) and RP1-239B22.5 (ENSG00000260196; mESI 0.36) before and
after conditional analysis. In GTEx v6p, there are significant associations between these
genes and rs5219 across various tissues, all of which show decreased expression with the T
T2D risk allele.

http://www.type2diabetesgenetics.org/variantInfo/variantInfo/rs5219
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At the exon level, KCNJ11 showed similar patterns with little effect before conditional
analysis across 4 exon fragments. rs5219 was also an exQTL for RP1-239B22.5 and ABCC8
(mESI 0.43). Due to minimum exon expression requirements, only one NCR3LG1 exon was
tested, which showed nominal association (cond. p = 0.0012) yet failed the FDR cutoff of 1%
(cond. q = 0.04). The effect of rs5219 on KCNJ11 expression (gene level) was complex, with
the T allele showing a weak positive effect before becoming a much stronger negative effect
after conditional analysis (although GTEx did not perform a conditional analysis, a negative
effect is consistent with all of the reported GTEx v6p associations). This trend held true
for all exons, except the very first (KCNJ11:ENSE00002147964), which showed a negative
effect before and after conditional analysis.

The exon effects spanned the rather small KCNJ11 gene. However for ABCC8, all of the
exon effects were for exons near the 3’ end of the ABCC8 transcript, immediately before
KCNJ11. Since ABCC8 and KCNJ11 lie in sequence on the same DNA strand, it could be
that the ABCC8 exon associations are partially due to Pol II leading up to KCNJ11 (median
TPM 50.77, mean TPM 51.45). The low expression of ABCC8 (median TPM 0.69, mean
TPM 0.87) and the rarity of the KCNJ11/ABCC8 protein channel in muscle, described
subsequently, would support such a hypothesis. Both RP1-239B22.5 and NCR3LG1, lie on
the opposite strand; however, given the striking chromatin patterns, there are likely complex
muscle chromatin interactions at this locus, which may explain these associations.

In contrast to gene expression, 14 conditionally significant DNAme sites showed consistent
trends in the marginal and conditional associations with rs5219. The two strongest associa-
tions were for cg11839944 (cond. p = 1.17x10-28) and cg09674956 (cond. p = 3.62x10-21).
cg11839944 occurs in a CGI (chr11:17409453-17409692) within KCNJ11 at the start of the
largest exon (KCNJ11:ENSE00001366321), where rs5219 resides. cg11839944 also shows
highly muscle specific methylation patterns with a MeSS of 0.62. Between cg11839944
and rs5219, within the CGI, lies cg15432903. Despite being closer to rs5219, cg15432903
shows slightly less association (cond. p = 9.56x10-16). Many of the DNAme sites associated
with rs5219 fall throughout KCNJ11; however, the second strongest site, cg09674956 was
some distance away, just outside of the CGI of the NCR3LG1 promoter (chr11:17373020-
17373665), supporting the hypothesis of many chromatin interactions at this locus.

Within this region, the chromatin states showed very specific trends for skeletal muscle.
Near the end of ABCC8, there is a skeletal muscle specific promoter and ATAC-seq peak
and large enhancer. Immediately, after this muscle specific promoter are all of the ABCC8
exon associations. Shortly thereafter, is KCNJ11, which has three active muscle TSS states
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surrounded by weak and flanking muscle TSS states. Each active TSS corresponds to a muscle
ATAC-seq peak that shows distinct trends compared to other cell types. Surrounding these
active TSS regions, flanking the ATAC-seq peak, I observed spikes in the DNAme association
with cg22710661 after TSS 1 (cond. p = 1.42x10-11), cg11839944 and cg15432903 after
TSS 2 (described above), and cg03864215 before TSS 3 (cond. p = 1.59x10-16).

The strongest DNAme association (cg11839944) occurred after the middle active TSS state.
Both of the outer active TSS states overlap many ChIP-seq peaks from ENCODE cell types,
the strongest of which is a strong CTCF peak, common to many cell types. In both cases,
the DNAme association occurs at the tails of the CTCF peak. Finally, downstream of the
KCNJ11 gene body, there is a large, highly muscle specific enhancer state that trails well
beyond RP1-239B22.5.

KCNJ11 and ABCC8 respectively encode for Kir6.2 and SUR1—two subunits that form
adenosine triphosphate (ATP) sensitive K+ (KATP) plasma membrane channels. There are a
variety of KATP channels, all composed of a pore-forming Kir subunit and an ATP binding
cassette (ABC). In addition to KCNJ11 and ABCC8, the two other key KATP subunit genes
are KCNJ8 (Kir6.1) and ABCC9 (SUR2A and SUR2B, depending on splicing; reviewed in
[100]). In skeletal muscle, the primary KATP channel is Kir6.2/SUR2A; however, other forms
exist, for instance involving SUR1 or SUR1/SUR2A hybrids, that relate to skeletal muscle
type (fast or slow twitch; reviewed in [100]).

In relation to diabetes, several associations with T2D and related traits have been identified in
and around KCNJ11 and ABCC8, which clearly affect pancreatic beta cell function. Protein
coding mutations in KCNJ11 and/or ABCC8 often underlie rare monogenic forms of diabetes
such as neonatal diabetes (diabetes by ~6 months) and MODY (autosomal dominant diabetes
by ~25 years of age; reviewed in [415]). These mutations generally result in overactivity of
islet Kir6.2/SUR1 KATP channels, where the channels are constantly open, leading to reduced
beta cell insulin secretion [415].

In beta cells, Kir6.2/SUR1 KATP channels are responsible for enabling insulin release in
response to glucose levels (reviewed in [415]). Briefly, in low levels of plasma glucose and
consequently low levels of cytosolic ATP, KATP channels are more likely to be open allowing
basal efflux of K+, keeping the membrane potential at -70mV. In high levels of plasma
glucose, glucose enters beta cells via GLUT transporters, resulting in increased cytosolic
levels of ATP through glucose metabolism. The increased levels of ATP promotes the closing
of KATP channels, which leads to depolarisation of the beta cell membrane (decrease of
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negative charge within the cell). Depolarisation opens voltage-gated calcium ion channels,
increasing cytosolic calcium levels which stimulates the release of stored insulin.

Given the importance of Kir6.2/SUR1 for islet biology, it is not surprising common variants
associated with T2D and related traits have also been identified. As noted above, one of
the most studied common variants is the missense variant rs5219 (which causes a E23K
change in ENST00000339994), identified in this study as having an effect on KCNJ11 (and
ABCC8) skeletal muscle expression. This variant is in high LD with rs757110 (which causes a
S1369A change in ENST00000389817),4 a missense variant in ABCC8, making it extremely
difficult to prioritise a candidate functional variant based on statistics alone [392, 415].
However, functional follow up revealed that in the K23/A1369 risk haplotype, A1369 (C
allele of rs757110) is responsible for reducing the ATP sensitivity of KATP, leading to an
increased probability of KATP openness, suppressing insulin secretion [143, 415]. This does
not, however, mean that K23 (rs5219) could not have an independent effect that contributes
to T2D risk, possibly dependent on tissue context such as skeletal muscle (although it could
very well have a islet effect).

Indeed, in context of the Kir6.2/SUR1 channel (which is less frequent in skeletal muscle),
K23 increases KATP sensitivity to intracellular long chain acyl coenzyme A esters (LC-CoA),
which are more abundant in obese and T2D patients. This sensitivity change results in
the increased likelihood of K23 KATP channels being open at various ATP concentrations
compared to E23 KATP when LC-CoA is present [311, 310, 397]. Such effects likely persist
across all KATP variants, as LC-CoA KATP sensitivity has been reported in various cell types,
some of which, like ventricular myocytes, are even more sensitive than beta cells [100].
Moreover, in the context of Kir6.2/SUR2A (common to skeletal muscle) K23 increases KATP

sensitivity to intracellular pH levels, such that at more acidic levels (as would happen during
exercise) K23 KATP are more likely to be open than E23 KATP [215]. These effects may be
specific to skeletal muscle, as pH sensitivity has not been observed in cardiac KATP, which
also prominently feature Kir6.2/SUR2A [100].

Although not intensely studied, it seems likely genetic effects on Kir6.2 will be particularly
important in the context of skeletal muscle, especially since Kir6.2 is the predominant KATP

subunit (which in contrast to beta cells primarily combines with SUR2A or SUR2A/SUR1

4For rs757110, the A allele is ancestral, protective against T2D, and corresponds to S1370 in
ENST00000302539 and S1369 in ENST00000389817. The C allele is the T2D risk allele and corresponds to
A1370 in ENST00000302539 and A1369 in ENST00000389817. There is also evidence of an extremely rare T
allele.
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hybrid subunits) [100]. In muscle, KATP channels are generally closed at rest and become
open in response to stress, such as exercise [158]. Alterations to KATP channels have been
shown to accelerate muscle fatigue during exercise (reviewed in [100]).

Most relevant in the context of T2D (although the mechanisms are poorly understood),
skeletal muscle KATP openness has been linked to decreased glucose uptake (reviewed
in [100]). For instance, Kir6.2-/- mice show increased skeletal muscle glucose uptake in
addition to impaired insulin secretion (as well as impaired stress response cardiac and
skeletal muscle), while SUR1-/- mice only show impaired insulin secretion (SUR2-/- leads
to coronary vasospasm and premature death; reviewed in [100]). Furthermore, in vitro,
KATP channel openers have also been shown to suppress skeletal muscle glucose uptake,
stimulated by either high glucose concentration or insulin induction. These effects could
be pharmacologically reversed by channel blockers [410]. Therefore, effects like K23
that increase KATP sensitivity to various external molecular modifiers may have important
consequences to glucose homeostasis by perturbing skeletal muscle function.

Collectively, these findings highlight the importance of Kir6.2 to proper skeletal muscle
function and suggests that the same T2D risk haplotype perturbs glucose homeostasis by
reducing beta cell insulin secretion and decreasing skeletal muscle glucose uptake.

Nonetheless, the effect identified by on rs5219 expression is particularly perplexing. KATP

is clearly important for normal skeletal muscle function. Therefore, alterations at the level
of protein sequence or protein abundance could potentially perturb normal muscle function.
rs5219 certainly affects protein sequence and function. The results presented here also
suggests rs5219 (or a variant in high LD) effects KCNJ11 expression. One hypothesis
is that rs5219 (or an LD variant) affects specific KCNJ11 isoforms. Indeed, this seems
supported by the exQTL analysis, where not every KCNJ11 exon fragment was associated
with rs5219. In addition, a previous study [221] identified numerous novel skeletal muscle
transcripts surrounding KCNJ11, which could explain why cardiac and muscle tissue differ
in pH response (these were not included in our gene annotation file as we used the official
GENCODE v19 release [146]).

Given the several conditional QTLs (the other SNPs went into the final conditional model), it
seems likely that any novel or alternative isoforms affected by rs5219 are not the primary
KCNJ11 transcript. Indeed, with the extensive study of Kir6.2, it seems unlikely that radically
novel protein isoforms exist in abundant quantities, suggesting either rare protein forms,
protein isoforms with very slight differences, ncRNA, or a combination of all three contribute
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to the identified signals. In further support of this hypothesis (that the QTL effect is nuanced
and not on the primary KCNJ11 isoform), the first conditional variant was rs10766394
(rs5219 r2 = 0.52 1000GENOMES:phase_3:FIN), the strongest variant association from the
primary QTL analysis in Chapter 4. In the primary QTL analysis, the G allele (A/G) results
in increased expression (beta = 0.60, p = 3.73x10-13). rs10766394 falls just beyond the 3’ end
of KCNJ11, between the end of KCNJ11 and the start of RP1-239B22.5, nestled between two
large ATAC-seq peaks common across tissues. In GTEx, rs10766394 has a significant effect
across many tissues, but noticeably not muscle. Since there are potential novel transcripts
at this locus, I cannot rule out that the rs10766394 effect may change with different gene
models for gene quantification using RNA-seq data.

Finally the DNAme signals also underscores the importance of rs5219 on the surrounding
epigenomic landscape. In the conditional analysis, rs5219 was most strongly associated with
cg11839944 (marg. p = 8.03x10-36, marg. beta = -0.96, cond. p = 1.19x10-28, cond. beta =
-0.86). In the primary QTL analysis, rs5219 was not the strongest QTL (minimum p-value)
for any DNAme sites. However for cg11839944, rs5213, a variant in high LD with rs5219
(r2 = 0.95 1000GENOMES:phase_3:FIN), was the top mQTL (beta -0.97, p = 4.16x10-36).
rs5213 falls immediately after the main KCNJ11 exon in a 3’ UTR of KCNJ11, overlapping
the tail of an ATAC-seq peak common across cell types (most strong in muscle). As one
would expect, this variant also overlaps the ChIP-seq peaks of many TFs common across cell
types, including a HSMM CTCF peak. Thus, the gene expression rs5219 association may be
driven by rs5213.

Regardless, detailed follow up will be required to fully understand the skeletal muscle effects
at this locus. Careful analysis of KCNJ11 reads (e.g., isoform deconvolution), the surrounding
LD structure, and chromatin information, may reveal further insights and guide functional
follow up. Most challenging will be to understand effects in the context of T2D, and establish
expression effects that contribute to T2D risk independent of the undoubtedly important
rs5219 effect on Kir6.2.
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Figure 5.13 KCNJ11 locus. Light yellow vertical line shows the position of rs5219. All of the
KCNJ11 expression associations became significant after conditioning on rs10766394, the SNP
most strongly associated with KCNJ11 from the primary QTL analysis in Chapter 4. rs10766394
lies between KCNJ11 and RP1-239B22.5. Unlike the expression trends for rs5219, I found many
strong DNAme associations in marginal and conditional analysis. The strongest DNAme association
occurred within a KCNJ11 CGI. There is also a DNAme association in the NCR3LG1 promoter.
Detailed figure legend can be found in Figure 5.4.
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PIEZO1 Several of top mQTLs with muscle specific DNAme patterns, corresponded to
regions with repressed chromatin states specific to skeletal muscle. As expected, these such
instances generally had weak or nonexistent effects on gene expression. A representative
example of such cases is an HbA1c-associated locus tagged by rs9933309. rs9933309 falls in
PIEZO1 (Figure 5.14). In most cell types, this region is active, especially adipose; however,
in skeletal muscle this region is specifically repressed, falling in a weak repressed polycomb
chromatin state. Near the 3’ end of PIEZO1, the skeletal muscle chromatin state changes to
a strong transcription state. In that transition region I find one PIEZO1 exon significantly
associated with rs9933309 (cond. p = 3.65x10-6). Otherwise, rs9933309 is associated with
several 9 DNAme probes, many of which show muscle specific DNAme trends. Surrounding
the strongest DNAme association, cg04602696 (cond. p = 1.08x10-56; MeSS = 0.53), are
many TF binding sites and common variants, making it difficult to identify any potentially
relevant variants or TFs.

Piezo1 mediates non-selective cation transport involved in mechanosensory signal trans-
duction—a cell’s biological response to mechanistic stimulation such as increased pressure
(reviewed in [16]). Mutations in PIEZO1 lead to the autosomal dominant dehydrated heredi-
tary stomatocytosis (OMIM 194380), a disease where faulty ion channels leads to lysis of
erythrocytes [5, 11]. In addition, Piezo1 is known to be involved in vascular, genitourinary,
and pulmonary biology (reviewed in [16]). Such trends are consistent with the observed
patterns of active chromatin states and the high expression of PIEZO1 in bladder, colon,
kidney, lung, oesophagus, spleen, vascular tissue, genital tissue, and adipose (GTEx v6p).

Despite these trends, no gene expression effects were identified for rs9933309 in GTEx v6p.
However, PIEZO1 is a highly spliced gene, so the lack of gene level effects by rs9933309
could be explained by specific transcript effects. Although speculative, given the general
importance of PIEZO1 in diverse tissues, PIEZO1 may turn out to be a locus where the
same molecular effect on PIEZO1 expression leads to multiple manifestations, depending
the tissue, that collectively add to disease risk. Regardless, it seems unlikely that rs9933309
has any disease relevant effect in muscle; however, the stark contrast between the skeletal
muscle chromatin states in this region and that of other cell types is particularly striking and
may indicate muscle specific higher order chromatin structure.
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Figure 5.14 PIEZO1 locus. Light yellow vertical line shows the position of rs9933309. This PIEZO1
region is specifically repressed in skeletal muscle. I found one strong DNAme association near the
PIEZO1 TSS. In addition, there was one PIEZO1 exon near the 3’ end (after the muscle chromatin
state has transitioned to a strong transcription state) associated with rs9933309. Detailed figure legend
can be found in Figure 5.4.
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ACHE I found a T2D tag SNP, rs7636, is an eQTL for ACHE, a gene with muscle specific
expression trends (mESI 0.59). rs7636 is a synonymous ACHE coding variant that lies in a
muscle specific genic enhancer state and overlaps an intergenic CGI (Figure 5.15). The exon
that rs7636 falls in has various lengths depending on the transcript. rs7636 was not associated
with expression levels of the exon fragment in which it resides, but was associated with the
expression of smaller fragments, or versions of the exon (cond. p = 1.75x10-5), indicating
transcript specific effects. The rs7636 risk allele, A [353], was associated with decreased
overall ACHE expression (marg. beta -0.82, cond. beta -0.86). This effect was consistent
at the exon level in all but one exon, where risk allele was associated with increased exon
expression.

rs7636 was also associated with 6 DNAme probes, the strongest of which, cg15575433
(cond. p = 3.56x10-9), occurred at the start of a final 3’ exon of two alternate ACHE
transcripts. Moving towards the TSS from cg15575433, all of the other DNAme sites fall
after chr7:100,491,854, the approximate start of several alternate ACHE transcripts. These
patterns strongly suggest alternate transcript effects. The surrounding chromatin states
further support this conclusion. Compared to all other tissues, the TSS related chromatin
states for ACHE in skeletal muscle (active TSS and flanking TSS) are shifted well beyond
chr7:100,491,854, towards the 3’ end of ACHE. In all other tissues, the TSS related chromatin
states stop by ~chr7:100,491,854. There are, however, numerous ACHE transcripts (reviewed
in [363, 278]), making it difficult to further narrow down effects.

ACHE encodes acetylcholinesterase (AChE), which degrades acetylcholine, thereby ter-
minating acetylcholine-mediated neurotransmission which is essential for neuromuscular
communication (reviewed in [363]). Since the substrate of AChE, acetylcholine (ACh), was
historically the first identified neurotransmitter whose discovery was shortly followed by
AChE, immense study has focused on ACh and AChE [363]. Through this research, a variety
of AChE inhibitors have been developed. Some AChE inhibitors have been weaponised (e.g.,
sarin), but others are used medically to treat a variety of diseases, including myasthenia gravis
(chronic skeletal muscle weakness), Alzheimer’s disease, and glaucoma (reviewed in [66]).
In relation to diabetes, pharmacologically induced type 1 diabetic mice show reduced Ache
expression in muscle, possibly indicating a mechanism that leads to diabetes related muscle
weakness [121]. In addition, accumulation of AChE in mouse islets has been associated with
increased beta cell apoptosis and diabetes development [440]. In human, pancreatic alpha
cells have been shown to release ACh in response to lowered glucose levels which sensitise
beta cells to increases in glucose concentration for insulin release [318]. While undoubtedly
important for skeletal muscle biology, such findings suggest the role of AChE in healthy islet
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function is more directly relevant to T2D. Indeed, phase I clinical trials are underway to test
if AChE Inhibitors promote insulin secretion (ClinicalTrials.gov Identifier: NCT03063515).
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Figure 5.15 ACHE locus. Light yellow vertical line shows the position of rs7636. In addition to a
ACHE eQTL effect, I found several exon and DNAme associations throughout ACHE. The exon and
DNAme trends strongly suggest transcript specific effects at ACHE. Detailed figure legend can be
found in Figure 5.4.
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SPTB Finally, I identified three QTLs with strong exon and weak gene level effects for
highly muscle specific genes, two of which were mentioned earlier—CAMK2B (mESI 0.57)
and FGGY (mESI 0.57). The third instance was for SPTB (mESI 0.75) and rs11158559,
where the A allele is associated with increased levels of insulin and leptin [67] (Figure 5.16).
Unfortunately, there seems to have been an error in the reporting study as the only discovered
alleles for rs11158559 are C/T (there is no A allele as reported by Comuzzie et al. [67]). In
the T2D knowledge portal (www.type2diabetesgenetics.org), the minor allele, T, is nomi-
nally associated (p = 0.0029) with increased insulin sensitivity index adj age-sex-BMI, so
presumably T is the risk allele.

rs11158559 was not associated with gene level SPTB expression (marg. p = 0.11, cond. p
= 0.90). rs11158559 falls in an SPTB intron, immediately after SPTB:ENSE00000392079,
which is the only exon associated with rs11158559 (cond. p = 2.80x10-16). The T allele of
rs11158559 is negatively associated with SPTB:ENSE00000392079 expression. At the end
of the two closest downstream exons, I observe strong DNAme associations within the exon
sequence. Unfortunately, there were no DNAme probes near SPTB:ENSE00000392079 or
within the rs11158559 intron. However, the DNAme probe with the strongest association,
cg25083366 (cond. p = 8.20x10-48), falls within an exonic CGI (chr14:65239323-65239666)
that overlaps a strong CTCF ChIP-seq peak across many cell types. Sadly, there were no
variants in LD with rs11158559 that occurred in this binding site.

Spectrin is the primary constituent of the cytoskeleton which is anchored by beta-spectrin
to the plasma membrane through ankyrin interactions (reviewed in [233]). There are 5
spectrin genes, each with different tissue specificity patterns. SPTB is the only spectrin gene
that shows expression patterns specific to skeletal muscle (mESI 0.75). Given the intimate
interaction between beta-spectrin and ankyrin, it is not surprising that rare mutations in
SPTB also give rise to hereditary spherocytosis (OMIM 616649), similar to ANK1. However,
the aforementioned small, skeletal muscle ANK1 isoform (sAnk1) lacks a spectrin-binding
domain and is not thought to have direct interactions with SPTB [189]. Regardless, beta-
spectrin is linked to the Golgi complex in skeletal muscle [29], which is important for GLUT4
sequestration and translocation via GLUT4 storage vesicles [31], possibly explaining earlier
studies that link beta-spectrin and GLUT4 [70, 388]. These observations suggest a SPTB
could be linked to skeletal muscle insulin response through similar molecular mechanisms as
ANK1. If rs11158559 turns out to be a robust insulin association, given the key role of SPTB
in skeletal muscle insulin response, it seems likely that the disease risk effect at this locus
will be in skeletal muscle through SPTB.

http://www.type2diabetesgenetics.org
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Figure 5.16 SPTB locus. Light yellow vertical line shows the position of rs11158559. rs11158559
was not associated with SPTB gene level expression, but was associated with one exon. Near this
exon, towards the 3’ end of SPTB lies the strongest DNAme association, in an exonic CGI. Detailed
figure legend can be found in Figure 5.4.
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5.3.3 Conditional QTL summary

In summary, the results presented catalogue the effects of variants associated with T2D and
T2D-related traits in skeletal muscle. Through these vignettes, it is clear that comprehensive
QTL analysis across disease related tissues is critical for understanding the pathophysiological
effects of GWAS loci.

At the molecular trait level, in some cases, the molecular effect of a GWAS locus will be
the same across multiple tissues, perhaps due to common molecular pathways (e.g., WFS1
and normal ER function). Such effects may manifest themselves as a strong QTL across all
tissues, or as a weaker QTL in some tissues (where only basal activation is necessary) that are
magnified in certain tissue contexts. In other cases, molecular trait effects may be shared only
across a handful of tissues, or be highly specific to a tissue, based on the molecular pathways
active in the cell type. In such instances, it seems likely that the same GWAS locus (perhaps
even the same causal variant) will affect multiple molecular traits (e.g., genes) depending on
the tissue context. In all of these scenarios, narrowing down to functional variants will be
important, as many cases may consist of two or more variants in high LD that affect different
molecular traits, rather than the same actual SNP causing the effect.

In addition, the various molecular trait effects may physiologically manifest themselves
differently based on tissue context. For instance, one could imagine an eQTL that affects
the same single gene in a similar molecular manner across tissues, for instance an indel that
abolishes the CGI of a promoter. However, the physiological manifestations of that effect
could be very different depending on the tissue context. Hypothetically in one tissue, the
eQTL effect results in decreased insulin secretion and the other tissue it results in decreased
glucose uptake. In both instances, the molecular effect is the same, but the physiological
effect is different—suggesting that as a field, distinguishing between molecular pleiotropy
and physiological pleiotropy may be important. This underscores the critical importance of
function followup across a variety of models (in vitro and in vivo), in order to understand
physiological effects and deduce which (if any) of these effects underlie disease risk.
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5.4 Molecular trait mediation analysis

5.4.1 Molecular trait mediation motivation

As noted throughout the previous section, there are many instances where I found a strong
genetic effect on gene expression and DNAme accompanied with a strong association
between the two molecular traits. A representative example of such instances is ANK1.

Recall ANK1 is strongly associated with rs508419 which perturbs TR4 binding, leading to
increased expression with the T2D risk allele, and possibly altering the abundance of splice
isoforms. In addition, rs508419 is also strongly associated with several DNAme sites that
exhibit muscle specific patterns. The strongest association was for cg01678292 (marg. p
and cond. p = 3.87x10-46 as there were not other, significant QTLs after conditioning on
rs508419), which was also a strong eQTM for ANK1 expression (as well as several of the
other DNAme sites).

In order to better understand the relationship between gene expression and DNAme at this
region, I compared the association between ANK1 and the top mQTL probe (cg01678292)
coloured by rs508419 (the TR4 altering SNP), as well as rs508419 effects on ANK1 expression
with and without conditioning on cg01678292 methylation (and vice versa). I found that
rs508419 exhibits independent effects on ANK1 and cg01678292, as conditioning on DNAme
did not change the overall effect of rs508419 on ANK1 (and vice versa; Figure 5.17).
Furthermore, these trends were consistent when considering the GWAS tag SNP rs516946,
other methylation sites that are also mQTL and eQTM, as well as ANK1 exons.

5.4.2 Molecular trait mediation results

Motivated by the ANK1 example, I systematically tested the genetic effects of QTLs across
all significant eQTMs both at a genome wide scale and focused specifically on T2D and
T2D-related trait GWAS QTLs. For the genome wide analysis, I generated SNP, methylation,
expression trios following a method similar to Gutierrez-Arcelus et al. [141]. Briefly, to
generate trios I selected all eQTMs with an FDR of 1% (n = 38,115), and filtered these
eQTMs for those with a significant eQTL and/or mQTL (FDR 1%), selecting 37,438 eQTMs.
As QTLs I used the most significant QTL per feature, so that if an eQTM has a significant
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Figure 5.17 ANK1 expression and DNAme. (left) The association between ANK1 and cg01678292
coloured by rs508419 (8:41522991). (middle) The association between rs508419 and ANK1 expresion
with and without conditioning on cg01678292 methylation. (right) The association between rs508419
and cg01678292 DNAme with and without conditioning on ANK1 expression. All signal shown in
PEER residual space.

eQTL and mQTL with two different top SNPs, that eQTM would occur twice, once for each
SNP. Such cases occurred 31,121 times, generating 68,559 total trios in the final analysis.
For the GWAS QTL analysis, I started from overlapping QTLs (i.e., the GWAS SNP) and
selected cases where (1) the GWAS SNP had a significant marginal and conditional p-value
for expression and/or DNAme (using the p-value thresholds corresponding to an FDR of 1%)
and (2) the expression and DNAme signals were linked by a significant eQTM. In the final
genome wide trios and GWAS trios, I classified trios based on if the SNP was a significant
eQTL, mQTL, or both. For “both QTL significant” trios I did not require the SNP to be the
top eQTL and mQTL, only have a significant effect in both (FDR 1%). Note that for defining
trios, I used the top QTL SNP, but not for trio classification. Finally, I ignored exQTMs
from this analysis simply due to the computational burden of testing all exQTMs using the
permutation test, as described below.

For each trio, I used the causal inference test (CIT) R package v2.1 [255] to infer the direction
of effect between gene expression and DNAme following the method outlined in Millstein
et al. [254]. Briefly, I ran each trio twice, flipping the intermediate and outcome variable
between gene expression and methylation, testing for two possible models: (1) expression
mediated by DNAme (M→E) where the outcome is expression and the intermediate is
DNAme and (2) DNAme mediated by expression (E→M) where the outcome is DNAme
and the intermediate is expression. Using 100 permutations to calculate the FDR with the
fdr.cit function, I classified each eQTM as M→E, E→M, independent, or unclassified, as
performed by Millstein et al. [254], except using q-values instead of p-values. With a q-value
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threshold of 0.05, I classified cases where (a) M→E q-value < threshold and E→M q-value
> threshold as “M→E”, (b) M→E q-value > threshold and E→M q-value < threshold as
“E→M”, (c) M→E q-value > threshold and E→M q-value > threshold as “independent”, and
finally (d) M→E q-value < threshold and E→M q-value < threshold as “no prediction” or
“bi-directional”. An example of each scenario from the FUSION data is shown in Figure 5.18.

In both the genome wide and GWAS analysis, I found that the majority of eQTMs show
independent effects (Figure 5.19). For the genome wide results, the fraction of indepen-
dent genetic effects increased according to the eQTM distance of the methylation site to
gene TSS (Figure 5.20), consistent with a model of large haplotype effects independently
influencing multiple molecular traits. In addition, across all mediation predictions, I found
that the eQTMs tended to have a negative effect. Focusing on the most confident medi-
ation predictions where both QTL effects are significant (FDR 1%), I found the fraction
of negative eQTMs sharply rose for M→E cases to > 75%, which is consistent with the
traditional understanding that in cases where DNAme is actively controlling gene expression,
it decreases expression. Interestingly, when considering the best trios, where both QTL
effects are significant, I found the M→E cases also had a larger fraction of antisense genes
compared to other types of mediation. While intriguing, it is difficult to establish if this is
true signal or by random chance, as this fraction is based on 18/106 M→E cases.

For the GWAS QTLs, I discovered one case that was not independent or unclassified,
where the effect of rs1019503 on cg27515589 DNAme was predicted to be mediated by
the expression of the antisense gene, CTD-2260A17.2. However, closer examination of the
rs1019503 locus revealed high complexity as rs1019503 is also a strong eQTL for ERAP2
(cond. p = 6.01x10-103), LNPEP (cond. p = 1.65x10-41), and CTD-2260A17.2 (cond. p =
1.14x10-41), making it difficult to interpret this result.

Overall, the results I found are consistent with the results from Gutierrez-Arcelus et al. [141],
who used similar mediation methods to compare exQTL and mQTL effects in fibroblasts,
lymphoblastoid cells, and T-cells. Across all tissues the authors found ~50% of cases were
independent. More recently, Ng et al. [273] performed a similar analysis in the cortex,
dissecting the relationship between gene expression and the epigenome using the intersection
between eQTLs, mQTLs, and histone QTLs (hQTLs). The authors found ~85% of cases
tested showed independent trends. While the exact fraction of independent relationships
differs between studies, presumably attributable to different epigenome assays (both studies
use 450k DNAme arrays, DNAme vs histone marks, etc.), eQTM parameters (eQTMs or
exQTMs, window size, etc.), trio inclusion criteria, and methods (e.g., CIT with permutations



170 Effects of GWAS loci on molecular traits

(a) M→E

Meth	

SNP	

Gene	

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
ODF3L2

cg
24

00
09

37

M ↔ E

●

●

●

●
●

●

●

●
●

●

●

●

E E | M

CC TC TT CC TC TT
−3

−2

−1

0

1

2

3

19:475002

Si
gn

al

SNP E effect

●
●

●
●

●

●

●

●●

●

M M | E

CC TC TT CC TC TT
−3

−2

−1

0

1

2

3

19:475002

Si
gn

al

SNP M effect

(b) E→M

Meth	

SNP	

Gene	

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
ZDHHC2

cg
17

25
77

20

M ↔ E

●

●●

●

E E | M

CC GC GG CC GC GG
−3

−2

−1

0

1

2

3

8:17042416

Si
gn

al

SNP E effect

●

●

●

●
●

●

●

M M | E

CC GC GG CC GC GG
−3

−2

−1

0

1

2

3

8:17042416

Si
gn

al

SNP M effect

(c) Independent

−2

0

2

−3 −2 −1 0 1 2 3
PLBD2

cg
25

94
68

69

M ↔ E

●
●
●

●
●
●

E E | M

CC TC TT CC TC TT
−3

−2

−1

0

1

2

3

12:113796399

Si
gn

al

SNP E effect

●

●

●

●

M M | E

CC TC TT CC TC TT

−2

0

2

12:113796399

Si
gn

al
SNP M effect

Meth	

SNP	

Gene	

(d) Unclassified

Meth	

SNP	

Gene	
?	

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
PAX8

cg
00

42
29

09

M ↔ E

●

●

●

●

E E | M

AA AC CC AA AC CC
−3

−2

−1

0

1

2

3

2:113993344

Si
gn

al

SNP E effect

●

●

●

M M | E

AA AC CC AA AC CC
−3

−2

−1

0

1

2

3

2:113993344

Si
gn

al

SNP M effect

Figure 5.18 Examples of molecular mediation. (a) DNAme → Expression scenario where SNP
affects DNAme which changes expression. (b) Expression→ DNAme scenario where SNP affects
expression which changes DNAme. (c) Independent scenario where the SNP effect on DNAme and
expression is statistically independent. (d) No prediction or bi-directional scenario where a DNAme
prediction cannot be made.
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(a) Genome wide CIT results
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Figure 5.19 Molecular mediation summary. (a) Mediation predictions across all trios, genome
wide. (b) Mediation predictions across trios for T2D and glycemic traits GWAS SNPs. (c) Detailed
breakdown of genome wide mediation predictions. (d) Detailed breakdown of trios for T2D and
glycemic traits GWAS SNPs.
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(a) Mediation according to eQTM distance
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Figure 5.20 Characterisation of genome wide molecular mediation results (not GWAS focused). (a)
Mediation fractions binned by eQTM distance. Bins range from 100 bp, 1 kb, 10 kb, 100 kb, to 1 Mb,
and are non-overlapping. (b) Sign of eQTM effects split by mediation predictions. (c) Sign of eQTM
effects split by mediation predictions across trios where both QTL effects are significant. (d) Gene
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5.4 Molecular trait mediation analysis 173

or not), there is a clear overall trend of statistically independent genetic effects on gene
expression and DNAme.

5.4.3 Molecular trait mediation summary

To date, the exploration of mediation between molecular traits is in its infancy, and it is
difficult to draw further conclusions about the general relationship between genetic variation,
gene expression, and methylation. But it is clear that simplistic views about methylation
as a universal primary driver of gene expression (the M→E model), or universal secondary
consequence of gene expression levels (the E→M model) cannot be defended in the face of
this muscle data set or other similar analyses from other tissues [141, 273].

However, it should be noted that there are significant limitations in the analysis presented.
First, the detection of DNAme was performed using arrays. As previously noted (Sec-
tion 4.3.2) the EPIC array is not an unbiased survey of DNAme and is targeted to specific
genomic regions. Compared to the 450k arrays, the EPIC array measures DNAme of more
intergenic regions, which may explain the differences between the observed fractions and
those from other studies [141, 273], both of which used 450k arrays (in addition to several
other different parameters).

In addition, these results may be strongly influenced by the CIT assumption of minimal
measurement error, meaning the difference between what is measured and truth. Measure-
ment error could be technical in nature, due to difficulties in measuring a molecular trait
(e.g., background noise or batch effects). Alternatively, measurement error may be biological
in nature, where the molecular trait is measured perfectly, but the signal of the biological
driver is diluted by other biological factors (e.g., tissue heterogeneity). Such departures from
the true, underlying signal could lead the CIT to infer the wrong causal direction [153]. To
date, the CIT has been the primary method used to investigate mediation between molecular
traits [141, 273]. However, given these limitations, in the future it will be important to
further develop and apply alternative methods with different assumptions (e.g., Mendelian
randomisation methods [153]) to answer questions of molecular mediation and identify
robust mediation signals that are consistent across methods and assumptions.

Finally, in addition to leveraging alternative approaches, the analysis I performed could be
improved by (1) discovering and estimating effect sizes from different datasets and (2) using
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multiple SNPs or instrument variables. For genetic instrument analyses, using the same
dataset for discovery and effect estimates can lead to biases [50, 49], although for very strong
genetic effects (like those typically found for molecular traits) these biases may be minimal
[49]. Practically, I had to use the same dataset for discovery and effect estimates as an external
skeletal muscle mQTL dataset was not available. In addition, such analyses are most robust
when multiple, independent predictor SNPs are used, as they allow one to identify potential
aberrant SNP effects and ensure consistency across multiple SNP predictors [152]. To date,
these methods have mainly been developed in the context of higher level phenotypes (e.g.,
metabolites or disease outcomes) where GWA studies have identified multiple, independent
loci, scattered throughout the genome. In the context of molecular traits, the extent to which
multiple variants meaningfully contribute to molecular traits and the reproducibility of such
signals is poorly understood. These questions highlight areas for further research using the
FUSION tissue biopsy dataset, as well as other increasingly large datasets like GTEx.
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Chapter 6

Interactions between genetic variation
and cellular environment in gene
expression

6.1 Introduction

In this chapter, I investigate gene-environment interactions using the skeletal muscle gene
expression data freeze from Scott et al. [341], as described earlier (Section 2.8). This analysis
capitalizes on the unique aspect of the FUSION tissue biopsy dataset compared to other QTL
datasets like GTEx, namely the availability of rich phenotype information on all participants.
I conducted this analysis while the DNAme data was being generated. At the time of writing,
this study has been stored on bioRxiv [384] and is currently under review.

A substantial fraction of variability in gene expression is controlled by changes in transcrip-
tion rates, mainly mediated by transcription factor (TF) proteins binding to specific DNA
sequence motifs that define regulatory elements [208, 90]. The abundance of such proteins
and their regulatory co-factors may in turn be controlled by intrinsic mechanisms inherent to
a cell, such as an individual’s genetic makeup or regulatory programs specific to a cell type,
as well as cellular responses to environmental cues. A regulatory element, defined by the
DNA region recognised by a DNA-binding TF and other required transcriptional machinery,
may be either intrinsic or environment-dependent. In intrinsic elements, the TF and binding
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machinery is controlled by cell-intrinsic mechanisms that operate within a closed system and
are unresponsive to environment. By contrast, in environment-dependent elements the TF
and binding machinery is responsive to an environmental stimulus. Both regulatory element
types are susceptible to perturbation by genetic variation because the region recognised by
the TF is encoded in the DNA sequence.

In this thesis, I have documented the effects of genetic perturbations of regulatory elements on
gene expression—expression quantitative trait loci (eQTLs). Variation in intrinsic regulatory
programs is expected to give rise to such “standard eQTLs”, identified by modelling genetic
effects on gene expression (Equation 4.1 in Chapter 4). However, it is also likely that
variation in environment-dependent elements will be detected in standard eQTL studies. For
an environment-dependent regulatory variant to pass undetected in a standard eQTL study,
the variant must change the relationship between gene expression and environment without
altering the mean gene expression levels for each genotype, an unlikely event. Therefore we
would expect a subset of eQTLs detected by modelling only genetic effects to also have effects
mediated by an environmental context. If one were to model the combined environmental
and genetic effects on gene expression, such variants would exhibit interaction effects
between genotype and environment (GxE) and could be described as environmental response
expression quantitative trait loci (reQTLs), a specific type of eQTL whose effect changes
in response to an environmental context. To date, the overlap between standard eQTLs and
reQTLs in human is largely unknown, as few studies have co-measured environmental and
genetic effects at scale, and the technology for mapping such reQTLs is in its infancy.

In human populations, several GxE signals have been reported across diseases for various
quantitative traits (reviewed in [157]), but only a handful of transcriptional reQTLs have
been mapped, treating gene expression as a molecular quantitative trait [356, 319, 135, 21,
238, 159, 235, 306, 430, 204, 96, 47, 267, 444, 188]. Indeed GxE effects have primarily
been studied in model organisms where the environment and genotype can be controlled
[103, 114, 200, 330, 325, 358, 217]. The challenge of mapping reQTLs using transcriptomic
data outside of controlled laboratory settings lies in the confounding effects of environmental,
biological, and technical factors on gene expression data, and the difficulty in isolating and/or
accounting for such effects while preserving effects of the environment of interest.

However, such limitations may be mitigated if a study quantifies gene expression using RNA-
seq technology because RNA-seq enables the measurement of allele specific expression
(ASE), an alternative readout less prone to the confounders of gene level measurements [56,
188]. By quantifying differences in expression between haplotypes in samples heterozygous
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for a transcribed allele (tSNP), ASE provides an internally controlled measurement where
biological and technical exposures on the cells are essentially identical for both haplotypes.
This makes ASE ideal for reQTL mapping since it minimizes batch effects while preserving
cis mediated environmental effects. Indeed, ASE has been utilised in several studies to
identify genome wide GxE effects [135, 47, 267, 188], including Knowles et al. [188], who
recently developed the EAGLE method (Environment-ASE through Generalised LinEar
modelling), a hierarchical Bayesian model, which I apply in this study.

An additional challenge for GxE studies is validating results, which at one level can be
performed within an RNA-seq study by integrating ASE with standard gene expression data
between individuals (abbreviated to gene-level expression) so that the two data types serve
as orthogonal forms of signal to validate reQTLs. In cases of true cis regulation of gene
expression, when a TF preferentially binds to one allele, we would expect to observe increased
ASE in participants heterozygous for the regulatory SNP. As an example, Figure 6.1 shows
the different types of potential regulatory elements and the impact of different polymorphisms
in schematic form. At the gene expression level, we would expect a reQTL to have different
effects across environmental contexts in a genotype specific manner. In the ASE data, we
would expect correlation between ASE and the environment only in individuals heterozygous
for both the reQTL-SNP and tSNP. As opposed to standard eQTLs, which can be summarised
by box-plots stratified by genotype, reQTLs are best described with a 6-panel regression plot,
and examples of expected behaviour from real data are shown in Figure 6.2 to help orient the
reader.
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Figure 6.1 Idealised genetic and environmental effects on gene expression. Blood insulin levels
represent a cellular environment for tissues such as skeletal muscle. The left panel depicts a single
genome with colour coded genomic elements and various heterozygous sites. The right panel shows
the relative transcript abundance for the corresponding locus on the left panel. Some genomic elements
contain genetic variants. When the variant is the same color as the element, the element is active. In
some cases the variant is black, indicating that the variant renders the regulatory element nonfunctional
and only basal transcription occurs. The purple element represents a gene with a transcribed SNP
(tSNP), shown in the transcripts. Allele specific expression is calculated across both chromosomes
and compared to the high and low environment. (a) When regulated by an insulin-responsive element
(green), gene expression changes according to insulin concentrations in the extracellular environment.
(b) When regulated by an insulin-independent element (orange) containing genetic variation, gene
expression changes according to the presence of a genetic variant (eQTL), but not to insulin levels. The
tSNP shows allelic bias due to the eQTL effect, but is not associated with the insulin environment. (c)
When regulated by both an insulin-responsive element and an insulin-independent element containing
genetic variation, the effects of the insulin environment and the genetic variation on gene expression
may be additive, although more complex relationships are possible. The tSNP shows some imbalance
due to the eQTL effect and is associated with insulin levels. Such cases may be identified as weak
reQTLs. (d) When regulated by an insulin-responsive element containing genetic variation, there
may exist an interaction effect between the genetic variant and insulin levels such that changes in
gene expression across insulin environments depend on the genetic variant. The tSNP shows allelic
imbalance associated with insulin levels due to the reQTL effect. One of several possible interaction
effects depicted.
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(b) Genotype effect
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(c) Genotype-environment interaction effect
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Figure 6.2 Illustrative examples of genetic and environmental effects from the FUSION dataset. (a)
Example of a pure environment effect in SZRD1—rs12568938 regulatory SNP (rSNP) and rs7529767
transcribed SNP (tSNP). SZRD1 expression is associated with BMI, and the rSNP does not affect
gene expression. The relationship between SZRD1 and BMI does not change across the rSNP
alleles, and BMI is not associated with allelic imbalance. (b) Example of a pure genetic effect
in RBM6—rs9881008 regulatory locus and rs2023953 tSNP. BMI is not associated with RBM6
expression or allelic imbalance. The rSNP alleles are associated with RBM6 expression and allelic
imbalance is increased in samples heterozygous for the rSNP. (c) Example of a GxE effect in
FHOD3—rs17746240 regulatory locus and rs72895597 tSNP. The relationship between LDLc and
FHOD3 expression changes according to the rSNP allele as well as the overall expression abundance
levels. LDLc is only associated with allelic imbalance in heterozygous individuals, where preferential
TF binding could occur.
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In this study, I explore the opportunities and challenges for reQTL mapping and replication
using gene-level expression and ASE data. This study capitalises on the rich clinical pheno-
types in the FUSION tissue biopsy study [341], spanning blood metabolites, anthropometric
measurements, and medication (Table 6.2). Collectively, I treat all clinical phenotypes
as “environmental traits” since I model skeletal muscle gene expression and therefore the
response of a population of cells to the surrounding cellular environment—adjacent cells,
extracellular matrix, blood plasma, and interstitial fluid—approximated by each phenotype.

As one clear limitation is sample size, I reduced the multiple testing burden by only testing
eQTLs for GxE signals, based on the assumption outlined above that at least some of the
strongest reQTLs will also show effects on mean gene expression when stratified by genotype
and be detected also as eQTLs. With a well-calibrated statistical test, I identified 12 GxE
signals that span 10 candidate reQTLs at a trait-specific FDR of 10%. Replication of such
findings is challenging because of the lack of human studies on equivalent tissues with
equivalent environmental measurements; however, two of the three testable traits shared
with the larger GTEx study showed non-random aggregate replication, although the need to
restrict to heterozygous individuals limits the extent of this replication. This study highlights
the utility of ASE based GxE analysis in observational studies, and emphasises the need for
large RNA-seq cohorts with standardised clinical phenotypes to enable study comparison
and replication.

6.2 reQTL mapping

6.2.1 ASE processing

Brooke Wolford (NIH / University of Michigan) generated the ASE data for autosomal, pro-
tein coding genes (GENCODE v19 [146]) as described previously [341], and I subsequently
performed part of the ASE filtering. Briefly, we quantified strand-specific read coverage of
SNPs using SAMtools mpileup v0.1.18 [214], requiring a minimum mapping quality of 255,
minimum base quality of 20, and that reads mapped in a proper pair. We also removed reads
that failed vendor quality checks or that were not the primary alignment. We excluded SNPs
in ENCODE blacklist regions [90] and any SNP within 101 bp of an indel greater than 4 bp
or overlapping an indel of any length. We followed procedures from Lappalainen et al. [201]
to remove tSNPs that exhibited mapping bias based on 101 bp simulated reads, dropping
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SNPs with a total simulated coverage of < 193 or > 202, and removing SNPs with simulated
countallele/counttotal deviating from 0.5 by ≥ 5%. We removed tSNPs per sample with < 30
total reads. We subsequently required that tSNPs were heterozygous in ≥ 20 samples. From
the remaining 25,913 autosomal tSNPs, I discarded 1,254 tSNPs where one or more samples
exhibited near mono-allelic expression, defined as |0.5− (countalternate SNP/counttotal)|> 0.4.
Altogether, I considered 24,659 tSNPs to map candidate reQTLs.

6.2.2 reQTL pipeline

Similar to Knowles et al. [188], I mapped reQTLs by separately modelling gene level
expression and ASE, and subsequently combined p-values using Fisher’s combined test. As
candidate reQTLs to test for GxE effects in the ASE and gene expression data across all
clinical traits, I considered the most significant skeletal muscle eQTL (FDR 5%) per gene for
14,080 autosomal, protein coding genes with at least one significant eQTL from Scott et al.
[341]. I tested for interactions of these SNP-gene pairs with 17 clinical phenotypes (Table 6.2;
Section 2.3), modelling the impact of genotype effects on gene level expression and ASE
levels. I inverse normalised all continuous traits. Blood pressure measurements were missing
from 2 participants, whose samples were dropped when analysing blood pressure traits. Prior
to fitting models, I regressed all continuous traits on age, age2, and sex, except for age where
I regressed only on sex.

For ASE data, I used EAGLE [188]. For sample i and tSNP s, I mapped GxE signals by
fitting the model:

min(yis,nis− yis)∼ Binomial[nis,σ(γ
(e)
s eis + γ

(h)
s his +µs + εis)] (H0)

min(yis,nis− yis)∼ Binomial[nis,σ(γ
(e)
s eis︸ ︷︷ ︸

env. eff.

+ γ
(h)
s his︸ ︷︷ ︸

genetic eff.

+β
(eh)
s eishis︸ ︷︷ ︸
GxE eff.

+ µs︸︷︷︸
intercept

+ εis︸︷︷︸
noise

)] (H1) (6.1)

Here nis and yis denote the total and alternative read count for individual i at tSNP s, eis the
environment, his the indicator that the eQTL is heterozygous, µs an intercept term to take
into account unexplained allelic imbalance unrelated to the environment, σ(x) = 1/(1+e−x)

the logistic function, εis|v ∼ N(0,vs) a per individual per tSNP random effect modelling
overdispersion. The variance (vs) is given an inverse gamma prior IG(a, b). I learned the
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hyperparameters a, b for this distribution across all tSNPs after filters, estimating them to
be 1.80, 0.0024 respectively. In addition, γ

(e)
s , γ

(h)
s and β

(eh)
s denote the effect sizes of the

environment, eQTL heterozygosity status, and SNP ∗ environment interaction, respectively.
I tested the null hypothesis β

(eh)
s = 0 using a likelihood ratio test. As covariates, I included

the first two PCs calculated across all genotypes, consistent with Scott et al. [341]. In this
analyses, I required ≥ 15 homozygous and ≥ 15 heterozygous samples for the eQTL tag
SNP and, in the case of dichotomous variables, no group was formed with < 5 samples. With
these filters, I could only test for reQTL effects in a subset of genes that differed according to
clinical trait in the case of discrete variables where the total sample size was not constant due
to missing data (Figure 6.3).
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Figure 6.3 Total number of tested genes across traits. Total number of genes in FUSION considered
for each clinical trait.

I also mapped GxE interaction effects for each candidate reQTL in total gene expression data
using a linear model for expression levels, testing interactions for each gene-environment
pair. Let yj be a vector of inverse normalised FPKMs for gene j across individuals. Consider
the following linear genetic model of gene expression:

y j = α
(i)
j 1︸ ︷︷ ︸

intercept

+ α
(Z)
j Z︸ ︷︷ ︸

covariates

+ γ
(e)
j e︸︷︷︸

env. eff.

+ γ
(g)
j g︸︷︷︸

genetic eff.

+β jg⊙ e︸ ︷︷ ︸
GxE eff.

+ ψ j︸︷︷︸
noise

, ψ j ∼N (0,σ2
e I) (6.2)

Here α
(i)
j is the intercept, Z denotes the matrix design of fixed effect confounding covariates,

e and g the environment and genotype vector, g⊙ e their element-wise product,ψ j Gaussian
noise, and α

(Z)
j , γ

(e)
j , γ

(g)
j and β j the effects of covariates, environment, genotype, and the

genotype ∗ environment interaction respectively.
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To capture hidden variation in gene expression data, I used PEER v1.0 [366, 367] as described
previously [341] to learn latent factors. For covariates in the GxE interaction model, I
included sequencing batch, the first two genotype PCs, and the first two PEER factors,
as a recent report suggests two PEER factors capture the majority of technical variation,
preserving biological effects [216]. I additionally included age and sex as covariates when
either trait was not considered as an environmental trait. The GxE model was implemented
in LIMIX v0.7.6 [222]. I combined the ASE p-values and gene expression p-values using
Fisher’s combined test. I controlled for FDR per environment using the Benjamini-Hochberg
procedure [32].

6.3 reQTL results

After fitting the models, the resulting p-value distributions were well calibrated (Figure 6.4),
with the vast majority of tested SNPs consistent with the null distribution. Using a 10%
FDR per trait, I identified 10 candidate reQTLs across 6 traits (12 unique gene-environment
trait pairs; Figure 6.5; Table 6.1; Table 6.3). Of the clinical variables considered, sex is
unique in that GxE sex signals could be due to environmental (for example, circulating sex
hormones) or intrinsic, within cell, effects due to differences in gene expression from the sex
chromosomes. In addition, I note that I did not find strong correlation between GxE signals
of ASE and gene-level models (Table 6.1; Table 6.3), which may indicate power limitations
due to sample size.
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Figure 6.4 GxE qq-plots across traits. QQ-plots of GxE signal discovery across clinical traits.
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(a) Number of reQTLs discovered
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Figure 6.5 GxE signals. (a) Number of reQTLs per clinical variable (10% FDR). (b) Number of
tSNP-environment associations per clinical variable (10% FDR).



192 Interactions between genetic variation and cellular environment in gene expression
C

lin
ic

al
tr

ai
t

G
en

e
C

hr
tS

N
P

po
si

tio
n

re
Q

T
L

al
le

le
s

(r
ef

/a
lt)

re
Q

T
L

po
si

tio
n

A
SE

p-
va

lu
e

G
en

e
p-

va
lu

e
C

om
bi

ne
d

p-
va

lu
e

C
om

bi
ne

d
q-

va
lu

e

1
A

ge
P

C
N

T
21

47
78

68
17

G
/T

47
82

32
29

4.
29

e-
6

1.
25

e-
1

8.
28

e-
6

0.
07

2
Se

x
B

SG
19

58
27

75
T

/C
57

28
78

1.
75

e-
5

1.
00

e-
1

2.
50

e-
5

0.
06

3
Se

x
N

R
A

P
10

11
54

12
79

3
C

/T
11

53
85

65
0

1.
65

e-
7

5.
61

e-
1

1.
59

e-
6

0.
01

4
B

M
I

D
AG

LB
7

64
49

27
2

C
/T

64
76

91
5

3.
54

e-
2

1.
55

e-
5

8.
48

e-
6

0.
08

5
SB

P
E

LP
2

18
33

75
00

46
T

/G
33

74
36

60
3.

24
e-

5
3.

58
e-

2
1.

70
e-

5
0.

06
6

SB
P

F
H

O
D

3
18

34
32

40
91

T
/C

33
97

03
47

2.
82

e-
4

5.
07

e-
3

2.
06

e-
5

0.
06

7
SB

P
IG

F
2R

6
16

04
53

97
8

T
/C

16
03

79
09

6
1.

34
e-

3
9.

18
e-

4
1.

80
e-

5
0.

06
8

T
C

,f
as

tin
g

AG
M

AT
1

15
90

98
50

T
/C

15
91

86
76

2.
52

e-
3

8.
60

e-
5

3.
54

e-
6

0.
03

9
L

D
L

c,
fa

st
in

g
AG

M
AT

1
15

90
98

50
T

/C
15

91
86

76
1.

20
e-

3
4.

82
e-

4
8.

88
e-

6
0.

05
10

L
D

L
c,

fa
st

in
g

D
E

P
TO

R
8

12
10

61
87

9
G

/T
12

09
30

13
5

4.
43

e-
2

1.
69

e-
5

1.
13

e-
5

0.
05

11
L

D
L

c,
fa

st
in

g
F

H
O

D
3

18
34

23
26

57
T

/C
33

97
03

47
6.

78
e-

3
4.

54
e-

4
4.

21
e-

5
0.

06
12

L
D

L
c,

fa
st

in
g

TM
E

M
26

1
9

77
99

65
3

A
/G

78
30

18
9

8.
31

e-
5

1.
39

e-
2

1.
69

e-
5

0.
05

Ta
bl

e
6.

1
Su

m
m

ar
y

of
m

os
ts

ig
ni

fic
an

tt
SN

P
fo

re
ac

h
re

Q
T

L
-g

en
e

pa
ir.

C
oo

rd
in

at
es

ba
se

d
on

G
R

C
h3

7/
hg

19
.T

he
th

re
e

p-
va

lu
e

co
lu

m
ns

re
co

rd
th

e
A

SE
,w

ho
le

ge
ne

ex
pr

es
si

on
le

ve
l,

an
d

co
m

bi
ne

d
p-

va
lu

e
re

sp
ec

tiv
el

y.
Th

e
co

m
bi

ne
d

p-
va

lu
es

ar
e

us
ed

fo
rq

-v
al

ue
ca

lc
ul

at
io

n.
R

es
ul

ts
w

ith
al

l
re

Q
T

L
-t

SN
P

pa
ir

s
ar

e
re

co
rd

ed
in

Ta
bl

e
6.

3



6.3 reQTL results 193

6.3.1 GTEx replication

I conducted a replication study using data from the GTEx phs000424.v6.p1 dbGaP release.
I used the preprocessed, imputed genotypes and the precomputed skeletal muscle gene
expression and ASE across imputed genotypes. The GTEx samples were collected post-
mortem and do not have available many of the traits assayed in the FUSION samples. Of
the clinical variables measured in the FUSION dataset, four were also recorded in the GTEx
dataset—age, sex, BMI, and T2D status—from which I excluded age as the distribution was
significantly different between FUSION and GTEx (Table 6.2).

Notably, besides the differences in collected phenotype information and age distribution, the
GTEx data differ from the FUSION data in four other relevant ways: (1) FUSION is drawn
from a more genetically homogenous population (Finland); (2) FUSION is sequenced to
mean depth of 91.3M reads per sample compared to 82.1M reads per sample in GTEx; (3)
FUSION uses a 100 bp strand specific, paired-end read protocol for RNA-seq and GTEx uses
76 bp non-strand specific, paired-end RNA-seq; and (4) the computational analysis pipelines
are different for read mapping, expression abundance quantification, and ASE calculations
[138].

Within the GTEx dataset, I tested for GxE effects with the FUSION eQTL SNPs, using the
ASE interaction and gene expression interaction models described in Section 6.2.2. Because
my goal was replication of the FUSION genotype-environment interactions I did not require
the FUSION eQTL to be significant in the GTEx dataset. For the GTEx ASE interaction
model, I included the first three genotype PCs as covariates, as was used previously by
the GTEx consortium [138], and for the gene expression interaction model, I included age,
sex, expression batch, the first three genotype PCs, and the first two PEER factors from the
GTEx data release as covariates. I tested reQTL-tSNP pairs in GTEx with sufficient double
heterozygotes to pass the filters applied in the FUSION dataset (Section 6.2.2). For genes
with multiple tSNPs, I selected the minimum reQTL p-value per gene for the GTEx and
FUSION datasets separately.

Treating the FUSION data as a discovery dataset, I calculated the replication rate across
varying p-value threshold cutoffs, as done by Knowles et al. [188]. Briefly, I selected n
FUSION hits at a given p-value cutoff from N total shared reQTLs without replacement,
stopping when n < 10. At each cutoff, I calculated k, the number of FUSION hits that
replicate in GTEx (GTEx p-value < 0.01), out of the total number of nominally significant
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GTEx hits, K. Using the mean, K/N, and the hypergeometric distribution, I estimated two
standard deviations from the null distribution.

Despite significant differences in cohort populations, laboratory techniques, and analysis
pipelines, I found a trend in the replication rate of BMI and sex that increases with the
significance of the reQTL in the FUSION discovery dataset (Figure 6.6). This trend was not
observed in T2D, perhaps due to different criteria for inclusion of individuals with T2D. The
FUSION tissue study only included individuals with newly diagnosed T2D, not yet treated
with antihyperglycemic medications (see Section 2.3 and Scott et al. [341]). By contrast,
GTEx individuals may have had longstanding and heavily treated T2D [182, 137].
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Figure 6.6 GTEx Replication. Replication rate (y axis) as a function of FUSION reQTL p-value
cutoff (x axis). Dashed line represents two standard deviations from the null distribution, calculated
using the hypergeometric distribution.

Although this bulk replication is reassuring, closer inspection of the BMI and sex trends
revealed that two pairs of genes are driving the observed trend in both BMI and sex, highlight-
ing the need of large sample sizes for such GxE analyses. To this point, only two significant
reQTL-tSNP pairs from FUSION met the tSNP filtering criteria in GTEx, neither of which
showed similar GxE effects, potentially indicating false positives (Figure 6.7).

Finally, because I selected the minimum reQTL-tSNP pair per gene, it is possible that genes
with more tSNPs will be more likely to show significant results. Therefore, I calculated the
average tSNPs for the replicated and not replicated reQTL sets to explore if sampling from
a larger number of transcribed SNPs was responsible for the observed trends (Figure 6.8).
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(c) DAGLB BMI-reQTL FUSION
(tSNP 6449272)
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(d) DAGLB BMI-reQTL GTEX
(tSNP 6449272)
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Figure 6.7 Comparison of candidate FUSION reQTLs to GTEx. (a) NRAP sex-reQTL in FUSION (b)
NRAP sex-reQTL in GTEx (c) DAGLB BMI-reQTL in FUSION (d) DAGLB BMI-reQTL in GTEx.
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I found finding that sampling of tSNPs was not responsible for trends at the lower p-value
thresholds.
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Figure 6.8 FUSION-GTEx replication number of tSNPs. Average number of tSNPs in the genes with
signals that replicated (Replication group) and signals that did not replicate (No Replication).

6.3.2 Specific reQTL example: FHOD3

Despite the small number of reported hits and replication challenges, I found some putative
reQTLs with clear, consistent GxE effects in both gene expression and ASE data. The most
clear, consistent example is FHOD3, formin homology 2 domain containing 3. FHOD3 is
essential for myofibril formation and repair, forming a doughnut shaped dimer, capable of
moving along and extending actin filaments (reviewed in [290, 130, 53]). FHOD3 is critical
for heart development and function in mouse [179, 322] and fly [424], and exhibits tissue
specific splicing patterns [180, 164] shown to enable myofibril targeting in striated muscle
[164, 165].

I observed a GxE effect for FHOD3 with both low-density lipoprotein cholesterol (LDLc)
levels and systolic blood pressure (SBP; Figure 6.9). The LDLc association was discovered
separately in the ASE of two tSNPs, spanning different exons, while the SBP association
was discovered with an additional tSNP, falling in an exon separate from the LDLc tSNPs
(Table 6.3). In addition, although not significant in the FUSION dataset, a GxE effect
with BMI and FHOD3 was one of the main drivers of the observed GTEx BMI replication
trend (2.47x10-4 FUSION and 8.40x10-4 GTEx—minimum combined p-value across tSNPs).
Evaluation of the raw data showed modest replication of the FHOD3-BMI signal between
the FUSION and GTEx datasets (Figure 6.10).
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(b) FHOD3 SBP-reQTL
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Figure 6.9 FHOD3 reQTL. The data for each of the three possible reQTL genotypes are presented in
separate plots (columns). The top row plots show the relationship between gene expression (y axis)
and the clinical variable (x axis). The bottom row plots show the relationship between the allelic
imbalance of the tSNP and the clinical variable (x axis). Note the bottom row has fewer samples
because it is limited to samples heterozygous for the tSNP. (a) LDLc GxE effect with rs72895597
(18:34232657) as the tSNP (b) SBP GxE effect with rs2303510 (18:34324091) as the tSNP.

As described earlier (Section 2.6.3), I calculated mESI values across 49 diverse tissues from
GTEx. I binned these scores into deciles such that genes in the 1st decile are uniformly,
lowly expressed and genes in the 10th decile are highly, specifically expressed in skeletal
muscle. I found FHOD3 expression to be highly specific to skeletal muscle, falling in the
10th decile (mESI 0.56). Note this is slightly different from Taylor et al. [384] which used
16 tissues from the Illumina body map reference panel, finding the mESI decile to be the 9th
decile. I believe GTEx to be a better estimate as the expression is aggregated over multiple
tissue samples and the GTEx dataset contains more tissues.

In order to understand the genomic context of the region, I integrated the skeletal muscle
chromatin states [395], described in Section 2.9. The reQTL tag SNP (rs17746240) and
rs2037043, an additional SNP in high LD (r2 > 0.99 1000GENOMES:phase_3:FIN), overlap
a skeletal muscle stretch enhancer (Figure 6.11), a regulatory element shown to be a signature
of tissue-specific active chromatin [287]. In addition, these variants fall in two distinct
ATAC-seq peaks unique to skeletal muscle, an indicator of open chromatin.

Both SNPs affect predicted TF binding sites (Section 4.3.3), as measured by the delta score,
− log10(p-valuealternate allele)−− log10(p-valuereference allele). rs17746240 disrupts motifs for
the GATA protein family, TBX5, and EP300. Within the FUSION skeletal muscle data, I
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(b) FHOD3 BMI-reQTL GTEx
(tSNP 34310668)
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(c) FHOD3 BMI-reQTL FUSION
(tSNP 34324091)
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(d) FHOD3 BMI-reQTL GTEx
(tSNP 34324091)
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Figure 6.10 Comparison of FHOD3 BMI-reQTL in FUSION and GTEx. (a) FHOD3 BMI-
reQTL in FUSION with rs3744903 (18:34310668) as the tSNP (b) FHOD3 BMI-reQTL in GTEx
with rs3744903 (18:34310668) as the tSNP (c) FHOD3 BMI-reQTL in FUSION with rs2303510
(18:34324091) as the tSNP (d) FHOD3 BMI-reQTL in GTEx with rs2303510 (18:34324091) as the
tSNP.
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find GATA2, GATAD1, GATAD2A, GATAD2B, and EP300 to be expressed (median FPKM
> 1). The other variant, rs2037043, disrupts many motifs of which ZNF263, YY1AP1, YY1,
SMAD4, SIN3A, RXRA, RAD21, NR2C2AP, NR2C2, NFIC, HES1, ESRRA, CTCF, and
BDP1 are expressed in skeletal muscle (median FPKM > 1), making it difficult to identify a
specific TF.

6.4 reQTL summary

Understanding the genetic regulators of molecular responses to environment, both at the
cellular and organismal level, is essential for a complete understanding of the relationship
between genotype and phenotype. Environmental influences are a critical part of human
disease aetiology, but are far harder to study than intrinsic genetic factors. RNA-seq tech-
nology provides an information-dense molecular readout that includes ASE, an internally
controlled experiment that minimizes technical artefacts by comparing read counts within
samples instead of between samples [56, 188]. Because ASE reduces confounding effects
present in gene-level data that are difficult to distinguish from environmental effects, ASE is
an ideal molecular readout for probing GxE effects. This study, which is amongst the first
to leverage ASE in humans to map trait specific GxE effects [135, 267, 188], demonstrates
both the potential and the limitations for using ASE to unravel complex gene-environment
regulatory structures. Using a well-calibrated model, I found a handful of reQTLs that show
some level of bulk replication. Despite the low level of discovery in this study, which I
believe is primarily limited by sample size, this success suggests that at least some eQTLs
are likely to be in fact reQTLs.

This study also highlights several challenges associated with using ASE signal for mapping
regulatory loci. Such analyses require sufficient sampling of double heterozygotes of the
reQTL and tSNP, and therefore large sample sizes are required for a well-powered study.
Another limitation of ASE is that it can only be used to identify cis effects. Previous studies
indicate that many reQTLs operate distally, in trans, on highly regulated genes with more
opportunities in the regulatory chain for genetic perturbation [217, 358, 356, 319]. Because
this method requires ASE, I could only assay local, cis effects, and therefore may miss many
large trans effects.

In the future as a community, we will need larger studies of specific human tissues with
co-measured genetic, molecular, and clinical information. The possibility of mapping reQTLs
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underscores the importance of detailed characterisation of study participants, especially when
integrating molecular and genetic data with detailed clinical information. This becomes
particularly relevant for replication studies, and argues for the standardisation of a core set of
phenotypes and environmental exposures between large cohorts. In addition, further develop-
ment of statistical models to accommodate technology developments will be needed—for
instance the integration of perfectly phased tSNP allele counts within a gene, made possible
by long reads.

Trait FUSION GTEx
N 267 360

Sex = M (%) 157 (58.8) 228 (63.3)
Age (mean (sd)) 60.15 (6.99) 51.81 (12.8)

BMI (kg/m2; mean (sd)) 27.55 (4.17) 27.22 (4.1)
Fasting High-density Lipoprotein (mmol/l; mean (sd)) 1.45 (0.36)
Fasting Low-density Lipoprotein (mmol/l; mean (sd)) 3.41 (0.89)

Fasting Triglycerides (mmol/l; mean (sd)) 1.40 (0.81)
Fasting Total Cholesterol (mmol/l; mean (sd)) 5.49 (1.04)

Systolic Blood Pressure (mmHg; mean (sd)) 135.04 (16.05)
Diastolic Blood Pressure (mmHg; mean (sd)) 83.20 (9.45)

Fasting Serum Insulin (mU/l; mean (sd)) 8.65 (5.27)
Fasting Serum C-peptide (pmol/l; mean (sd)) 710.05 (284.40)
Fasting Plasma Glucose (mmol/l; mean (sd)) 6.26 (0.78)

Ever Smoker = Y (%) 37 (13.9)
Antihypertensive = Y (%) 83 (31.2)

Statin = Y (%) 49 (18.4)
Synthetic Thyroid Hormone = Y (%) 19 (7.1)

Oral Glucose Tolerance Test Status (%)
Normal Glucose Tolerance (NGT) 97 (36.3) 230 (77.97)

Impaired Fasting Glucose (IFG) 35 (13.1)
Impaired Glucose Tolerance (IGT) 69 (25.8)

Type 2 Diabetes (T2D) 66 (24.7) 64 (21.69)
Table 6.2 GxE clinical traits. Phenotype information used as traits from the FUSION tissue biopsy
study participants and GTEx skeletal muscle participants. For T2D status in GTEx, only T2D status
available, non-T2D participants presumed to be NGT. In some cases, the GTEx T2D status was
missing (NA), therefore T2D fraction calculated over non-missing data. Skeletal muscle data from
Scott et al. [341], an earlier freeze of the dataset analysed in this thesis.
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Chapter 7

Conclusion

7.1 Concluding summary

In this thesis, I analysed the relationship between gene expression, DNAme, and genetic
variation in skeletal muscle. The key tasks in my research involved data curation and
QC, latent factor analysis, mapping molecular trait associations, and characterising these
associations.

Chapter 2 details the extensive QC measures taken in this study which I led and conducted
with help from collaborators across several laboratories. In the molecular trait data, we
identified and removed outliers across many technical and biological measurements. In
the RNA-seq QC measures, one interesting finding was that samples with higher levels of
estimated tissue heterogeneity were outliers in transcriptional diversity measures (Figure 2.3).
This result suggests stringent transcriptional diversity filters are an important step in analysing
RNA-seq data from tissue samples that are potentially heterogeneous, especially when
transcriptional tissue deconvolution analysis is not feasible (for instance, if there is no
appropriate reference transcriptome dataset). In addition, for the DNAme QC measures, I
demonstrated the importance of many layered QC steps, as samples may appear to be of
high quality in one measurement but then fail in subsequent measurements. In particular,
I found analysing the global DNAme profile of samples by comparing median raw signal
intensities (Figure 2.6), the overall DNAme distribution (Figure 2.15), and the DNAme
profiles across tissues through PCA (Figure 2.18) to be important in flagging low quality



204 Conclusion

samples. Collectively, these extensive steps required for DNAme QC highlight substantial
challenges that would need to be solved if such data were ever to be useful routinely in the
clinic, for instance as a biomarker.

In Chapter 3, I analysed the relationship between gene expression and DNAme by mapping
eQTMs and exQTMs. I found evidence of latent correlation between these molecular traits
(Figure 3.2) and showed that, despite all samples having > 90% estimated skeletal muscle
fraction, tissue heterogeneity likely constitutes a component of this correlation (Figures 3.1,
3.5). Such patterns could, for instance, be due to cell/tissue types poorly represented in the
reference panels used for the tissue deconvolution analysis. This observation highlights the
importance of the Human Cell Atlas project [308], which aims to build reference maps at
the level of single cells as opposed to bulk tissue. The observed latent correlation is also
particularly important as studies move toward building a comprehensive molecular profile
of samples across multiple molecular traits. To date, many studies have focused on genetic
associations with molecular traits, in which case the genotypes would not be affected by
tissue heterogeneity or environment. However, in instances where the correlation between
molecular profiles is analysed, both of which may be affected by hidden variables, a thorough
latent factor analysis will be particularly important. In addition, I reproduced the well known
context specific effects of eQTMs, where DNAme in areas of active chromatin tends to
repress gene expression (Figure 3.8).

Building on a previous eQTL study using an earlier freeze of this dataset [341], I mapped
genetic effects on gene expression and DNAme in Chapter 4. I showed that compared
to eQTLs and exQTLs, mQTLs tend to occur slightly closer to the target DNAme site
(Figure 4.3b). In addition, by comparing QTL overlaps, I demonstrated that nearly all loci
that affect gene expression at some level also affect DNAme, although the effect may not
be the strongest QTL for the target DNAme site (Figure 4.4). With a collaborator, I also
characterised enrichment trends of QTLs in chromatin states, reproducing previous findings
for eQTLs [341, 395] and mQTLs [59, 273]. However, this analysis also suggests that mQTL
enrichment trends may, to some extent, be influenced by the specific genomic context of
the probe targets (Figure 4.10a). Finally, a collaborator and I also used QTLs overlapping
predicted TF binding sites to identify TFs that likely serve as activators or repressors in
skeletal muscle (Table 4.1).

In Chapter 5, I identified effects of GWAS loci for T2D and T2D-related traits on gene
expression and DNAme in skeletal muscle, finding numerous significant associations (Ta-
ble 5.1). I prioritised and characterised the strongest associations as well as the associations
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with molecular traits that exhibit skeletal muscle specific trends. Using gene expression,
I reproduced findings from Scott et al. [341], which analysed gene expression data from
an earlier version of this dataset. In addition, I found that including DNAme enhanced
these previous findings by guiding the identification of candidate regulatory effects at a
GWAS locus. For instance, using DNAme, I inferred instances where the regulatory effects
underlying a disease-associated locus likely involve TF binding at a canonical promoter, TF
binding at an alternative promoter or splice site, and even instances of distal regulation. In
some cases, I found extremely strong DNAme effects with a nearby common variant in high
LD with the GWAS tag SNP. Such instances may indicate the identification of a functional
variant underlying disease risk. As a proof of principle, I found the DNAme patterns around
the highly muscle specific ANK1 gene suggest that rs508419 may be a causal variant driving
the T2D GWAS signal (out of 15 variants in LD, r2 ≥ 0.8). In Scott et al. [341], this variant
was identified independent of DNAme and shown to affect TR4 binding in a skeletal muscle
promoter, leading to changes in ANK1 expression. This example suggests that DNAme
can indeed be used as a proxy for the identification of important regulatory events and to
distinguish candidate underlying, causal variants from other variants in high LD.

In addition, the inclusion of DNAme enabled the identification of instances where a variant
has a strong effect on gene expression and DNAme, which are themselves associated (i.e.,
are eQTM). Using ANK1 as a representative example, I showed that the observed eQTM
associations appear to be driven primarily by independent, strong genetic effects on both
gene expression and DNAme (Figure 5.17). To test such trends genome wide, I performed a
mediation analysis across all eQTMs with a QTL and found that for the majority of cases,
the association between expression and DNAme is driven by independent genetic effects
(Figure 5.19), consistent with the results of two recent studies [141, 273]. These results
represent a compelling repudiation of other models that assume DNAme generally drives
changes in gene expression level, or vice versa, and highlight the complexity of relationship
between expression and DNAme.

Finally, in Chapter 6, I mapped environmental response QTLs, utilising the many phenotypes
of the FUSION participants. Although underpowered, these results showed some level of
replication (Figure 6.6), including a compelling example with the highly muscle specific
FHOD3 gene (Figures 6.10, 6.11).
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7.2 Future directions

Collectively, these results summarise the relationships between gene expression, DNAme, and
genetic variation in skeletal muscle. They also suggest avenues for further exploration. As I
have described, I found several instances where DNAme provided insight into the regulatory
architecture around a GWAS locus and pinpointed candidate variants for functional follow up.
Such observations suggest that DNAme may be a useful proxy to assay molecular events that
shape the regulatory landscape of a region (e.g., TF binding), and that measuring DNAme
signals genome wide through sequencing (WGBS) would be a worthwhile investment since
arrays are limited by a set of predefined probes. These predefined probes restrict the
identification of candidate functional variants (since one does not know if there is a stronger
association at a DNAme site not assayed by the array) as well as distal regulatory effects (since
the EPIC array poorly captures important intergenic regulatory elements like enhancers). In
addition, WGBS would allow for comprehensive analysis of non-CpG DNAme and validation
of predicted cis regulatory effects through allele specific methylation.

In the broader context of the genetics of T2D and T2D-related traits, the fact that I found
skeletal muscle QTLs for many GWAS loci with clear T2D-linked effects in alternative
tissues (e.g., islets), highlights the paramount importance of multi-omic datasets across
many tissues, integrated with genetic information. When faced with multiple effects of the
same GWAS locus across different tissues (possibly differing in magnitude of effect or in a
tissue specific manner), identifying and prioritising which effects may be causal for disease
poses a significant challenge. Literature review, comparative genomics, multi-phenotype
genetics (e.g., phenome-wide association studies), multi-tissue functional genomics (e.g.
open chromatin profiles, chromatin state profiles, chromatin interactions), and multi-tissue
molecular trait genetics (e.g., eQTL, mQTL, caQTL studies) can help refine candidate causal
variants, identify tissue(s) of action, as well as generate hypotheses that describe underlying
molecular and physiological mechanisms.

For this reason, ongoing efforts to collect and build molecular trait QTL databases of key T2D
tissues, such as islet, muscle, liver, adipose, and brain, are extremely important. Focusing
on gene expression, GTEx will provide an excellent resource for many of these tissues,
and in cases of tissue overlap, other datasets can be used in conjunction with GTEx to
perform replication analyses, as demonstrated by Scott et al. [341]. However, for certain
difficult to obtain tissues, like pancreatic islet beta cells, resources like GTEx will need to
be supplemented with external datasets. In addition, expanding the current gene expression
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focused datasets, with additional molecular traits, like DNAme, may prove to be very useful
for identifying regulatory effects that underlie a GWAS locus, as described above.

Given finite sample quantities, generating QTL maps across many molecular traits is generally
infeasible. However, as recently demonstrated by the Human Induced Pluripotent Stem Cell
Initiative (HipSci) [185], iPS technologies can be used to generate pluripotent stem cell
reference panels, which provide an unlimited source of cellular material for molecular assays
across cell types (after differentiation). Although expensive, investments in such resources
(as FUSION has already made with a pilot project of 50 samples from this study) may
yield high dividends and enable studies to understand the effects of GWAS loci, as well as
genetic variation in general, on multiple molecular traits across various tissues in diverse
environmental contexts (e.g., glucose stimulation for islets). Moreover, such approaches
could be made even more powerful by using new single-cell molecular trait assays, thereby
accounting for heterogeneity of cell states in cultures.

Hypotheses generated from such high throughput analyses cannot fully fill the knowledge gap
from “genotype to phenotype” and must be followed up by low throughput functional studies.
Such studies can take on many forms and, out of necessity, will vary case-by-case. For
instance, candidate allele specific protein-DNA interactions can be validated in vitro through
electrophoretic mobility shift assays [341]. More extensive studies of candidate phenotypic
effects can be performed in vivo using transgenic model organisms, such as zebrafish and
mice [344, 91]. Genome editing technologies (e.g., CRISPR/Cas9) can expedite model
organism engineering as well as enable the testing of specific mutations in model cell lines,
differentiated iPS cells, or even iPS cells during differentiation [355, 347, 154]. This is a
particularly powerful approach as detailed multi-omic experiments and measurements of cell
physiology can be performed in tandem with controlled environmental perturbations. Given
the extensive labour and time required to perform such studies, it is important to leverage
high throughput methods (as described earlier) to guide specific, targeted experiments.
Nonetheless, such work is critical in order to fully validate hypotheses, establish a complete
biological picture, and ultimately drive translational research.

T2D is a major challenge for global healthcare, being the 6th leading cause of death world-
wide, with hundreds of billions of dollars in associated health, social, and economic costs
[161, 426]. Generating a complete catalogue of the genetic risk factors contributing to
T2D constitutes a crucial component of efforts to develop efficacious T2D treatments, as
genetic associations offer clues to biological mechanisms underlying disease (since there
is no reverse causation, common to epidemiological studies). This year, 2017, marks the
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10 year anniversary of the first T2D GWAS publications [340, 82, 419, 438]. The progress
made in unravelling the genetic architecture of T2D over the past decade is extraordinary.
With the ever decreasing costs of sequencing [131], identifying the full repertoire of T2D
genetic risk factors stands on the horizon. Yet, functional interpretation of these many genetic
effects still poses a significant challenge. The analysis presented in this thesis contributes
to ongoing efforts to understand the impact of disease-associated variants on molecular
traits. Undoubtedly, through the collective and collaborative efforts of the global scientific
community, these challenges will be met—connecting genotype to phenotype, suggesting
targetable pathways for therapeutic development, and improving lives of individuals and
families around the world.
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Label Description Source
Islets islet tissue [287]
SkeletalMuscle skeletal muscle tissue [316]
Adipose floated adipocyte nuclei [316]
GM12878 lymphoblastoid cell line (blood) [94]
AnteriorCaudate anterior caudate tissue (brain) [316]
CD34-PB hematopoietic stem cell [316]
CingulateGyrus cingulate gyrus tissue (brain) [316]
ColonicMucosa colonic mucosal tissue (colon) [316]
DuodenumMucosa duodenum mucosal tissue (small intestine) [316]
ES-HUES6 embryonic stem cell line [316]
ES-HUES64 embryonic stem cell line [316]
H1 embryonic stem cell line [94]
hASC-t1 human adipose stromal cell differentiation to adipocytes, time point 1 [253]
hASC-t2 human adipose stromal cell differentiation to adipocytes, time point 2 [253]
hASC-t3 human adipose stromal cell differentiation to adipocytes, time point 3 [253]
hASC-t4 human adipose stromal cell differentiation to adipocytes, time point 4 [253]
HepG2 hepatocellular carcinoma cell line (liver cancer) [94]
HippocampusMiddle hippocampus tissue (brain) [316]
HMEC mammary epithelial cells (breast) [94]
HSMM skeletal muscle myoblasts [94]
Huvec umbilical vein endothelial cells (blood vessel) [94]
InferiorTemporalLobe inferior temporal lobe tissue (brain) [316]
K562 leukemia cell line (blood) [94]
Liver liver tissue [316]
MidFrontalLobe mid frontal lobe tissue (brain) [316]
NHEK epidermal keratinocytes (skin) [94]
NHLF lung fibroblasts [94]
RectalMucosa rectal mucosal tissue [316]
RectalSmoothMuscle rectal smooth muscle tissue [316]
StomachSmoothMuscle stomach smooth muscle tissue [316]
SubstantiaNigra substantia nigra tissue (brain) [316]

Table A.1 Information on chromatin states from Varshney et al. [395]. Description of cell/tissue types
and reference to source.
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